• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGICv3 MMIO handling functions
4  */
5 
6 #include <linux/irqchip/arm-gic-v3.h>
7 #include <linux/kvm.h>
8 #include <linux/kvm_host.h>
9 #include <kvm/iodev.h>
10 #include <kvm/arm_vgic.h>
11 
12 #include <asm/kvm_emulate.h>
13 #include <asm/kvm_arm.h>
14 #include <asm/kvm_mmu.h>
15 
16 #include "vgic.h"
17 #include "vgic-mmio.h"
18 
19 /* extract @num bytes at @offset bytes offset in data */
extract_bytes(u64 data,unsigned int offset,unsigned int num)20 unsigned long extract_bytes(u64 data, unsigned int offset,
21 			    unsigned int num)
22 {
23 	return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
24 }
25 
26 /* allows updates of any half of a 64-bit register (or the whole thing) */
update_64bit_reg(u64 reg,unsigned int offset,unsigned int len,unsigned long val)27 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
28 		     unsigned long val)
29 {
30 	int lower = (offset & 4) * 8;
31 	int upper = lower + 8 * len - 1;
32 
33 	reg &= ~GENMASK_ULL(upper, lower);
34 	val &= GENMASK_ULL(len * 8 - 1, 0);
35 
36 	return reg | ((u64)val << lower);
37 }
38 
vgic_has_its(struct kvm * kvm)39 bool vgic_has_its(struct kvm *kvm)
40 {
41 	struct vgic_dist *dist = &kvm->arch.vgic;
42 
43 	if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
44 		return false;
45 
46 	return dist->has_its;
47 }
48 
vgic_supports_direct_msis(struct kvm * kvm)49 bool vgic_supports_direct_msis(struct kvm *kvm)
50 {
51 	return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
52 }
53 
54 /*
55  * The Revision field in the IIDR have the following meanings:
56  *
57  * Revision 2: Interrupt groups are guest-configurable and signaled using
58  * 	       their configured groups.
59  */
60 
vgic_mmio_read_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)61 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
62 					    gpa_t addr, unsigned int len)
63 {
64 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
65 	u32 value = 0;
66 
67 	switch (addr & 0x0c) {
68 	case GICD_CTLR:
69 		if (vgic->enabled)
70 			value |= GICD_CTLR_ENABLE_SS_G1;
71 		value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
72 		break;
73 	case GICD_TYPER:
74 		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
75 		value = (value >> 5) - 1;
76 		if (vgic_has_its(vcpu->kvm)) {
77 			value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
78 			value |= GICD_TYPER_LPIS;
79 		} else {
80 			value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
81 		}
82 		break;
83 	case GICD_IIDR:
84 		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
85 			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
86 			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
87 		break;
88 	default:
89 		return 0;
90 	}
91 
92 	return value;
93 }
94 
vgic_mmio_write_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)95 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
96 				    gpa_t addr, unsigned int len,
97 				    unsigned long val)
98 {
99 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
100 	bool was_enabled = dist->enabled;
101 
102 	switch (addr & 0x0c) {
103 	case GICD_CTLR:
104 		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
105 
106 		if (!was_enabled && dist->enabled)
107 			vgic_kick_vcpus(vcpu->kvm);
108 		break;
109 	case GICD_TYPER:
110 	case GICD_IIDR:
111 		return;
112 	}
113 }
114 
vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)115 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
116 					   gpa_t addr, unsigned int len,
117 					   unsigned long val)
118 {
119 	switch (addr & 0x0c) {
120 	case GICD_IIDR:
121 		if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
122 			return -EINVAL;
123 	}
124 
125 	vgic_mmio_write_v3_misc(vcpu, addr, len, val);
126 	return 0;
127 }
128 
vgic_mmio_read_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)129 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
130 					    gpa_t addr, unsigned int len)
131 {
132 	int intid = VGIC_ADDR_TO_INTID(addr, 64);
133 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
134 	unsigned long ret = 0;
135 
136 	if (!irq)
137 		return 0;
138 
139 	/* The upper word is RAZ for us. */
140 	if (!(addr & 4))
141 		ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
142 
143 	vgic_put_irq(vcpu->kvm, irq);
144 	return ret;
145 }
146 
vgic_mmio_write_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)147 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
