1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2013 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_da_format.h"
16 #include "xfs_da_btree.h"
17 #include "xfs_inode.h"
18 #include "xfs_trans.h"
19 #include "xfs_bmap_btree.h"
20 #include "xfs_bmap.h"
21 #include "xfs_attr_sf.h"
22 #include "xfs_attr_remote.h"
23 #include "xfs_attr.h"
24 #include "xfs_attr_leaf.h"
25 #include "xfs_error.h"
26 #include "xfs_trace.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_dir2.h"
29 #include "xfs_log.h"
30
31
32 /*
33 * xfs_attr_leaf.c
34 *
35 * Routines to implement leaf blocks of attributes as Btrees of hashed names.
36 */
37
38 /*========================================================================
39 * Function prototypes for the kernel.
40 *========================================================================*/
41
42 /*
43 * Routines used for growing the Btree.
44 */
45 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
46 xfs_dablk_t which_block, struct xfs_buf **bpp);
47 STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
48 struct xfs_attr3_icleaf_hdr *ichdr,
49 struct xfs_da_args *args, int freemap_index);
50 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
51 struct xfs_attr3_icleaf_hdr *ichdr,
52 struct xfs_buf *leaf_buffer);
53 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
54 xfs_da_state_blk_t *blk1,
55 xfs_da_state_blk_t *blk2);
56 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
57 xfs_da_state_blk_t *leaf_blk_1,
58 struct xfs_attr3_icleaf_hdr *ichdr1,
59 xfs_da_state_blk_t *leaf_blk_2,
60 struct xfs_attr3_icleaf_hdr *ichdr2,
61 int *number_entries_in_blk1,
62 int *number_usedbytes_in_blk1);
63
64 /*
65 * Utility routines.
66 */
67 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args,
68 struct xfs_attr_leafblock *src_leaf,
69 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
70 struct xfs_attr_leafblock *dst_leaf,
71 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
72 int move_count);
73 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
74
75 /*
76 * attr3 block 'firstused' conversion helpers.
77 *
78 * firstused refers to the offset of the first used byte of the nameval region
79 * of an attr leaf block. The region starts at the tail of the block and expands
80 * backwards towards the middle. As such, firstused is initialized to the block
81 * size for an empty leaf block and is reduced from there.
82 *
83 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k.
84 * The in-core firstused field is 32-bit and thus supports the maximum fsb size.
85 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this
86 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent
87 * the attr block size. The following helpers manage the conversion between the
88 * in-core and on-disk formats.
89 */
90
91 static void
xfs_attr3_leaf_firstused_from_disk(struct xfs_da_geometry * geo,struct xfs_attr3_icleaf_hdr * to,struct xfs_attr_leafblock * from)92 xfs_attr3_leaf_firstused_from_disk(
93 struct xfs_da_geometry *geo,
94 struct xfs_attr3_icleaf_hdr *to,
95 struct xfs_attr_leafblock *from)
96 {
97 struct xfs_attr3_leaf_hdr *hdr3;
98
99 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
100 hdr3 = (struct xfs_attr3_leaf_hdr *) from;
101 to->firstused = be16_to_cpu(hdr3->firstused);
102 } else {
103 to->firstused = be16_to_cpu(from->hdr.firstused);
104 }
105
106 /*
107 * Convert from the magic fsb size value to actual blocksize. This
108 * should only occur for empty blocks when the block size overflows
109 * 16-bits.
110 */
111 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) {
112 ASSERT(!to->count && !to->usedbytes);
113 ASSERT(geo->blksize > USHRT_MAX);
114 to->firstused = geo->blksize;
115 }
116 }
117
118 static void
xfs_attr3_leaf_firstused_to_disk(struct xfs_da_geometry * geo,struct xfs_attr_leafblock * to,struct xfs_attr3_icleaf_hdr * from)119 xfs_attr3_leaf_firstused_to_disk(
120 struct xfs_da_geometry *geo,
121 struct xfs_attr_leafblock *to,
122 struct xfs_attr3_icleaf_hdr *from)
123 {
124 struct xfs_attr3_leaf_hdr *hdr3;
125 uint32_t firstused;
126
127 /* magic value should only be seen on disk */
128 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF);
129
130 /*
131 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk
132 * value. This only overflows at the max supported value of 64k. Use the
133 * magic on-disk value to represent block size in this case.
134 */
135 firstused = from->firstused;
136 if (firstused > USHRT_MAX) {
137 ASSERT(from->firstused == geo->blksize);
138 firstused = XFS_ATTR3_LEAF_NULLOFF;
139 }
140
141 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
142 hdr3 = (struct xfs_attr3_leaf_hdr *) to;
143 hdr3->firstused = cpu_to_be16(firstused);
144 } else {
145 to->hdr.firstused = cpu_to_be16(firstused);
146 }
147 }
148
149 void
xfs_attr3_leaf_hdr_from_disk(struct xfs_da_geometry * geo,struct xfs_attr3_icleaf_hdr * to,struct xfs_attr_leafblock * from)150 xfs_attr3_leaf_hdr_from_disk(
151 struct xfs_da_geometry *geo,
152 struct xfs_attr3_icleaf_hdr *to,
153 struct xfs_attr_leafblock *from)
154 {
155 int i;
156
157 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
158 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
159
160 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
161 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
162
163 to->forw = be32_to_cpu(hdr3->info.hdr.forw);
164 to->back = be32_to_cpu(hdr3->info.hdr.back);
165 to->magic = be16_to_cpu(hdr3->info.hdr.magic);
166 to->count = be16_to_cpu(hdr3->count);
167 to->usedbytes = be16_to_cpu(hdr3->usedbytes);
168 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
169 to->holes = hdr3->holes;
170
171 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
172 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
173 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
174 }
175 return;
176 }
177 to->forw = be32_to_cpu(from->hdr.info.forw);
178 to->back = be32_to_cpu(from->hdr.info.back);
179 to->magic = be16_to_cpu(from->hdr.info.magic);
180 to->count = be16_to_cpu(from->hdr.count);
181 to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
182 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
183 to->holes = from->hdr.holes;
184
185 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
186 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
187 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
188 }
189 }
190
191 void
xfs_attr3_leaf_hdr_to_disk(struct xfs_da_geometry * geo,struct xfs_attr_leafblock * to,struct xfs_attr3_icleaf_hdr * from)192 xfs_attr3_leaf_hdr_to_disk(
193 struct xfs_da_geometry *geo,
194 struct xfs_attr_leafblock *to,
195 struct xfs_attr3_icleaf_hdr *from)
196 {
197 int i;
198
199 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
200 from->magic == XFS_ATTR3_LEAF_MAGIC);
201
202 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
203 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
204
205 hdr3->info.hdr.forw = cpu_to_be32(from->forw);
206 hdr3->info.hdr.back = cpu_to_be32(from->back);
207 hdr3->info.hdr.magic = cpu_to_be16(from->magic);
208 hdr3->count = cpu_to_be16(from->count);
209 hdr3->usedbytes = cpu_to_be16(from->usedbytes);
210 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
211 hdr3->holes = from->holes;
212 hdr3->pad1 = 0;
213
214 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
215 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
216 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
217 }
218 return;
219 }
220 to->hdr.info.forw = cpu_to_be32(from->forw);
221 to->hdr.info.back = cpu_to_be32(from->back);
222 to->hdr.info.magic = cpu_to_be16(from->magic);
223 to->hdr.count = cpu_to_be16(from->count);
224 to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
225 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
226 to->hdr.holes = from->holes;
227 to->hdr.pad1 = 0;
228
229 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
230 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
231 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
232 }
233 }
234
235 static xfs_failaddr_t
xfs_attr3_leaf_verify(struct xfs_buf * bp)236 xfs_attr3_leaf_verify(
237 struct xfs_buf *bp)
238 {
239 struct xfs_attr3_icleaf_hdr ichdr;
240 struct xfs_mount *mp = bp->b_mount;
241 struct xfs_attr_leafblock *leaf = bp->b_addr;
242 struct xfs_attr_leaf_entry *entries;
243 uint32_t end; /* must be 32bit - see below */
244 int i;
245 xfs_failaddr_t fa;
246
247 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf);
248
249 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr);
250 if (fa)
251 return fa;
252
253 /*
254 * firstused is the block offset of the first name info structure.
