1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Mips Jazz DMA controller support
4 * Copyright (C) 1995, 1996 by Andreas Busse
5 *
6 * NOTE: Some of the argument checking could be removed when
7 * things have settled down. Also, instead of returning 0xffffffff
8 * on failure of vdma_alloc() one could leave page #0 unused
9 * and return the more usual NULL pointer as logical address.
10 */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/mm.h>
16 #include <linux/memblock.h>
17 #include <linux/spinlock.h>
18 #include <linux/gfp.h>
19 #include <linux/dma-direct.h>
20 #include <linux/dma-noncoherent.h>
21 #include <asm/mipsregs.h>
22 #include <asm/jazz.h>
23 #include <asm/io.h>
24 #include <linux/uaccess.h>
25 #include <asm/dma.h>
26 #include <asm/jazzdma.h>
27 #include <asm/pgtable.h>
28
29 /*
30 * Set this to one to enable additional vdma debug code.
31 */
32 #define CONF_DEBUG_VDMA 0
33
34 static VDMA_PGTBL_ENTRY *pgtbl;
35
36 static DEFINE_SPINLOCK(vdma_lock);
37
38 /*
39 * Debug stuff
40 */
41 #define vdma_debug ((CONF_DEBUG_VDMA) ? debuglvl : 0)
42
43 static int debuglvl = 3;
44
45 /*
46 * Initialize the pagetable with a one-to-one mapping of
47 * the first 16 Mbytes of main memory and declare all
48 * entries to be unused. Using this method will at least
49 * allow some early device driver operations to work.
50 */
vdma_pgtbl_init(void)51 static inline void vdma_pgtbl_init(void)
52 {
53 unsigned long paddr = 0;
54 int i;
55
56 for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
57 pgtbl[i].frame = paddr;
58 pgtbl[i].owner = VDMA_PAGE_EMPTY;
59 paddr += VDMA_PAGESIZE;
60 }
61 }
62
63 /*
64 * Initialize the Jazz R4030 dma controller
65 */
vdma_init(void)66 static int __init vdma_init(void)
67 {
68 /*
69 * Allocate 32k of memory for DMA page tables. This needs to be page
70 * aligned and should be uncached to avoid cache flushing after every
71 * update.
72 */
73 pgtbl = (VDMA_PGTBL_ENTRY *)__get_free_pages(GFP_KERNEL | GFP_DMA,
74 get_order(VDMA_PGTBL_SIZE));
75 BUG_ON(!pgtbl);
76 dma_cache_wback_inv((unsigned long)pgtbl, VDMA_PGTBL_SIZE);
77 pgtbl = (VDMA_PGTBL_ENTRY *)CKSEG1ADDR((unsigned long)pgtbl);
78
79 /*
80 * Clear the R4030 translation table
81 */
82 vdma_pgtbl_init();
83
84 r4030_write_reg32(JAZZ_R4030_TRSTBL_BASE,
85 CPHYSADDR((unsigned long)pgtbl));
86 r4030_write_reg32(JAZZ_R4030_TRSTBL_LIM, VDMA_PGTBL_SIZE);
87 r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
88
89 printk(KERN_INFO "VDMA: R4030 DMA pagetables initialized.\n");
90 return 0;
91 }
92 arch_initcall(vdma_init);
93
94 /*
95 * Allocate DMA pagetables using a simple first-fit algorithm
96 */
vdma_alloc(unsigned long paddr,unsigned long size)97 unsigned long vdma_alloc(unsigned long paddr, unsigned long size)
98 {
99 int first, last, pages, frame, i;
100 unsigned long laddr, flags;
101
102 /* check arguments */
