• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112 
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116 
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 	.name = "AF_VSOCK",
120 	.owner = THIS_MODULE,
121 	.obj_size = sizeof(struct vsock_sock),
122 };
123 
124 /* The default peer timeout indicates how long we will wait for a peer response
125  * to a control message.
126  */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128 
129 static const struct vsock_transport *transport;
130 static DEFINE_MUTEX(vsock_register_mutex);
131 
132 /**** EXPORTS ****/
133 
134 /* Get the ID of the local context.  This is transport dependent. */
135 
vm_sockets_get_local_cid(void)136 int vm_sockets_get_local_cid(void)
137 {
138 	return transport->get_local_cid();
139 }
140 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
141 
142 /**** UTILS ****/
143 
144 /* Each bound VSocket is stored in the bind hash table and each connected
145  * VSocket is stored in the connected hash table.
146  *
147  * Unbound sockets are all put on the same list attached to the end of the hash
148  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
149  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
150  * represents the list that addr hashes to).
151  *
152  * Specifically, we initialize the vsock_bind_table array to a size of
153  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
154  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
155  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
156  * mods with VSOCK_HASH_SIZE to ensure this.
157  */
158 #define MAX_PORT_RETRIES        24
159 
160 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
161 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
162 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
163 
164 /* XXX This can probably be implemented in a better way. */
165 #define VSOCK_CONN_HASH(src, dst)				\
166 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
167 #define vsock_connected_sockets(src, dst)		\
168 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
169 #define vsock_connected_sockets_vsk(vsk)				\
170 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
171 
172 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
173 EXPORT_SYMBOL_GPL(vsock_bind_table);
174 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
175 EXPORT_SYMBOL_GPL(vsock_connected_table);
176 DEFINE_SPINLOCK(vsock_table_lock);
177 EXPORT_SYMBOL_GPL(vsock_table_lock);
178 
179 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)180 static int vsock_auto_bind(struct vsock_sock *vsk)
181 {
182 	struct sock *sk = sk_vsock(vsk);
183 	struct sockaddr_vm local_addr;
184 
185 	if (vsock_addr_bound(&vsk->local_addr))
186 		return 0;
187 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
188 	return __vsock_bind(sk, &local_addr);
189 }
190 
vsock_init_tables(void)191 static int __init vsock_init_tables(void)
192 {
193 	int i;
194 
195 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
196 		INIT_LIST_HEAD(&vsock_bind_table[i]);
197 
198 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
199 		INIT_LIST_HEAD(&vsock_connected_table[i]);
200 	return 0;
201 }
202 
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)203 static void __vsock_insert_bound(struct list_head *list,
204 				 struct vsock_sock *vsk)
205 {
206 	sock_hold(&vsk->sk);
207 	list_add(&vsk->bound_table, list);
208 }
209 
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)210 static void __vsock_insert_connected(struct list_head *list,
211 				     struct vsock_sock *vsk)
212 {
213 	sock_hold(&vsk->sk);
214 	list_add(&vsk->connected_table, list);
215 }
216 
__vsock_remove_bound(struct vsock_sock * vsk)217 static void __vsock_remove_bound(struct vsock_sock *vsk)
218 {
219 	list_del_init(&vsk->bound_table);
220 	sock_put(&vsk->sk);
221 }
222 
__vsock_remove_connected(struct vsock_sock * vsk)223 static void __vsock_remove_connected(struct vsock_sock *vsk)
224 {
225 	list_del_init(&vsk->connected_table);
226 	sock_put(&vsk->sk);
227 }
228 
__vsock_find_bound_socket(struct sockaddr_vm * addr)229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230 {
231 	struct vsock_sock *vsk;
232 
233 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
234 		if (addr->svm_port == vsk->local_addr.svm_port)
235 			return sk_vsock(vsk);
236 
237 	return NULL;
238 }
239 
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)240 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
241 						  struct sockaddr_vm *dst)
242 {
243 	struct vsock_sock *vsk;
244 
245 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
246 			    connected_table) {
247 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
248 		    dst->svm_port == vsk->local_addr.svm_port) {
249 			return sk_vsock(vsk);
250 		}
251 	}
252 
253 	return NULL;
254 }
255 
vsock_insert_unbound(struct vsock_sock * vsk)256 static void vsock_insert_unbound(struct vsock_sock *vsk)
257 {
258 	spin_lock_bh(&vsock_table_lock);
259 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
260 	spin_unlock_bh(&vsock_table_lock);
261 }
262 
vsock_insert_connected(struct vsock_sock * vsk)263 void vsock_insert_connected(struct vsock_sock *vsk)
264 {
265 	struct list_head *list = vsock_connected_sockets(
266 		&vsk->remote_addr, &vsk->local_addr);
267 
268 	spin_lock_bh(&vsock_table_lock);
269 	__vsock_insert_connected(list, vsk);
270 	spin_unlock_bh(&vsock_table_lock);
271 }
272 EXPORT_SYMBOL_GPL(vsock_insert_connected);
273 
vsock_remove_bound(struct vsock_sock * vsk)274 void vsock_remove_bound(struct vsock_sock *vsk)
275 {
276 	spin_lock_bh(&vsock_table_lock);
277 	if (__vsock_in_bound_table(vsk))
278 		__vsock_remove_bound(vsk);
279 	spin_unlock_bh(&vsock_table_lock);
280 }
281 EXPORT_SYMBOL_GPL(vsock_remove_bound);
282 
vsock_remove_connected(struct vsock_sock * vsk)283 void vsock_remove_connected(struct vsock_sock *vsk)
284 {
285 	spin_lock_bh(&vsock_table_lock);
286 	if (__vsock_in_connected_table(vsk))
287 		__vsock_remove_connected(vsk);
288 	spin_unlock_bh(&vsock_table_lock);
289 }
290 EXPORT_SYMBOL_GPL(vsock_remove_connected);
291 
vsock_find_bound_socket(struct sockaddr_vm * addr)292 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
293 {
294 	struct sock *sk;
295 
296 	spin_lock_bh(&vsock_table_lock);
297 	sk = __vsock_find_bound_socket(addr);
298 	if (sk)
299 		sock_hold(sk);
300 
301 	spin_unlock_bh(&vsock_table_lock);
302 
303 	return sk;
304 }
305 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
306 
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)307 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
308 					 struct sockaddr_vm *dst)
309 {
310 	struct sock *sk;
311 
312 	spin_lock_bh(&vsock_table_lock);
313 	sk = __vsock_find_connected_socket(src, dst);
314 	if (sk)
315 		sock_hold(sk);
316 
317 	spin_unlock_bh(&vsock_table_lock);
318 
319 	return sk;
320 }
321 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
322 
vsock_remove_sock(struct vsock_sock * vsk)323 void vsock_remove_sock(struct vsock_sock *vsk)
324 {
325 	vsock_remove_bound(vsk);
326 	vsock_remove_connected(vsk);
327 }
328 EXPORT_SYMBOL_GPL(vsock_remove_sock);
329 
vsock_for_each_connected_socket(void (* fn)(struct sock * sk))330 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
331 {
332 	int i;
333 
334 	spin_lock_bh(&vsock_table_lock);
335 
336 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
337 		struct vsock_sock *vsk;
338 		list_for_each_entry(vsk, &vsock_connected_table[i],
339 				    connected_table)
340 			fn(sk_vsock(vsk));
341 	}
342 
343 	spin_unlock_bh(&vsock_table_lock);
344 }
345 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
346 
vsock_add_pending(struct sock * listener,struct sock * pending)347 void vsock_add_pending(struct sock *listener, struct sock *pending)
348 {
349 	struct vsock_sock *vlistener;
350 	struct vsock_sock *vpending;
351 
352 	vlistener = vsock_sk(listener);
353 	vpending = vsock_sk(pending);
354 
355 	sock_hold(pending);
356 	sock_hold(listener);
357 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
358 }
359 EXPORT_SYMBOL_GPL(vsock_add_pending);
360 
vsock_remove_pending(struct sock * listener,struct sock * pending)361 void vsock_remove_pending(struct sock *listener, struct sock *pending)
362 {
363 	struct vsock_sock *vpending = vsock_sk(pending);
364 
365 	list_del_init(&vpending->pending_links);
366 	sock_put(listener);
367 	sock_put(pending);
368 }
369 EXPORT_SYMBOL_GPL(vsock_remove_pending);
370 
vsock_enqueue_accept(struct sock * listener,struct sock * connected)371 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
372 {
373 	struct vsock_sock *vlistener;
374 	struct vsock_sock *vconnected;
375 
376 	vlistener = vsock_sk(listener);
377 	vconnected = vsock_sk(connected);
378 
379 	sock_hold(connected);
380 	sock_hold(listener);
381 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
382 }
383 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
384 
vsock_dequeue_accept(struct sock * listener)385 static struct sock *vsock_dequeue_accept(struct sock *listener)
386 {
387 	struct vsock_sock *vlistener;
388 	struct vsock_sock *vconnected;
389 
390 	vlistener = vsock_sk(listener);
391 
392 	if (list_empty(&vlistener->accept_queue))
393 		return NULL;
394 
395 	vconnected = list_entry(vlistener->accept_queue.next,
396 				struct vsock_sock, accept_queue);
397 
398 	list_del_init(&vconnected->accept_queue);
399 	sock_put(listener);
400 	/* The caller will need a reference on the connected socket so we let
401 	 * it call sock_put().
