1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VGIC MMIO handling functions
4 */
5
6 #include <linux/bitops.h>
7 #include <linux/bsearch.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <kvm/iodev.h>
11 #include <kvm/arm_arch_timer.h>
12 #include <kvm/arm_vgic.h>
13
14 #include "vgic.h"
15 #include "vgic-mmio.h"
16
vgic_mmio_read_raz(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)17 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
18 gpa_t addr, unsigned int len)
19 {
20 return 0;
21 }
22
vgic_mmio_read_rao(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)23 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
24 gpa_t addr, unsigned int len)
25 {
26 return -1UL;
27 }
28
vgic_mmio_write_wi(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)29 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
30 unsigned int len, unsigned long val)
31 {
32 /* Ignore */
33 }
34
vgic_mmio_uaccess_write_wi(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)35 int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
36 unsigned int len, unsigned long val)
37 {
38 /* Ignore */
39 return 0;
40 }
41
vgic_mmio_read_group(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)42 unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
43 gpa_t addr, unsigned int len)
44 {
45 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
46 u32 value = 0;
47 int i;
48
49 /* Loop over all IRQs affected by this read */
50 for (i = 0; i < len * 8; i++) {
51 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
52
53 if (irq->group)
54 value |= BIT(i);
55
56 vgic_put_irq(vcpu->kvm, irq);
57 }
58
59 return value;
60 }
61
vgic_mmio_write_group(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)62 void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
63 unsigned int len, unsigned long val)
64 {
65 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
66 int i;
67 unsigned long flags;
68
69 for (i = 0; i < len * 8; i++) {
70 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
71
72 raw_spin_lock_irqsave(&irq->irq_lock, flags);
73 irq->group = !!(val & BIT(i));
74 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
75
76 vgic_put_irq(vcpu->kvm, irq);
77 }
78 }
79
80 /*
81 * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
82 * of the enabled bit, so there is only one function for both here.
83 */
vgic_mmio_read_enable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)84 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
85 gpa_t addr, unsigned int len)
86 {
87 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
88 u32 value = 0;
89 int i;
90
91 /* Loop over all IRQs affected by this read */
92 for (i = 0; i < len * 8; i++) {
93 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
94
95 if (irq->enabled)
96 value |= (1U << i);
97
98 vgic_put_irq(vcpu->kvm, irq);
99 }
100
101 return value;
102 }
103
vgic_mmio_write_senable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)104 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
105 gpa_t addr, unsigned int len,
106 unsigned long val)
107 {
108 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
109 int i;
110 unsigned long flags;
111
112 for_each_set_bit(i, &val, len * 8) {
113 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
114
115 raw_spin_lock_irqsave(&irq->irq_lock, flags);
116 if (vgic_irq_is_mapped_level(irq)) {
117 bool was_high = irq->line_level;
118
119 /*
120 * We need to update the state of the interrupt because
121 * the guest might have changed the state of the device
122 * while the interrupt was disabled at the VGIC level.
123 */
124 irq->line_level = vgic_get_phys_line_level(irq);
125 /*
126 * Deactivate the physical interrupt so the GIC will let
127 * us know when it is asserted again.
128 */
129 if (!irq->active && was_high && !irq->line_level)
130 vgic_irq_set_phys_active(irq, false);
131 }
132 irq->enabled = true;
133 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
134
135 vgic_put_irq(vcpu->kvm, irq);
136 }
137 }
138
vgic_mmio_write_cenable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)139 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
140 gpa_t addr, unsigned int len,
141 unsigned long val)
142 {
143 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
144 int i;
145 unsigned long flags;
146
147 for_each_set_bit(i, &val, len * 8) {
148 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
149
150 raw_spin_lock_irqsave(&irq->irq_lock, flags);
151
152 irq->enabled = false;
153
154 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
155 vgic_put_irq(vcpu->kvm, irq);
156 }
157 }
158
vgic_mmio_read_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)159 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
160 gpa_t addr, unsigned int len)
161 {
162 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
163 u32 value = 0;
164 int i;
165
166 /* Loop over all IRQs affected by this read */
167 for (i = 0; i < len * 8; i++) {
168 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
169 unsigned long flags;
170
171 raw_spin_lock_irqsave(&irq->irq_lock, flags);
172 if (irq_is_pending(irq))
173 value |= (1U << i);
174 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
175
176 vgic_put_irq(vcpu->kvm, irq);
177 }
178
179 return value;
180 }
181
182 /*
183 * This function will return the VCPU that performed the MMIO access and
184 * trapped from within the VM, and will return NULL if this is a userspace
185 * access.