255 * Make sure it doesn't go off the block or crash into the header.
256 */
257 if (ichdr.firstused > mp->m_attr_geo->blksize)
258 return __this_address;
259 if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf))
260 return __this_address;
261
262 /* Make sure the entries array doesn't crash into the name info. */
263 entries = xfs_attr3_leaf_entryp(bp->b_addr);
264 if ((char *)&entries[ichdr.count] >
265 (char *)bp->b_addr + ichdr.firstused)
266 return __this_address;
267
268 /* XXX: need to range check rest of attr header values */
269 /* XXX: hash order check? */
270
271 /*
272 * Quickly check the freemap information. Attribute data has to be
273 * aligned to 4-byte boundaries, and likewise for the free space.
274 *
275 * Note that for 64k block size filesystems, the freemap entries cannot
276 * overflow as they are only be16 fields. However, when checking end
277 * pointer of the freemap, we have to be careful to detect overflows and
278 * so use uint32_t for those checks.
279 */
280 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
281 if (ichdr.freemap[i].base > mp->m_attr_geo->blksize)
282 return __this_address;
283 if (ichdr.freemap[i].base & 0x3)
284 return __this_address;
285 if (ichdr.freemap[i].size > mp->m_attr_geo->blksize)
286 return __this_address;
287 if (ichdr.freemap[i].size & 0x3)
288 return __this_address;
289
290 /* be care of 16 bit overflows here */
291 end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size;
292 if (end < ichdr.freemap[i].base)
293 return __this_address;
294 if (end > mp->m_attr_geo->blksize)
295 return __this_address;
296 }
297
298 return NULL;
299 }
300
301 static void
xfs_attr3_leaf_write_verify(struct xfs_buf * bp)302 xfs_attr3_leaf_write_verify(
303 struct xfs_buf *bp)
304 {
305 struct xfs_mount *mp = bp->b_mount;
306 struct xfs_buf_log_item *bip = bp->b_log_item;
307 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
308 xfs_failaddr_t fa;
309
310 fa = xfs_attr3_leaf_verify(bp);
311 if (fa) {
312 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
313 return;
314 }
315
316 if (!xfs_sb_version_hascrc(&mp->m_sb))
317 return;
318
319 if (bip)
320 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
321
322 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF);
323 }
324
325 /*
326 * leaf/node format detection on trees is sketchy, so a node read can be done on
327 * leaf level blocks when detection identifies the tree as a node format tree
328 * incorrectly. In this case, we need to swap the verifier to match the correct
329 * format of the block being read.
330 */
331 static void
xfs_attr3_leaf_read_verify(struct xfs_buf * bp)332 xfs_attr3_leaf_read_verify(
333 struct xfs_buf *bp)
334 {
335 struct xfs_mount *mp = bp->b_mount;
336 xfs_failaddr_t fa;
337
338 if (xfs_sb_version_hascrc(&mp->m_sb) &&
339 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF))
340 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
341 else {
342 fa = xfs_attr3_leaf_verify(bp);
343 if (fa)
344 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
345 }
346 }
347
348 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
349 .name = "xfs_attr3_leaf",
350 .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC),
351 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) },
352 .verify_read = xfs_attr3_leaf_read_verify,
353 .verify_write = xfs_attr3_leaf_write_verify,
354 .verify_struct = xfs_attr3_leaf_verify,
355 };
356
357 int
xfs_attr3_leaf_read(struct xfs_trans * tp,struct xfs_inode * dp,xfs_dablk_t bno,xfs_daddr_t mappedbno,struct xfs_buf ** bpp)358 xfs_attr3_leaf_read(
359 struct xfs_trans *tp,
360 struct xfs_inode *dp,
361 xfs_dablk_t bno,
362 xfs_daddr_t mappedbno,
363 struct xfs_buf **bpp)
364 {
365 int err;
366
367 err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp,
368 XFS_ATTR_FORK, &xfs_attr3_leaf_buf_ops);
369 if (!err && tp && *bpp)
370 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
371 return err;
372 }
373
374 /*========================================================================
375 * Namespace helper routines
376 *========================================================================*/
377
378 /*
379 * If namespace bits don't match return 0.
380 * If all match then return 1.
381 */
382 STATIC int
xfs_attr_namesp_match(int arg_flags,int ondisk_flags)383 xfs_attr_namesp_match(int arg_flags, int ondisk_flags)
384 {
385 return XFS_ATTR_NSP_ONDISK(ondisk_flags) == XFS_ATTR_NSP_ARGS_TO_ONDISK(arg_flags);
386 }
387
388 static int
xfs_attr_copy_value(struct xfs_da_args * args,unsigned char * value,int valuelen)389 xfs_attr_copy_value(
390 struct xfs_da_args *args,
391 unsigned char *value,
392 int valuelen)
393 {
394 /*
395 * No copy if all we have to do is get the length
396 */
397 if (args->flags & ATTR_KERNOVAL) {
398 args->valuelen = valuelen;
399 return 0;
400 }
401
402 /*
403 * No copy if the length of the existing buffer is too small
404 */
405 if (args->valuelen < valuelen) {
406 args->valuelen = valuelen;
407 return -ERANGE;
408 }
409
410 if (args->op_flags & XFS_DA_OP_ALLOCVAL) {
411 args->value = kmem_alloc_large(valuelen, 0);
412 if (!args->value)
413 return -ENOMEM;
414 }
415 args->valuelen = valuelen;
416
417 /* remote block xattr requires IO for copy-in */
418 if (args->rmtblkno)
419 return xfs_attr_rmtval_get(args);
420
421 /*
422 * This is to prevent a GCC warning because the remote xattr case
423 * doesn't have a value to pass in. In that case, we never reach here,
424 * but GCC can't work that out and so throws a "passing NULL to
425 * memcpy" warning.
426 */
427 if (!value)
428 return -EINVAL;
429 memcpy(args->value, value, valuelen);
430 return 0;
431 }
432
433 /*========================================================================
434 * External routines when attribute fork size < XFS_LITINO(mp).
435 *========================================================================*/
436
437 /*
438 * Query whether the total requested number of attr fork bytes of extended
439 * attribute space will be able to fit inline.
440 *
441 * Returns zero if not, else the di_forkoff fork offset to be used in the
442 * literal area for attribute data once the new bytes have been added.
443 *
444 * di_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
445 * special case for dev/uuid inodes, they have fixed size data forks.