148 				    gpa_t addr, unsigned int len,
149 				    unsigned long val)
150 {
151 	int intid = VGIC_ADDR_TO_INTID(addr, 64);
152 	struct vgic_irq *irq;
153 	unsigned long flags;
154 
155 	/* The upper word is WI for us since we don't implement Aff3. */
156 	if (addr & 4)
157 		return;
158 
159 	irq = vgic_get_irq(vcpu->kvm, NULL, intid);
160 
161 	if (!irq)
162 		return;
163 
164 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
165 
166 	/* We only care about and preserve Aff0, Aff1 and Aff2. */
167 	irq->mpidr = val & GENMASK(23, 0);
168 	irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
169 
170 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
171 	vgic_put_irq(vcpu->kvm, irq);
172 }
173 
vgic_mmio_read_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)174 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
175 					     gpa_t addr, unsigned int len)
176 {
177 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
178 
179 	return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
180 }
181 
182 
vgic_mmio_write_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)183 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
184 				     gpa_t addr, unsigned int len,
185 				     unsigned long val)
186 {
187 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
188 	bool was_enabled = vgic_cpu->lpis_enabled;
189 
190 	if (!vgic_has_its(vcpu->kvm))
191 		return;
192 
193 	vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
194 
195 	if (was_enabled && !vgic_cpu->lpis_enabled) {
196 		vgic_flush_pending_lpis(vcpu);
197 		vgic_its_invalidate_cache(vcpu->kvm);
198 	}
199 
200 	if (!was_enabled && vgic_cpu->lpis_enabled)
201 		vgic_enable_lpis(vcpu);
202 }
203 
vgic_mmio_read_v3r_typer(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)204 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
205 					      gpa_t addr, unsigned int len)
206 {
207 	unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
208 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
209 	struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
210 	int target_vcpu_id = vcpu->vcpu_id;
211 	gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
212 			(rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
213 	u64 value;
214 
215 	value = (u64)(mpidr & GENMASK(23, 0)) << 32;
216 	value |= ((target_vcpu_id & 0xffff) << 8);
217 
218 	if (addr == last_rdist_typer)
219 		value |= GICR_TYPER_LAST;
220 	if (vgic_has_its(vcpu->kvm))
221 		value |= GICR_TYPER_PLPIS;
222 
223 	return extract_bytes(value, addr & 7, len);
224 }
225 
vgic_uaccess_read_v3r_typer(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)226 static unsigned long vgic_uaccess_read_v3r_typer(struct kvm_vcpu *vcpu,
227 						 gpa_t addr, unsigned int len)
228 {
229 	unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
230 	int target_vcpu_id = vcpu->vcpu_id;
231 	u64 value;
232 
233 	value = (u64)(mpidr & GENMASK(23, 0)) << 32;
234 	value |= ((target_vcpu_id & 0xffff) << 8);
235 
236 	if (vgic_has_its(vcpu->kvm))
237 		value |= GICR_TYPER_PLPIS;
238 
239 	/* reporting of the Last bit is not supported for userspace */
240 	return extract_bytes(value, addr & 7, len);
241 }
242 
vgic_mmio_read_v3r_iidr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)243 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
244 					     gpa_t addr, unsigned int len)
245 {
246 	return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
247 }
248 
vgic_mmio_read_v3_idregs(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)249 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
250 					      gpa_t addr, unsigned int len)
251 {
252 	switch (addr & 0xffff) {
253 	case GICD_PIDR2:
254 		/* report a GICv3 compliant implementation */
255 		return 0x3b;
256 	}
257 
258 	return 0;
259 }
260 
vgic_v3_uaccess_read_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)261 static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
262 						  gpa_t addr, unsigned int len)
263 {
264 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
265 	u32 value = 0;
266 	int i;
267 
268 	/*
269 	 * pending state of interrupt is latched in pending_latch variable.
270 	 * Userspace will save and restore pending state and line_level
271 	 * separately.
272 	 * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.txt
273 	 * for handling of ISPENDR and ICPENDR.