186 *
187 * We can disable preemption locally around accessing the per-CPU variable,
188 * and use the resolved vcpu pointer after enabling preemption again, because
189 * even if the current thread is migrated to another CPU, reading the per-CPU
190 * value later will give us the same value as we update the per-CPU variable
191 * in the preempt notifier handlers.
192 */
vgic_get_mmio_requester_vcpu(void)193 static struct kvm_vcpu *vgic_get_mmio_requester_vcpu(void)
194 {
195 struct kvm_vcpu *vcpu;
196
197 preempt_disable();
198 vcpu = kvm_arm_get_running_vcpu();
199 preempt_enable();
200 return vcpu;
201 }
202
203 /* Must be called with irq->irq_lock held */
vgic_hw_irq_spending(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool is_uaccess)204 static void vgic_hw_irq_spending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
205 bool is_uaccess)
206 {
207 if (is_uaccess)
208 return;
209
210 irq->pending_latch = true;
211 vgic_irq_set_phys_active(irq, true);
212 }
213
is_vgic_v2_sgi(struct kvm_vcpu * vcpu,struct vgic_irq * irq)214 static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
215 {
216 return (vgic_irq_is_sgi(irq->intid) &&
217 vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
218 }
219
vgic_mmio_write_spending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)220 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
221 gpa_t addr, unsigned int len,
222 unsigned long val)
223 {
224 bool is_uaccess = !vgic_get_mmio_requester_vcpu();
225 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
226 int i;
227 unsigned long flags;
228
229 for_each_set_bit(i, &val, len * 8) {
230 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
231
232 /* GICD_ISPENDR0 SGI bits are WI */
233 if (is_vgic_v2_sgi(vcpu, irq)) {
234 vgic_put_irq(vcpu->kvm, irq);
235 continue;
236 }
237
238 raw_spin_lock_irqsave(&irq->irq_lock, flags);
239 if (irq->hw)
240 vgic_hw_irq_spending(vcpu, irq, is_uaccess);
241 else
242 irq->pending_latch = true;
243 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
244 vgic_put_irq(vcpu->kvm, irq);
245 }
246 }
247
248 /* Must be called with irq->irq_lock held */
vgic_hw_irq_cpending(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool is_uaccess)249 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
250 bool is_uaccess)
251 {
252 if (is_uaccess)
253 return;
254
255 irq->pending_latch = false;
256
257 /*
258 * We don't want the guest to effectively mask the physical
259 * interrupt by doing a write to SPENDR followed by a write to
260 * CPENDR for HW interrupts, so we clear the active state on
261 * the physical side if the virtual interrupt is not active.
262 * This may lead to taking an additional interrupt on the
263 * host, but that should not be a problem as the worst that
264 * can happen is an additional vgic injection. We also clear
265 * the pending state to maintain proper semantics for edge HW
266 * interrupts.