402 	 */
403 
404 	return sk_vsock(vconnected);
405 }
406 
vsock_is_accept_queue_empty(struct sock * sk)407 static bool vsock_is_accept_queue_empty(struct sock *sk)
408 {
409 	struct vsock_sock *vsk = vsock_sk(sk);
410 	return list_empty(&vsk->accept_queue);
411 }
412 
vsock_is_pending(struct sock * sk)413 static bool vsock_is_pending(struct sock *sk)
414 {
415 	struct vsock_sock *vsk = vsock_sk(sk);
416 	return !list_empty(&vsk->pending_links);
417 }
418 
vsock_send_shutdown(struct sock * sk,int mode)419 static int vsock_send_shutdown(struct sock *sk, int mode)
420 {
421 	return transport->shutdown(vsock_sk(sk), mode);
422 }
423 
vsock_pending_work(struct work_struct * work)424 static void vsock_pending_work(struct work_struct *work)
425 {
426 	struct sock *sk;
427 	struct sock *listener;
428 	struct vsock_sock *vsk;
429 	bool cleanup;
430 
431 	vsk = container_of(work, struct vsock_sock, pending_work.work);
432 	sk = sk_vsock(vsk);
433 	listener = vsk->listener;
434 	cleanup = true;
435 
436 	lock_sock(listener);
437 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
438 
439 	if (vsock_is_pending(sk)) {
440 		vsock_remove_pending(listener, sk);
441 
442 		listener->sk_ack_backlog--;
443 	} else if (!vsk->rejected) {
444 		/* We are not on the pending list and accept() did not reject
445 		 * us, so we must have been accepted by our user process.  We
446 		 * just need to drop our references to the sockets and be on
447 		 * our way.
448 		 */
449 		cleanup = false;
450 		goto out;
451 	}
452 
453 	/* We need to remove ourself from the global connected sockets list so
454 	 * incoming packets can't find this socket, and to reduce the reference
455 	 * count.
456 	 */
457 	vsock_remove_connected(vsk);
458 
459 	sk->sk_state = TCP_CLOSE;
460 
461 out:
462 	release_sock(sk);
463 	release_sock(listener);
464 	if (cleanup)
465 		sock_put(sk);
466 
467 	sock_put(sk);
468 	sock_put(listener);
469 }
470 
471 /**** SOCKET OPERATIONS ****/
472 
__vsock_bind_stream(struct vsock_sock * vsk,struct sockaddr_vm * addr)473 static int __vsock_bind_stream(struct vsock_sock *vsk,
474 			       struct sockaddr_vm *addr)
475 {
476 	static u32 port;
477 	struct sockaddr_vm new_addr;
478 
479 	if (!port)
480 		port = LAST_RESERVED_PORT + 1 +
481 			prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
482 
483 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
484 
485 	if (addr->svm_port == VMADDR_PORT_ANY) {
486 		bool found = false;
487 		unsigned int i;
488 
489 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
490 			if (port <= LAST_RESERVED_PORT)
491 				port = LAST_RESERVED_PORT + 1;
492 
493 			new_addr.svm_port = port++;
494 
495 			if (!__vsock_find_bound_socket(&new_addr)) {
496 				found = true;
497 				break;
498 			}
499 		}
500 
501 		if (!found)
502 			return -EADDRNOTAVAIL;
503 	} else {
504 		/* If port is in reserved range, ensure caller
505 		 * has necessary privileges.
506 		 */
507 		if (addr->svm_port <= LAST_RESERVED_PORT &&
508 		    !capable(CAP_NET_BIND_SERVICE)) {
509 			return -EACCES;
510 		}
511 
512 		if (__vsock_find_bound_socket(&new_addr))
513 			return -EADDRINUSE;
514 	}
515 
516 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
517 
518 	/* Remove stream sockets from the unbound list and add them to the hash
519 	 * table for easy lookup by its address.  The unbound list is simply an
520 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
521 	 */
522 	__vsock_remove_bound(vsk);
523 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
524 
525 	return 0;
526 }
527 
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)528 static int __vsock_bind_dgram(struct vsock_sock *vsk,
529 			      struct sockaddr_vm *addr)
530 {
531 	return transport->dgram_bind(vsk, addr);
532 }
533 
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)534 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
535 {
536 	struct vsock_sock *vsk = vsock_sk(sk);
537 	u32 cid;
538 	int retval;
539 
540 	/* First ensure this socket isn't already bound. */
541 	if (vsock_addr_bound(&vsk->local_addr))
542 		return -EINVAL;
543 
544 	/* Now bind to the provided address or select appropriate values if
545 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
546 	 * like AF_INET prevents binding to a non-local IP address (in most
547 	 * cases), we only allow binding to the local CID.
548 	 */
549 	cid = transport->get_local_cid();
550 	if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
551 		return -EADDRNOTAVAIL;
552 
553 	switch (sk->sk_socket->type) {
554 	case SOCK_STREAM:
555 		spin_lock_bh(&vsock_table_lock);
556 		retval = __vsock_bind_stream(vsk, addr);
557 		spin_unlock_bh(&vsock_table_lock);
558 		break;
559 
560 	case SOCK_DGRAM:
561 		retval = __vsock_bind_dgram(vsk, addr);
562 		break;
563 
564 	default:
565 		retval = -EINVAL;
566 		break;
567 	}
568 
569 	return retval;
570 }
571 
572 static void vsock_connect_timeout(struct work_struct *work);
573 
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)574 struct sock *__vsock_create(struct net *net,
575 			    struct socket *sock,
576 			    struct sock *parent,
577 			    gfp_t priority,
578 			    unsigned short type,
579 			    int kern)
580 {
581 	struct sock *sk;
582 	struct vsock_sock *psk;
583 	struct vsock_sock *vsk;
584 
585 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
586 	if (!sk)
587 		return NULL;
588 
589 	sock_init_data(sock, sk);
590 
591 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
592 	 * non-NULL. We make sure that our sockets always have a type by
593 	 * setting it here if needed.
