1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * XArray implementation
4 * Copyright (c) 2017-2018 Microsoft Corporation
5 * Copyright (c) 2018-2020 Oracle
6 * Author: Matthew Wilcox <willy@infradead.org>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/export.h>
11 #include <linux/list.h>
12 #include <linux/slab.h>
13 #include <linux/xarray.h>
14
15 /*
16 * Coding conventions in this file:
17 *
18 * @xa is used to refer to the entire xarray.
19 * @xas is the 'xarray operation state'. It may be either a pointer to
20 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
21 * ambiguity.
22 * @index is the index of the entry being operated on
23 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
24 * @node refers to an xa_node; usually the primary one being operated on by
25 * this function.
26 * @offset is the index into the slots array inside an xa_node.
27 * @parent refers to the @xa_node closer to the head than @node.
28 * @entry refers to something stored in a slot in the xarray
29 */
30
xa_lock_type(const struct xarray * xa)31 static inline unsigned int xa_lock_type(const struct xarray *xa)
32 {
33 return (__force unsigned int)xa->xa_flags & 3;
34 }
35
xas_lock_type(struct xa_state * xas,unsigned int lock_type)36 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
37 {
38 if (lock_type == XA_LOCK_IRQ)
39 xas_lock_irq(xas);
40 else if (lock_type == XA_LOCK_BH)
41 xas_lock_bh(xas);
42 else
43 xas_lock(xas);
44 }
45
xas_unlock_type(struct xa_state * xas,unsigned int lock_type)46 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
47 {
48 if (lock_type == XA_LOCK_IRQ)
49 xas_unlock_irq(xas);
50 else if (lock_type == XA_LOCK_BH)
51 xas_unlock_bh(xas);
52 else
53 xas_unlock(xas);
54 }
55
xa_track_free(const struct xarray * xa)56 static inline bool xa_track_free(const struct xarray *xa)
57 {
58 return xa->xa_flags & XA_FLAGS_TRACK_FREE;
59 }
60
xa_zero_busy(const struct xarray * xa)61 static inline bool xa_zero_busy(const struct xarray *xa)
62 {
63 return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
64 }
65
xa_mark_set(struct xarray * xa,xa_mark_t mark)66 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
67 {
68 if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
69 xa->xa_flags |= XA_FLAGS_MARK(mark);
70 }
71
xa_mark_clear(struct xarray * xa,xa_mark_t mark)72 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
73 {
74 if (xa->xa_flags & XA_FLAGS_MARK(mark))
75 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
76 }
77
node_marks(struct xa_node * node,xa_mark_t mark)78 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
79 {
80 return node->marks[(__force unsigned)mark];
81 }
82
node_get_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)83 static inline bool node_get_mark(struct xa_node *node,
84 unsigned int offset, xa_mark_t mark)
85 {
86 return test_bit(offset, node_marks(node, mark));
87 }
88
89 /* returns true if the bit was set */
node_set_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)90 static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
91 xa_mark_t mark)
92 {
93 return __test_and_set_bit(offset, node_marks(node, mark));
94 }
95
96 /* returns true if the bit was set */
node_clear_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)97 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
98 xa_mark_t mark)
99 {
100 return __test_and_clear_bit(offset, node_marks(node, mark));
101 }
102
node_any_mark(struct xa_node * node,xa_mark_t mark)103 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
104 {
105 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
106 }
107
node_mark_all(struct xa_node * node,xa_mark_t mark)108 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
109 {
110 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
111 }
112
113 #define mark_inc(mark) do { \
114 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
115 } while (0)
116
117 /*
118 * xas_squash_marks() - Merge all marks to the first entry
119 * @xas: Array operation state.
120 *
121 * Set a mark on the first entry if any entry has it set. Clear marks on
122 * all sibling entries.
123 */
xas_squash_marks(const struct xa_state * xas)124 static void xas_squash_marks(const struct xa_state *xas)
125 {
126 unsigned int mark = 0;
127 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
128
129 if (!xas->xa_sibs)
130 return;
131
132 do {
133 unsigned long *marks = xas->xa_node->marks[mark];
134 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
135 continue;
136 __set_bit(xas->xa_offset, marks);
137 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
138 } while (mark++ != (__force unsigned)XA_MARK_MAX);
139 }
140
141 /* extracts the offset within this node from the index */
get_offset(unsigned long index,struct xa_node * node)142 static unsigned int get_offset(unsigned long index, struct xa_node *node)
143 {
144 return (index >> node->shift) & XA_CHUNK_MASK;
145 }
146
xas_set_offset(struct xa_state * xas)147 static void xas_set_offset(struct xa_state *xas)
148 {
149 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
150 }
151
152 /* move the index either forwards (find) or backwards (sibling slot) */
xas_move_index(struct xa_state * xas,unsigned long offset)153 static void xas_move_index(struct xa_state *xas, unsigned long offset)
154 {
155 unsigned int shift = xas->xa_node->shift;
156 xas->xa_index &= ~XA_CHUNK_MASK << shift;
157 xas->xa_index += offset << shift;
158 }
159
xas_advance(struct xa_state * xas)160 static void xas_advance(struct xa_state *xas)
161 {
162 xas->xa_offset++;
163 xas_move_index(xas, xas->xa_offset);
164 }
165
set_bounds(struct xa_state * xas)166 static void *set_bounds(struct xa_state *xas)
167 {
168 xas->xa_node = XAS_BOUNDS;
169 return NULL;
170 }
171
172 /*
173 * Starts a walk. If the @xas is already valid, we assume that it's on
174 * the right path and just return where we've got to. If we're in an
175 * error state, return NULL. If the index is outside the current scope
176 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
177 * set @xas->xa_node to NULL and return the current head of the array.
178 */
xas_start(struct xa_state * xas)179 static void *xas_start(struct xa_state *xas)
180 {
181 void *entry;
182
183 if (xas_valid(xas))
184 return xas_reload(xas);
185 if (xas_error(xas))
186 return NULL;
187
188 entry = xa_head(xas->xa);
189 if (!xa_is_node(entry)) {
190 if (xas->xa_index)
191 return set_bounds(xas);
192 } else {
193 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
194 return set_bounds(xas);
195 }
196
197 xas->xa_node = NULL;
198 return entry;
199 }
200
xas_descend(struct xa_state * xas,struct xa_node * node)201 static void *xas_descend(struct xa_state *xas, struct xa_node *node)
202 {
203 unsigned int offset = get_offset(xas->xa_index, node);
204 void *entry = xa_entry(xas->xa, node, offset);
205
206 xas->xa_node = node;
207 if (xa_is_sibling(entry)) {
208 offset = xa_to_sibling(entry);
209 entry = xa_entry(xas->xa, node, offset);
210 }
211
212 xas->xa_offset = offset;
213 return entry;
214 }
215
216 /**
217 * xas_load() - Load an entry from the XArray (advanced).
218 * @xas: XArray operation state.
219 *
220 * Usually walks the @xas to the appropriate state to load the entry
221 * stored at xa_index. However, it will do nothing and return %NULL if
222 * @xas is in an error state. xas_load() will never expand the tree.
223 *
224 * If the xa_state is set up to operate on a multi-index entry, xas_load()
225 * may return %NULL or an internal entry, even if there are entries
226 * present within the range specified by @xas.
227 *
228 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
229 * Return: Usually an entry in the XArray, but see description for exceptions.
230 */
xas_load(struct xa_state * xas)231 void *xas_load(struct xa_state *xas)
232 {
233 void *entry = xas_start(xas);
234
235 while (xa_is_node(entry)) {
236 struct xa_node *node = xa_to_node(entry);
237
238 if (xas->xa_shift > node->shift)
239 break;
240 entry = xas_descend(xas, node);
241 if (node->shift == 0)
242 break;
243 }
244 return entry;
245 }
246 EXPORT_SYMBOL_GPL(xas_load);
247
248 /* Move the radix tree node cache here */
249 extern struct kmem_cache *radix_tree_node_cachep;
250 extern void radix_tree_node_rcu_free(struct rcu_head *head);
251
252 #define XA_RCU_FREE ((struct xarray *)1)
253
xa_node_free(struct xa_node * node)254 static void xa_node_free(struct xa_node *node)
255 {
256 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
257 node->array = XA_RCU_FREE;
258 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
259 }
260
261 /*
262 * xas_destroy() - Free any resources allocated during the XArray operation.
263 * @xas: XArray operation state.
264 *
265 * This function is now internal-only.
266 */
xas_destroy(struct xa_state * xas)267 static void xas_destroy(struct xa_state *xas)
268 {
269 struct xa_node *next, *node = xas->xa_alloc;
270
271 while (node) {
272 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
273 next = rcu_dereference_raw(node->parent);
274 radix_tree_node_rcu_free(&node->rcu_head);
275 xas->xa_alloc = node = next;
276 }
277 }
278
279 /**
280 * xas_nomem() - Allocate memory if needed.
281 * @xas: XArray operation state.
282 * @gfp: Memory allocation flags.
283 *
284 * If we need to add new nodes to the XArray, we try to allocate memory
285 * with GFP_NOWAIT while holding the lock, which will usually succeed.
286 * If it fails, @xas is flagged as needing memory to continue. The caller
287 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
288 * the caller should retry the operation.
289 *
290 * Forward progress is guaranteed as one node is allocated here and
291 * stored in the xa_state where it will be found by xas_alloc(). More
292 * nodes will likely be found in the slab allocator, but we do not tie
293 * them up here.
294 *
295 * Return: true if memory was needed, and was successfully allocated.