274 	 */
275 	for (i = 0; i < len * 8; i++) {
276 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
277 
278 		if (irq->pending_latch)
279 			value |= (1U << i);
280 
281 		vgic_put_irq(vcpu->kvm, irq);
282 	}
283 
284 	return value;
285 }
286 
vgic_v3_uaccess_write_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)287 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
288 					 gpa_t addr, unsigned int len,
289 					 unsigned long val)
290 {
291 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
292 	int i;
293 	unsigned long flags;
294 
295 	for (i = 0; i < len * 8; i++) {
296 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
297 
298 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
299 		if (test_bit(i, &val)) {
300 			/*
301 			 * pending_latch is set irrespective of irq type
302 			 * (level or edge) to avoid dependency that VM should
303 			 * restore irq config before pending info.
304 			 */
305 			irq->pending_latch = true;
306 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
307 		} else {
308 			irq->pending_latch = false;
309 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
310 		}
311 
312 		vgic_put_irq(vcpu->kvm, irq);
313 	}
314 
315 	return 0;
316 }
317 
318 /* We want to avoid outer shareable. */
vgic_sanitise_shareability(u64 field)319 u64 vgic_sanitise_shareability(u64 field)
320 {
321 	switch (field) {
322 	case GIC_BASER_OuterShareable:
323 		return GIC_BASER_InnerShareable;
324 	default:
325 		return field;
326 	}
327 }
328 
329 /* Avoid any inner non-cacheable mapping. */
vgic_sanitise_inner_cacheability(u64 field)330 u64 vgic_sanitise_inner_cacheability(u64 field)
331 {
332 	switch (field) {
333 	case GIC_BASER_CACHE_nCnB:
334 	case GIC_BASER_CACHE_nC:
335 		return GIC_BASER_CACHE_RaWb;
336 	default:
337 		return field;
338 	}
339 }
340 
341 /* Non-cacheable or same-as-inner are OK. */
vgic_sanitise_outer_cacheability(u64 field)342 u64 vgic_sanitise_outer_cacheability(u64 field)
343 {
344 	switch (field) {
345 	case GIC_BASER_CACHE_SameAsInner:
346 	case GIC_BASER_CACHE_nC:
347 		return field;
348 	default:
349 		return GIC_BASER_CACHE_nC;
350 	}
351 }
352 
vgic_sanitise_field(u64 reg,u64 field_mask,int field_shift,u64 (* sanitise_fn)(u64))353 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
354 			u64 (*sanitise_fn)(u64))
355 {
356 	u64 field = (reg & field_mask) >> field_shift;
357 
358 	field = sanitise_fn(field) << field_shift;
359 	return (reg & ~field_mask) | field;
360 }
361 
362 #define PROPBASER_RES0_MASK						\
363 	(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
364 #define PENDBASER_RES0_MASK						\
365 	(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |	\
366 	 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
367 
vgic_sanitise_pendbaser(u64 reg)368 static u64 vgic_sanitise_pendbaser(u64 reg)
369 {
370 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
371 				  GICR_PENDBASER_SHAREABILITY_SHIFT,
372 				  vgic_sanitise_shareability);
373 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
374 				  GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
375 				  vgic_sanitise_inner_cacheability);
376 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
377 				  GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
378 				  vgic_sanitise_outer_cacheability);
379 
380 	reg &= ~PENDBASER_RES0_MASK;
381 
382 	return reg;
383 }
384 
vgic_sanitise_propbaser(u64 reg)385 static u64 vgic_sanitise_propbaser(u64 reg)
386 {
387 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
388 				  GICR_PROPBASER_SHAREABILITY_SHIFT,
389 				  vgic_sanitise_shareability);
390 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
391 				  GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
392 				  vgic_sanitise_inner_cacheability);
393 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
394 				  GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
395 				  vgic_sanitise_outer_cacheability);
396 
397 	reg &= ~PROPBASER_RES0_MASK;
398 	return reg;
399 }
400 
vgic_mmio_read_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)401 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
402 					     gpa_t addr, unsigned int len)
403 {
404 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
405 
406 	return extract_bytes(dist->propbaser, addr & 7, len);
407 }
408 
vgic_mmio_write_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)409 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
410 				     gpa_t addr, unsigned int len,
411 				     unsigned long val)
412 {
413 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
414 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
415 	u64 old_propbaser, propbaser;
416 
417 	/* Storing a value with LPIs already enabled is undefined */
418 	if (vgic_cpu->lpis_enabled)
419 		return;
420 
421 	do {
422 		old_propbaser = READ_ONCE(dist->propbaser);
423 		propbaser = old_propbaser;
424 		propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
425 		propbaser = vgic_sanitise_propbaser(propbaser);
426 	} while (cmpxchg64(&dist->propbaser, old_propbaser,
427 			   propbaser) != old_propbaser);
428 }
429 
vgic_mmio_read_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)430 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
431 					     gpa_t addr, unsigned int len)
432 {
433 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
434 
435 	return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
436 }
437 
vgic_mmio_write_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)438 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
439 				     gpa_t addr, unsigned int len,
440 				     unsigned long val)
441 {
442 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
443 	u64 old_pendbaser, pendbaser;
444 
445 	/* Storing a value with LPIs already enabled is undefined */
446 	if (vgic_cpu->lpis_enabled)
447 		return;
448 
449 	do {
450 		old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
451 		pendbaser = old_pendbaser;
452 		pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
453 		pendbaser = vgic_sanitise_pendbaser(pendbaser);
454 	} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
455 			   pendbaser) != old_pendbaser);
456 }
457 
458 /*
459  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
460  * redistributors, while SPIs are covered by registers in the distributor
461  * block. Trying to set private IRQs in this block gets ignored.