594 	 */
595 	if (!sock)
596 		sk->sk_type = type;
597 
598 	vsk = vsock_sk(sk);
599 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
600 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
601 
602 	sk->sk_destruct = vsock_sk_destruct;
603 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
604 	sock_reset_flag(sk, SOCK_DONE);
605 
606 	INIT_LIST_HEAD(&vsk->bound_table);
607 	INIT_LIST_HEAD(&vsk->connected_table);
608 	vsk->listener = NULL;
609 	INIT_LIST_HEAD(&vsk->pending_links);
610 	INIT_LIST_HEAD(&vsk->accept_queue);
611 	vsk->rejected = false;
612 	vsk->sent_request = false;
613 	vsk->ignore_connecting_rst = false;
614 	vsk->peer_shutdown = 0;
615 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
616 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
617 
618 	psk = parent ? vsock_sk(parent) : NULL;
619 	if (parent) {
620 		vsk->trusted = psk->trusted;
621 		vsk->owner = get_cred(psk->owner);
622 		vsk->connect_timeout = psk->connect_timeout;
623 		security_sk_clone(parent, sk);
624 	} else {
625 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
626 		vsk->owner = get_current_cred();
627 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
628 	}
629 
630 	if (transport->init(vsk, psk) < 0) {
631 		sk_free(sk);
632 		return NULL;
633 	}
634 
635 	if (sock)
636 		vsock_insert_unbound(vsk);
637 
638 	return sk;
639 }
640 EXPORT_SYMBOL_GPL(__vsock_create);
641 
__vsock_release(struct sock * sk,int level)642 static void __vsock_release(struct sock *sk, int level)
643 {
644 	if (sk) {
645 		struct sk_buff *skb;
646 		struct sock *pending;
647 		struct vsock_sock *vsk;
648 
649 		vsk = vsock_sk(sk);
650 		pending = NULL;	/* Compiler warning. */
651 
652 		/* The release call is supposed to use lock_sock_nested()
653 		 * rather than lock_sock(), if a sock lock should be acquired.
654 		 */
655 		transport->release(vsk);
656 
657 		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
658 		 * version to avoid the warning "possible recursive locking
659 		 * detected". When "level" is 0, lock_sock_nested(sk, level)
660 		 * is the same as lock_sock(sk).
661 		 */
662 		lock_sock_nested(sk, level);
663 		sock_orphan(sk);
664 		sk->sk_shutdown = SHUTDOWN_MASK;
665 
666 		while ((skb = skb_dequeue(&sk->sk_receive_queue)))
667 			kfree_skb(skb);
668 
669 		/* Clean up any sockets that never were accepted. */
670 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
671 			__vsock_release(pending, SINGLE_DEPTH_NESTING);
672 			sock_put(pending);
673 		}
674 
675 		release_sock(sk);
676 		sock_put(sk);
677 	}
678 }
679 
vsock_sk_destruct(struct sock * sk)680 static void vsock_sk_destruct(struct sock *sk)
681 {
682 	struct vsock_sock *vsk = vsock_sk(sk);
683 
684 	transport->destruct(vsk);
685 
686 	/* When clearing these addresses, there's no need to set the family and
687 	 * possibly register the address family with the kernel.
688 	 */
689 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
690 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
691 
692 	put_cred(vsk->owner);
693 }
694 
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)695 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
696 {
697 	int err;
698 
699 	err = sock_queue_rcv_skb(sk, skb);
700 	if (err)
701 		kfree_skb(skb);
702 
703 	return err;
704 }
705 
vsock_stream_has_data(struct vsock_sock * vsk)706 s64 vsock_stream_has_data(struct vsock_sock *vsk)
707 {
708 	return transport->stream_has_data(vsk);
709 }
710 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
711 
vsock_stream_has_space(struct vsock_sock * vsk)712 s64 vsock_stream_has_space(struct vsock_sock *vsk)
713 {
714 	return transport->stream_has_space(vsk);
715 }
716 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
717 
vsock_release(struct socket * sock)718 static int vsock_release(struct socket *sock)
719 {
720 	__vsock_release(sock->sk, 0);
721 	sock->sk = NULL;
722 	sock->state = SS_FREE;
723 
724 	return 0;
725 }
726 
727 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)728 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
729 {
730 	int err;
731 	struct sock *sk;
732 	struct sockaddr_vm *vm_addr;
733 
734 	sk = sock->sk;
735 
736 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
737 		return -EINVAL;
738 
739 	lock_sock(sk);
740 	err = __vsock_bind(sk, vm_addr);
741 	release_sock(sk);
742 
743 	return err;
744 }
745 
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)746 static int vsock_getname(struct socket *sock,
747 			 struct sockaddr *addr, int peer)
748 {
749 	int err;
750 	struct sock *sk;
751 	struct vsock_sock *vsk;
752 	struct sockaddr_vm *vm_addr;
753 
754 	sk = sock->sk;
755 	vsk = vsock_sk(sk);
756 	err = 0;
757 
758 	lock_sock(sk);
759 
760 	if (peer) {
761 		if (sock->state != SS_CONNECTED) {
762 			err = -ENOTCONN;
763 			goto out;
764 		}
765 		vm_addr = &vsk->remote_addr;
766 	} else {
767 		vm_addr = &vsk->local_addr;
768 	}
769 
770 	if (!vm_addr) {
771 		err = -EINVAL;
772 		goto out;
773 	}
774 
775 	/* sys_getsockname() and sys_getpeername() pass us a
776 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
777 	 * that macro is defined in socket.c instead of .h, so we hardcode its
778 	 * value here.
779 	 */
780 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
781 	memcpy(addr, vm_addr, sizeof(*vm_addr));
782 	err = sizeof(*vm_addr);
783 
784 out:
785 	release_sock(sk);
786 	return err;
787 }
788 
vsock_shutdown(struct socket * sock,int mode)789 static int vsock_shutdown(struct socket *sock, int mode)
790 {
791 	int err;
792 	struct sock *sk;
793 
794 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
795 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
796 	 * here like the other address families do.  Note also that the
797 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
798 	 * which is what we want.
799 	 */
800 	mode++;
801 
802 	if ((mode & ~SHUTDOWN_MASK) || !mode)
803 		return -EINVAL;
804 
805 	/* If this is a STREAM socket and it is not connected then bail out
806 	 * immediately.  If it is a DGRAM socket then we must first kick the
807 	 * socket so that it wakes up from any sleeping calls, for example
808 	 * recv(), and then afterwards return the error.