267 */
268 vgic_irq_set_phys_pending(irq, false);
269 if (!irq->active)
270 vgic_irq_set_phys_active(irq, false);
271 }
272
vgic_mmio_write_cpending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)273 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
274 gpa_t addr, unsigned int len,
275 unsigned long val)
276 {
277 bool is_uaccess = !vgic_get_mmio_requester_vcpu();
278 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
279 int i;
280 unsigned long flags;
281
282 for_each_set_bit(i, &val, len * 8) {
283 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
284
285 /* GICD_ICPENDR0 SGI bits are WI */
286 if (is_vgic_v2_sgi(vcpu, irq)) {
287 vgic_put_irq(vcpu->kvm, irq);
288 continue;
289 }
290
291 raw_spin_lock_irqsave(&irq->irq_lock, flags);
292
293 if (irq->hw)
294 vgic_hw_irq_cpending(vcpu, irq, is_uaccess);
295 else
296 irq->pending_latch = false;
297
298 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
299 vgic_put_irq(vcpu->kvm, irq);
300 }
301 }
302
303
304 /*
305 * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
306 * is not queued on some running VCPU's LRs, because then the change to the
307 * active state can be overwritten when the VCPU's state is synced coming back
308 * from the guest.
309 *
310 * For shared interrupts as well as GICv3 private interrupts, we have to
311 * stop all the VCPUs because interrupts can be migrated while we don't hold
312 * the IRQ locks and we don't want to be chasing moving targets.
313 *
314 * For GICv2 private interrupts we don't have to do anything because
315 * userspace accesses to the VGIC state already require all VCPUs to be
316 * stopped, and only the VCPU itself can modify its private interrupts
317 * active state, which guarantees that the VCPU is not running.
318 */
vgic_access_active_prepare(struct kvm_vcpu * vcpu,u32 intid)319 static void vgic_access_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
320 {
321 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
322 intid >= VGIC_NR_PRIVATE_IRQS)
323 kvm_arm_halt_guest(vcpu->kvm);
324 }
325
326 /* See vgic_access_active_prepare */
vgic_access_active_finish(struct kvm_vcpu * vcpu,u32 intid)327 static void vgic_access_active_finish(struct kvm_vcpu *vcpu, u32 intid)
328 {
329 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
330 intid >= VGIC_NR_PRIVATE_IRQS)
331 kvm_arm_resume_guest(vcpu->kvm);
332 }
333
__vgic_mmio_read_active(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)334 static unsigned long __vgic_mmio_read_active(struct kvm_vcpu *vcpu,
335 gpa_t addr, unsigned int len)
336 {
337 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
338 u32 value = 0;
339 int i;
340
341 /* Loop over all IRQs affected by this read */
342 for (i = 0; i < len * 8; i++) {
343 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
344
345 /*
346 * Even for HW interrupts, don't evaluate the HW state as
347 * all the guest is interested in is the virtual state.
348 */
349 if (irq->active)
350 value |= (1U << i);
351
352 vgic_put_irq(vcpu->kvm, irq);
353 }
354
355 return value;
356 }
357
vgic_mmio_read_active(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)358 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
359 gpa_t addr, unsigned int len)
360 {
361 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
362 u32 val;
363
364 mutex_lock(&vcpu->kvm->lock);
365 vgic_access_active_prepare(vcpu, intid);
366
367 val = __vgic_mmio_read_active(vcpu, addr, len);
368
369 vgic_access_active_finish(vcpu, intid);
370 mutex_unlock(&vcpu->kvm->lock);
371
372 return val;
373 }
374
vgic_uaccess_read_active(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)375 unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu,
376 gpa_t addr, unsigned int len)
377 {
378 return __vgic_mmio_read_active(vcpu, addr, len);
379 }
380
381 /* Must be called with irq->irq_lock held */
vgic_hw_irq_change_active(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool active,bool is_uaccess)382 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
383 bool active, bool is_uaccess)
384 {
385 if (is_uaccess)
386 return;
387
388 irq->active = active;
389 vgic_irq_set_phys_active(irq, active);
390 }
391
vgic_mmio_change_active(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool active)392 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
393 bool active)
394 {
395 unsigned long flags;
396 struct kvm_vcpu *requester_vcpu = vgic_get_mmio_requester_vcpu();
397
398 raw_spin_lock_irqsave(&irq->irq_lock, flags);
399
400 if (irq->hw) {
401 vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
402 } else {
403 u32 model = vcpu->kvm->arch.vgic.vgic_model;
404 u8 active_source;
405
406 irq->active = active;
407
408 /*
409 * The GICv2 architecture indicates that the source CPUID for
410 * an SGI should be provided during an EOI which implies that
411 * the active state is stored somewhere, but at the same time
412 * this state is not architecturally exposed anywhere and we
413 * have no way of knowing the right source.