462  * We take some special care here to fix the calculation of the register
463  * offset.
464  */
465 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
466 	{								\
467 		.reg_offset = off,					\
468 		.bits_per_irq = bpi,					\
469 		.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,		\
470 		.access_flags = acc,					\
471 		.read = vgic_mmio_read_raz,				\
472 		.write = vgic_mmio_write_wi,				\
473 	}, {								\
474 		.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,	\
475 		.bits_per_irq = bpi,					\
476 		.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,	\
477 		.access_flags = acc,					\
478 		.read = rd,						\
479 		.write = wr,						\
480 		.uaccess_read = ur,					\
481 		.uaccess_write = uw,					\
482 	}
483 
484 static const struct vgic_register_region vgic_v3_dist_registers[] = {
485 	REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
486 		vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
487 		NULL, vgic_mmio_uaccess_write_v3_misc,
488 		16, VGIC_ACCESS_32bit),
489 	REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
490 		vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
491 		VGIC_ACCESS_32bit),
492 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
493 		vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
494 		VGIC_ACCESS_32bit),
495 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
496 		vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
497 		VGIC_ACCESS_32bit),
498 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
499 		vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
500 		VGIC_ACCESS_32bit),
501 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
502 		vgic_mmio_read_pending, vgic_mmio_write_spending,
503 		vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
504 		VGIC_ACCESS_32bit),
505 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
506 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
507 		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
508 		VGIC_ACCESS_32bit),
509 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
510 		vgic_mmio_read_active, vgic_mmio_write_sactive,
511 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
512 		VGIC_ACCESS_32bit),
513 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
514 		vgic_mmio_read_active, vgic_mmio_write_cactive,
515 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
516 		1, VGIC_ACCESS_32bit),
517 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
518 		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
519 		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
520 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
521 		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
522 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
523 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
524 		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
525 		VGIC_ACCESS_32bit),
526 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
527 		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
528 		VGIC_ACCESS_32bit),
529 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
530 		vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
531 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
532 	REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
533 		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
534 		VGIC_ACCESS_32bit),
535 };
536 
537 static const struct vgic_register_region vgic_v3_rd_registers[] = {
538 	/* RD_base registers */
539 	REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
540 		vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
541 		VGIC_ACCESS_32bit),
542 	REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
543 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
544 		VGIC_ACCESS_32bit),
545 	REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
546 		vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
547 		VGIC_ACCESS_32bit),
548 	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
549 		vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
550 		vgic_uaccess_read_v3r_typer, vgic_mmio_uaccess_write_wi, 8,
551 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
552 	REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
553 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
554 		VGIC_ACCESS_32bit),
555 	REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
556 		vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
557 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
558 	REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
559 		vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
560 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
561 	REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
562 		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
563 		VGIC_ACCESS_32bit),
564 	/* SGI_base registers */
565 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
566 		vgic_mmio_read_group, vgic_mmio_write_group, 4,
567 		VGIC_ACCESS_32bit),