809 	 */
810 
811 	sk = sock->sk;
812 
813 	lock_sock(sk);
814 	if (sock->state == SS_UNCONNECTED) {
815 		err = -ENOTCONN;
816 		if (sk->sk_type == SOCK_STREAM)
817 			goto out;
818 	} else {
819 		sock->state = SS_DISCONNECTING;
820 		err = 0;
821 	}
822 
823 	/* Receive and send shutdowns are treated alike. */
824 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
825 	if (mode) {
826 		sk->sk_shutdown |= mode;
827 		sk->sk_state_change(sk);
828 
829 		if (sk->sk_type == SOCK_STREAM) {
830 			sock_reset_flag(sk, SOCK_DONE);
831 			vsock_send_shutdown(sk, mode);
832 		}
833 	}
834 
835 out:
836 	release_sock(sk);
837 	return err;
838 }
839 
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)840 static __poll_t vsock_poll(struct file *file, struct socket *sock,
841 			       poll_table *wait)
842 {
843 	struct sock *sk;
844 	__poll_t mask;
845 	struct vsock_sock *vsk;
846 
847 	sk = sock->sk;
848 	vsk = vsock_sk(sk);
849 
850 	poll_wait(file, sk_sleep(sk), wait);
851 	mask = 0;
852 
853 	if (sk->sk_err)
854 		/* Signify that there has been an error on this socket. */
855 		mask |= EPOLLERR;
856 
857 	/* INET sockets treat local write shutdown and peer write shutdown as a
858 	 * case of EPOLLHUP set.
859 	 */
860 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
861 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
862 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
863 		mask |= EPOLLHUP;
864 	}
865 
866 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
867 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
868 		mask |= EPOLLRDHUP;
869 	}
870 
871 	if (sock->type == SOCK_DGRAM) {
872 		/* For datagram sockets we can read if there is something in
873 		 * the queue and write as long as the socket isn't shutdown for
874 		 * sending.
875 		 */
876 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
877 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
878 			mask |= EPOLLIN | EPOLLRDNORM;
879 		}
880 
881 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
882 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
883 
884 	} else if (sock->type == SOCK_STREAM) {
885 		lock_sock(sk);
886 
887 		/* Listening sockets that have connections in their accept
888 		 * queue can be read.
889 		 */
890 		if (sk->sk_state == TCP_LISTEN
891 		    && !vsock_is_accept_queue_empty(sk))
892 			mask |= EPOLLIN | EPOLLRDNORM;
893 
894 		/* If there is something in the queue then we can read. */
895 		if (transport->stream_is_active(vsk) &&
896 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
897 			bool data_ready_now = false;
898 			int ret = transport->notify_poll_in(
899 					vsk, 1, &data_ready_now);
900 			if (ret < 0) {
901 				mask |= EPOLLERR;
902 			} else {
903 				if (data_ready_now)
904 					mask |= EPOLLIN | EPOLLRDNORM;
905 
906 			}
907 		}
908 
909 		/* Sockets whose connections have been closed, reset, or
910 		 * terminated should also be considered read, and we check the
911 		 * shutdown flag for that.
912 		 */
913 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
914 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
915 			mask |= EPOLLIN | EPOLLRDNORM;
916 		}
917 
918 		/* Connected sockets that can produce data can be written. */
919 		if (sk->sk_state == TCP_ESTABLISHED) {
920 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
921 				bool space_avail_now = false;
922 				int ret = transport->notify_poll_out(
923 						vsk, 1, &space_avail_now);
924 				if (ret < 0) {
925 					mask |= EPOLLERR;
926 				} else {
927 					if (space_avail_now)
928 						/* Remove EPOLLWRBAND since INET
929 						 * sockets are not setting it.
930 						 */
931 						mask |= EPOLLOUT | EPOLLWRNORM;
932 
933 				}
934 			}
935 		}
936 
937 		/* Simulate INET socket poll behaviors, which sets
938 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
939 		 * but local send is not shutdown.
940 		 */
941 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
942 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
943 				mask |= EPOLLOUT | EPOLLWRNORM;
944 
945 		}
946 
947 		release_sock(sk);
948 	}
949 
950 	return mask;
951 }
952 
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)953 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
954 			       size_t len)
955 {
956 	int err;
957 	struct sock *sk;
958 	struct vsock_sock *vsk;
959 	struct sockaddr_vm *remote_addr;
960 
961 	if (msg->msg_flags & MSG_OOB)
962 		return -EOPNOTSUPP;
963 
964 	/* For now, MSG_DONTWAIT is always assumed... */
965 	err = 0;
966 	sk = sock->sk;
967 	vsk = vsock_sk(sk);
968 
969 	lock_sock(sk);
970 
971 	err = vsock_auto_bind(vsk);
972 	if (err)
973 		goto out;
974 
975 
976 	/* If the provided message contains an address, use that.  Otherwise
977 	 * fall back on the socket's remote handle (if it has been connected).
978 	 */
979 	if (msg->msg_name &&
980 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
981 			    &remote_addr) == 0) {
982 		/* Ensure this address is of the right type and is a valid
983 		 * destination.
984 		 */
985 
986 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
987 			remote_addr->svm_cid = transport->get_local_cid();
988 
989 		if (!vsock_addr_bound(remote_addr)) {
990 			err = -EINVAL;
991 			goto out;
992 		}
993 	} else if (sock->state == SS_CONNECTED) {
994 		remote_addr = &vsk->remote_addr;
995 
996 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
997 			remote_addr->svm_cid = transport->get_local_cid();
998 
999 		/* XXX Should connect() or this function ensure remote_addr is
1000 		 * bound?
1001 		 */
1002 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1003 			err = -EINVAL;
1004 			goto out;
1005 		}
1006 	} else {
1007 		err = -EINVAL;
1008 		goto out;
1009 	}
1010 
1011 	if (!transport->dgram_allow(remote_addr->svm_cid,
1012 				    remote_addr->svm_port)) {
1013 		err = -EINVAL;
1014 		goto out;
1015 	}
1016 
1017 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1018 
1019 out:
1020 	release_sock(sk);
1021 	return err;
1022 }
1023 
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1024 static int vsock_dgram_connect(struct socket *sock,
1025 			       struct sockaddr *addr, int addr_len, int flags)
1026 {
1027 	int err;
1028 	struct sock *sk;
1029 	struct vsock_sock *vsk;
1030 	struct sockaddr_vm *remote_addr;
1031 
1032 	sk = sock->sk;
1033 	vsk = vsock_sk(sk);
1034 
1035 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1036 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1037 		lock_sock(sk);
1038 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1039 				VMADDR_PORT_ANY);
1040 		sock->state = SS_UNCONNECTED;
1041 		release_sock(sk);
1042 		return 0;
1043 	} else if (err != 0)
1044 		return -EINVAL;
1045 
1046 	lock_sock(sk);
1047 
1048 	err = vsock_auto_bind(vsk);
1049 	if (err)
1050 		goto out;
1051 
1052 	if (!transport->dgram_allow(remote_addr->svm_cid,