296 */
xas_nomem(struct xa_state * xas,gfp_t gfp)297 bool xas_nomem(struct xa_state *xas, gfp_t gfp)
298 {
299 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
300 xas_destroy(xas);
301 return false;
302 }
303 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
304 gfp |= __GFP_ACCOUNT;
305 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
306 if (!xas->xa_alloc)
307 return false;
308 xas->xa_alloc->parent = NULL;
309 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
310 xas->xa_node = XAS_RESTART;
311 return true;
312 }
313 EXPORT_SYMBOL_GPL(xas_nomem);
314
315 /*
316 * __xas_nomem() - Drop locks and allocate memory if needed.
317 * @xas: XArray operation state.
318 * @gfp: Memory allocation flags.
319 *
320 * Internal variant of xas_nomem().
321 *
322 * Return: true if memory was needed, and was successfully allocated.
323 */
__xas_nomem(struct xa_state * xas,gfp_t gfp)324 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
325 __must_hold(xas->xa->xa_lock)
326 {
327 unsigned int lock_type = xa_lock_type(xas->xa);
328
329 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
330 xas_destroy(xas);
331 return false;
332 }
333 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
334 gfp |= __GFP_ACCOUNT;
335 if (gfpflags_allow_blocking(gfp)) {
336 xas_unlock_type(xas, lock_type);
337 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
338 xas_lock_type(xas, lock_type);
339 } else {
340 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
341 }
342 if (!xas->xa_alloc)
343 return false;
344 xas->xa_alloc->parent = NULL;
345 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
346 xas->xa_node = XAS_RESTART;
347 return true;
348 }
349
xas_update(struct xa_state * xas,struct xa_node * node)350 static void xas_update(struct xa_state *xas, struct xa_node *node)
351 {
352 if (xas->xa_update)
353 xas->xa_update(node);
354 else
355 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
356 }
357
xas_alloc(struct xa_state * xas,unsigned int shift)358 static void *xas_alloc(struct xa_state *xas, unsigned int shift)
359 {
360 struct xa_node *parent = xas->xa_node;
361 struct xa_node *node = xas->xa_alloc;
362
363 if (xas_invalid(xas))
364 return NULL;
365
366 if (node) {
367 xas->xa_alloc = NULL;
368 } else {
369 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
370
371 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
372 gfp |= __GFP_ACCOUNT;
373
374 node = kmem_cache_alloc(radix_tree_node_cachep, gfp);
375 if (!node) {
376 xas_set_err(xas, -ENOMEM);
377 return NULL;
378 }
379 }
380
381 if (parent) {
382 node->offset = xas->xa_offset;
383 parent->count++;
384 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
385 xas_update(xas, parent);
386 }
387 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
388 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
389 node->shift = shift;
390 node->count = 0;
391 node->nr_values = 0;
392 RCU_INIT_POINTER(node->parent, xas->xa_node);
393 node->array = xas->xa;
394
395 return node;
396 }
397
398 #ifdef CONFIG_XARRAY_MULTI
399 /* Returns the number of indices covered by a given xa_state */
xas_size(const struct xa_state * xas)400 static unsigned long xas_size(const struct xa_state *xas)
401 {
402 return (xas->xa_sibs + 1UL) << xas->xa_shift;
403 }
404 #endif
405
406 /*
407 * Use this to calculate the maximum index that will need to be created
408 * in order to add the entry described by @xas. Because we cannot store a
409 * multi-index entry at index 0, the calculation is a little more complex
410 * than you might expect.
411 */
xas_max(struct xa_state * xas)412 static unsigned long xas_max(struct xa_state *xas)
413 {
414 unsigned long max = xas->xa_index;
415
416 #ifdef CONFIG_XARRAY_MULTI
417 if (xas->xa_shift || xas->xa_sibs) {
418 unsigned long mask = xas_size(xas) - 1;
419 max |= mask;
420 if (mask == max)
421 max++;
422 }
423 #endif
424
425 return max;
426 }
427
428 /* The maximum index that can be contained in the array without expanding it */
max_index(void * entry)429 static unsigned long max_index(void *entry)
430 {
431 if (!xa_is_node(entry))
432 return 0;
433 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
434 }
435
xas_shrink(struct xa_state * xas)436 static void xas_shrink(struct xa_state *xas)
437 {
438 struct xarray *xa = xas->xa;
439 struct xa_node *node = xas->xa_node;
440
441 for (;;) {
442 void *entry;
443
444 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
445 if (node->count != 1)
446 break;
447 entry = xa_entry_locked(xa, node, 0);
448 if (!entry)
449 break;
450 if (!xa_is_node(entry) && node->shift)
451 break;
452 if (xa_is_zero(entry) && xa_zero_busy(xa))
453 entry = NULL;
454 xas->xa_node = XAS_BOUNDS;
455
456 RCU_INIT_POINTER(xa->xa_head, entry);
457 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
458 xa_mark_clear(xa, XA_FREE_MARK);
459
460 node->count = 0;
461 node->nr_values = 0;
462 if (!xa_is_node(entry))
463 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
464 xas_update(xas, node);
465 xa_node_free(node);
466 if (!xa_is_node(entry))
467 break;
468 node = xa_to_node(entry);
469 node->parent = NULL;
470 }
471 }
472
473 /*
474 * xas_delete_node() - Attempt to delete an xa_node
475 * @xas: Array operation state.
476 *
477 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
478 * a non-zero reference count.
479 */
xas_delete_node(struct xa_state * xas)480 static void xas_delete_node(struct xa_state *xas)
481 {
482 struct xa_node *node = xas->xa_node;
483
484 for (;;) {
485 struct xa_node *parent;
486
487 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
488 if (node->count)
489 break;
490
491 parent = xa_parent_locked(xas->xa, node);
492 xas->xa_node = parent;
493 xas->xa_offset = node->offset;
494 xa_node_free(node);
495
496 if (!parent) {
497 xas->xa->xa_head = NULL;
498 xas->xa_node = XAS_BOUNDS;
499 return;
500 }
501
502 parent->slots[xas->xa_offset] = NULL;
503 parent->count--;
504 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
505 node = parent;
506 xas_update(xas, node);
507 }
508
509 if (!node->parent)
510 xas_shrink(xas);
511 }
512
513 /**
514 * xas_free_nodes() - Free this node and all nodes that it references
515 * @xas: Array operation state.
516 * @top: Node to free
517 *
518 * This node has been removed from the tree. We must now free it and all
519 * of its subnodes. There may be RCU walkers with references into the tree,
520 * so we must replace all entries with retry markers.
521 */
xas_free_nodes(struct xa_state * xas,struct xa_node * top)522 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
523 {
524 unsigned int offset = 0;
525 struct xa_node *node = top;
526
527 for (;;) {
528 void *entry = xa_entry_locked(xas->xa, node, offset);
529
530 if (node->shift && xa_is_node(entry)) {
531 node = xa_to_node(entry);
532 offset = 0;
533 continue;
534 }
535 if (entry)
536 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
537 offset++;
538 while (offset == XA_CHUNK_SIZE) {
539 struct xa_node *parent;
540
541 parent = xa_parent_locked(xas->xa, node);
542 offset = node->offset + 1;
543 node->count = 0;
544 node->nr_values = 0;
545 xas_update(xas, node);
546 xa_node_free(node);
547 if (node == top)
548 return;
549 node = parent;
550 }
551 }
552 }
553
554 /*
555 * xas_expand adds nodes to the head of the tree until it has reached
556 * sufficient height to be able to contain @xas->xa_index
557 */
xas_expand(struct xa_state * xas,void * head)558 static int xas_expand(struct xa_state *xas, void *head)
559 {
560 struct xarray *xa = xas->xa;
561 struct xa_node *node = NULL;
562 unsigned int shift = 0;
563 unsigned long max = xas_max(xas);
564
565 if (!head) {
566 if (max == 0)
567 return 0;
568 while ((max >> shift) >= XA_CHUNK_SIZE)
569 shift += XA_CHUNK_SHIFT;
570 return shift + XA_CHUNK_SHIFT;
571 } else if (xa_is_node(head)) {
572 node = xa_to_node(head);
573 shift = node->shift + XA_CHUNK_SHIFT;
574 }
575 xas->xa_node = NULL;
576
577 while (max > max_index(head)) {
578 xa_mark_t mark = 0;
579
580 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
581 node = xas_alloc(xas, shift);
582 if (!node)
583 return -ENOMEM;
584
585 node->count = 1;
586 if (xa_is_value(head))
587 node->nr_values = 1;
588 RCU_INIT_POINTER(node->slots[0], head);
589
590 /* Propagate the aggregated mark info to the new child */
591 for (;;) {
592 if (xa_track_free(xa) && mark == XA_FREE_MARK) {
593 node_mark_all(node, XA_FREE_MARK);
594 if (!xa_marked(xa, XA_FREE_MARK)) {
595 node_clear_mark(node, 0, XA_FREE_MARK);
596 xa_mark_set(xa, XA_FREE_MARK);
597 }
598 } else if (xa_marked(xa, mark)) {
599 node_set_mark(node, 0, mark);
600 }
601 if (mark == XA_MARK_MAX)
602 break;
603 mark_inc(mark);
604 }
605
606 /*
607 * Now that the new node is fully initialised, we can add
608 * it to the tree
609 */
610 if (xa_is_node(head)) {
611 xa_to_node(head)->offset = 0;
612 rcu_assign_pointer(xa_to_node(head)->parent, node);
613 }
614 head = xa_mk_node(node);
615 rcu_assign_pointer(xa->xa_head, head);
616 xas_update(xas, node);
617
618 shift += XA_CHUNK_SHIFT;
619 }
620
621 xas->xa_node = node;
622 return shift;
623 }
624
625 /*
626 * xas_create() - Create a slot to store an entry in.