103
104 if (paddr > 0x1fffffff) {
105 if (vdma_debug)
106 printk("vdma_alloc: Invalid physical address: %08lx\n",
107 paddr);
108 return DMA_MAPPING_ERROR; /* invalid physical address */
109 }
110 if (size > 0x400000 || size == 0) {
111 if (vdma_debug)
112 printk("vdma_alloc: Invalid size: %08lx\n", size);
113 return DMA_MAPPING_ERROR; /* invalid physical address */
114 }
115
116 spin_lock_irqsave(&vdma_lock, flags);
117 /*
118 * Find free chunk
119 */
120 pages = VDMA_PAGE(paddr + size) - VDMA_PAGE(paddr) + 1;
121 first = 0;
122 while (1) {
123 while (pgtbl[first].owner != VDMA_PAGE_EMPTY &&
124 first < VDMA_PGTBL_ENTRIES) first++;
125 if (first + pages > VDMA_PGTBL_ENTRIES) { /* nothing free */
126 spin_unlock_irqrestore(&vdma_lock, flags);
127 return DMA_MAPPING_ERROR;
128 }
129
130 last = first + 1;
131 while (pgtbl[last].owner == VDMA_PAGE_EMPTY
132 && last - first < pages)
133 last++;
134
135 if (last - first == pages)
136 break; /* found */
137 first = last + 1;
138 }
139
140 /*
141 * Mark pages as allocated
142 */
143 laddr = (first << 12) + (paddr & (VDMA_PAGESIZE - 1));
144 frame = paddr & ~(VDMA_PAGESIZE - 1);
145
146 for (i = first; i < last; i++) {
147 pgtbl[i].frame = frame;
148 pgtbl[i].owner = laddr;
149 frame += VDMA_PAGESIZE;
150 }
151
152 /*
153 * Update translation table and return logical start address
154 */
155 r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
156
157 if (vdma_debug > 1)
158 printk("vdma_alloc: Allocated %d pages starting from %08lx\n",
159 pages, laddr);
160
161 if (vdma_debug > 2) {
162 printk("LADDR: ");
163 for (i = first; i < last; i++)
164 printk("%08x ", i << 12);
165 printk("\nPADDR: ");
166 for (i = first; i < last; i++)
167 printk("%08x ", pgtbl[i].frame);
168 printk("\nOWNER: ");
169 for (i = first; i < last; i++)
170 printk("%08x ", pgtbl[i].owner);
171 printk("\n");
172 }
173
174 spin_unlock_irqrestore(&vdma_lock, flags);
175
176 return laddr;
177 }
178
179 EXPORT_SYMBOL(vdma_alloc);
180
181 /*
182 * Free previously allocated dma translation pages
183 * Note that this does NOT change the translation table,
184 * it just marks the free'd pages as unused!
185 */
vdma_free(unsigned long laddr)186 int vdma_free(unsigned long laddr)
187 {
188 int i;
189
190 i = laddr >> 12;
191
192 if (pgtbl[i].owner != laddr) {
193 printk
194 ("vdma_free: trying to free other's dma pages, laddr=%8lx\n",
195 laddr);
196 return -1;
197 }
198
199 while (i < VDMA_PGTBL_ENTRIES && pgtbl[i].owner == laddr) {
200 pgtbl[i].owner = VDMA_PAGE_EMPTY;
201 i++;
202 }
203
204 if (vdma_debug > 1)
205 printk("vdma_free: freed %ld pages starting from %08lx\n",
206 i - (laddr >> 12), laddr);
207
208 return 0;
209 }
210
211 EXPORT_SYMBOL(vdma_free);
212
213 /*
214 * Map certain page(s) to another physical address.
215 * Caller must have allocated the page(s) before.