1053 				    remote_addr->svm_port)) {
1054 		err = -EINVAL;
1055 		goto out;
1056 	}
1057 
1058 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1059 	sock->state = SS_CONNECTED;
1060 
1061 out:
1062 	release_sock(sk);
1063 	return err;
1064 }
1065 
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1066 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1067 			       size_t len, int flags)
1068 {
1069 	return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1070 }
1071 
1072 static const struct proto_ops vsock_dgram_ops = {
1073 	.family = PF_VSOCK,
1074 	.owner = THIS_MODULE,
1075 	.release = vsock_release,
1076 	.bind = vsock_bind,
1077 	.connect = vsock_dgram_connect,
1078 	.socketpair = sock_no_socketpair,
1079 	.accept = sock_no_accept,
1080 	.getname = vsock_getname,
1081 	.poll = vsock_poll,
1082 	.ioctl = sock_no_ioctl,
1083 	.listen = sock_no_listen,
1084 	.shutdown = vsock_shutdown,
1085 	.setsockopt = sock_no_setsockopt,
1086 	.getsockopt = sock_no_getsockopt,
1087 	.sendmsg = vsock_dgram_sendmsg,
1088 	.recvmsg = vsock_dgram_recvmsg,
1089 	.mmap = sock_no_mmap,
1090 	.sendpage = sock_no_sendpage,
1091 };
1092 
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1093 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1094 {
1095 	if (!transport->cancel_pkt)
1096 		return -EOPNOTSUPP;
1097 
1098 	return transport->cancel_pkt(vsk);
1099 }
1100 
vsock_connect_timeout(struct work_struct * work)1101 static void vsock_connect_timeout(struct work_struct *work)
1102 {
1103 	struct sock *sk;
1104 	struct vsock_sock *vsk;
1105 
1106 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1107 	sk = sk_vsock(vsk);
1108 
1109 	lock_sock(sk);
1110 	if (sk->sk_state == TCP_SYN_SENT &&
1111 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1112 		sk->sk_state = TCP_CLOSE;
1113 		sk->sk_socket->state = SS_UNCONNECTED;
1114 		sk->sk_err = ETIMEDOUT;
1115 		sk->sk_error_report(sk);
1116 		vsock_transport_cancel_pkt(vsk);
1117 	}
1118 	release_sock(sk);
1119 
1120 	sock_put(sk);
1121 }
1122 
vsock_stream_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1123 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1124 				int addr_len, int flags)
1125 {
1126 	int err;
1127 	struct sock *sk;
1128 	struct vsock_sock *vsk;
1129 	struct sockaddr_vm *remote_addr;
1130 	long timeout;
1131 	DEFINE_WAIT(wait);
1132 
1133 	err = 0;
1134 	sk = sock->sk;
1135 	vsk = vsock_sk(sk);
1136 
1137 	lock_sock(sk);
1138 
1139 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1140 	switch (sock->state) {
1141 	case SS_CONNECTED:
1142 		err = -EISCONN;
1143 		goto out;
1144 	case SS_DISCONNECTING:
1145 		err = -EINVAL;
1146 		goto out;
1147 	case SS_CONNECTING:
1148 		/* This continues on so we can move sock into the SS_CONNECTED
1149 		 * state once the connection has completed (at which point err
1150 		 * will be set to zero also).  Otherwise, we will either wait
1151 		 * for the connection or return -EALREADY should this be a
1152 		 * non-blocking call.
1153 		 */
1154 		err = -EALREADY;
1155 		if (flags & O_NONBLOCK)
1156 			goto out;
1157 		break;
1158 	default:
1159 		if ((sk->sk_state == TCP_LISTEN) ||
1160 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1161 			err = -EINVAL;
1162 			goto out;
1163 		}
1164 
1165 		/* The hypervisor and well-known contexts do not have socket
1166 		 * endpoints.
1167 		 */
1168 		if (!transport->stream_allow(remote_addr->svm_cid,
1169 					     remote_addr->svm_port)) {
1170 			err = -ENETUNREACH;
1171 			goto out;
1172 		}
1173 
1174 		/* Set the remote address that we are connecting to. */
1175 		memcpy(&vsk->remote_addr, remote_addr,
1176 		       sizeof(vsk->remote_addr));
1177 
1178 		err = vsock_auto_bind(vsk);
1179 		if (err)
1180 			goto out;
1181 
1182 		sk->sk_state = TCP_SYN_SENT;
1183 
1184 		err = transport->connect(vsk);
1185 		if (err < 0)
1186 			goto out;
1187 
1188 		/* Mark sock as connecting and set the error code to in
1189 		 * progress in case this is a non-blocking connect.
1190 		 */
1191 		sock->state = SS_CONNECTING;
1192 		err = -EINPROGRESS;
1193 	}
1194 
1195 	/* The receive path will handle all communication until we are able to
1196 	 * enter the connected state.  Here we wait for the connection to be
1197 	 * completed or a notification of an error.
1198 	 */
1199 	timeout = vsk->connect_timeout;
1200 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1201 
1202 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1203 		if (flags & O_NONBLOCK) {
1204 			/* If we're not going to block, we schedule a timeout
1205 			 * function to generate a timeout on the connection
1206 			 * attempt, in case the peer doesn't respond in a
1207 			 * timely manner. We hold on to the socket until the
1208 			 * timeout fires.
1209 			 */
1210 			sock_hold(sk);
1211 
1212 			/* If the timeout function is already scheduled,
1213 			 * reschedule it, then ungrab the socket refcount to
1214 			 * keep it balanced.
1215 			 */
1216 			if (mod_delayed_work(system_wq, &vsk->connect_work,
1217 					     timeout))
1218 				sock_put(sk);
1219 
1220 			/* Skip ahead to preserve error code set above. */
1221 			goto out_wait;
1222 		}
1223 
1224 		release_sock(sk);
1225 		timeout = schedule_timeout(timeout);
1226 		lock_sock(sk);
1227 
1228 		if (signal_pending(current)) {
1229 			err = sock_intr_errno(timeout);
1230 			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1231 			sock->state = SS_UNCONNECTED;
1232 			vsock_transport_cancel_pkt(vsk);
1233 			vsock_remove_connected(vsk);
1234 			goto out_wait;
1235 		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1236 			err = -ETIMEDOUT;
1237 			sk->sk_state = TCP_CLOSE;
1238 			sock->state = SS_UNCONNECTED;
1239 			vsock_transport_cancel_pkt(vsk);
1240 			goto out_wait;
1241 		}
1242 
1243 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1244 	}
1245 
1246 	if (sk->sk_err) {
1247 		err = -sk->sk_err;
1248 		sk->sk_state = TCP_CLOSE;
1249 		sock->state = SS_UNCONNECTED;
1250 	} else {
1251 		err = 0;
1252 	}
1253 
1254 out_wait:
1255 	finish_wait(sk_sleep(sk), &wait);
1256 out:
1257 	release_sock(sk);
1258 	return err;
1259 }
1260 
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1261 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1262 			bool kern)
1263 {
1264 	struct sock *listener;
1265 	int err;
1266 	struct sock *connected;
1267 	struct vsock_sock *vconnected;
1268 	long timeout;
1269 	DEFINE_WAIT(wait);
1270 
1271 	err = 0;
1272 	listener = sock->sk;
1273 
1274 	lock_sock(listener);
1275 
1276 	if (sock->type != SOCK_STREAM) {
1277 		err = -EOPNOTSUPP;
1278 		goto out;
1279 	}
1280 
1281 	if (listener->sk_state != TCP_LISTEN) {
1282 		err = -EINVAL;
1283 		goto out;
1284 	}
1285 
1286 	/* Wait for children sockets to appear; these are the new sockets
1287 	 * created upon connection establishment.