627 * @xas: XArray operation state.
628 * @allow_root: %true if we can store the entry in the root directly
629 *
630 * Most users will not need to call this function directly, as it is called
631 * by xas_store(). It is useful for doing conditional store operations
632 * (see the xa_cmpxchg() implementation for an example).
633 *
634 * Return: If the slot already existed, returns the contents of this slot.
635 * If the slot was newly created, returns %NULL. If it failed to create the
636 * slot, returns %NULL and indicates the error in @xas.
637 */
xas_create(struct xa_state * xas,bool allow_root)638 static void *xas_create(struct xa_state *xas, bool allow_root)
639 {
640 struct xarray *xa = xas->xa;
641 void *entry;
642 void __rcu **slot;
643 struct xa_node *node = xas->xa_node;
644 int shift;
645 unsigned int order = xas->xa_shift;
646
647 if (xas_top(node)) {
648 entry = xa_head_locked(xa);
649 xas->xa_node = NULL;
650 if (!entry && xa_zero_busy(xa))
651 entry = XA_ZERO_ENTRY;
652 shift = xas_expand(xas, entry);
653 if (shift < 0)
654 return NULL;
655 if (!shift && !allow_root)
656 shift = XA_CHUNK_SHIFT;
657 entry = xa_head_locked(xa);
658 slot = &xa->xa_head;
659 } else if (xas_error(xas)) {
660 return NULL;
661 } else if (node) {
662 unsigned int offset = xas->xa_offset;
663
664 shift = node->shift;
665 entry = xa_entry_locked(xa, node, offset);
666 slot = &node->slots[offset];
667 } else {
668 shift = 0;
669 entry = xa_head_locked(xa);
670 slot = &xa->xa_head;
671 }
672
673 while (shift > order) {
674 shift -= XA_CHUNK_SHIFT;
675 if (!entry) {
676 node = xas_alloc(xas, shift);
677 if (!node)
678 break;
679 if (xa_track_free(xa))
680 node_mark_all(node, XA_FREE_MARK);
681 rcu_assign_pointer(*slot, xa_mk_node(node));
682 } else if (xa_is_node(entry)) {
683 node = xa_to_node(entry);
684 } else {
685 break;
686 }
687 entry = xas_descend(xas, node);
688 slot = &node->slots[xas->xa_offset];
689 }
690
691 return entry;
692 }
693
694 /**
695 * xas_create_range() - Ensure that stores to this range will succeed
696 * @xas: XArray operation state.
697 *
698 * Creates all of the slots in the range covered by @xas. Sets @xas to
699 * create single-index entries and positions it at the beginning of the
700 * range. This is for the benefit of users which have not yet been
701 * converted to use multi-index entries.
702 */
xas_create_range(struct xa_state * xas)703 void xas_create_range(struct xa_state *xas)
704 {
705 unsigned long index = xas->xa_index;
706 unsigned char shift = xas->xa_shift;
707 unsigned char sibs = xas->xa_sibs;
708
709 xas->xa_index |= ((sibs + 1) << shift) - 1;
710 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
711 xas->xa_offset |= sibs;
712 xas->xa_shift = 0;
713 xas->xa_sibs = 0;
714
715 for (;;) {
716 xas_create(xas, true);
717 if (xas_error(xas))
718 goto restore;
719 if (xas->xa_index <= (index | XA_CHUNK_MASK))
720 goto success;
721 xas->xa_index -= XA_CHUNK_SIZE;
722
723 for (;;) {
724 struct xa_node *node = xas->xa_node;
725 if (node->shift >= shift)
726 break;
727 xas->xa_node = xa_parent_locked(xas->xa, node);
728 xas->xa_offset = node->offset - 1;
729 if (node->offset != 0)
730 break;
731 }
732 }
733
734 restore:
735 xas->xa_shift = shift;
736 xas->xa_sibs = sibs;
737 xas->xa_index = index;
738 return;
739 success:
740 xas->xa_index = index;
741 if (xas->xa_node)
742 xas_set_offset(xas);
743 }
744 EXPORT_SYMBOL_GPL(xas_create_range);
745
update_node(struct xa_state * xas,struct xa_node * node,int count,int values)746 static void update_node(struct xa_state *xas, struct xa_node *node,
747 int count, int values)
748 {
749 if (!node || (!count && !values))
750 return;
751
752 node->count += count;
753 node->nr_values += values;
754 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
755 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
756 xas_update(xas, node);
757 if (count < 0)
758 xas_delete_node(xas);
759 }
760
761 /**
762 * xas_store() - Store this entry in the XArray.
763 * @xas: XArray operation state.
764 * @entry: New entry.
765 *
766 * If @xas is operating on a multi-index entry, the entry returned by this
767 * function is essentially meaningless (it may be an internal entry or it
768 * may be %NULL, even if there are non-NULL entries at some of the indices
769 * covered by the range). This is not a problem for any current users,
770 * and can be changed if needed.
771 *
772 * Return: The old entry at this index.
773 */
xas_store(struct xa_state * xas,void * entry)774 void *xas_store(struct xa_state *xas, void *entry)
775 {
776 struct xa_node *node;
777 void __rcu **slot = &xas->xa->xa_head;
778 unsigned int offset, max;
779 int count = 0;
780 int values = 0;
781 void *first, *next;
782 bool value = xa_is_value(entry);
783
784 if (entry) {
785 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
786 first = xas_create(xas, allow_root);
787 } else {
788 first = xas_load(xas);
789 }
790
791 if (xas_invalid(xas))
792 return first;
793 node = xas->xa_node;
794 if (node && (xas->xa_shift < node->shift))
795 xas->xa_sibs = 0;
796 if ((first == entry) && !xas->xa_sibs)
797 return first;
798
799 next = first;
800 offset = xas->xa_offset;
801 max = xas->xa_offset + xas->xa_sibs;
802 if (node) {
803 slot = &node->slots[offset];
804 if (xas->xa_sibs)
805 xas_squash_marks(xas);
806 }
807 if (!entry)
808 xas_init_marks(xas);
809
810 for (;;) {
811 /*
812 * Must clear the marks before setting the entry to NULL,
813 * otherwise xas_for_each_marked may find a NULL entry and
814 * stop early. rcu_assign_pointer contains a release barrier
815 * so the mark clearing will appear to happen before the
816 * entry is set to NULL.
817 */
818 rcu_assign_pointer(*slot, entry);
819 if (xa_is_node(next) && (!node || node->shift))
820 xas_free_nodes(xas, xa_to_node(next));
821 if (!node)
822 break;
823 count += !next - !entry;
824 values += !xa_is_value(first) - !value;
825 if (entry) {
826 if (offset == max)
827 break;
828 if (!xa_is_sibling(entry))
829 entry = xa_mk_sibling(xas->xa_offset);
830 } else {
831 if (offset == XA_CHUNK_MASK)
832 break;
833 }
834 next = xa_entry_locked(xas->xa, node, ++offset);
835 if (!xa_is_sibling(next)) {
836 if (!entry && (offset > max))
837 break;
838 first = next;
839 }
840 slot++;
841 }
842
843 update_node(xas, node, count, values);
844 return first;
845 }
846 EXPORT_SYMBOL_GPL(xas_store);
847
848 /**
849 * xas_get_mark() - Returns the state of this mark.
850 * @xas: XArray operation state.
851 * @mark: Mark number.
852 *
853 * Return: true if the mark is set, false if the mark is clear or @xas
854 * is in an error state.
855 */
xas_get_mark(const struct xa_state * xas,xa_mark_t mark)856 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
857 {
858 if (xas_invalid(xas))
859 return false;
860 if (!xas->xa_node)
861 return xa_marked(xas->xa, mark);
862 return node_get_mark(xas->xa_node, xas->xa_offset, mark);
863 }
864 EXPORT_SYMBOL_GPL(xas_get_mark);
865
866 /**
867 * xas_set_mark() - Sets the mark on this entry and its parents.
868 * @xas: XArray operation state.
869 * @mark: Mark number.
870 *
871 * Sets the specified mark on this entry, and walks up the tree setting it
872 * on all the ancestor entries. Does nothing if @xas has not been walked to
873 * an entry, or is in an error state.
874 */
xas_set_mark(const struct xa_state * xas,xa_mark_t mark)875 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
876 {
877 struct xa_node *node = xas->xa_node;
878 unsigned int offset = xas->xa_offset;
879
880 if (xas_invalid(xas))
881 return;
882
883 while (node) {
884 if (node_set_mark(node, offset, mark))
885 return;
886 offset = node->offset;
887 node = xa_parent_locked(xas->xa, node);
888 }
889
890 if (!xa_marked(xas->xa, mark))
891 xa_mark_set(xas->xa, mark);
892 }
893 EXPORT_SYMBOL_GPL(xas_set_mark);
894
895 /**
896 * xas_clear_mark() - Clears the mark on this entry and its parents.
897 * @xas: XArray operation state.
898 * @mark: Mark number.
899 *
900 * Clears the specified mark on this entry, and walks back to the head
901 * attempting to clear it on all the ancestor entries. Does nothing if
902 * @xas has not been walked to an entry, or is in an error state.