446 */
447 int
xfs_attr_shortform_bytesfit(struct xfs_inode * dp,int bytes)448 xfs_attr_shortform_bytesfit(
449 struct xfs_inode *dp,
450 int bytes)
451 {
452 struct xfs_mount *mp = dp->i_mount;
453 int64_t dsize;
454 int minforkoff;
455 int maxforkoff;
456 int offset;
457
458 /*
459 * Check if the new size could fit at all first:
460 */
461 if (bytes > XFS_LITINO(mp))
462 return 0;
463
464 /* rounded down */
465 offset = (XFS_LITINO(mp) - bytes) >> 3;
466
467 if (dp->i_d.di_format == XFS_DINODE_FMT_DEV) {
468 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
469 return (offset >= minforkoff) ? minforkoff : 0;
470 }
471
472 /*
473 * If the requested numbers of bytes is smaller or equal to the
474 * current attribute fork size we can always proceed.
475 *
476 * Note that if_bytes in the data fork might actually be larger than
477 * the current data fork size is due to delalloc extents. In that
478 * case either the extent count will go down when they are converted
479 * to real extents, or the delalloc conversion will take care of the
480 * literal area rebalancing.
481 */
482 if (bytes <= XFS_IFORK_ASIZE(dp))
483 return dp->i_d.di_forkoff;
484
485 /*
486 * For attr2 we can try to move the forkoff if there is space in the
487 * literal area, but for the old format we are done if there is no
488 * space in the fixed attribute fork.
489 */
490 if (!(mp->m_flags & XFS_MOUNT_ATTR2))
491 return 0;
492
493 dsize = dp->i_df.if_bytes;
494
495 switch (dp->i_d.di_format) {
496 case XFS_DINODE_FMT_EXTENTS:
497 /*
498 * If there is no attr fork and the data fork is extents,
499 * determine if creating the default attr fork will result
500 * in the extents form migrating to btree. If so, the
501 * minimum offset only needs to be the space required for
502 * the btree root.
503 */
504 if (!dp->i_d.di_forkoff && dp->i_df.if_bytes >
505 xfs_default_attroffset(dp))
506 dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
507 break;
508 case XFS_DINODE_FMT_BTREE:
509 /*
510 * If we have a data btree then keep forkoff if we have one,
511 * otherwise we are adding a new attr, so then we set
512 * minforkoff to where the btree root can finish so we have
513 * plenty of room for attrs
514 */
515 if (dp->i_d.di_forkoff) {
516 if (offset < dp->i_d.di_forkoff)
517 return 0;
518 return dp->i_d.di_forkoff;
519 }
520 dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot);
521 break;
522 }
523
524 /*
525 * A data fork btree root must have space for at least
526 * MINDBTPTRS key/ptr pairs if the data fork is small or empty.
527 */
528 minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
529 minforkoff = roundup(minforkoff, 8) >> 3;
530
531 /* attr fork btree root can have at least this many key/ptr pairs */
532 maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS);
533 maxforkoff = maxforkoff >> 3; /* rounded down */
534
535 if (offset >= maxforkoff)
536 return maxforkoff;
537 if (offset >= minforkoff)
538 return offset;
539 return 0;
540 }
541
542 /*
543 * Switch on the ATTR2 superblock bit (implies also FEATURES2)
544 */
545 STATIC void
xfs_sbversion_add_attr2(xfs_mount_t * mp,xfs_trans_t * tp)546 xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp)
547 {
548 if ((mp->m_flags & XFS_MOUNT_ATTR2) &&
549 !(xfs_sb_version_hasattr2(&mp->m_sb))) {
550 spin_lock(&mp->m_sb_lock);
551 if (!xfs_sb_version_hasattr2(&mp->m_sb)) {
552 xfs_sb_version_addattr2(&mp->m_sb);
553 spin_unlock(&mp->m_sb_lock);
554 xfs_log_sb(tp);
555 } else
556 spin_unlock(&mp->m_sb_lock);
557 }
558 }
559
560 /*
561 * Create the initial contents of a shortform attribute list.
562 */
563 void
xfs_attr_shortform_create(xfs_da_args_t * args)564 xfs_attr_shortform_create(xfs_da_args_t *args)
565 {
566 xfs_attr_sf_hdr_t *hdr;
567 xfs_inode_t *dp;
568 struct xfs_ifork *ifp;
569
570 trace_xfs_attr_sf_create(args);
571
572 dp = args->dp;
573 ASSERT(dp != NULL);
574 ifp = dp->i_afp;
575 ASSERT(ifp != NULL);
576 ASSERT(ifp->if_bytes == 0);
577 if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) {
578 ifp->if_flags &= ~XFS_IFEXTENTS; /* just in case */
579 dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL;
580 ifp->if_flags |= XFS_IFINLINE;
581 } else {
582 ASSERT(ifp->if_flags & XFS_IFINLINE);
583 }
584 xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
585 hdr = (struct xfs_attr_sf_hdr *)ifp->if_u1.if_data;
586 memset(hdr, 0, sizeof(*hdr));
587 hdr->totsize = cpu_to_be16(sizeof(*hdr));
588 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
589 }
590
591 /*
592 * Add a name/value pair to the shortform attribute list.
593 * Overflow from the inode has already been checked for.
594 */
595 void
xfs_attr_shortform_add(xfs_da_args_t * args,int forkoff)596 xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff)
597 {
598 xfs_attr_shortform_t *sf;
599 xfs_attr_sf_entry_t *sfe;
600 int i, offset, size;
601 xfs_mount_t *mp;
602 xfs_inode_t *dp;
603 struct xfs_ifork *ifp;
604
605 trace_xfs_attr_sf_add(args);
606
607 dp = args->dp;
608 mp = dp->i_mount;
609 dp->i_d.di_forkoff = forkoff;
610
611 ifp = dp->i_afp;
612 ASSERT(ifp->if_flags & XFS_IFINLINE);
613 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
614 sfe = &sf->list[0];
615 for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
616 #ifdef DEBUG
617 if (sfe->namelen != args->namelen)
618 continue;
619 if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
620 continue;
621 if (!xfs_attr_namesp_match(args->flags, sfe->flags))
622 continue;
623 ASSERT(0);
624 #endif
625 }
626
627 offset = (char *)sfe - (char *)sf;
628 size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen);
629 xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
630 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
631 sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset);
632
633 sfe->namelen = args->namelen;
634 sfe->valuelen = args->valuelen;
635 sfe->flags = XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
636 memcpy(sfe->nameval, args->name, args->namelen);
637 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
638 sf->hdr.count++;
639 be16_add_cpu(&sf->hdr.totsize, size);
640 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
641
642 xfs_sbversion_add_attr2(mp, args->trans);
643 }
644
645 /*
646 * After the last attribute is removed revert to original inode format,
647 * making all literal area available to the data fork once more.
648 */
649 void
xfs_attr_fork_remove(struct xfs_inode * ip,struct xfs_trans * tp)650 xfs_attr_fork_remove(
651 struct xfs_inode *ip,
652 struct xfs_trans *tp)
653 {
654 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
655 ip->i_d.di_forkoff = 0;
656 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
657
658 ASSERT(ip->i_d.di_anextents == 0);
659 ASSERT(ip->i_afp == NULL);
660
661 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
662 }
663
664 /*
665 * Remove an attribute from the shortform attribute list structure.