1288 	 */
1289 	timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1290 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1291 
1292 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1293 	       listener->sk_err == 0) {
1294 		release_sock(listener);
1295 		timeout = schedule_timeout(timeout);
1296 		finish_wait(sk_sleep(listener), &wait);
1297 		lock_sock(listener);
1298 
1299 		if (signal_pending(current)) {
1300 			err = sock_intr_errno(timeout);
1301 			goto out;
1302 		} else if (timeout == 0) {
1303 			err = -EAGAIN;
1304 			goto out;
1305 		}
1306 
1307 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1308 	}
1309 	finish_wait(sk_sleep(listener), &wait);
1310 
1311 	if (listener->sk_err)
1312 		err = -listener->sk_err;
1313 
1314 	if (connected) {
1315 		listener->sk_ack_backlog--;
1316 
1317 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1318 		vconnected = vsock_sk(connected);
1319 
1320 		/* If the listener socket has received an error, then we should
1321 		 * reject this socket and return.  Note that we simply mark the
1322 		 * socket rejected, drop our reference, and let the cleanup
1323 		 * function handle the cleanup; the fact that we found it in
1324 		 * the listener's accept queue guarantees that the cleanup
1325 		 * function hasn't run yet.
1326 		 */
1327 		if (err) {
1328 			vconnected->rejected = true;
1329 		} else {
1330 			newsock->state = SS_CONNECTED;
1331 			sock_graft(connected, newsock);
1332 		}
1333 
1334 		release_sock(connected);
1335 		sock_put(connected);
1336 	}
1337 
1338 out:
1339 	release_sock(listener);
1340 	return err;
1341 }
1342 
vsock_listen(struct socket * sock,int backlog)1343 static int vsock_listen(struct socket *sock, int backlog)
1344 {
1345 	int err;
1346 	struct sock *sk;
1347 	struct vsock_sock *vsk;
1348 
1349 	sk = sock->sk;
1350 
1351 	lock_sock(sk);
1352 
1353 	if (sock->type != SOCK_STREAM) {
1354 		err = -EOPNOTSUPP;
1355 		goto out;
1356 	}
1357 
1358 	if (sock->state != SS_UNCONNECTED) {
1359 		err = -EINVAL;
1360 		goto out;
1361 	}
1362 
1363 	vsk = vsock_sk(sk);
1364 
1365 	if (!vsock_addr_bound(&vsk->local_addr)) {
1366 		err = -EINVAL;
1367 		goto out;
1368 	}
1369 
1370 	sk->sk_max_ack_backlog = backlog;
1371 	sk->sk_state = TCP_LISTEN;
1372 
1373 	err = 0;
1374 
1375 out:
1376 	release_sock(sk);
1377 	return err;
1378 }
1379 
vsock_stream_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)1380 static int vsock_stream_setsockopt(struct socket *sock,
1381 				   int level,
1382 				   int optname,
1383 				   char __user *optval,
1384 				   unsigned int optlen)
1385 {
1386 	int err;
1387 	struct sock *sk;
1388 	struct vsock_sock *vsk;
1389 	u64 val;
1390 
1391 	if (level != AF_VSOCK)
1392 		return -ENOPROTOOPT;
1393 
1394 #define COPY_IN(_v)                                       \
1395 	do {						  \
1396 		if (optlen < sizeof(_v)) {		  \
1397 			err = -EINVAL;			  \
1398 			goto exit;			  \
1399 		}					  \
1400 		if (copy_from_user(&_v, optval, sizeof(_v)) != 0) {	\
1401 			err = -EFAULT;					\
1402 			goto exit;					\
1403 		}							\
1404 	} while (0)
1405 
1406 	err = 0;
1407 	sk = sock->sk;
1408 	vsk = vsock_sk(sk);
1409 
1410 	lock_sock(sk);
1411 
1412 	switch (optname) {
1413 	case SO_VM_SOCKETS_BUFFER_SIZE:
1414 		COPY_IN(val);
1415 		transport->set_buffer_size(vsk, val);
1416 		break;
1417 
1418 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1419 		COPY_IN(val);
1420 		transport->set_max_buffer_size(vsk, val);
1421 		break;
1422 
1423 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1424 		COPY_IN(val);
1425 		transport->set_min_buffer_size(vsk, val);
1426 		break;
1427 
1428 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1429 		struct __kernel_old_timeval tv;
1430 		COPY_IN(tv);
1431 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1432 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1433 			vsk->connect_timeout = tv.tv_sec * HZ +
1434 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1435 			if (vsk->connect_timeout == 0)
1436 				vsk->connect_timeout =
1437 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1438 
1439 		} else {
1440 			err = -ERANGE;
1441 		}
1442 		break;
1443 	}
1444 
1445 	default:
1446 		err = -ENOPROTOOPT;
1447 		break;
1448 	}
1449 
1450 #undef COPY_IN
1451 
1452 exit:
1453 	release_sock(sk);
1454 	return err;
1455 }
1456 
vsock_stream_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1457 static int vsock_stream_getsockopt(struct socket *sock,
1458 				   int level, int optname,
1459 				   char __user *optval,
1460 				   int __user *optlen)
1461 {
1462 	int err;
1463 	int len;
1464 	struct sock *sk;
1465 	struct vsock_sock *vsk;
1466 	u64 val;
1467 
1468 	if (level != AF_VSOCK)
1469 		return -ENOPROTOOPT;
1470 
1471 	err = get_user(len, optlen);
1472 	if (err != 0)
1473 		return err;
1474 
1475 #define COPY_OUT(_v)                            \
1476 	do {					\
1477 		if (len < sizeof(_v))		\
1478 			return -EINVAL;		\
1479 						\
1480 		len = sizeof(_v);		\
1481 		if (copy_to_user(optval, &_v, len) != 0)	\
1482 			return -EFAULT;				\
1483 								\
1484 	} while (0)
1485 
1486 	err = 0;
1487 	sk = sock->sk;
1488 	vsk = vsock_sk(sk);
1489 
1490 	switch (optname) {
1491 	case SO_VM_SOCKETS_BUFFER_SIZE:
1492 		val = transport->get_buffer_size(vsk);
1493 		COPY_OUT(val);
1494 		break;
1495 
1496 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1497 		val = transport->get_max_buffer_size(vsk);
1498 		COPY_OUT(val);
1499 		break;
1500 
1501 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1502 		val = transport->get_min_buffer_size(vsk);
1503 		COPY_OUT(val);
1504 		break;
1505 
1506 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1507 		struct __kernel_old_timeval tv;
1508 		tv.tv_sec = vsk->connect_timeout / HZ;
1509 		tv.tv_usec =
1510 		    (vsk->connect_timeout -
1511 		     tv.tv_sec * HZ) * (1000000 / HZ);
1512 		COPY_OUT(tv);
1513 		break;
1514 	}
1515 	default:
1516 		return -ENOPROTOOPT;
1517 	}
1518 
1519 	err = put_user(len, optlen);
1520 	if (err != 0)
1521 		return -EFAULT;
1522 
1523 #undef COPY_OUT
1524 
1525 	return 0;
1526 }
1527 
vsock_stream_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1528 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1529 				size_t len)
1530 {
1531 	struct sock *sk;
1532 	struct vsock_sock *vsk;
1533 	ssize_t total_written;
1534 	long timeout;
1535 	int err;
1536 	struct vsock_transport_send_notify_data send_data;
1537 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1538 
1539 	sk = sock->sk;
1540 	vsk = vsock_sk(sk);
1541 	total_written = 0;
1542 	err = 0;
1543 
1544 	if (msg->msg_flags & MSG_OOB)
1545 		return -EOPNOTSUPP;
1546 
1547 	lock_sock(sk);
1548 
1549 	/* Callers should not provide a destination with stream sockets. */
1550 	if (msg->msg_namelen) {
1551 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1552 		goto out;
1553 	}
1554 
1555 	/* Send data only if both sides are not shutdown in the direction. */
1556 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1557 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1558 		err = -EPIPE;
1559 		goto out;
1560 	}
1561 
1562 	if (sk->sk_state != TCP_ESTABLISHED ||
1563 	    !vsock_addr_bound(&vsk->local_addr)) {
1564 		err = -ENOTCONN;
1565 		goto out;
1566 	}
1567 
1568 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1569 		err = -EDESTADDRREQ;
1570 		goto out;
1571 	}
1572 
1573 	/* Wait for room in the produce queue to enqueue our user's data. */
1574 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1575 
1576 	err = transport->notify_send_init(vsk, &send_data);
1577 	if (err < 0)
1578 		goto out;
1579 
1580 	while (total_written < len) {
1581 		ssize_t written;
1582 
1583 		add_wait_queue(sk_sleep(sk), &wait);
1584 		while (vsock_stream_has_space(vsk) == 0 &&
1585 		       sk->sk_err == 0 &&
1586 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1587 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1588 
1589 			/* Don't wait for non-blocking sockets. */
1590 			if (timeout == 0) {
1591 				err = -EAGAIN;
1592 				remove_wait_queue(sk_sleep(sk), &wait);
1593 				goto out_err;
1594 			}
1595 
1596 			err = transport->notify_send_pre_block(vsk, &send_data);
1597 			if (err < 0) {
1598 				remove_wait_queue(sk_sleep(sk), &wait);
1599 				goto out_err;
1600 			}
1601 
1602 			release_sock(sk);
1603 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1604 			lock_sock(sk);
1605 			if (signal_pending(current)) {
1606 				err = sock_intr_errno(timeout);
1607 				remove_wait_queue(sk_sleep(sk), &wait);
1608 				goto out_err;
1609 			} else if (timeout == 0) {
1610 				err = -EAGAIN;
1611 				remove_wait_queue(sk_sleep(sk), &wait);
1612 				goto out_err;
1613 			}
1614 		}
1615 		remove_wait_queue(sk_sleep(sk), &wait);
1616 
1617 		/* These checks occur both as part of and after the loop
1618 		 * conditional since we need to check before and after
1619 		 * sleeping.