216 */
vdma_remap(unsigned long laddr,unsigned long paddr,unsigned long size)217 int vdma_remap(unsigned long laddr, unsigned long paddr, unsigned long size)
218 {
219 int first, pages;
220
221 if (laddr > 0xffffff) {
222 if (vdma_debug)
223 printk
224 ("vdma_map: Invalid logical address: %08lx\n",
225 laddr);
226 return -EINVAL; /* invalid logical address */
227 }
228 if (paddr > 0x1fffffff) {
229 if (vdma_debug)
230 printk
231 ("vdma_map: Invalid physical address: %08lx\n",
232 paddr);
233 return -EINVAL; /* invalid physical address */
234 }
235
236 pages = (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
237 first = laddr >> 12;
238 if (vdma_debug)
239 printk("vdma_remap: first=%x, pages=%x\n", first, pages);
240 if (first + pages > VDMA_PGTBL_ENTRIES) {
241 if (vdma_debug)
242 printk("vdma_alloc: Invalid size: %08lx\n", size);
243 return -EINVAL;
244 }
245
246 paddr &= ~(VDMA_PAGESIZE - 1);
247 while (pages > 0 && first < VDMA_PGTBL_ENTRIES) {
248 if (pgtbl[first].owner != laddr) {
249 if (vdma_debug)
250 printk("Trying to remap other's pages.\n");
251 return -EPERM; /* not owner */
252 }
253 pgtbl[first].frame = paddr;
254 paddr += VDMA_PAGESIZE;
255 first++;
256 pages--;
257 }
258
259 /*
260 * Update translation table
261 */
262 r4030_write_reg32(JAZZ_R4030_TRSTBL_INV, 0);
263
264 if (vdma_debug > 2) {
265 int i;
266 pages = (((paddr & (VDMA_PAGESIZE - 1)) + size) >> 12) + 1;
267 first = laddr >> 12;
268 printk("LADDR: ");
269 for (i = first; i < first + pages; i++)
270 printk("%08x ", i << 12);
271 printk("\nPADDR: ");
272 for (i = first; i < first + pages; i++)
273 printk("%08x ", pgtbl[i].frame);
274 printk("\nOWNER: ");
275 for (i = first; i < first + pages; i++)
276 printk("%08x ", pgtbl[i].owner);
277 printk("\n");
278 }
279
280 return 0;
281 }
282
283 /*
284 * Translate a physical address to a logical address.
285 * This will return the logical address of the first
286 * match.
287 */
vdma_phys2log(unsigned long paddr)288 unsigned long vdma_phys2log(unsigned long paddr)
289 {
290 int i;
291 int frame;
292
293 frame = paddr & ~(VDMA_PAGESIZE - 1);
294
295 for (i = 0; i < VDMA_PGTBL_ENTRIES; i++) {
296 if (pgtbl[i].frame == frame)
297 break;
298 }
299
300 if (i == VDMA_PGTBL_ENTRIES)
301 return ~0UL;
302
303 return (i << 12) + (paddr & (VDMA_PAGESIZE - 1));
304 }
305
306 EXPORT_SYMBOL(vdma_phys2log);
307
308 /*
309 * Translate a logical DMA address to a physical address
310 */
vdma_log2phys(unsigned long laddr)311 unsigned long vdma_log2phys(unsigned long laddr)
312 {
313 return pgtbl[laddr >> 12].frame + (laddr & (VDMA_PAGESIZE - 1));
314 }
315
316 EXPORT_SYMBOL(vdma_log2phys);
317
318 /*
319 * Print DMA statistics
320 */
vdma_stats(void)321 void vdma_stats(void)
322 {
323 int i;
324
325 printk("vdma_stats: CONFIG: %08x\n",
326 r4030_read_reg32(JAZZ_R4030_CONFIG));
327 printk("R4030 translation table base: %08x\n",
328 r4030_read_reg32(JAZZ_R4030_TRSTBL_BASE));
329 printk("R4030 translation table limit: %08x\n",
330 r4030_read_reg32(JAZZ_R4030_TRSTBL_LIM));
331 printk("vdma_stats: INV_ADDR: %08x\n",
332 r4030_read_reg32(JAZZ_R4030_INV_ADDR));
333 printk("vdma_stats: R_FAIL_ADDR: %08x\n",
334 r4030_read_reg32(JAZZ_R4030_R_FAIL_ADDR));
335 printk("vdma_stats: M_FAIL_ADDR: %08x\n",
336 r4030_read_reg32(JAZZ_R4030_M_FAIL_ADDR));
337 printk("vdma_stats: IRQ_SOURCE: %08x\n",
338 r4030_read_reg32(JAZZ_R4030_IRQ_SOURCE));
339 printk("vdma_stats: I386_ERROR: %08x\n",
340 r4030_read_reg32(JAZZ_R4030_I386_ERROR));
341 printk("vdma_chnl_modes: ");
342 for (i = 0; i < 8; i++)
343 printk("%04x ",
344 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
345 (i << 5)));
346 printk("\n");
347 printk("vdma_chnl_enables: ");
348 for (i = 0; i < 8; i++)
349 printk("%04x ",
350 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
351 (i << 5)));
352 printk("\n");
353 }
354
355 /*
356 * DMA transfer functions
357 */
358
359 /*
360 * Enable a DMA channel. Also clear any error conditions.