666 */
667 int
xfs_attr_shortform_remove(xfs_da_args_t * args)668 xfs_attr_shortform_remove(xfs_da_args_t *args)
669 {
670 xfs_attr_shortform_t *sf;
671 xfs_attr_sf_entry_t *sfe;
672 int base, size=0, end, totsize, i;
673 xfs_mount_t *mp;
674 xfs_inode_t *dp;
675
676 trace_xfs_attr_sf_remove(args);
677
678 dp = args->dp;
679 mp = dp->i_mount;
680 base = sizeof(xfs_attr_sf_hdr_t);
681 sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data;
682 sfe = &sf->list[0];
683 end = sf->hdr.count;
684 for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe),
685 base += size, i++) {
686 size = XFS_ATTR_SF_ENTSIZE(sfe);
687 if (sfe->namelen != args->namelen)
688 continue;
689 if (memcmp(sfe->nameval, args->name, args->namelen) != 0)
690 continue;
691 if (!xfs_attr_namesp_match(args->flags, sfe->flags))
692 continue;
693 break;
694 }
695 if (i == end)
696 return -ENOATTR;
697
698 /*
699 * Fix up the attribute fork data, covering the hole
700 */
701 end = base + size;
702 totsize = be16_to_cpu(sf->hdr.totsize);
703 if (end != totsize)
704 memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end);
705 sf->hdr.count--;
706 be16_add_cpu(&sf->hdr.totsize, -size);
707
708 /*
709 * Fix up the start offset of the attribute fork
710 */
711 totsize -= size;
712 if (totsize == sizeof(xfs_attr_sf_hdr_t) &&
713 (mp->m_flags & XFS_MOUNT_ATTR2) &&
714 (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
715 !(args->op_flags & XFS_DA_OP_ADDNAME)) {
716 xfs_attr_fork_remove(dp, args->trans);
717 } else {
718 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
719 dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
720 ASSERT(dp->i_d.di_forkoff);
721 ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) ||
722 (args->op_flags & XFS_DA_OP_ADDNAME) ||
723 !(mp->m_flags & XFS_MOUNT_ATTR2) ||
724 dp->i_d.di_format == XFS_DINODE_FMT_BTREE);
725 xfs_trans_log_inode(args->trans, dp,
726 XFS_ILOG_CORE | XFS_ILOG_ADATA);
727 }
728
729 xfs_sbversion_add_attr2(mp, args->trans);
730
731 return 0;
732 }
733
734 /*
735 * Look up a name in a shortform attribute list structure.
736 */
737 /*ARGSUSED*/
738 int
xfs_attr_shortform_lookup(xfs_da_args_t * args)739 xfs_attr_shortform_lookup(xfs_da_args_t *args)
740 {
741 xfs_attr_shortform_t *sf;
742 xfs_attr_sf_entry_t *sfe;
743 int i;
744 struct xfs_ifork *ifp;
745
746 trace_xfs_attr_sf_lookup(args);
747
748 ifp = args->dp->i_afp;
749 ASSERT(ifp->if_flags & XFS_IFINLINE);
750 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
751 sfe = &sf->list[0];
752 for (i = 0; i < sf->hdr.count;
753 sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
754 if (sfe->namelen != args->namelen)
755 continue;
756 if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
757 continue;
758 if (!xfs_attr_namesp_match(args->flags, sfe->flags))
759 continue;
760 return -EEXIST;
761 }
762 return -ENOATTR;
763 }
764
765 /*
766 * Retreive the attribute value and length.
767 *
768 * If ATTR_KERNOVAL is specified, only the length needs to be returned.
769 * Unlike a lookup, we only return an error if the attribute does not
770 * exist or we can't retrieve the value.
771 */
772 int
xfs_attr_shortform_getvalue(struct xfs_da_args * args)773 xfs_attr_shortform_getvalue(
774 struct xfs_da_args *args)
775 {
776 struct xfs_attr_shortform *sf;
777 struct xfs_attr_sf_entry *sfe;
778 int i;
779
780 ASSERT(args->dp->i_afp->if_flags == XFS_IFINLINE);
781 sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data;
782 sfe = &sf->list[0];
783 for (i = 0; i < sf->hdr.count;
784 sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
785 if (sfe->namelen != args->namelen)
786 continue;
787 if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
788 continue;
789 if (!xfs_attr_namesp_match(args->flags, sfe->flags))
790 continue;
791 return xfs_attr_copy_value(args, &sfe->nameval[args->namelen],
792 sfe->valuelen);
793 }
794 return -ENOATTR;
795 }
796
797 /*
798 * Convert from using the shortform to the leaf. On success, return the
799 * buffer so that we can keep it locked until we're totally done with it.
800 */
801 int
xfs_attr_shortform_to_leaf(struct xfs_da_args * args,struct xfs_buf ** leaf_bp)802 xfs_attr_shortform_to_leaf(
803 struct xfs_da_args *args,
804 struct xfs_buf **leaf_bp)
805 {
806 struct xfs_inode *dp;
807 struct xfs_attr_shortform *sf;
808 struct xfs_attr_sf_entry *sfe;
809 struct xfs_da_args nargs;
810 char *tmpbuffer;
811 int error, i, size;
812 xfs_dablk_t blkno;
813 struct xfs_buf *bp;
814 struct xfs_ifork *ifp;
815
816 trace_xfs_attr_sf_to_leaf(args);
817
818 dp = args->dp;
819 ifp = dp->i_afp;
820 sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
821 size = be16_to_cpu(sf->hdr.totsize);
822 tmpbuffer = kmem_alloc(size, 0);
823 ASSERT(tmpbuffer != NULL);
824 memcpy(tmpbuffer, ifp->if_u1.if_data, size);
825 sf = (xfs_attr_shortform_t *)tmpbuffer;
826
827 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
828 xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK);
829
830 bp = NULL;
831 error = xfs_da_grow_inode(args, &blkno);
832 if (error)
833 goto out;
834
835 ASSERT(blkno == 0);
836 error = xfs_attr3_leaf_create(args, blkno, &bp);
837 if (error)
838 goto out;
839
840 memset((char *)&nargs, 0, sizeof(nargs));
841 nargs.dp = dp;
842 nargs.geo = args->geo;
843 nargs.total = args->total;
844 nargs.whichfork = XFS_ATTR_FORK;
845 nargs.trans = args->trans;
846 nargs.op_flags = XFS_DA_OP_OKNOENT;
847
848 sfe = &sf->list[0];
849 for (i = 0; i < sf->hdr.count; i++) {
850 nargs.name = sfe->nameval;
851 nargs.namelen = sfe->namelen;
852 nargs.value = &sfe->nameval[nargs.namelen];
853 nargs.valuelen = sfe->valuelen;
854 nargs.hashval = xfs_da_hashname(sfe->nameval,
855 sfe->namelen);
856 nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(sfe->flags);
857 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
858 ASSERT(error == -ENOATTR);
859 error = xfs_attr3_leaf_add(bp, &nargs);
860 ASSERT(error != -ENOSPC);
861 if (error)
862 goto out;
863 sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
864 }
865 error = 0;
866 *leaf_bp = bp;
867 out:
868 kmem_free(tmpbuffer);
869 return error;
870 }
871
872 /*
873 * Check a leaf attribute block to see if all the entries would fit into
874 * a shortform attribute list.