1620 		 */
1621 		if (sk->sk_err) {
1622 			err = -sk->sk_err;
1623 			goto out_err;
1624 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1625 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1626 			err = -EPIPE;
1627 			goto out_err;
1628 		}
1629 
1630 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1631 		if (err < 0)
1632 			goto out_err;
1633 
1634 		/* Note that enqueue will only write as many bytes as are free
1635 		 * in the produce queue, so we don't need to ensure len is
1636 		 * smaller than the queue size.  It is the caller's
1637 		 * responsibility to check how many bytes we were able to send.
1638 		 */
1639 
1640 		written = transport->stream_enqueue(
1641 				vsk, msg,
1642 				len - total_written);
1643 		if (written < 0) {
1644 			err = -ENOMEM;
1645 			goto out_err;
1646 		}
1647 
1648 		total_written += written;
1649 
1650 		err = transport->notify_send_post_enqueue(
1651 				vsk, written, &send_data);
1652 		if (err < 0)
1653 			goto out_err;
1654 
1655 	}
1656 
1657 out_err:
1658 	if (total_written > 0)
1659 		err = total_written;
1660 out:
1661 	release_sock(sk);
1662 	return err;
1663 }
1664 
1665 
1666 static int
vsock_stream_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1667 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1668 		     int flags)
1669 {
1670 	struct sock *sk;
1671 	struct vsock_sock *vsk;
1672 	int err;
1673 	size_t target;
1674 	ssize_t copied;
1675 	long timeout;
1676 	struct vsock_transport_recv_notify_data recv_data;
1677 
1678 	DEFINE_WAIT(wait);
1679 
1680 	sk = sock->sk;
1681 	vsk = vsock_sk(sk);
1682 	err = 0;
1683 
1684 	lock_sock(sk);
1685 
1686 	if (sk->sk_state != TCP_ESTABLISHED) {
1687 		/* Recvmsg is supposed to return 0 if a peer performs an
1688 		 * orderly shutdown. Differentiate between that case and when a
1689 		 * peer has not connected or a local shutdown occured with the
1690 		 * SOCK_DONE flag.
1691 		 */
1692 		if (sock_flag(sk, SOCK_DONE))
1693 			err = 0;
1694 		else
1695 			err = -ENOTCONN;
1696 
1697 		goto out;
1698 	}
1699 
1700 	if (flags & MSG_OOB) {
1701 		err = -EOPNOTSUPP;
1702 		goto out;
1703 	}
1704 
1705 	/* We don't check peer_shutdown flag here since peer may actually shut
1706 	 * down, but there can be data in the queue that a local socket can
1707 	 * receive.
1708 	 */
1709 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1710 		err = 0;
1711 		goto out;
1712 	}
1713 
1714 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1715 	 * is not an error.  We may as well bail out now.
1716 	 */
1717 	if (!len) {
1718 		err = 0;
1719 		goto out;
1720 	}
1721 
1722 	/* We must not copy less than target bytes into the user's buffer
1723 	 * before returning successfully, so we wait for the consume queue to
1724 	 * have that much data to consume before dequeueing.  Note that this
1725 	 * makes it impossible to handle cases where target is greater than the
1726 	 * queue size.
1727 	 */
1728 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1729 	if (target >= transport->stream_rcvhiwat(vsk)) {
1730 		err = -ENOMEM;
1731 		goto out;
1732 	}
1733 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1734 	copied = 0;
1735 
1736 	err = transport->notify_recv_init(vsk, target, &recv_data);
1737 	if (err < 0)
1738 		goto out;
1739 
1740 
1741 	while (1) {
1742 		s64 ready;
1743 
1744 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1745 		ready = vsock_stream_has_data(vsk);
1746 
1747 		if (ready == 0) {
1748 			if (sk->sk_err != 0 ||
1749 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1750 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1751 				finish_wait(sk_sleep(sk), &wait);
1752 				break;
1753 			}
1754 			/* Don't wait for non-blocking sockets. */
1755 			if (timeout == 0) {
1756 				err = -EAGAIN;
1757 				finish_wait(sk_sleep(sk), &wait);
1758 				break;
1759 			}
1760 
1761 			err = transport->notify_recv_pre_block(
1762 					vsk, target, &recv_data);
1763 			if (err < 0) {
1764 				finish_wait(sk_sleep(sk), &wait);
1765 				break;
1766 			}
1767 			release_sock(sk);
1768 			timeout = schedule_timeout(timeout);
1769 			lock_sock(sk);
1770 
1771 			if (signal_pending(current)) {
1772 				err = sock_intr_errno(timeout);
1773 				finish_wait(sk_sleep(sk), &wait);
1774 				break;
1775 			} else if (timeout == 0) {
1776 				err = -EAGAIN;
1777 				finish_wait(sk_sleep(sk), &wait);
1778 				break;
1779 			}
1780 		} else {
1781 			ssize_t read;
1782 
1783 			finish_wait(sk_sleep(sk), &wait);
1784 
1785 			if (ready < 0) {
1786 				/* Invalid queue pair content. XXX This should
1787 				* be changed to a connection reset in a later
1788 				* change.