903 */
xas_clear_mark(const struct xa_state * xas,xa_mark_t mark)904 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
905 {
906 struct xa_node *node = xas->xa_node;
907 unsigned int offset = xas->xa_offset;
908
909 if (xas_invalid(xas))
910 return;
911
912 while (node) {
913 if (!node_clear_mark(node, offset, mark))
914 return;
915 if (node_any_mark(node, mark))
916 return;
917
918 offset = node->offset;
919 node = xa_parent_locked(xas->xa, node);
920 }
921
922 if (xa_marked(xas->xa, mark))
923 xa_mark_clear(xas->xa, mark);
924 }
925 EXPORT_SYMBOL_GPL(xas_clear_mark);
926
927 /**
928 * xas_init_marks() - Initialise all marks for the entry
929 * @xas: Array operations state.
930 *
931 * Initialise all marks for the entry specified by @xas. If we're tracking
932 * free entries with a mark, we need to set it on all entries. All other
933 * marks are cleared.
934 *
935 * This implementation is not as efficient as it could be; we may walk
936 * up the tree multiple times.
937 */
xas_init_marks(const struct xa_state * xas)938 void xas_init_marks(const struct xa_state *xas)
939 {
940 xa_mark_t mark = 0;
941
942 for (;;) {
943 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
944 xas_set_mark(xas, mark);
945 else
946 xas_clear_mark(xas, mark);
947 if (mark == XA_MARK_MAX)
948 break;
949 mark_inc(mark);
950 }
951 }
952 EXPORT_SYMBOL_GPL(xas_init_marks);
953
954 #ifdef CONFIG_XARRAY_MULTI
node_get_marks(struct xa_node * node,unsigned int offset)955 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset)
956 {
957 unsigned int marks = 0;
958 xa_mark_t mark = XA_MARK_0;
959
960 for (;;) {
961 if (node_get_mark(node, offset, mark))
962 marks |= 1 << (__force unsigned int)mark;
963 if (mark == XA_MARK_MAX)
964 break;
965 mark_inc(mark);
966 }
967
968 return marks;
969 }
970
node_set_marks(struct xa_node * node,unsigned int offset,struct xa_node * child,unsigned int marks)971 static void node_set_marks(struct xa_node *node, unsigned int offset,
972 struct xa_node *child, unsigned int marks)
973 {
974 xa_mark_t mark = XA_MARK_0;
975
976 for (;;) {
977 if (marks & (1 << (__force unsigned int)mark)) {
978 node_set_mark(node, offset, mark);
979 if (child)
980 node_mark_all(child, mark);
981 }
982 if (mark == XA_MARK_MAX)
983 break;
984 mark_inc(mark);
985 }
986 }
987
988 /**
989 * xas_split_alloc() - Allocate memory for splitting an entry.
990 * @xas: XArray operation state.
991 * @entry: New entry which will be stored in the array.
992 * @order: New entry order.
993 * @gfp: Memory allocation flags.
994 *
995 * This function should be called before calling xas_split().
996 * If necessary, it will allocate new nodes (and fill them with @entry)
997 * to prepare for the upcoming split of an entry of @order size into
998 * entries of the order stored in the @xas.
999 *
1000 * Context: May sleep if @gfp flags permit.
1001 */
xas_split_alloc(struct xa_state * xas,void * entry,unsigned int order,gfp_t gfp)1002 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
1003 gfp_t gfp)
1004 {
1005 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1006 unsigned int mask = xas->xa_sibs;
1007
1008 /* XXX: no support for splitting really large entries yet */
1009 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order))
1010 goto nomem;
1011 if (xas->xa_shift + XA_CHUNK_SHIFT > order)
1012 return;
1013
1014 do {
1015 unsigned int i;
1016 void *sibling;
1017 struct xa_node *node;
1018
1019 node = kmem_cache_alloc(radix_tree_node_cachep, gfp);
1020 if (!node)
1021 goto nomem;
1022 node->array = xas->xa;
1023 for (i = 0; i < XA_CHUNK_SIZE; i++) {
1024 if ((i & mask) == 0) {
1025 RCU_INIT_POINTER(node->slots[i], entry);
1026 sibling = xa_mk_sibling(0);
1027 } else {
1028 RCU_INIT_POINTER(node->slots[i], sibling);
1029 }
1030 }
1031 RCU_INIT_POINTER(node->parent, xas->xa_alloc);
1032 xas->xa_alloc = node;
1033 } while (sibs-- > 0);
1034
1035 return;
1036 nomem:
1037 xas_destroy(xas);
1038 xas_set_err(xas, -ENOMEM);
1039 }
1040 EXPORT_SYMBOL_GPL(xas_split_alloc);
1041
1042 /**
1043 * xas_split() - Split a multi-index entry into smaller entries.
1044 * @xas: XArray operation state.
1045 * @entry: New entry to store in the array.
1046 * @order: New entry order.
1047 *
1048 * The value in the entry is copied to all the replacement entries.
1049 *
1050 * Context: Any context. The caller should hold the xa_lock.
1051 */
xas_split(struct xa_state * xas,void * entry,unsigned int order)1052 void xas_split(struct xa_state *xas, void *entry, unsigned int order)
1053 {
1054 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1055 unsigned int offset, marks;
1056 struct xa_node *node;
1057 void *curr = xas_load(xas);
1058 int values = 0;
1059
1060 node = xas->xa_node;
1061 if (xas_top(node))
1062 return;
1063
1064 marks = node_get_marks(node, xas->xa_offset);
1065
1066 offset = xas->xa_offset + sibs;
1067 do {
1068 if (xas->xa_shift < node->shift) {
1069 struct xa_node *child = xas->xa_alloc;
1070
1071 xas->xa_alloc = rcu_dereference_raw(child->parent);
1072 child->shift = node->shift - XA_CHUNK_SHIFT;
1073 child->offset = offset;
1074 child->count = XA_CHUNK_SIZE;
1075 child->nr_values = xa_is_value(entry) ?
1076 XA_CHUNK_SIZE : 0;
1077 RCU_INIT_POINTER(child->parent, node);
1078 node_set_marks(node, offset, child, marks);
1079 rcu_assign_pointer(node->slots[offset],
1080 xa_mk_node(child));
1081 if (xa_is_value(curr))
1082 values--;
1083 xas_update(xas, child);
1084 } else {
1085 unsigned int canon = offset - xas->xa_sibs;
1086
1087 node_set_marks(node, canon, NULL, marks);
1088 rcu_assign_pointer(node->slots[canon], entry);
1089 while (offset > canon)
1090 rcu_assign_pointer(node->slots[offset--],
1091 xa_mk_sibling(canon));
1092 values += (xa_is_value(entry) - xa_is_value(curr)) *
1093 (xas->xa_sibs + 1);
1094 }
1095 } while (offset-- > xas->xa_offset);
1096
1097 node->nr_values += values;
1098 xas_update(xas, node);
1099 }
1100 EXPORT_SYMBOL_GPL(xas_split);
1101 #endif
1102
1103 /**
1104 * xas_pause() - Pause a walk to drop a lock.
1105 * @xas: XArray operation state.
1106 *
1107 * Some users need to pause a walk and drop the lock they're holding in
1108 * order to yield to a higher priority thread or carry out an operation
1109 * on an entry. Those users should call this function before they drop
1110 * the lock. It resets the @xas to be suitable for the next iteration
1111 * of the loop after the user has reacquired the lock. If most entries
1112 * found during a walk require you to call xas_pause(), the xa_for_each()
1113 * iterator may be more appropriate.
1114 *
1115 * Note that xas_pause() only works for forward iteration. If a user needs
1116 * to pause a reverse iteration, we will need a xas_pause_rev().
1117 */
xas_pause(struct xa_state * xas)1118 void xas_pause(struct xa_state *xas)
1119 {
1120 struct xa_node *node = xas->xa_node;
1121
1122 if (xas_invalid(xas))
1123 return;
1124
1125 xas->xa_node = XAS_RESTART;
1126 if (node) {
1127 unsigned long offset = xas->xa_offset;
1128 while (++offset < XA_CHUNK_SIZE) {
1129 if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
1130 break;
1131 }
1132 xas->xa_index += (offset - xas->xa_offset) << node->shift;
1133 if (xas->xa_index == 0)
1134 xas->xa_node = XAS_BOUNDS;
1135 } else {
1136 xas->xa_index++;
1137 }
1138 }
1139 EXPORT_SYMBOL_GPL(xas_pause);
1140
1141 /*
1142 * __xas_prev() - Find the previous entry in the XArray.
1143 * @xas: XArray operation state.
1144 *
1145 * Helper function for xas_prev() which handles all the complex cases
1146 * out of line.
1147 */
__xas_prev(struct xa_state * xas)1148 void *__xas_prev(struct xa_state *xas)
1149 {
1150 void *entry;
1151
1152 if (!xas_frozen(xas->xa_node))
1153 xas->xa_index--;
1154 if (!xas->xa_node)
1155 return set_bounds(xas);
1156 if (xas_not_node(xas->xa_node))
1157 return xas_load(xas);
1158
1159 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1160 xas->xa_offset--;
1161
1162 while (xas->xa_offset == 255) {
1163 xas->xa_offset = xas->xa_node->offset - 1;
1164 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1165 if (!xas->xa_node)
1166 return set_bounds(xas);
1167 }
1168
1169 for (;;) {
1170 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1171 if (!xa_is_node(entry))
1172 return entry;
1173
1174 xas->xa_node = xa_to_node(entry);
1175 xas_set_offset(xas);
1176 }
1177 }
1178 EXPORT_SYMBOL_GPL(__xas_prev);
1179
1180 /*
1181 * __xas_next() - Find the next entry in the XArray.