875 */
876 int
xfs_attr_shortform_allfit(struct xfs_buf * bp,struct xfs_inode * dp)877 xfs_attr_shortform_allfit(
878 struct xfs_buf *bp,
879 struct xfs_inode *dp)
880 {
881 struct xfs_attr_leafblock *leaf;
882 struct xfs_attr_leaf_entry *entry;
883 xfs_attr_leaf_name_local_t *name_loc;
884 struct xfs_attr3_icleaf_hdr leafhdr;
885 int bytes;
886 int i;
887 struct xfs_mount *mp = bp->b_mount;
888
889 leaf = bp->b_addr;
890 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf);
891 entry = xfs_attr3_leaf_entryp(leaf);
892
893 bytes = sizeof(struct xfs_attr_sf_hdr);
894 for (i = 0; i < leafhdr.count; entry++, i++) {
895 if (entry->flags & XFS_ATTR_INCOMPLETE)
896 continue; /* don't copy partial entries */
897 if (!(entry->flags & XFS_ATTR_LOCAL))
898 return 0;
899 name_loc = xfs_attr3_leaf_name_local(leaf, i);
900 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
901 return 0;
902 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
903 return 0;
904 bytes += sizeof(struct xfs_attr_sf_entry) - 1
905 + name_loc->namelen
906 + be16_to_cpu(name_loc->valuelen);
907 }
908 if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) &&
909 (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
910 (bytes == sizeof(struct xfs_attr_sf_hdr)))
911 return -1;
912 return xfs_attr_shortform_bytesfit(dp, bytes);
913 }
914
915 /* Verify the consistency of an inline attribute fork. */
916 xfs_failaddr_t
xfs_attr_shortform_verify(struct xfs_inode * ip)917 xfs_attr_shortform_verify(
918 struct xfs_inode *ip)
919 {
920 struct xfs_attr_shortform *sfp;
921 struct xfs_attr_sf_entry *sfep;
922 struct xfs_attr_sf_entry *next_sfep;
923 char *endp;
924 struct xfs_ifork *ifp;
925 int i;
926 int64_t size;
927
928 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_LOCAL);
929 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
930 sfp = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
931 size = ifp->if_bytes;
932
933 /*
934 * Give up if the attribute is way too short.
935 */
936 if (size < sizeof(struct xfs_attr_sf_hdr))
937 return __this_address;
938
939 endp = (char *)sfp + size;
940
941 /* Check all reported entries */
942 sfep = &sfp->list[0];
943 for (i = 0; i < sfp->hdr.count; i++) {
944 /*
945 * struct xfs_attr_sf_entry has a variable length.
946 * Check the fixed-offset parts of the structure are
947 * within the data buffer.
948 * xfs_attr_sf_entry is defined with a 1-byte variable
949 * array at the end, so we must subtract that off.
950 */
951 if (((char *)sfep + sizeof(*sfep) - 1) >= endp)
952 return __this_address;
953
954 /* Don't allow names with known bad length. */
955 if (sfep->namelen == 0)
956 return __this_address;
957
958 /*
959 * Check that the variable-length part of the structure is
960 * within the data buffer. The next entry starts after the
961 * name component, so nextentry is an acceptable test.
962 */
963 next_sfep = XFS_ATTR_SF_NEXTENTRY(sfep);
964 if ((char *)next_sfep > endp)
965 return __this_address;
966
967 /*
968 * Check for unknown flags. Short form doesn't support
969 * the incomplete or local bits, so we can use the namespace
970 * mask here.
971 */
972 if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK)
973 return __this_address;
974
975 /*
976 * Check for invalid namespace combinations. We only allow
977 * one namespace flag per xattr, so we can just count the
978 * bits (i.e. hweight) here.
979 */
980 if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1)
981 return __this_address;
982
983 sfep = next_sfep;
984 }
985 if ((void *)sfep != (void *)endp)
986 return __this_address;
987
988 return NULL;
989 }
990
991 /*
992 * Convert a leaf attribute list to shortform attribute list
993 */
994 int
xfs_attr3_leaf_to_shortform(struct xfs_buf * bp,struct xfs_da_args * args,int forkoff)995 xfs_attr3_leaf_to_shortform(
996 struct xfs_buf *bp,
997 struct xfs_da_args *args,
998 int forkoff)
999 {
1000 struct xfs_attr_leafblock *leaf;
1001 struct xfs_attr3_icleaf_hdr ichdr;
1002 struct xfs_attr_leaf_entry *entry;
1003 struct xfs_attr_leaf_name_local *name_loc;
1004 struct xfs_da_args nargs;
1005 struct xfs_inode *dp = args->dp;
1006 char *tmpbuffer;
1007 int error;
1008 int i;
1009
1010 trace_xfs_attr_leaf_to_sf(args);
1011
1012 tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1013 if (!tmpbuffer)
1014 return -ENOMEM;
1015
1016 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1017
1018 leaf = (xfs_attr_leafblock_t *)tmpbuffer;
1019 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1020 entry = xfs_attr3_leaf_entryp(leaf);
1021
1022 /* XXX (dgc): buffer is about to be marked stale - why zero it? */
1023 memset(bp->b_addr, 0, args->geo->blksize);
1024
1025 /*
1026 * Clean out the prior contents of the attribute list.
1027 */
1028 error = xfs_da_shrink_inode(args, 0, bp);
1029 if (error)
1030 goto out;
1031
1032 if (forkoff == -1) {
1033 ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2);
1034 ASSERT(dp->i_d.di_format != XFS_DINODE_FMT_BTREE);
1035 xfs_attr_fork_remove(dp, args->trans);
1036 goto out;
1037 }
1038
1039 xfs_attr_shortform_create(args);
1040
1041 /*
1042 * Copy the attributes
1043 */
1044 memset((char *)&nargs, 0, sizeof(nargs));
1045 nargs.geo = args->geo;
1046 nargs.dp = dp;
1047 nargs.total = args->total;
1048 nargs.whichfork = XFS_ATTR_FORK;
1049 nargs.trans = args->trans;
1050 nargs.op_flags = XFS_DA_OP_OKNOENT;
1051
1052 for (i = 0; i < ichdr.count; entry++, i++) {
1053 if (entry->flags & XFS_ATTR_INCOMPLETE)
1054 continue; /* don't copy partial entries */
1055 if (!entry->nameidx)
1056 continue;
1057 ASSERT(entry->flags & XFS_ATTR_LOCAL);
1058 name_loc = xfs_attr3_leaf_name_local(leaf, i);
1059 nargs.name = name_loc->nameval;
1060 nargs.namelen = name_loc->namelen;
1061 nargs.value = &name_loc->nameval[nargs.namelen];
1062 nargs.valuelen = be16_to_cpu(name_loc->valuelen);
1063 nargs.hashval = be32_to_cpu(entry->hashval);
1064 nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(entry->flags);
1065 xfs_attr_shortform_add(&nargs, forkoff);
1066 }
1067 error = 0;
1068
1069 out:
1070 kmem_free(tmpbuffer);
1071 return error;
1072 }
1073
1074 /*
1075 * Convert from using a single leaf to a root node and a leaf.
1076 */
1077 int
xfs_attr3_leaf_to_node(struct xfs_da_args * args)1078 xfs_attr3_leaf_to_node(
1079 struct xfs_da_args *args)
1080 {
1081 struct xfs_attr_leafblock *leaf;
1082 struct xfs_attr3_icleaf_hdr icleafhdr;
1083 struct xfs_attr_leaf_entry *entries;
1084 struct xfs_da_node_entry *btree;
1085 struct xfs_da3_icnode_hdr icnodehdr;
1086 struct xfs_da_intnode *node;
1087 struct xfs_inode *dp = args->dp;
1088 struct xfs_mount *mp = dp->i_mount;
1089 struct xfs_buf *bp1 = NULL;
1090 struct xfs_buf *bp2 = NULL;
1091 xfs_dablk_t blkno;
1092 int error;
1093
1094 trace_xfs_attr_leaf_to_node(args);
1095
1096 error = xfs_da_grow_inode(args, &blkno);
1097 if (error)
1098 goto out;
1099 error = xfs_attr3_leaf_read(args->trans, dp, 0, -1, &bp1);
1100 if (error)
1101 goto out;
1102
1103 error = xfs_da_get_buf(args->trans, dp, blkno, -1, &bp2, XFS_ATTR_FORK);
1104 if (error)
1105 goto out;
1106
1107 /* copy leaf to new buffer, update identifiers */
1108 xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF);
1109 bp2->b_ops = bp1->b_ops;
1110 memcpy(bp2->b_addr, bp1->b_addr, args->geo->blksize);
1111 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1112 struct xfs_da3_blkinfo *hdr3 = bp2->b_addr;
1113 hdr3->blkno = cpu_to_be64(bp2->b_bn);
1114 }
1115 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1);
1116
1117 /*
1118 * Set up the new root node.