1789 				*/
1790 
1791 				err = -ENOMEM;
1792 				goto out;
1793 			}
1794 
1795 			err = transport->notify_recv_pre_dequeue(
1796 					vsk, target, &recv_data);
1797 			if (err < 0)
1798 				break;
1799 
1800 			read = transport->stream_dequeue(
1801 					vsk, msg,
1802 					len - copied, flags);
1803 			if (read < 0) {
1804 				err = -ENOMEM;
1805 				break;
1806 			}
1807 
1808 			copied += read;
1809 
1810 			err = transport->notify_recv_post_dequeue(
1811 					vsk, target, read,
1812 					!(flags & MSG_PEEK), &recv_data);
1813 			if (err < 0)
1814 				goto out;
1815 
1816 			if (read >= target || flags & MSG_PEEK)
1817 				break;
1818 
1819 			target -= read;
1820 		}
1821 	}
1822 
1823 	if (sk->sk_err)
1824 		err = -sk->sk_err;
1825 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1826 		err = 0;
1827 
1828 	if (copied > 0)
1829 		err = copied;
1830 
1831 out:
1832 	release_sock(sk);
1833 	return err;
1834 }
1835 
1836 static const struct proto_ops vsock_stream_ops = {
1837 	.family = PF_VSOCK,
1838 	.owner = THIS_MODULE,
1839 	.release = vsock_release,
1840 	.bind = vsock_bind,
1841 	.connect = vsock_stream_connect,
1842 	.socketpair = sock_no_socketpair,
1843 	.accept = vsock_accept,
1844 	.getname = vsock_getname,
1845 	.poll = vsock_poll,
1846 	.ioctl = sock_no_ioctl,
1847 	.listen = vsock_listen,
1848 	.shutdown = vsock_shutdown,
1849 	.setsockopt = vsock_stream_setsockopt,
1850 	.getsockopt = vsock_stream_getsockopt,
1851 	.sendmsg = vsock_stream_sendmsg,
1852 	.recvmsg = vsock_stream_recvmsg,
1853 	.mmap = sock_no_mmap,
1854 	.sendpage = sock_no_sendpage,
1855 };
1856 
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)1857 static int vsock_create(struct net *net, struct socket *sock,
1858 			int protocol, int kern)
1859 {
1860 	if (!sock)
1861 		return -EINVAL;
1862 
1863 	if (protocol && protocol != PF_VSOCK)
1864 		return -EPROTONOSUPPORT;
1865 
1866 	switch (sock->type) {
1867 	case SOCK_DGRAM:
1868 		sock->ops = &vsock_dgram_ops;
1869 		break;
1870 	case SOCK_STREAM:
1871 		sock->ops = &vsock_stream_ops;
1872 		break;
1873 	default:
1874 		return -ESOCKTNOSUPPORT;
1875 	}
1876 
1877 	sock->state = SS_UNCONNECTED;
1878 
1879 	return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1880 }
1881 
1882 static const struct net_proto_family vsock_family_ops = {
1883 	.family = AF_VSOCK,
1884 	.create = vsock_create,
1885 	.owner = THIS_MODULE,
1886 };
1887 
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)1888 static long vsock_dev_do_ioctl(struct file *filp,
1889 			       unsigned int cmd, void __user *ptr)
1890 {
1891 	u32 __user *p = ptr;
1892 	int retval = 0;
1893 
1894 	switch (cmd) {
1895 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1896 		if (put_user(transport->get_local_cid(), p) != 0)
1897 			retval = -EFAULT;
1898 		break;
1899 
1900 	default:
1901 		pr_err("Unknown ioctl %d\n", cmd);
1902 		retval = -EINVAL;
1903 	}
1904 
1905 	return retval;
1906 }
1907 
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1908 static long vsock_dev_ioctl(struct file *filp,
1909 			    unsigned int cmd, unsigned long arg)
1910 {
1911 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1912 }
1913 
1914 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1915 static long vsock_dev_compat_ioctl(struct file *filp,
1916 				   unsigned int cmd, unsigned long arg)
1917 {
1918 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1919 }
1920 #endif
1921 
1922 static const struct file_operations vsock_device_ops = {
1923 	.owner		= THIS_MODULE,
1924 	.unlocked_ioctl	= vsock_dev_ioctl,
1925 #ifdef CONFIG_COMPAT
1926 	.compat_ioctl	= vsock_dev_compat_ioctl,
1927 #endif
1928 	.open		= nonseekable_open,
1929 };
1930 
1931 static struct miscdevice vsock_device = {
1932 	.name		= "vsock",
1933 	.fops		= &vsock_device_ops,
1934 };
1935 
__vsock_core_init(const struct vsock_transport * t,struct module * owner)1936 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1937 {
1938 	int err = mutex_lock_interruptible(&vsock_register_mutex);
1939 
1940 	if (err)
1941 		return err;
1942 
1943 	if (transport) {
1944 		err = -EBUSY;
1945 		goto err_busy;
1946 	}
1947 
1948 	/* Transport must be the owner of the protocol so that it can't
1949 	 * unload while there are open sockets.
1950 	 */
1951 	vsock_proto.owner = owner;
1952 	transport = t;
1953 
1954 	vsock_device.minor = MISC_DYNAMIC_MINOR;
1955 	err = misc_register(&vsock_device);
1956 	if (err) {
1957 		pr_err("Failed to register misc device\n");
1958 		goto err_reset_transport;
1959 	}
1960 
1961 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
1962 	if (err) {
1963 		pr_err("Cannot register vsock protocol\n");
1964 		goto err_deregister_misc;
1965 	}
1966 
1967 	err = sock_register(&vsock_family_ops);
1968 	if (err) {
1969 		pr_err("could not register af_vsock (%d) address family: %d\n",
1970 		       AF_VSOCK, err);
1971 		goto err_unregister_proto;
1972 	}
1973 
1974 	mutex_unlock(&vsock_register_mutex);
1975 	return 0;
1976 
1977 err_unregister_proto:
1978 	proto_unregister(&vsock_proto);
1979 err_deregister_misc:
1980 	misc_deregister(&vsock_device);
1981 err_reset_transport:
1982 	transport = NULL;
1983 err_busy:
1984 	mutex_unlock(&vsock_register_mutex);
1985 	return err;
1986 }
1987 EXPORT_SYMBOL_GPL(__vsock_core_init);
1988 
vsock_core_exit(void)1989 void vsock_core_exit(void)
1990 {
1991 	mutex_lock(&vsock_register_mutex);
1992 
1993 	misc_deregister(&vsock_device);
1994 	sock_unregister(AF_VSOCK);
1995 	proto_unregister(&vsock_proto);
1996 
1997 	/* We do not want the assignment below re-ordered. */
1998 	mb();
1999 	transport = NULL;
2000 
2001 	mutex_unlock(&vsock_register_mutex);
2002 }
2003 EXPORT_SYMBOL_GPL(vsock_core_exit);
2004 
vsock_core_get_transport(void)2005 const struct vsock_transport *vsock_core_get_transport(void)
2006 {
2007 	/* vsock_register_mutex not taken since only the transport uses this
2008 	 * function and only while registered.
2009 	 */
2010 	return transport;
2011 }
2012 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2013 
vsock_exit(void)2014 static void __exit vsock_exit(void)
2015 {
2016 	/* Do nothing.  This function makes this module removable. */
2017 }
2018 
2019 module_init(vsock_init_tables);
2020 module_exit(vsock_exit);
2021 
2022 MODULE_AUTHOR("VMware, Inc.");
2023 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2024 MODULE_VERSION("1.0.2.0-k");
2025 MODULE_LICENSE("GPL v2");
2026