361 */
vdma_enable(int channel)362 void vdma_enable(int channel)
363 {
364 int status;
365
366 if (vdma_debug)
367 printk("vdma_enable: channel %d\n", channel);
368
369 /*
370 * Check error conditions first
371 */
372 status = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
373 if (status & 0x400)
374 printk("VDMA: Channel %d: Address error!\n", channel);
375 if (status & 0x200)
376 printk("VDMA: Channel %d: Memory error!\n", channel);
377
378 /*
379 * Clear all interrupt flags
380 */
381 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
382 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
383 (channel << 5)) | R4030_TC_INTR
384 | R4030_MEM_INTR | R4030_ADDR_INTR);
385
386 /*
387 * Enable the desired channel
388 */
389 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
390 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
391 (channel << 5)) |
392 R4030_CHNL_ENABLE);
393 }
394
395 EXPORT_SYMBOL(vdma_enable);
396
397 /*
398 * Disable a DMA channel
399 */
vdma_disable(int channel)400 void vdma_disable(int channel)
401 {
402 if (vdma_debug) {
403 int status =
404 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
405 (channel << 5));
406
407 printk("vdma_disable: channel %d\n", channel);
408 printk("VDMA: channel %d status: %04x (%s) mode: "
409 "%02x addr: %06x count: %06x\n",
410 channel, status,
411 ((status & 0x600) ? "ERROR" : "OK"),
412 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_MODE +
413 (channel << 5)),
414 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_ADDR +
415 (channel << 5)),
416 (unsigned) r4030_read_reg32(JAZZ_R4030_CHNL_COUNT +
417 (channel << 5)));
418 }
419
420 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
421 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
422 (channel << 5)) &
423 ~R4030_CHNL_ENABLE);
424
425 /*
426 * After disabling a DMA channel a remote bus register should be
427 * read to ensure that the current DMA acknowledge cycle is completed.
428 */
429 *((volatile unsigned int *) JAZZ_DUMMY_DEVICE);
430 }
431
432 EXPORT_SYMBOL(vdma_disable);
433
434 /*
435 * Set DMA mode. This function accepts the mode values used
436 * to set a PC-style DMA controller. For the SCSI and FDC
437 * channels, we also set the default modes each time we're
438 * called.
439 * NOTE: The FAST and BURST dma modes are supported by the
440 * R4030 Rev. 2 and PICA chipsets only. I leave them disabled
441 * for now.