414 *
415 * This may lead to a VCPU not being able to receive
416 * additional instances of a particular SGI after migration
417 * for a GICv2 VM on some GIC implementations. Oh well.
418 */
419 active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
420
421 if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
422 active && vgic_irq_is_sgi(irq->intid))
423 irq->active_source = active_source;
424 }
425
426 if (irq->active)
427 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
428 else
429 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
430 }
431
__vgic_mmio_write_cactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)432 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
433 gpa_t addr, unsigned int len,
434 unsigned long val)
435 {
436 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
437 int i;
438
439 for_each_set_bit(i, &val, len * 8) {
440 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
441 vgic_mmio_change_active(vcpu, irq, false);
442 vgic_put_irq(vcpu->kvm, irq);
443 }
444 }
445
vgic_mmio_write_cactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)446 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
447 gpa_t addr, unsigned int len,
448 unsigned long val)
449 {
450 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
451
452 mutex_lock(&vcpu->kvm->lock);
453 vgic_access_active_prepare(vcpu, intid);
454
455 __vgic_mmio_write_cactive(vcpu, addr, len, val);
456
457 vgic_access_active_finish(vcpu, intid);
458 mutex_unlock(&vcpu->kvm->lock);
459 }
460
vgic_mmio_uaccess_write_cactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)461 int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
462 gpa_t addr, unsigned int len,
463 unsigned long val)
464 {
465 __vgic_mmio_write_cactive(vcpu, addr, len, val);
466 return 0;
467 }
468
__vgic_mmio_write_sactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)469 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
470 gpa_t addr, unsigned int len,
471 unsigned long val)
472 {
473 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
474 int i;
475
476 for_each_set_bit(i, &val, len * 8) {
477 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
478 vgic_mmio_change_active(vcpu, irq, true);
479 vgic_put_irq(vcpu->kvm, irq);
480 }
481 }
482
vgic_mmio_write_sactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)483 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
484 gpa_t addr, unsigned int len,
485 unsigned long val)
486 {
487 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
488
489 mutex_lock(&vcpu->kvm->lock);
490 vgic_access_active_prepare(vcpu, intid);
491
492 __vgic_mmio_write_sactive(vcpu, addr, len, val);
493
494 vgic_access_active_finish(vcpu, intid);
495 mutex_unlock(&vcpu->kvm->lock);
496 }
497
vgic_mmio_uaccess_write_sactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)498 int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
499 gpa_t addr, unsigned int len,
500 unsigned long val)
501 {
502 __vgic_mmio_write_sactive(vcpu, addr, len, val);
503 return 0;
504 }
505
vgic_mmio_read_priority(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)506 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
507 gpa_t addr, unsigned int len)
508 {
509 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
510 int i;
511 u64 val = 0;
512
513 for (i = 0; i < len; i++) {
514 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
515
516 val |= (u64)irq->priority << (i * 8);
517
518 vgic_put_irq(vcpu->kvm, irq);
519 }
520
521 return val;
522 }
523
524 /*
525 * We currently don't handle changing the priority of an interrupt that
526 * is already pending on a VCPU. If there is a need for this, we would
527 * need to make this VCPU exit and re-evaluate the priorities, potentially
528 * leading to this interrupt getting presented now to the guest (if it has
529 * been masked by the priority mask before).