1182 * @xas: XArray operation state.
1183 *
1184 * Helper function for xas_next() which handles all the complex cases
1185 * out of line.
1186 */
__xas_next(struct xa_state * xas)1187 void *__xas_next(struct xa_state *xas)
1188 {
1189 void *entry;
1190
1191 if (!xas_frozen(xas->xa_node))
1192 xas->xa_index++;
1193 if (!xas->xa_node)
1194 return set_bounds(xas);
1195 if (xas_not_node(xas->xa_node))
1196 return xas_load(xas);
1197
1198 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1199 xas->xa_offset++;
1200
1201 while (xas->xa_offset == XA_CHUNK_SIZE) {
1202 xas->xa_offset = xas->xa_node->offset + 1;
1203 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1204 if (!xas->xa_node)
1205 return set_bounds(xas);
1206 }
1207
1208 for (;;) {
1209 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1210 if (!xa_is_node(entry))
1211 return entry;
1212
1213 xas->xa_node = xa_to_node(entry);
1214 xas_set_offset(xas);
1215 }
1216 }
1217 EXPORT_SYMBOL_GPL(__xas_next);
1218
1219 /**
1220 * xas_find() - Find the next present entry in the XArray.
1221 * @xas: XArray operation state.
1222 * @max: Highest index to return.
1223 *
1224 * If the @xas has not yet been walked to an entry, return the entry
1225 * which has an index >= xas.xa_index. If it has been walked, the entry
1226 * currently being pointed at has been processed, and so we move to the
1227 * next entry.
1228 *
1229 * If no entry is found and the array is smaller than @max, the iterator
1230 * is set to the smallest index not yet in the array. This allows @xas
1231 * to be immediately passed to xas_store().
1232 *
1233 * Return: The entry, if found, otherwise %NULL.
1234 */
xas_find(struct xa_state * xas,unsigned long max)1235 void *xas_find(struct xa_state *xas, unsigned long max)
1236 {
1237 void *entry;
1238
1239 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
1240 return NULL;
1241 if (xas->xa_index > max)
1242 return set_bounds(xas);
1243
1244 if (!xas->xa_node) {
1245 xas->xa_index = 1;
1246 return set_bounds(xas);
1247 } else if (xas->xa_node == XAS_RESTART) {
1248 entry = xas_load(xas);
1249 if (entry || xas_not_node(xas->xa_node))
1250 return entry;
1251 } else if (!xas->xa_node->shift &&
1252 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1253 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1254 }
1255
1256 xas_advance(xas);
1257
1258 while (xas->xa_node && (xas->xa_index <= max)) {
1259 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1260 xas->xa_offset = xas->xa_node->offset + 1;
1261 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1262 continue;
1263 }
1264
1265 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1266 if (xa_is_node(entry)) {
1267 xas->xa_node = xa_to_node(entry);
1268 xas->xa_offset = 0;
1269 continue;
1270 }
1271 if (entry && !xa_is_sibling(entry))
1272 return entry;
1273
1274 xas_advance(xas);
1275 }
1276
1277 if (!xas->xa_node)
1278 xas->xa_node = XAS_BOUNDS;
1279 return NULL;
1280 }
1281 EXPORT_SYMBOL_GPL(xas_find);
1282
1283 /**
1284 * xas_find_marked() - Find the next marked entry in the XArray.
1285 * @xas: XArray operation state.
1286 * @max: Highest index to return.
1287 * @mark: Mark number to search for.
1288 *
1289 * If the @xas has not yet been walked to an entry, return the marked entry
1290 * which has an index >= xas.xa_index. If it has been walked, the entry
1291 * currently being pointed at has been processed, and so we return the
1292 * first marked entry with an index > xas.xa_index.
1293 *
1294 * If no marked entry is found and the array is smaller than @max, @xas is
1295 * set to the bounds state and xas->xa_index is set to the smallest index
1296 * not yet in the array. This allows @xas to be immediately passed to
1297 * xas_store().
1298 *
1299 * If no entry is found before @max is reached, @xas is set to the restart
1300 * state.
1301 *
1302 * Return: The entry, if found, otherwise %NULL.
1303 */
xas_find_marked(struct xa_state * xas,unsigned long max,xa_mark_t mark)1304 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1305 {
1306 bool advance = true;
1307 unsigned int offset;
1308 void *entry;
1309
1310 if (xas_error(xas))
1311 return NULL;
1312 if (xas->xa_index > max)
1313 goto max;
1314
1315 if (!xas->xa_node) {
1316 xas->xa_index = 1;
1317 goto out;
1318 } else if (xas_top(xas->xa_node)) {
1319 advance = false;
1320 entry = xa_head(xas->xa);
1321 xas->xa_node = NULL;
1322 if (xas->xa_index > max_index(entry))
1323 goto out;
1324 if (!xa_is_node(entry)) {
1325 if (xa_marked(xas->xa, mark))
1326 return entry;
1327 xas->xa_index = 1;
1328 goto out;
1329 }
1330 xas->xa_node = xa_to_node(entry);
1331 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1332 }
1333
1334 while (xas->xa_index <= max) {
1335 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1336 xas->xa_offset = xas->xa_node->offset + 1;
1337 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1338 if (!xas->xa_node)
1339 break;
1340 advance = false;
1341 continue;
1342 }
1343
1344 if (!advance) {
1345 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1346 if (xa_is_sibling(entry)) {
1347 xas->xa_offset = xa_to_sibling(entry);
1348 xas_move_index(xas, xas->xa_offset);
1349 }
1350 }
1351
1352 offset = xas_find_chunk(xas, advance, mark);
1353 if (offset > xas->xa_offset) {
1354 advance = false;
1355 xas_move_index(xas, offset);
1356 /* Mind the wrap */
1357 if ((xas->xa_index - 1) >= max)
1358 goto max;
1359 xas->xa_offset = offset;
1360 if (offset == XA_CHUNK_SIZE)
1361 continue;
1362 }
1363
1364 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1365 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
1366 continue;
1367 if (!xa_is_node(entry))
1368 return entry;
1369 xas->xa_node = xa_to_node(entry);
1370 xas_set_offset(xas);
1371 }
1372
1373 out:
1374 if (xas->xa_index > max)
1375 goto max;
1376 return set_bounds(xas);
1377 max:
1378 xas->xa_node = XAS_RESTART;
1379 return NULL;
1380 }
1381 EXPORT_SYMBOL_GPL(xas_find_marked);
1382
1383 /**
1384 * xas_find_conflict() - Find the next present entry in a range.
1385 * @xas: XArray operation state.
1386 *
1387 * The @xas describes both a range and a position within that range.
1388 *
1389 * Context: Any context. Expects xa_lock to be held.
1390 * Return: The next entry in the range covered by @xas or %NULL.
1391 */
xas_find_conflict(struct xa_state * xas)1392 void *xas_find_conflict(struct xa_state *xas)
1393 {
1394 void *curr;
1395
1396 if (xas_error(xas))
1397 return NULL;
1398
1399 if (!xas->xa_node)
1400 return NULL;
1401
1402 if (xas_top(xas->xa_node)) {
1403 curr = xas_start(xas);
1404 if (!curr)
1405 return NULL;
1406 while (xa_is_node(curr)) {
1407 struct xa_node *node = xa_to_node(curr);
1408 curr = xas_descend(xas, node);
1409 }
1410 if (curr)
1411 return curr;
1412 }
1413
1414 if (xas->xa_node->shift > xas->xa_shift)
1415 return NULL;
1416
1417 for (;;) {
1418 if (xas->xa_node->shift == xas->xa_shift) {
1419 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1420 break;
1421 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1422 xas->xa_offset = xas->xa_node->offset;
1423 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1424 if (!xas->xa_node)
1425 break;
1426 continue;
1427 }
1428 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1429 if (xa_is_sibling(curr))
1430 continue;
1431 while (xa_is_node(curr)) {
1432 xas->xa_node = xa_to_node(curr);
1433 xas->xa_offset = 0;
1434 curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1435 }
1436 if (curr)
1437 return curr;
1438 }
1439 xas->xa_offset -= xas->xa_sibs;
1440 return NULL;
1441 }
1442 EXPORT_SYMBOL_GPL(xas_find_conflict);
1443
1444 /**
1445 * xa_load() - Load an entry from an XArray.
1446 * @xa: XArray.
1447 * @index: index into array.
1448 *
1449 * Context: Any context. Takes and releases the RCU lock.
1450 * Return: The entry at @index in @xa.
1451 */
xa_load(struct xarray * xa,unsigned long index)1452 void *xa_load(struct xarray *xa, unsigned long index)
1453 {
1454 XA_STATE(xas, xa, index);
1455 void *entry;
1456
1457 rcu_read_lock();
1458 do {
1459 entry = xas_load(&xas);
1460 if (xa_is_zero(entry))
1461 entry = NULL;
1462 } while (xas_retry(&xas, entry));
1463 rcu_read_unlock();
1464
1465 return entry;
1466 }
1467 EXPORT_SYMBOL(xa_load);
1468
xas_result(struct xa_state * xas,void * curr)1469 static void *xas_result(struct xa_state *xas, void *curr)
1470 {
1471 if (xa_is_zero(curr))
1472 return NULL;
1473 if (xas_error(xas))
1474 curr = xas->xa_node;
1475 return curr;
1476 }
1477
1478 /**
1479 * __xa_erase() - Erase this entry from the XArray while locked.