442 */
vdma_set_mode(int channel,int mode)443 void vdma_set_mode(int channel, int mode)
444 {
445 if (vdma_debug)
446 printk("vdma_set_mode: channel %d, mode 0x%x\n", channel,
447 mode);
448
449 switch (channel) {
450 case JAZZ_SCSI_DMA: /* scsi */
451 r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
452 /* R4030_MODE_FAST | */
453 /* R4030_MODE_BURST | */
454 R4030_MODE_INTR_EN |
455 R4030_MODE_WIDTH_16 |
456 R4030_MODE_ATIME_80);
457 break;
458
459 case JAZZ_FLOPPY_DMA: /* floppy */
460 r4030_write_reg32(JAZZ_R4030_CHNL_MODE + (channel << 5),
461 /* R4030_MODE_FAST | */
462 /* R4030_MODE_BURST | */
463 R4030_MODE_INTR_EN |
464 R4030_MODE_WIDTH_8 |
465 R4030_MODE_ATIME_120);
466 break;
467
468 case JAZZ_AUDIOL_DMA:
469 case JAZZ_AUDIOR_DMA:
470 printk("VDMA: Audio DMA not supported yet.\n");
471 break;
472
473 default:
474 printk
475 ("VDMA: vdma_set_mode() called with unsupported channel %d!\n",
476 channel);
477 }
478
479 switch (mode) {
480 case DMA_MODE_READ:
481 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
482 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
483 (channel << 5)) &
484 ~R4030_CHNL_WRITE);
485 break;
486
487 case DMA_MODE_WRITE:
488 r4030_write_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5),
489 r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE +
490 (channel << 5)) |
491 R4030_CHNL_WRITE);
492 break;
493
494 default:
495 printk
496 ("VDMA: vdma_set_mode() called with unknown dma mode 0x%x\n",
497 mode);
498 }
499 }
500
501 EXPORT_SYMBOL(vdma_set_mode);
502
503 /*
504 * Set Transfer Address
505 */
vdma_set_addr(int channel,long addr)506 void vdma_set_addr(int channel, long addr)
507 {
508 if (vdma_debug)
509 printk("vdma_set_addr: channel %d, addr %lx\n", channel,
510 addr);
511
512 r4030_write_reg32(JAZZ_R4030_CHNL_ADDR + (channel << 5), addr);
513 }
514
515 EXPORT_SYMBOL(vdma_set_addr);
516
517 /*
518 * Set Transfer Count
519 */
vdma_set_count(int channel,int count)520 void vdma_set_count(int channel, int count)
521 {
522 if (vdma_debug)
523 printk("vdma_set_count: channel %d, count %08x\n", channel,
524 (unsigned) count);
525
526 r4030_write_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5), count);
527 }
528
529 EXPORT_SYMBOL(vdma_set_count);
530
531 /*
532 * Get Residual
533 */
vdma_get_residue(int channel)534 int vdma_get_residue(int channel)
535 {
536 int residual;
537
538 residual = r4030_read_reg32(JAZZ_R4030_CHNL_COUNT + (channel << 5));
539
540 if (vdma_debug)
541 printk("vdma_get_residual: channel %d: residual=%d\n",
542 channel, residual);
543
544 return residual;
545 }
546
547 /*
548 * Get DMA channel enable register
549 */
vdma_get_enable(int channel)550 int vdma_get_enable(int channel)
551 {
552 int enable;
553
554 enable = r4030_read_reg32(JAZZ_R4030_CHNL_ENABLE + (channel << 5));
555
556 if (vdma_debug)
557 printk("vdma_get_enable: channel %d: enable=%d\n", channel,
558 enable);
559
560 return enable;
561 }
562
jazz_dma_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)563 static void *jazz_dma_alloc(struct device *dev, size_t size,
564 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
565 {
566 void *ret;
567
568 ret = dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
569 if (!ret)
570 return NULL;
571
572 *dma_handle = vdma_alloc(virt_to_phys(ret), size);
573 if (*dma_handle == DMA_MAPPING_ERROR) {
574 dma_direct_free_pages(dev, size, ret, *dma_handle, attrs);
575 return NULL;
576 }
577
578 return ret;
579 }
580
jazz_dma_free(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,unsigned long attrs)581 static void jazz_dma_free(struct device *dev, size_t size, void *vaddr,
582 dma_addr_t dma_handle, unsigned long attrs)
583 {
584 vdma_free(dma_handle);
585 dma_direct_free_pages(dev, size, vaddr, dma_handle, attrs);
586 }
587