530 */
vgic_mmio_write_priority(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)531 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
532 gpa_t addr, unsigned int len,
533 unsigned long val)
534 {
535 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
536 int i;
537 unsigned long flags;
538
539 for (i = 0; i < len; i++) {
540 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
541
542 raw_spin_lock_irqsave(&irq->irq_lock, flags);
543 /* Narrow the priority range to what we actually support */
544 irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
545 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
546
547 vgic_put_irq(vcpu->kvm, irq);
548 }
549 }
550
vgic_mmio_read_config(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)551 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
552 gpa_t addr, unsigned int len)
553 {
554 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
555 u32 value = 0;
556 int i;
557
558 for (i = 0; i < len * 4; i++) {
559 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
560
561 if (irq->config == VGIC_CONFIG_EDGE)
562 value |= (2U << (i * 2));
563
564 vgic_put_irq(vcpu->kvm, irq);
565 }
566
567 return value;
568 }
569
vgic_mmio_write_config(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)570 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
571 gpa_t addr, unsigned int len,
572 unsigned long val)
573 {
574 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
575 int i;
576 unsigned long flags;
577
578 for (i = 0; i < len * 4; i++) {
579 struct vgic_irq *irq;
580
581 /*
582 * The configuration cannot be changed for SGIs in general,
583 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
584 * code relies on PPIs being level triggered, so we also
585 * make them read-only here.
586 */
587 if (intid + i < VGIC_NR_PRIVATE_IRQS)
588 continue;
589
590 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
591 raw_spin_lock_irqsave(&irq->irq_lock, flags);
592
593 if (test_bit(i * 2 + 1, &val))
594 irq->config = VGIC_CONFIG_EDGE;
595 else
596 irq->config = VGIC_CONFIG_LEVEL;
597
598 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
599 vgic_put_irq(vcpu->kvm, irq);
600 }
601 }
602
vgic_read_irq_line_level_info(struct kvm_vcpu * vcpu,u32 intid)603 u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
604 {
605 int i;
606 u64 val = 0;
607 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
608
609 for (i = 0; i < 32; i++) {
610 struct vgic_irq *irq;
611
612 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
613 continue;
614
615 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
616 if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
617 val |= (1U << i);
618
619 vgic_put_irq(vcpu->kvm, irq);
620 }
621
622 return val;
623 }
624
vgic_write_irq_line_level_info(struct kvm_vcpu * vcpu,u32 intid,const u64 val)625 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
626 const u64 val)
627 {
628 int i;
629 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
630 unsigned long flags;
631
632 for (i = 0; i < 32; i++) {
633 struct vgic_irq *irq;
634 bool new_level;
635
636 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
637 continue;
638
639 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
640
641 /*
642 * Line level is set irrespective of irq type
643 * (level or edge) to avoid dependency that VM should
644 * restore irq config before line level.
645 */
646 new_level = !!(val & (1U << i));
647 raw_spin_lock_irqsave(&irq->irq_lock, flags);
648 irq->line_level = new_level;
649 if (new_level)
650 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
651 else
652 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
653
654 vgic_put_irq(vcpu->kvm, irq);
655 }
656 }
657
match_region(const void * key,const void * elt)658 static int match_region(const void *key, const void *elt)
659 {
660 const unsigned int offset = (unsigned long)key;
661 const struct vgic_register_region *region = elt;
662
663 if (offset < region->reg_offset)
664 return -1;
665
666 if (offset >= region->reg_offset + region->len)
667 return 1;
668
669 return 0;
670 }
671
672 const struct vgic_register_region *
vgic_find_mmio_region(const struct vgic_register_region * regions,int nr_regions,unsigned int offset)673 vgic_find_mmio_region(const struct vgic_register_region *regions,
674 int nr_regions, unsigned int offset)
675 {
676 return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
677 sizeof(regions[0]), match_region);
678 }
679
vgic_set_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcr)680 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
681 {
682 if (kvm_vgic_global_state.type == VGIC_V2)
683 vgic_v2_set_vmcr(vcpu, vmcr);
684 else
685 vgic_v3_set_vmcr(vcpu, vmcr);
686 }
687
vgic_get_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcr)688 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
689 {
690 if (kvm_vgic_global_state.type == VGIC_V2)
691 vgic_v2_get_vmcr(vcpu, vmcr);
692 else
693 vgic_v3_get_vmcr(vcpu, vmcr);
694 }
695
696 /*
697 * kvm_mmio_read_buf() returns a value in a format where it can be converted
698 * to a byte array and be directly observed as the guest wanted it to appear
699 * in memory if it had done the store itself, which is LE for the GIC, as the
700 * guest knows the GIC is always LE.