1480 * @xa: XArray.
1481 * @index: Index into array.
1482 *
1483 * After this function returns, loading from @index will return %NULL.
1484 * If the index is part of a multi-index entry, all indices will be erased
1485 * and none of the entries will be part of a multi-index entry.
1486 *
1487 * Context: Any context. Expects xa_lock to be held on entry.
1488 * Return: The entry which used to be at this index.
1489 */
__xa_erase(struct xarray * xa,unsigned long index)1490 void *__xa_erase(struct xarray *xa, unsigned long index)
1491 {
1492 XA_STATE(xas, xa, index);
1493 return xas_result(&xas, xas_store(&xas, NULL));
1494 }
1495 EXPORT_SYMBOL(__xa_erase);
1496
1497 /**
1498 * xa_erase() - Erase this entry from the XArray.
1499 * @xa: XArray.
1500 * @index: Index of entry.
1501 *
1502 * After this function returns, loading from @index will return %NULL.
1503 * If the index is part of a multi-index entry, all indices will be erased
1504 * and none of the entries will be part of a multi-index entry.
1505 *
1506 * Context: Any context. Takes and releases the xa_lock.
1507 * Return: The entry which used to be at this index.
1508 */
xa_erase(struct xarray * xa,unsigned long index)1509 void *xa_erase(struct xarray *xa, unsigned long index)
1510 {
1511 void *entry;
1512
1513 xa_lock(xa);
1514 entry = __xa_erase(xa, index);
1515 xa_unlock(xa);
1516
1517 return entry;
1518 }
1519 EXPORT_SYMBOL(xa_erase);
1520
1521 /**
1522 * __xa_store() - Store this entry in the XArray.
1523 * @xa: XArray.
1524 * @index: Index into array.
1525 * @entry: New entry.
1526 * @gfp: Memory allocation flags.
1527 *
1528 * You must already be holding the xa_lock when calling this function.
1529 * It will drop the lock if needed to allocate memory, and then reacquire
1530 * it afterwards.
1531 *
1532 * Context: Any context. Expects xa_lock to be held on entry. May
1533 * release and reacquire xa_lock if @gfp flags permit.
1534 * Return: The old entry at this index or xa_err() if an error happened.
1535 */
__xa_store(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1536 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1537 {
1538 XA_STATE(xas, xa, index);
1539 void *curr;
1540
1541 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1542 return XA_ERROR(-EINVAL);
1543 if (xa_track_free(xa) && !entry)
1544 entry = XA_ZERO_ENTRY;
1545
1546 do {
1547 curr = xas_store(&xas, entry);
1548 if (xa_track_free(xa))
1549 xas_clear_mark(&xas, XA_FREE_MARK);
1550 } while (__xas_nomem(&xas, gfp));
1551
1552 return xas_result(&xas, curr);
1553 }
1554 EXPORT_SYMBOL(__xa_store);
1555
1556 /**
1557 * xa_store() - Store this entry in the XArray.
1558 * @xa: XArray.
1559 * @index: Index into array.
1560 * @entry: New entry.
1561 * @gfp: Memory allocation flags.
1562 *
1563 * After this function returns, loads from this index will return @entry.
1564 * Storing into an existing multi-index entry updates the entry of every index.
1565 * The marks associated with @index are unaffected unless @entry is %NULL.
1566 *
1567 * Context: Any context. Takes and releases the xa_lock.
1568 * May sleep if the @gfp flags permit.
1569 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1570 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1571 * failed.
1572 */
xa_store(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1573 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1574 {
1575 void *curr;
1576
1577 xa_lock(xa);
1578 curr = __xa_store(xa, index, entry, gfp);
1579 xa_unlock(xa);
1580
1581 return curr;
1582 }
1583 EXPORT_SYMBOL(xa_store);
1584
1585 /**
1586 * __xa_cmpxchg() - Store this entry in the XArray.
1587 * @xa: XArray.
1588 * @index: Index into array.
1589 * @old: Old value to test against.
1590 * @entry: New entry.
1591 * @gfp: Memory allocation flags.
1592 *
1593 * You must already be holding the xa_lock when calling this function.
1594 * It will drop the lock if needed to allocate memory, and then reacquire
1595 * it afterwards.
1596 *
1597 * Context: Any context. Expects xa_lock to be held on entry. May
1598 * release and reacquire xa_lock if @gfp flags permit.
1599 * Return: The old entry at this index or xa_err() if an error happened.
1600 */
__xa_cmpxchg(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)1601 void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1602 void *old, void *entry, gfp_t gfp)
1603 {
1604 XA_STATE(xas, xa, index);
1605 void *curr;
1606
1607 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1608 return XA_ERROR(-EINVAL);
1609
1610 do {
1611 curr = xas_load(&xas);
1612 if (curr == old) {
1613 xas_store(&xas, entry);
1614 if (xa_track_free(xa) && entry && !curr)
1615 xas_clear_mark(&xas, XA_FREE_MARK);
1616 }
1617 } while (__xas_nomem(&xas, gfp));
1618
1619 return xas_result(&xas, curr);
1620 }
1621 EXPORT_SYMBOL(__xa_cmpxchg);
1622
1623 /**
1624 * __xa_insert() - Store this entry in the XArray if no entry is present.
1625 * @xa: XArray.
1626 * @index: Index into array.
1627 * @entry: New entry.
1628 * @gfp: Memory allocation flags.
1629 *
1630 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1631 * if no entry is present. Inserting will fail if a reserved entry is
1632 * present, even though loading from this index will return NULL.
1633 *
1634 * Context: Any context. Expects xa_lock to be held on entry. May
1635 * release and reacquire xa_lock if @gfp flags permit.
1636 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
1637 * -ENOMEM if memory could not be allocated.
1638 */
__xa_insert(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1639 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1640 {
1641 XA_STATE(xas, xa, index);
1642 void *curr;
1643
1644 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1645 return -EINVAL;
1646 if (!entry)
1647 entry = XA_ZERO_ENTRY;
1648
1649 do {
1650 curr = xas_load(&xas);
1651 if (!curr) {
1652 xas_store(&xas, entry);
1653 if (xa_track_free(xa))
1654 xas_clear_mark(&xas, XA_FREE_MARK);
1655 } else {
1656 xas_set_err(&xas, -EBUSY);
1657 }
1658 } while (__xas_nomem(&xas, gfp));
1659
1660 return xas_error(&xas);
1661 }
1662 EXPORT_SYMBOL(__xa_insert);
1663
1664 #ifdef CONFIG_XARRAY_MULTI
xas_set_range(struct xa_state * xas,unsigned long first,unsigned long last)1665 static void xas_set_range(struct xa_state *xas, unsigned long first,
1666 unsigned long last)
1667 {
1668 unsigned int shift = 0;
1669 unsigned long sibs = last - first;
1670 unsigned int offset = XA_CHUNK_MASK;
1671
1672 xas_set(xas, first);
1673
1674 while ((first & XA_CHUNK_MASK) == 0) {
1675 if (sibs < XA_CHUNK_MASK)
1676 break;
1677 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1678 break;
1679 shift += XA_CHUNK_SHIFT;
1680 if (offset == XA_CHUNK_MASK)
1681 offset = sibs & XA_CHUNK_MASK;
1682 sibs >>= XA_CHUNK_SHIFT;
1683 first >>= XA_CHUNK_SHIFT;
1684 }
1685
1686 offset = first & XA_CHUNK_MASK;
1687 if (offset + sibs > XA_CHUNK_MASK)
1688 sibs = XA_CHUNK_MASK - offset;
1689 if ((((first + sibs + 1) << shift) - 1) > last)
1690 sibs -= 1;
1691
1692 xas->xa_shift = shift;
1693 xas->xa_sibs = sibs;
1694 }
1695
1696 /**
1697 * xa_store_range() - Store this entry at a range of indices in the XArray.
1698 * @xa: XArray.
1699 * @first: First index to affect.
1700 * @last: Last index to affect.
1701 * @entry: New entry.
1702 * @gfp: Memory allocation flags.
1703 *
1704 * After this function returns, loads from any index between @first and @last,
1705 * inclusive will return @entry.
1706 * Storing into an existing multi-index entry updates the entry of every index.
1707 * The marks associated with @index are unaffected unless @entry is %NULL.
1708 *
1709 * Context: Process context. Takes and releases the xa_lock. May sleep
1710 * if the @gfp flags permit.
1711 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1712 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1713 */
xa_store_range(struct xarray * xa,unsigned long first,unsigned long last,void * entry,gfp_t gfp)1714 void *xa_store_range(struct xarray *xa, unsigned long first,
1715 unsigned long last, void *entry, gfp_t gfp)
1716 {
1717 XA_STATE(xas, xa, 0);
1718
1719 if (WARN_ON_ONCE(xa_is_internal(entry)))
1720 return XA_ERROR(-EINVAL);
1721 if (last < first)
1722 return XA_ERROR(-EINVAL);
1723
1724 do {
1725 xas_lock(&xas);
1726 if (entry) {
1727 unsigned int order = BITS_PER_LONG;
1728 if (last + 1)
1729 order = __ffs(last + 1);
1730 xas_set_order(&xas, last, order);
1731 xas_create(&xas, true);
1732 if (xas_error(&xas))
1733 goto unlock;
1734 }
1735 do {
1736 xas_set_range(&xas, first, last);
1737 xas_store(&xas, entry);
1738 if (xas_error(&xas))
1739 goto unlock;
1740 first += xas_size(&xas);
1741 } while (first <= last);
1742 unlock:
1743 xas_unlock(&xas);
1744 } while (xas_nomem(&xas, gfp));
1745
1746 return xas_result(&xas, NULL);
1747 }
1748 EXPORT_SYMBOL(xa_store_range);
1749
1750 /**
1751 * xa_get_order() - Get the order of an entry.