1119 */
1120 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
1121 if (error)
1122 goto out;
1123 node = bp1->b_addr;
1124 dp->d_ops->node_hdr_from_disk(&icnodehdr, node);
1125 btree = dp->d_ops->node_tree_p(node);
1126
1127 leaf = bp2->b_addr;
1128 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf);
1129 entries = xfs_attr3_leaf_entryp(leaf);
1130
1131 /* both on-disk, don't endian-flip twice */
1132 btree[0].hashval = entries[icleafhdr.count - 1].hashval;
1133 btree[0].before = cpu_to_be32(blkno);
1134 icnodehdr.count = 1;
1135 dp->d_ops->node_hdr_to_disk(node, &icnodehdr);
1136 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1);
1137 error = 0;
1138 out:
1139 return error;
1140 }
1141
1142 /*========================================================================
1143 * Routines used for growing the Btree.
1144 *========================================================================*/
1145
1146 /*
1147 * Create the initial contents of a leaf attribute list
1148 * or a leaf in a node attribute list.
1149 */
1150 STATIC int
xfs_attr3_leaf_create(struct xfs_da_args * args,xfs_dablk_t blkno,struct xfs_buf ** bpp)1151 xfs_attr3_leaf_create(
1152 struct xfs_da_args *args,
1153 xfs_dablk_t blkno,
1154 struct xfs_buf **bpp)
1155 {
1156 struct xfs_attr_leafblock *leaf;
1157 struct xfs_attr3_icleaf_hdr ichdr;
1158 struct xfs_inode *dp = args->dp;
1159 struct xfs_mount *mp = dp->i_mount;
1160 struct xfs_buf *bp;
1161 int error;
1162
1163 trace_xfs_attr_leaf_create(args);
1164
1165 error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp,
1166 XFS_ATTR_FORK);
1167 if (error)
1168 return error;
1169 bp->b_ops = &xfs_attr3_leaf_buf_ops;
1170 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
1171 leaf = bp->b_addr;
1172 memset(leaf, 0, args->geo->blksize);
1173
1174 memset(&ichdr, 0, sizeof(ichdr));
1175 ichdr.firstused = args->geo->blksize;
1176
1177 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1178 struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
1179
1180 ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
1181
1182 hdr3->blkno = cpu_to_be64(bp->b_bn);
1183 hdr3->owner = cpu_to_be64(dp->i_ino);
1184 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid);
1185
1186 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
1187 } else {
1188 ichdr.magic = XFS_ATTR_LEAF_MAGIC;
1189 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
1190 }
1191 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
1192
1193 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1194 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1);
1195
1196 *bpp = bp;
1197 return 0;
1198 }
1199
1200 /*
1201 * Split the leaf node, rebalance, then add the new entry.
1202 */
1203 int
xfs_attr3_leaf_split(struct xfs_da_state * state,struct xfs_da_state_blk * oldblk,struct xfs_da_state_blk * newblk)1204 xfs_attr3_leaf_split(
1205 struct xfs_da_state *state,
1206 struct xfs_da_state_blk *oldblk,
1207 struct xfs_da_state_blk *newblk)
1208 {
1209 xfs_dablk_t blkno;
1210 int error;
1211
1212 trace_xfs_attr_leaf_split(state->args);
1213
1214 /*
1215 * Allocate space for a new leaf node.
1216 */
1217 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
1218 error = xfs_da_grow_inode(state->args, &blkno);
1219 if (error)
1220 return error;
1221 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
1222 if (error)
1223 return error;
1224 newblk->blkno = blkno;
1225 newblk->magic = XFS_ATTR_LEAF_MAGIC;
1226
1227 /*
1228 * Rebalance the entries across the two leaves.
1229 * NOTE: rebalance() currently depends on the 2nd block being empty.
1230 */
1231 xfs_attr3_leaf_rebalance(state, oldblk, newblk);
1232 error = xfs_da3_blk_link(state, oldblk, newblk);
1233 if (error)
1234 return error;
1235
1236 /*
1237 * Save info on "old" attribute for "atomic rename" ops, leaf_add()
1238 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
1239 * "new" attrs info. Will need the "old" info to remove it later.
1240 *
1241 * Insert the "new" entry in the correct block.
1242 */
1243 if (state->inleaf) {
1244 trace_xfs_attr_leaf_add_old(state->args);
1245 error = xfs_attr3_leaf_add(oldblk->bp, state->args);
1246 } else {
1247 trace_xfs_attr_leaf_add_new(state->args);
1248 error = xfs_attr3_leaf_add(newblk->bp, state->args);
1249 }
1250
1251 /*
1252 * Update last hashval in each block since we added the name.
1253 */
1254 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
1255 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
1256 return error;
1257 }
1258
1259 /*
1260 * Add a name to the leaf attribute list structure.
1261 */
1262 int
xfs_attr3_leaf_add(struct xfs_buf * bp,struct xfs_da_args * args)1263 xfs_attr3_leaf_add(
1264 struct xfs_buf *bp,
1265 struct xfs_da_args *args)
1266 {
1267 struct xfs_attr_leafblock *leaf;
1268 struct xfs_attr3_icleaf_hdr ichdr;
1269 int tablesize;
1270 int entsize;
1271 int sum;
1272 int tmp;
1273 int i;
1274
1275 trace_xfs_attr_leaf_add(args);
1276
1277 leaf = bp->b_addr;
1278 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1279 ASSERT(args->index >= 0 && args->index <= ichdr.count);
1280 entsize = xfs_attr_leaf_newentsize(args, NULL);
1281
1282 /*
1283 * Search through freemap for first-fit on new name length.
1284 * (may need to figure in size of entry struct too)
1285 */
1286 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
1287 + xfs_attr3_leaf_hdr_size(leaf);
1288 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
1289 if (tablesize > ichdr.firstused) {
1290 sum += ichdr.freemap[i].size;
1291 continue;
1292 }
1293 if (!ichdr.freemap[i].size)
1294 continue; /* no space in this map */
1295 tmp = entsize;
1296 if (ichdr.freemap[i].base < ichdr.firstused)
1297 tmp += sizeof(xfs_attr_leaf_entry_t);
1298 if (ichdr.freemap[i].size >= tmp) {
1299 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
1300 goto out_log_hdr;
1301 }
1302 sum += ichdr.freemap[i].size;
1303 }
1304
1305 /*
1306 * If there are no holes in the address space of the block,
1307 * and we don't have enough freespace, then compaction will do us
1308 * no good and we should just give up.
1309 */
1310 if (!ichdr.holes && sum < entsize)
1311 return -ENOSPC;
1312
1313 /*
1314 * Compact the entries to coalesce free space.
1315 * This may change the hdr->count via dropping INCOMPLETE entries.
1316 */
1317 xfs_attr3_leaf_compact(args, &ichdr, bp);
1318
1319 /*
1320 * After compaction, the block is guaranteed to have only one
1321 * free region, in freemap[0]. If it is not big enough, give up.