701 *
702 * We convert this value to the CPUs native format to deal with it as a data
703 * value.
704 */
vgic_data_mmio_bus_to_host(const void * val,unsigned int len)705 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
706 {
707 unsigned long data = kvm_mmio_read_buf(val, len);
708
709 switch (len) {
710 case 1:
711 return data;
712 case 2:
713 return le16_to_cpu(data);
714 case 4:
715 return le32_to_cpu(data);
716 default:
717 return le64_to_cpu(data);
718 }
719 }
720
721 /*
722 * kvm_mmio_write_buf() expects a value in a format such that if converted to
723 * a byte array it is observed as the guest would see it if it could perform
724 * the load directly. Since the GIC is LE, and the guest knows this, the
725 * guest expects a value in little endian format.
726 *
727 * We convert the data value from the CPUs native format to LE so that the
728 * value is returned in the proper format.
729 */
vgic_data_host_to_mmio_bus(void * buf,unsigned int len,unsigned long data)730 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
731 unsigned long data)
732 {
733 switch (len) {
734 case 1:
735 break;
736 case 2:
737 data = cpu_to_le16(data);
738 break;
739 case 4:
740 data = cpu_to_le32(data);
741 break;
742 default:
743 data = cpu_to_le64(data);
744 }
745
746 kvm_mmio_write_buf(buf, len, data);
747 }
748
749 static
kvm_to_vgic_iodev(const struct kvm_io_device * dev)750 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
751 {
752 return container_of(dev, struct vgic_io_device, dev);
753 }
754
check_region(const struct kvm * kvm,const struct vgic_register_region * region,gpa_t addr,int len)755 static bool check_region(const struct kvm *kvm,
756 const struct vgic_register_region *region,
757 gpa_t addr, int len)
758 {
759 int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
760
761 switch (len) {
762 case sizeof(u8):
763 flags = VGIC_ACCESS_8bit;
764 break;
765 case sizeof(u32):
766 flags = VGIC_ACCESS_32bit;
767 break;
768 case sizeof(u64):
769 flags = VGIC_ACCESS_64bit;
770 break;
771 default:
772 return false;
773 }
774
775 if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
776 if (!region->bits_per_irq)
777 return true;
778
779 /* Do we access a non-allocated IRQ? */
780 return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
781 }
782
783 return false;
784 }
785
786 const struct vgic_register_region *
vgic_get_mmio_region(struct kvm_vcpu * vcpu,struct vgic_io_device * iodev,gpa_t addr,int len)787 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
788 gpa_t addr, int len)
789 {
790 const struct vgic_register_region *region;
791
792 region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
793 addr - iodev->base_addr);
794 if (!region || !check_region(vcpu->kvm, region, addr, len))
795 return NULL;
796
797 return region;
798 }
799
vgic_uaccess_read(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,u32 * val)800 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
801 gpa_t addr, u32 *val)
802 {
803 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
804 const struct vgic_register_region *region;
805 struct kvm_vcpu *r_vcpu;
806
807 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
808 if (!region) {
809 *val = 0;
810 return 0;
811 }
812
813 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
814 if (region->uaccess_read)
815 *val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
816 else
817 *val = region->read(r_vcpu, addr, sizeof(u32));
818
819 return 0;
820 }
821
vgic_uaccess_write(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,const u32 * val)822 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
823 gpa_t addr, const u32 *val)
824 {
825 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
826 const struct vgic_register_region *region;
827 struct kvm_vcpu *r_vcpu;
828
829 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
830 if (!region)
831 return 0;
832
833 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
834 if (region->uaccess_write)
835 return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
836
837 region->write(r_vcpu, addr, sizeof(u32), *val);
838 return 0;
839 }
840
841 /*
842 * Userland access to VGIC registers.