568 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ISENABLER0,
569 		vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
570 		VGIC_ACCESS_32bit),
571 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICENABLER0,
572 		vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
573 		VGIC_ACCESS_32bit),
574 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
575 		vgic_mmio_read_pending, vgic_mmio_write_spending,
576 		vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
577 		VGIC_ACCESS_32bit),
578 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
579 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
580 		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
581 		VGIC_ACCESS_32bit),
582 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
583 		vgic_mmio_read_active, vgic_mmio_write_sactive,
584 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
585 		VGIC_ACCESS_32bit),
586 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
587 		vgic_mmio_read_active, vgic_mmio_write_cactive,
588 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
589 		VGIC_ACCESS_32bit),
590 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
591 		vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
592 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
593 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
594 		vgic_mmio_read_config, vgic_mmio_write_config, 8,
595 		VGIC_ACCESS_32bit),
596 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
597 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
598 		VGIC_ACCESS_32bit),
599 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
600 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
601 		VGIC_ACCESS_32bit),
602 };
603 
vgic_v3_init_dist_iodev(struct vgic_io_device * dev)604 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
605 {
606 	dev->regions = vgic_v3_dist_registers;
607 	dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
608 
609 	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
610 
611 	return SZ_64K;
612 }
613 
614 /**
615  * vgic_register_redist_iodev - register a single redist iodev
616  * @vcpu:    The VCPU to which the redistributor belongs
617  *
618  * Register a KVM iodev for this VCPU's redistributor using the address
619  * provided.
620  *
621  * Return 0 on success, -ERRNO otherwise.
622  */
vgic_register_redist_iodev(struct kvm_vcpu * vcpu)623 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
624 {
625 	struct kvm *kvm = vcpu->kvm;
626 	struct vgic_dist *vgic = &kvm->arch.vgic;
627 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
628 	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
629 	struct vgic_redist_region *rdreg;
630 	gpa_t rd_base;
631 	int ret;
632 
633 	if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
634 		return 0;
635 
636 	/*
637 	 * We may be creating VCPUs before having set the base address for the
638 	 * redistributor region, in which case we will come back to this
639 	 * function for all VCPUs when the base address is set.  Just return
640 	 * without doing any work for now.
641 	 */
642 	rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
643 	if (!rdreg)
644 		return 0;
645 
646 	if (!vgic_v3_check_base(kvm))
647 		return -EINVAL;
648 
649 	vgic_cpu->rdreg = rdreg;
650 
651 	rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
652 
653 	kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
654 	rd_dev->base_addr = rd_base;
655 	rd_dev->iodev_type = IODEV_REDIST;
656 	rd_dev->regions = vgic_v3_rd_registers;
657 	rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
658 	rd_dev->redist_vcpu = vcpu;
659 
660 	mutex_lock(&kvm->slots_lock);
661 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
662 				      2 * SZ_64K, &rd_dev->dev);
663 	mutex_unlock(&kvm->slots_lock);
664 
665 	if (ret)
666 		return ret;
667 
668 	rdreg->free_index++;
669 	return 0;
670 }
671 
vgic_unregister_redist_iodev(struct kvm_vcpu * vcpu)672 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
673 {
674 	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
675 
676 	kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
677 }
678 
vgic_register_all_redist_iodevs(struct kvm * kvm)679 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
680 {
681 	struct kvm_vcpu *vcpu;
682 	int c, ret = 0;
683 
684 	kvm_for_each_vcpu(c, vcpu, kvm) {
685 		ret = vgic_register_redist_iodev(vcpu);
686 		if (ret)
687 			break;
688 	}
689 
690 	if (ret) {
691 		/* The current c failed, so we start with the previous one. */
692 		mutex_lock(&kvm->slots_lock);
693 		for (c--; c >= 0; c--) {
694 			vcpu = kvm_get_vcpu(kvm, c);
695 			vgic_unregister_redist_iodev(vcpu);
696 		}
697 		mutex_unlock(&kvm->slots_lock);
698 	}
699 
700 	return ret;
701 }
702 
703 /**
704  * vgic_v3_insert_redist_region - Insert a new redistributor region
705  *
706  * Performs various checks before inserting the rdist region in the list.
707  * Those tests depend on whether the size of the rdist region is known
708  * (ie. count != 0). The list is sorted by rdist region index.