1322 */
1323 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
1324 tmp = -ENOSPC;
1325 goto out_log_hdr;
1326 }
1327
1328 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
1329
1330 out_log_hdr:
1331 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1332 xfs_trans_log_buf(args->trans, bp,
1333 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
1334 xfs_attr3_leaf_hdr_size(leaf)));
1335 return tmp;
1336 }
1337
1338 /*
1339 * Add a name to a leaf attribute list structure.
1340 */
1341 STATIC int
xfs_attr3_leaf_add_work(struct xfs_buf * bp,struct xfs_attr3_icleaf_hdr * ichdr,struct xfs_da_args * args,int mapindex)1342 xfs_attr3_leaf_add_work(
1343 struct xfs_buf *bp,
1344 struct xfs_attr3_icleaf_hdr *ichdr,
1345 struct xfs_da_args *args,
1346 int mapindex)
1347 {
1348 struct xfs_attr_leafblock *leaf;
1349 struct xfs_attr_leaf_entry *entry;
1350 struct xfs_attr_leaf_name_local *name_loc;
1351 struct xfs_attr_leaf_name_remote *name_rmt;
1352 struct xfs_mount *mp;
1353 int tmp;
1354 int i;
1355
1356 trace_xfs_attr_leaf_add_work(args);
1357
1358 leaf = bp->b_addr;
1359 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
1360 ASSERT(args->index >= 0 && args->index <= ichdr->count);
1361
1362 /*
1363 * Force open some space in the entry array and fill it in.
1364 */
1365 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
1366 if (args->index < ichdr->count) {
1367 tmp = ichdr->count - args->index;
1368 tmp *= sizeof(xfs_attr_leaf_entry_t);
1369 memmove(entry + 1, entry, tmp);
1370 xfs_trans_log_buf(args->trans, bp,
1371 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
1372 }
1373 ichdr->count++;
1374
1375 /*
1376 * Allocate space for the new string (at the end of the run).
1377 */
1378 mp = args->trans->t_mountp;
1379 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize);
1380 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
1381 ASSERT(ichdr->freemap[mapindex].size >=
1382 xfs_attr_leaf_newentsize(args, NULL));
1383 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize);
1384 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
1385
1386 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp);
1387
1388 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
1389 ichdr->freemap[mapindex].size);
1390 entry->hashval = cpu_to_be32(args->hashval);
1391 entry->flags = tmp ? XFS_ATTR_LOCAL : 0;
1392 entry->flags |= XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
1393 if (args->op_flags & XFS_DA_OP_RENAME) {
1394 entry->flags |= XFS_ATTR_INCOMPLETE;
1395 if ((args->blkno2 == args->blkno) &&
1396 (args->index2 <= args->index)) {
1397 args->index2++;
1398 }
1399 }
1400 xfs_trans_log_buf(args->trans, bp,
1401 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
1402 ASSERT((args->index == 0) ||
1403 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
1404 ASSERT((args->index == ichdr->count - 1) ||
1405 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
1406
1407 /*
1408 * For "remote" attribute values, simply note that we need to
1409 * allocate space for the "remote" value. We can't actually
1410 * allocate the extents in this transaction, and we can't decide
1411 * which blocks they should be as we might allocate more blocks
1412 * as part of this transaction (a split operation for example).
1413 */
1414 if (entry->flags & XFS_ATTR_LOCAL) {
1415 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
1416 name_loc->namelen = args->namelen;
1417 name_loc->valuelen = cpu_to_be16(args->valuelen);
1418 memcpy((char *)name_loc->nameval, args->name, args->namelen);
1419 memcpy((char *)&name_loc->nameval[args->namelen], args->value,
1420 be16_to_cpu(name_loc->valuelen));
1421 } else {
1422 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
1423 name_rmt->namelen = args->namelen;
1424 memcpy((char *)name_rmt->name, args->name, args->namelen);
1425 entry->flags |= XFS_ATTR_INCOMPLETE;
1426 /* just in case */
1427 name_rmt->valuelen = 0;
1428 name_rmt->valueblk = 0;
1429 args->rmtblkno = 1;
1430 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen);
1431 args->rmtvaluelen = args->valuelen;
1432 }
1433 xfs_trans_log_buf(args->trans, bp,
1434 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
1435 xfs_attr_leaf_entsize(leaf, args->index)));
1436
1437 /*
1438 * Update the control info for this leaf node
1439 */
1440 if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
1441 ichdr->firstused = be16_to_cpu(entry->nameidx);
1442
1443 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
1444 + xfs_attr3_leaf_hdr_size(leaf));
1445 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
1446 + xfs_attr3_leaf_hdr_size(leaf);
1447
1448 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
1449 if (ichdr->freemap[i].base == tmp) {
1450 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
1451 ichdr->freemap[i].size -=
1452 min_t(uint16_t, ichdr->freemap[i].size,
1453 sizeof(xfs_attr_leaf_entry_t));
1454 }
1455 }
1456 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
1457 return 0;
1458 }
1459
1460 /*
1461 * Garbage collect a leaf attribute list block by copying it to a new buffer.
1462 */
1463 STATIC void
xfs_attr3_leaf_compact(struct xfs_da_args * args,struct xfs_attr3_icleaf_hdr * ichdr_dst,struct xfs_buf * bp)1464 xfs_attr3_leaf_compact(
1465 struct xfs_da_args *args,
1466 struct xfs_attr3_icleaf_hdr *ichdr_dst,
1467 struct xfs_buf *bp)
1468 {
1469 struct xfs_attr_leafblock *leaf_src;
1470 struct xfs_attr_leafblock *leaf_dst;
1471 struct xfs_attr3_icleaf_hdr ichdr_src;
1472 struct xfs_trans *trans = args->trans;
1473 char *tmpbuffer;
1474
1475 trace_xfs_attr_leaf_compact(args);
1476
1477 tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1478 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1479 memset(bp->b_addr, 0, args->geo->blksize);
1480 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer;
1481 leaf_dst = bp->b_addr;
1482
1483 /*
1484 * Copy the on-disk header back into the destination buffer to ensure
1485 * all the information in the header that is not part of the incore
1486 * header structure is preserved.
1487 */
1488 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src));
1489
1490 /* Initialise the incore headers */
1491 ichdr_src = *ichdr_dst; /* struct copy */
1492 ichdr_dst->firstused = args->geo->blksize;
1493 ichdr_dst->usedbytes = 0;
1494 ichdr_dst->count = 0;
1495 ichdr_dst->holes = 0;
1496 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src);
1497 ichdr_dst->freemap[0].size = ichdr_dst->firstused -
1498 ichdr_dst->freemap[0].base;
1499
1500 /* write the header back to initialise the underlying buffer */
1501 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst);
1502
1503 /*
1504 * Copy all entry's in the same (sorted) order,
1505 * but allocate name/value pairs packed and in sequence.
1506 */
1507 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0,
1508 leaf_dst, ichdr_dst, 0, ichdr_src.count);
1509 /*
1510 * this logs the entire buffer, but the caller must write the header
1511 * back to the buffer when it is finished modifying it.
1512 */
1513 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1);
1514
1515 kmem_free(tmpbuffer);
1516 }
1517
1518 /*
1519 * Compare two leaf blocks "order".
1520 * Return 0 unless leaf2 should go before leaf1.