jazz_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)588 static dma_addr_t jazz_dma_map_page(struct device *dev, struct page *page,
589 unsigned long offset, size_t size, enum dma_data_direction dir,
590 unsigned long attrs)
591 {
592 phys_addr_t phys = page_to_phys(page) + offset;
593
594 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
595 arch_sync_dma_for_device(phys, size, dir);
596 return vdma_alloc(phys, size);
597 }
598
jazz_dma_unmap_page(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)599 static void jazz_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
600 size_t size, enum dma_data_direction dir, unsigned long attrs)
601 {
602 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
603 arch_sync_dma_for_cpu(vdma_log2phys(dma_addr), size, dir);
604 vdma_free(dma_addr);
605 }
606
jazz_dma_map_sg(struct device * dev,struct scatterlist * sglist,int nents,enum dma_data_direction dir,unsigned long attrs)607 static int jazz_dma_map_sg(struct device *dev, struct scatterlist *sglist,
608 int nents, enum dma_data_direction dir, unsigned long attrs)
609 {
610 int i;
611 struct scatterlist *sg;
612
613 for_each_sg(sglist, sg, nents, i) {
614 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
615 arch_sync_dma_for_device(sg_phys(sg), sg->length,
616 dir);
617 sg->dma_address = vdma_alloc(sg_phys(sg), sg->length);
618 if (sg->dma_address == DMA_MAPPING_ERROR)
619 return 0;
620 sg_dma_len(sg) = sg->length;
621 }
622
623 return nents;
624 }
625
jazz_dma_unmap_sg(struct device * dev,struct scatterlist * sglist,int nents,enum dma_data_direction dir,unsigned long attrs)626 static void jazz_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
627 int nents, enum dma_data_direction dir, unsigned long attrs)
628 {
629 int i;
630 struct scatterlist *sg;
631
632 for_each_sg(sglist, sg, nents, i) {
633 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
634 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
635 vdma_free(sg->dma_address);
636 }
637 }
638
jazz_dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)639 static void jazz_dma_sync_single_for_device(struct device *dev,
640 dma_addr_t addr, size_t size, enum dma_data_direction dir)
641 {
642 arch_sync_dma_for_device(vdma_log2phys(addr), size, dir);
643 }
644
jazz_dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)645 static void jazz_dma_sync_single_for_cpu(struct device *dev,
646 dma_addr_t addr, size_t size, enum dma_data_direction dir)
647 {
648 arch_sync_dma_for_cpu(vdma_log2phys(addr), size, dir);
649 }
650
jazz_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)651 static void jazz_dma_sync_sg_for_device(struct device *dev,
652 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
653 {
654 struct scatterlist *sg;
655 int i;
656
657 for_each_sg(sgl, sg, nents, i)
658 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
659 }
660
jazz_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)661 static void jazz_dma_sync_sg_for_cpu(struct device *dev,
662 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
663 {
664 struct scatterlist *sg;
665 int i;
666
667 for_each_sg(sgl, sg, nents, i)
668 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
669 }
670
671 const struct dma_map_ops jazz_dma_ops = {
672 .alloc = jazz_dma_alloc,
673 .free = jazz_dma_free,
674 .map_page = jazz_dma_map_page,
675 .unmap_page = jazz_dma_unmap_page,
676 .map_sg = jazz_dma_map_sg,
677 .unmap_sg = jazz_dma_unmap_sg,
678 .sync_single_for_cpu = jazz_dma_sync_single_for_cpu,
679 .sync_single_for_device = jazz_dma_sync_single_for_device,
680 .sync_sg_for_cpu = jazz_dma_sync_sg_for_cpu,
681 .sync_sg_for_device = jazz_dma_sync_sg_for_device,
682 .dma_supported = dma_direct_supported,
683 .cache_sync = arch_dma_cache_sync,
684 .mmap = dma_common_mmap,
685 .get_sgtable = dma_common_get_sgtable,
686 };
687 EXPORT_SYMBOL(jazz_dma_ops);
688