709  *
710  * @kvm: kvm handle
711  * @index: redist region index
712  * @base: base of the new rdist region
713  * @count: number of redistributors the region is made of (0 in the old style
714  * single region, whose size is induced from the number of vcpus)
715  *
716  * Return 0 on success, < 0 otherwise
717  */
vgic_v3_insert_redist_region(struct kvm * kvm,uint32_t index,gpa_t base,uint32_t count)718 static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
719 					gpa_t base, uint32_t count)
720 {
721 	struct vgic_dist *d = &kvm->arch.vgic;
722 	struct vgic_redist_region *rdreg;
723 	struct list_head *rd_regions = &d->rd_regions;
724 	size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
725 	int ret;
726 
727 	/* single rdist region already set ?*/
728 	if (!count && !list_empty(rd_regions))
729 		return -EINVAL;
730 
731 	/* cross the end of memory ? */
732 	if (base + size < base)
733 		return -EINVAL;
734 
735 	if (list_empty(rd_regions)) {
736 		if (index != 0)
737 			return -EINVAL;
738 	} else {
739 		rdreg = list_last_entry(rd_regions,
740 					struct vgic_redist_region, list);
741 		if (index != rdreg->index + 1)
742 			return -EINVAL;
743 
744 		/* Cannot add an explicitly sized regions after legacy region */
745 		if (!rdreg->count)
746 			return -EINVAL;
747 	}
748 
749 	/*
750 	 * For legacy single-region redistributor regions (!count),
751 	 * check that the redistributor region does not overlap with the
752 	 * distributor's address space.
753 	 */
754 	if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
755 		vgic_dist_overlap(kvm, base, size))
756 		return -EINVAL;
757 
758 	/* collision with any other rdist region? */
759 	if (vgic_v3_rdist_overlap(kvm, base, size))
760 		return -EINVAL;
761 
762 	rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
763 	if (!rdreg)
764 		return -ENOMEM;
765 
766 	rdreg->base = VGIC_ADDR_UNDEF;
767 
768 	ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
769 	if (ret)
770 		goto free;
771 
772 	rdreg->base = base;
773 	rdreg->count = count;
774 	rdreg->free_index = 0;
775 	rdreg->index = index;
776 
777 	list_add_tail(&rdreg->list, rd_regions);
778 	return 0;
779 free:
780 	kfree(rdreg);
781 	return ret;
782 }
783 
vgic_v3_set_redist_base(struct kvm * kvm,u32 index,u64 addr,u32 count)784 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
785 {
786 	int ret;
787 
788 	ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
789 	if (ret)
790 		return ret;
791 
792 	/*
793 	 * Register iodevs for each existing VCPU.  Adding more VCPUs
794 	 * afterwards will register the iodevs when needed.
795 	 */
796 	ret = vgic_register_all_redist_iodevs(kvm);
797 	if (ret)
798 		return ret;
799 
800 	return 0;
801 }
802 
vgic_v3_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)803 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
804 {
805 	const struct vgic_register_region *region;
806 	struct vgic_io_device iodev;
807 	struct vgic_reg_attr reg_attr;
808 	struct kvm_vcpu *vcpu;
809 	gpa_t addr;
810 	int ret;
811 
812 	ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
813 	if (ret)
814 		return ret;
815 
816 	vcpu = reg_attr.vcpu;
817 	addr = reg_attr.addr;
818 
819 	switch (attr->group) {
820 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
821 		iodev.regions = vgic_v3_dist_registers;
822 		iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
823 		iodev.base_addr = 0;
824 		break;
825 	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
826 		iodev.regions = vgic_v3_rd_registers;
827 		iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
828 		iodev.base_addr = 0;
829 		break;
830 	}
831 	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
832 		u64 reg, id;
833 
834 		id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
835 		return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
836 	}
837 	default:
838 		return -ENXIO;
839 	}
840 
841 	/* We only support aligned 32-bit accesses. */
842 	if (addr & 3)
843 		return -ENXIO;
844 
845 	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
846 	if (!region)
847 		return -ENXIO;
848 
849 	return 0;
850 }
851 /*
852  * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
853  * generation register ICC_SGI1R_EL1) with a given VCPU.
854  * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
855  * return -1.
856  */
match_mpidr(u64 sgi_aff,u16 sgi_cpu_mask,struct kvm_vcpu * vcpu)857 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
858 {
859 	unsigned long affinity;
860 	int level0;
861 
862 	/*
863 	 * Split the current VCPU's MPIDR into affinity level 0 and the
864 	 * rest as this is what we have to compare against.