843 */
vgic_uaccess(struct kvm_vcpu * vcpu,struct vgic_io_device * dev,bool is_write,int offset,u32 * val)844 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
845 bool is_write, int offset, u32 *val)
846 {
847 if (is_write)
848 return vgic_uaccess_write(vcpu, &dev->dev, offset, val);
849 else
850 return vgic_uaccess_read(vcpu, &dev->dev, offset, val);
851 }
852
dispatch_mmio_read(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,int len,void * val)853 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
854 gpa_t addr, int len, void *val)
855 {
856 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
857 const struct vgic_register_region *region;
858 unsigned long data = 0;
859
860 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
861 if (!region) {
862 memset(val, 0, len);
863 return 0;
864 }
865
866 switch (iodev->iodev_type) {
867 case IODEV_CPUIF:
868 data = region->read(vcpu, addr, len);
869 break;
870 case IODEV_DIST:
871 data = region->read(vcpu, addr, len);
872 break;
873 case IODEV_REDIST:
874 data = region->read(iodev->redist_vcpu, addr, len);
875 break;
876 case IODEV_ITS:
877 data = region->its_read(vcpu->kvm, iodev->its, addr, len);
878 break;
879 }
880
881 vgic_data_host_to_mmio_bus(val, len, data);
882 return 0;
883 }
884
dispatch_mmio_write(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,int len,const void * val)885 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
886 gpa_t addr, int len, const void *val)
887 {
888 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
889 const struct vgic_register_region *region;
890 unsigned long data = vgic_data_mmio_bus_to_host(val, len);
891
892 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
893 if (!region)
894 return 0;
895
896 switch (iodev->iodev_type) {
897 case IODEV_CPUIF:
898 region->write(vcpu, addr, len, data);
899 break;
900 case IODEV_DIST:
901 region->write(vcpu, addr, len, data);
902 break;
903 case IODEV_REDIST:
904 region->write(iodev->redist_vcpu, addr, len, data);
905 break;
906 case IODEV_ITS:
907 region->its_write(vcpu->kvm, iodev->its, addr, len, data);
908 break;
909 }
910
911 return 0;
912 }
913
914 struct kvm_io_device_ops kvm_io_gic_ops = {
915 .read = dispatch_mmio_read,
916 .write = dispatch_mmio_write,
917 };
918
vgic_register_dist_iodev(struct kvm * kvm,gpa_t dist_base_address,enum vgic_type type)919 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
920 enum vgic_type type)
921 {
922 struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
923 int ret = 0;
924 unsigned int len;
925
926 switch (type) {
927 case VGIC_V2:
928 len = vgic_v2_init_dist_iodev(io_device);
929 break;
930 case VGIC_V3:
931 len = vgic_v3_init_dist_iodev(io_device);
932 break;
933 default:
934 BUG_ON(1);
935 }
936
937 io_device->base_addr = dist_base_address;
938 io_device->iodev_type = IODEV_DIST;
939 io_device->redist_vcpu = NULL;
940
941 mutex_lock(&kvm->slots_lock);
942 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
943 len, &io_device->dev);
944 mutex_unlock(&kvm->slots_lock);
945
946 return ret;
947 }
948