1752 * @xa: XArray.
1753 * @index: Index of the entry.
1754 *
1755 * Return: A number between 0 and 63 indicating the order of the entry.
1756 */
xa_get_order(struct xarray * xa,unsigned long index)1757 int xa_get_order(struct xarray *xa, unsigned long index)
1758 {
1759 XA_STATE(xas, xa, index);
1760 void *entry;
1761 int order = 0;
1762
1763 rcu_read_lock();
1764 entry = xas_load(&xas);
1765
1766 if (!entry)
1767 goto unlock;
1768
1769 if (!xas.xa_node)
1770 goto unlock;
1771
1772 for (;;) {
1773 unsigned int slot = xas.xa_offset + (1 << order);
1774
1775 if (slot >= XA_CHUNK_SIZE)
1776 break;
1777 if (!xa_is_sibling(xas.xa_node->slots[slot]))
1778 break;
1779 order++;
1780 }
1781
1782 order += xas.xa_node->shift;
1783 unlock:
1784 rcu_read_unlock();
1785
1786 return order;
1787 }
1788 EXPORT_SYMBOL(xa_get_order);
1789 #endif /* CONFIG_XARRAY_MULTI */
1790
1791 /**
1792 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1793 * @xa: XArray.
1794 * @id: Pointer to ID.
1795 * @limit: Range for allocated ID.
1796 * @entry: New entry.
1797 * @gfp: Memory allocation flags.
1798 *
1799 * Finds an empty entry in @xa between @limit.min and @limit.max,
1800 * stores the index into the @id pointer, then stores the entry at
1801 * that index. A concurrent lookup will not see an uninitialised @id.
1802 *
1803 * Context: Any context. Expects xa_lock to be held on entry. May
1804 * release and reacquire xa_lock if @gfp flags permit.
1805 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1806 * -EBUSY if there are no free entries in @limit.
1807 */
__xa_alloc(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)1808 int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1809 struct xa_limit limit, gfp_t gfp)
1810 {
1811 XA_STATE(xas, xa, 0);
1812
1813 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1814 return -EINVAL;
1815 if (WARN_ON_ONCE(!xa_track_free(xa)))
1816 return -EINVAL;
1817
1818 if (!entry)
1819 entry = XA_ZERO_ENTRY;
1820
1821 do {
1822 xas.xa_index = limit.min;
1823 xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1824 if (xas.xa_node == XAS_RESTART)
1825 xas_set_err(&xas, -EBUSY);
1826 else
1827 *id = xas.xa_index;
1828 xas_store(&xas, entry);
1829 xas_clear_mark(&xas, XA_FREE_MARK);
1830 } while (__xas_nomem(&xas, gfp));
1831
1832 return xas_error(&xas);
1833 }
1834 EXPORT_SYMBOL(__xa_alloc);
1835
1836 /**
1837 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1838 * @xa: XArray.
1839 * @id: Pointer to ID.
1840 * @entry: New entry.
1841 * @limit: Range of allocated ID.
1842 * @next: Pointer to next ID to allocate.
1843 * @gfp: Memory allocation flags.
1844 *
1845 * Finds an empty entry in @xa between @limit.min and @limit.max,
1846 * stores the index into the @id pointer, then stores the entry at
1847 * that index. A concurrent lookup will not see an uninitialised @id.
1848 * The search for an empty entry will start at @next and will wrap
1849 * around if necessary.
1850 *
1851 * Context: Any context. Expects xa_lock to be held on entry. May
1852 * release and reacquire xa_lock if @gfp flags permit.
1853 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1854 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1855 * allocated or -EBUSY if there are no free entries in @limit.
1856 */
__xa_alloc_cyclic(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)1857 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1858 struct xa_limit limit, u32 *next, gfp_t gfp)
1859 {
1860 u32 min = limit.min;
1861 int ret;
1862
1863 limit.min = max(min, *next);
1864 ret = __xa_alloc(xa, id, entry, limit, gfp);
1865 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1866 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1867 ret = 1;
1868 }
1869
1870 if (ret < 0 && limit.min > min) {
1871 limit.min = min;
1872 ret = __xa_alloc(xa, id, entry, limit, gfp);
1873 if (ret == 0)
1874 ret = 1;
1875 }
1876
1877 if (ret >= 0) {
1878 *next = *id + 1;
1879 if (*next == 0)
1880 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1881 }
1882 return ret;
1883 }
1884 EXPORT_SYMBOL(__xa_alloc_cyclic);
1885
1886 /**
1887 * __xa_set_mark() - Set this mark on this entry while locked.
1888 * @xa: XArray.
1889 * @index: Index of entry.
1890 * @mark: Mark number.
1891 *
1892 * Attempting to set a mark on a %NULL entry does not succeed.
1893 *
1894 * Context: Any context. Expects xa_lock to be held on entry.
1895 */
__xa_set_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1896 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1897 {
1898 XA_STATE(xas, xa, index);
1899 void *entry = xas_load(&xas);
1900
1901 if (entry)
1902 xas_set_mark(&xas, mark);
1903 }
1904 EXPORT_SYMBOL(__xa_set_mark);
1905
1906 /**
1907 * __xa_clear_mark() - Clear this mark on this entry while locked.
1908 * @xa: XArray.
1909 * @index: Index of entry.
1910 * @mark: Mark number.
1911 *
1912 * Context: Any context. Expects xa_lock to be held on entry.
1913 */
__xa_clear_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1914 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1915 {
1916 XA_STATE(xas, xa, index);
1917 void *entry = xas_load(&xas);
1918
1919 if (entry)
1920 xas_clear_mark(&xas, mark);
1921 }
1922 EXPORT_SYMBOL(__xa_clear_mark);
1923
1924 /**
1925 * xa_get_mark() - Inquire whether this mark is set on this entry.
1926 * @xa: XArray.
1927 * @index: Index of entry.
1928 * @mark: Mark number.
1929 *
1930 * This function uses the RCU read lock, so the result may be out of date
1931 * by the time it returns. If you need the result to be stable, use a lock.
1932 *
1933 * Context: Any context. Takes and releases the RCU lock.
1934 * Return: True if the entry at @index has this mark set, false if it doesn't.
1935 */
xa_get_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1936 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1937 {
1938 XA_STATE(xas, xa, index);
1939 void *entry;
1940
1941 rcu_read_lock();
1942 entry = xas_start(&xas);
1943 while (xas_get_mark(&xas, mark)) {
1944 if (!xa_is_node(entry))
1945 goto found;
1946 entry = xas_descend(&xas, xa_to_node(entry));
1947 }
1948 rcu_read_unlock();
1949 return false;
1950 found:
1951 rcu_read_unlock();
1952 return true;
1953 }
1954 EXPORT_SYMBOL(xa_get_mark);
1955
1956 /**
1957 * xa_set_mark() - Set this mark on this entry.
1958 * @xa: XArray.
1959 * @index: Index of entry.
1960 * @mark: Mark number.
1961 *
1962 * Attempting to set a mark on a %NULL entry does not succeed.
1963 *
1964 * Context: Process context. Takes and releases the xa_lock.
1965 */
xa_set_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1966 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1967 {
1968 xa_lock(xa);
1969 __xa_set_mark(xa, index, mark);
1970 xa_unlock(xa);
1971 }
1972 EXPORT_SYMBOL(xa_set_mark);
1973
1974 /**
1975 * xa_clear_mark() - Clear this mark on this entry.
1976 * @xa: XArray.
1977 * @index: Index of entry.
1978 * @mark: Mark number.
1979 *
1980 * Clearing a mark always succeeds.
1981 *
1982 * Context: Process context. Takes and releases the xa_lock.
1983 */
xa_clear_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1984 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1985 {
1986 xa_lock(xa);
1987 __xa_clear_mark(xa, index, mark);
1988 xa_unlock(xa);
1989 }
1990 EXPORT_SYMBOL(xa_clear_mark);
1991
1992 /**
1993 * xa_find() - Search the XArray for an entry.
1994 * @xa: XArray.
1995 * @indexp: Pointer to an index.
1996 * @max: Maximum index to search to.
1997 * @filter: Selection criterion.
1998 *
1999 * Finds the entry in @xa which matches the @filter, and has the lowest
2000 * index that is at least @indexp and no more than @max.
2001 * If an entry is found, @indexp is updated to be the index of the entry.
2002 * This function is protected by the RCU read lock, so it may not find
2003 * entries which are being simultaneously added. It will not return an
2004 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2005 *
2006 * Context: Any context. Takes and releases the RCU lock.
2007 * Return: The entry, if found, otherwise %NULL.