865 	 */
866 	affinity = kvm_vcpu_get_mpidr_aff(vcpu);
867 	level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
868 	affinity &= ~MPIDR_LEVEL_MASK;
869 
870 	/* bail out if the upper three levels don't match */
871 	if (sgi_aff != affinity)
872 		return -1;
873 
874 	/* Is this VCPU's bit set in the mask ? */
875 	if (!(sgi_cpu_mask & BIT(level0)))
876 		return -1;
877 
878 	return level0;
879 }
880 
881 /*
882  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
883  * so provide a wrapper to use the existing defines to isolate a certain
884  * affinity level.
885  */
886 #define SGI_AFFINITY_LEVEL(reg, level) \
887 	((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
888 	>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
889 
890 /**
891  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
892  * @vcpu: The VCPU requesting a SGI
893  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
894  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
895  *
896  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
897  * This will trap in sys_regs.c and call this function.
898  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
899  * target processors as well as a bitmask of 16 Aff0 CPUs.
900  * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
901  * check for matching ones. If this bit is set, we signal all, but not the
902  * calling VCPU.
903  */
vgic_v3_dispatch_sgi(struct kvm_vcpu * vcpu,u64 reg,bool allow_group1)904 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
905 {
906 	struct kvm *kvm = vcpu->kvm;
907 	struct kvm_vcpu *c_vcpu;
908 	u16 target_cpus;
909 	u64 mpidr;
910 	int sgi, c;
911 	int vcpu_id = vcpu->vcpu_id;
912 	bool broadcast;
913 	unsigned long flags;
914 
915 	sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
916 	broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
917 	target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
918 	mpidr = SGI_AFFINITY_LEVEL(reg, 3);
919 	mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
920 	mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
921 
922 	/*
923 	 * We iterate over all VCPUs to find the MPIDRs matching the request.
924 	 * If we have handled one CPU, we clear its bit to detect early
925 	 * if we are already finished. This avoids iterating through all
926 	 * VCPUs when most of the times we just signal a single VCPU.
927 	 */
928 	kvm_for_each_vcpu(c, c_vcpu, kvm) {
929 		struct vgic_irq *irq;
930 
931 		/* Exit early if we have dealt with all requested CPUs */
932 		if (!broadcast && target_cpus == 0)
933 			break;
934 
935 		/* Don't signal the calling VCPU */
936 		if (broadcast && c == vcpu_id)
937 			continue;
938 
939 		if (!broadcast) {
940 			int level0;
941 
942 			level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
943 			if (level0 == -1)
944 				continue;
945 
946 			/* remove this matching VCPU from the mask */
947 			target_cpus &= ~BIT(level0);
948 		}
949 
950 		irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
951 
952 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
953 
954 		/*
955 		 * An access targetting Group0 SGIs can only generate
956 		 * those, while an access targetting Group1 SGIs can
957 		 * generate interrupts of either group.
958 		 */
959 		if (!irq->group || allow_group1) {
960 			irq->pending_latch = true;
961 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
962 		} else {
963 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
964 		}
965 
966 		vgic_put_irq(vcpu->kvm, irq);
967 	}
968 }
969 
vgic_v3_dist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)970 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
971 			 int offset, u32 *val)
972 {
973 	struct vgic_io_device dev = {
974 		.regions = vgic_v3_dist_registers,
975 		.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
976 	};
977 
978 	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
979 }
980 
vgic_v3_redist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)981 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
982 			   int offset, u32 *val)
983 {
984 	struct vgic_io_device rd_dev = {
985 		.regions = vgic_v3_rd_registers,
986 		.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
987 	};
988 
989 	return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
990 }
991 
vgic_v3_line_level_info_uaccess(struct kvm_vcpu * vcpu,bool is_write,u32 intid,u64 * val)992 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
993 				    u32 intid, u64 *val)
994 {
995 	if (intid % 32)
996 		return -EINVAL;
997 
998 	if (is_write)
999 		vgic_write_irq_line_level_info(vcpu, intid, *val);
1000 	else
1001 		*val = vgic_read_irq_line_level_info(vcpu, intid);
1002 
1003 	return 0;
1004 }
1005