2008 */
xa_find(struct xarray * xa,unsigned long * indexp,unsigned long max,xa_mark_t filter)2009 void *xa_find(struct xarray *xa, unsigned long *indexp,
2010 unsigned long max, xa_mark_t filter)
2011 {
2012 XA_STATE(xas, xa, *indexp);
2013 void *entry;
2014
2015 rcu_read_lock();
2016 do {
2017 if ((__force unsigned int)filter < XA_MAX_MARKS)
2018 entry = xas_find_marked(&xas, max, filter);
2019 else
2020 entry = xas_find(&xas, max);
2021 } while (xas_retry(&xas, entry));
2022 rcu_read_unlock();
2023
2024 if (entry)
2025 *indexp = xas.xa_index;
2026 return entry;
2027 }
2028 EXPORT_SYMBOL(xa_find);
2029
xas_sibling(struct xa_state * xas)2030 static bool xas_sibling(struct xa_state *xas)
2031 {
2032 struct xa_node *node = xas->xa_node;
2033 unsigned long mask;
2034
2035 if (!node)
2036 return false;
2037 mask = (XA_CHUNK_SIZE << node->shift) - 1;
2038 return (xas->xa_index & mask) >
2039 ((unsigned long)xas->xa_offset << node->shift);
2040 }
2041
2042 /**
2043 * xa_find_after() - Search the XArray for a present entry.
2044 * @xa: XArray.
2045 * @indexp: Pointer to an index.
2046 * @max: Maximum index to search to.
2047 * @filter: Selection criterion.
2048 *
2049 * Finds the entry in @xa which matches the @filter and has the lowest
2050 * index that is above @indexp and no more than @max.
2051 * If an entry is found, @indexp is updated to be the index of the entry.
2052 * This function is protected by the RCU read lock, so it may miss entries
2053 * which are being simultaneously added. It will not return an
2054 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2055 *
2056 * Context: Any context. Takes and releases the RCU lock.
2057 * Return: The pointer, if found, otherwise %NULL.
2058 */
xa_find_after(struct xarray * xa,unsigned long * indexp,unsigned long max,xa_mark_t filter)2059 void *xa_find_after(struct xarray *xa, unsigned long *indexp,
2060 unsigned long max, xa_mark_t filter)
2061 {
2062 XA_STATE(xas, xa, *indexp + 1);
2063 void *entry;
2064
2065 if (xas.xa_index == 0)
2066 return NULL;
2067
2068 rcu_read_lock();
2069 for (;;) {
2070 if ((__force unsigned int)filter < XA_MAX_MARKS)
2071 entry = xas_find_marked(&xas, max, filter);
2072 else
2073 entry = xas_find(&xas, max);
2074
2075 if (xas_invalid(&xas))
2076 break;
2077 if (xas_sibling(&xas))
2078 continue;
2079 if (!xas_retry(&xas, entry))
2080 break;
2081 }
2082 rcu_read_unlock();
2083
2084 if (entry)
2085 *indexp = xas.xa_index;
2086 return entry;
2087 }
2088 EXPORT_SYMBOL(xa_find_after);
2089
xas_extract_present(struct xa_state * xas,void ** dst,unsigned long max,unsigned int n)2090 static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
2091 unsigned long max, unsigned int n)
2092 {
2093 void *entry;
2094 unsigned int i = 0;
2095
2096 rcu_read_lock();
2097 xas_for_each(xas, entry, max) {
2098 if (xas_retry(xas, entry))
2099 continue;
2100 dst[i++] = entry;
2101 if (i == n)
2102 break;
2103 }
2104 rcu_read_unlock();
2105
2106 return i;
2107 }
2108
xas_extract_marked(struct xa_state * xas,void ** dst,unsigned long max,unsigned int n,xa_mark_t mark)2109 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
2110 unsigned long max, unsigned int n, xa_mark_t mark)
2111 {
2112 void *entry;
2113 unsigned int i = 0;
2114
2115 rcu_read_lock();
2116 xas_for_each_marked(xas, entry, max, mark) {
2117 if (xas_retry(xas, entry))
2118 continue;
2119 dst[i++] = entry;
2120 if (i == n)
2121 break;
2122 }
2123 rcu_read_unlock();
2124
2125 return i;
2126 }
2127
2128 /**
2129 * xa_extract() - Copy selected entries from the XArray into a normal array.
2130 * @xa: The source XArray to copy from.
2131 * @dst: The buffer to copy entries into.
2132 * @start: The first index in the XArray eligible to be selected.
2133 * @max: The last index in the XArray eligible to be selected.
2134 * @n: The maximum number of entries to copy.
2135 * @filter: Selection criterion.
2136 *
2137 * Copies up to @n entries that match @filter from the XArray. The
2138 * copied entries will have indices between @start and @max, inclusive.
2139 *
2140 * The @filter may be an XArray mark value, in which case entries which are
2141 * marked with that mark will be copied. It may also be %XA_PRESENT, in
2142 * which case all entries which are not %NULL will be copied.
2143 *
2144 * The entries returned may not represent a snapshot of the XArray at a
2145 * moment in time. For example, if another thread stores to index 5, then
2146 * index 10, calling xa_extract() may return the old contents of index 5
2147 * and the new contents of index 10. Indices not modified while this
2148 * function is running will not be skipped.
2149 *
2150 * If you need stronger guarantees, holding the xa_lock across calls to this
2151 * function will prevent concurrent modification.
2152 *
2153 * Context: Any context. Takes and releases the RCU lock.
2154 * Return: The number of entries copied.
2155 */
xa_extract(struct xarray * xa,void ** dst,unsigned long start,unsigned long max,unsigned int n,xa_mark_t filter)2156 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
2157 unsigned long max, unsigned int n, xa_mark_t filter)
2158 {
2159 XA_STATE(xas, xa, start);
2160
2161 if (!n)
2162 return 0;
2163
2164 if ((__force unsigned int)filter < XA_MAX_MARKS)
2165 return xas_extract_marked(&xas, dst, max, n, filter);
2166 return xas_extract_present(&xas, dst, max, n);
2167 }
2168 EXPORT_SYMBOL(xa_extract);
2169
2170 /**
2171 * xa_destroy() - Free all internal data structures.
2172 * @xa: XArray.
2173 *
2174 * After calling this function, the XArray is empty and has freed all memory
2175 * allocated for its internal data structures. You are responsible for
2176 * freeing the objects referenced by the XArray.
2177 *
2178 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
2179 */
xa_destroy(struct xarray * xa)2180 void xa_destroy(struct xarray *xa)
2181 {
2182 XA_STATE(xas, xa, 0);
2183 unsigned long flags;
2184 void *entry;
2185
2186 xas.xa_node = NULL;
2187 xas_lock_irqsave(&xas, flags);
2188 entry = xa_head_locked(xa);
2189 RCU_INIT_POINTER(xa->xa_head, NULL);
2190 xas_init_marks(&xas);
2191 if (xa_zero_busy(xa))
2192 xa_mark_clear(xa, XA_FREE_MARK);
2193 /* lockdep checks we're still holding the lock in xas_free_nodes() */
2194 if (xa_is_node(entry))
2195 xas_free_nodes(&xas, xa_to_node(entry));
2196 xas_unlock_irqrestore(&xas, flags);
2197 }
2198 EXPORT_SYMBOL(xa_destroy);
2199
2200 #ifdef XA_DEBUG
xa_dump_node(const struct xa_node * node)2201 void xa_dump_node(const struct xa_node *node)
2202 {
2203 unsigned i, j;
2204
2205 if (!node)
2206 return;
2207 if ((unsigned long)node & 3) {
2208 pr_cont("node %px\n", node);
2209 return;
2210 }
2211
2212 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2213 "array %px list %px %px marks",
2214 node, node->parent ? "offset" : "max", node->offset,
2215 node->parent, node->shift, node->count, node->nr_values,
2216 node->array, node->private_list.prev, node->private_list.next);
2217 for (i = 0; i < XA_MAX_MARKS; i++)
2218 for (j = 0; j < XA_MARK_LONGS; j++)
2219 pr_cont(" %lx", node->marks[i][j]);
2220 pr_cont("\n");
2221 }
2222
xa_dump_index(unsigned long index,unsigned int shift)2223 void xa_dump_index(unsigned long index, unsigned int shift)
2224 {
2225 if (!shift)
2226 pr_info("%lu: ", index);
2227 else if (shift >= BITS_PER_LONG)
2228 pr_info("0-%lu: ", ~0UL);
2229 else
2230 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2231 }
2232
xa_dump_entry(const void * entry,unsigned long index,unsigned long shift)2233 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2234 {
2235 if (!entry)
2236 return;
2237
2238 xa_dump_index(index, shift);
2239
2240 if (xa_is_node(entry)) {
2241 if (shift == 0) {
2242 pr_cont("%px\n", entry);
2243 } else {
2244 unsigned long i;
2245 struct xa_node *node = xa_to_node(entry);
2246 xa_dump_node(node);
2247 for (i = 0; i < XA_CHUNK_SIZE; i++)
2248 xa_dump_entry(node->slots[i],
2249 index + (i << node->shift), node->shift);
2250 }
2251 } else if (xa_is_value(entry))
2252 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2253 xa_to_value(entry), entry);
2254 else if (!xa_is_internal(entry))
2255 pr_cont("%px\n", entry);
2256 else if (xa_is_retry(entry))
2257 pr_cont("retry (%ld)\n", xa_to_internal(entry));
2258 else if (xa_is_sibling(entry))
2259 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2260 else if (xa_is_zero(entry))
2261 pr_cont("zero (%ld)\n", xa_to_internal(entry));
2262 else
2263 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2264 }
2265
xa_dump(const struct xarray * xa)2266 void xa_dump(const struct xarray *xa)
2267 {
2268 void *entry = xa->xa_head;
2269 unsigned int shift = 0;
2270
2271 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2272 xa->xa_flags, xa_marked(xa, XA_MARK_0),
2273 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2274 if (xa_is_node(entry))
2275 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2276 xa_dump_entry(entry, 0, shift);
2277 }
2278 #endif
2279