1521 */
1522 static int
xfs_attr3_leaf_order(struct xfs_buf * leaf1_bp,struct xfs_attr3_icleaf_hdr * leaf1hdr,struct xfs_buf * leaf2_bp,struct xfs_attr3_icleaf_hdr * leaf2hdr)1523 xfs_attr3_leaf_order(
1524 struct xfs_buf *leaf1_bp,
1525 struct xfs_attr3_icleaf_hdr *leaf1hdr,
1526 struct xfs_buf *leaf2_bp,
1527 struct xfs_attr3_icleaf_hdr *leaf2hdr)
1528 {
1529 struct xfs_attr_leaf_entry *entries1;
1530 struct xfs_attr_leaf_entry *entries2;
1531
1532 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
1533 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
1534 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
1535 ((be32_to_cpu(entries2[0].hashval) <
1536 be32_to_cpu(entries1[0].hashval)) ||
1537 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
1538 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
1539 return 1;
1540 }
1541 return 0;
1542 }
1543
1544 int
xfs_attr_leaf_order(struct xfs_buf * leaf1_bp,struct xfs_buf * leaf2_bp)1545 xfs_attr_leaf_order(
1546 struct xfs_buf *leaf1_bp,
1547 struct xfs_buf *leaf2_bp)
1548 {
1549 struct xfs_attr3_icleaf_hdr ichdr1;
1550 struct xfs_attr3_icleaf_hdr ichdr2;
1551 struct xfs_mount *mp = leaf1_bp->b_mount;
1552
1553 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr);
1554 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr);
1555 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
1556 }
1557
1558 /*
1559 * Redistribute the attribute list entries between two leaf nodes,
1560 * taking into account the size of the new entry.
1561 *
1562 * NOTE: if new block is empty, then it will get the upper half of the
1563 * old block. At present, all (one) callers pass in an empty second block.
1564 *
1565 * This code adjusts the args->index/blkno and args->index2/blkno2 fields
1566 * to match what it is doing in splitting the attribute leaf block. Those
1567 * values are used in "atomic rename" operations on attributes. Note that
1568 * the "new" and "old" values can end up in different blocks.
1569 */
1570 STATIC void
xfs_attr3_leaf_rebalance(struct xfs_da_state * state,struct xfs_da_state_blk * blk1,struct xfs_da_state_blk * blk2)1571 xfs_attr3_leaf_rebalance(
1572 struct xfs_da_state *state,
1573 struct xfs_da_state_blk *blk1,
1574 struct xfs_da_state_blk *blk2)
1575 {
1576 struct xfs_da_args *args;
1577 struct xfs_attr_leafblock *leaf1;
1578 struct xfs_attr_leafblock *leaf2;
1579 struct xfs_attr3_icleaf_hdr ichdr1;
1580 struct xfs_attr3_icleaf_hdr ichdr2;
1581 struct xfs_attr_leaf_entry *entries1;
1582 struct xfs_attr_leaf_entry *entries2;
1583 int count;
1584 int totallen;
1585 int max;
1586 int space;
1587 int swap;
1588
1589 /*
1590 * Set up environment.
1591 */
1592 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
1593 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
1594 leaf1 = blk1->bp->b_addr;
1595 leaf2 = blk2->bp->b_addr;
1596 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1);
1597 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2);
1598 ASSERT(ichdr2.count == 0);
1599 args = state->args;
1600
1601 trace_xfs_attr_leaf_rebalance(args);
1602
1603 /*
1604 * Check ordering of blocks, reverse if it makes things simpler.
1605 *
1606 * NOTE: Given that all (current) callers pass in an empty
1607 * second block, this code should never set "swap".
1608 */
1609 swap = 0;
1610 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
1611 swap(blk1, blk2);
1612
1613 /* swap structures rather than reconverting them */
1614 swap(ichdr1, ichdr2);
1615
1616 leaf1 = blk1->bp->b_addr;
1617 leaf2 = blk2->bp->b_addr;
1618 swap = 1;
1619 }
1620
1621 /*
1622 * Examine entries until we reduce the absolute difference in
1623 * byte usage between the two blocks to a minimum. Then get
1624 * the direction to copy and the number of elements to move.
1625 *
1626 * "inleaf" is true if the new entry should be inserted into blk1.
1627 * If "swap" is also true, then reverse the sense of "inleaf".
1628 */
1629 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
1630 blk2, &ichdr2,
1631 &count, &totallen);
1632 if (swap)
1633 state->inleaf = !state->inleaf;
1634
1635 /*
1636 * Move any entries required from leaf to leaf:
1637 */
1638 if (count < ichdr1.count) {
1639 /*
1640 * Figure the total bytes to be added to the destination leaf.
1641 */
1642 /* number entries being moved */
1643 count = ichdr1.count - count;
1644 space = ichdr1.usedbytes - totallen;
1645 space += count * sizeof(xfs_attr_leaf_entry_t);
1646
1647 /*
1648 * leaf2 is the destination, compact it if it looks tight.
1649 */
1650 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1651 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
1652 if (space > max)
1653 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
1654
1655 /*
1656 * Move high entries from leaf1 to low end of leaf2.
1657 */
1658 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1,
1659 ichdr1.count - count, leaf2, &ichdr2, 0, count);
1660
1661 } else if (count > ichdr1.count) {
1662 /*
1663 * I assert that since all callers pass in an empty
1664 * second buffer, this code should never execute.
1665 */
1666 ASSERT(0);
1667
1668 /*
1669 * Figure the total bytes to be added to the destination leaf.
1670 */
1671 /* number entries being moved */
1672 count -= ichdr1.count;
1673 space = totallen - ichdr1.usedbytes;
1674 space += count * sizeof(xfs_attr_leaf_entry_t);
1675
1676 /*
1677 * leaf1 is the destination, compact it if it looks tight.
1678 */
1679 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1680 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
1681 if (space > max)
1682 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
1683
1684 /*
1685 * Move low entries from leaf2 to high end of leaf1.
1686 */
1687 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1,
1688 ichdr1.count, count);
1689 }
1690
1691 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1);
1692 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2);
1693 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1);
1694 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1);
1695
1696 /*
1697 * Copy out last hashval in each block for B-tree code.
1698 */
1699 entries1 = xfs_attr3_leaf_entryp(leaf1);
1700 entries2 = xfs_attr3_leaf_entryp(leaf2);
1701 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
1702 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
1703
1704 /*
1705 * Adjust the expected index for insertion.
1706 * NOTE: this code depends on the (current) situation that the
1707 * second block was originally empty.
1708 *
1709 * If the insertion point moved to the 2nd block, we must adjust
1710 * the index. We must also track the entry just following the
1711 * new entry for use in an "atomic rename" operation, that entry
1712 * is always the "old" entry and the "new" entry is what we are
1713 * inserting. The index/blkno fields refer to the "old" entry,
1714 * while the index2/blkno2 fields refer to the "new" entry.
1715 */
1716 if (blk1->index > ichdr1.count) {
1717 ASSERT(state->inleaf == 0);
1718 blk2->index = blk1->index - ichdr1.count;
1719 args->index = args->index2 = blk2->index;
1720 args->blkno = args->blkno2 = blk2->blkno;
1721 } else if (blk1->index == ichdr1.count) {
1722 if (state->inleaf) {
1723 args->index = blk1->index;
1724 args->blkno = blk1->blkno;
1725 args->index2 = 0;
1726 args->blkno2 = blk2->blkno;
1727 } else {
1728 /*
1729 * On a double leaf split, the original attr location
1730 * is already stored in blkno2/index2, so don't
1731 * overwrite it overwise we corrupt the tree.
1732 */
1733 blk2->index = blk1->index - ichdr1.count;
1734 args->index = blk2->index;
1735 args->blkno = blk2->blkno;
1736 if (!state->extravalid) {
1737 /*
1738 * set the new attr location to match the old
1739 * one and let the higher level split code
1740 * decide where in the leaf to place it.
1741 */
1742 args->index2 = blk2->index;
1743 args->blkno2 = blk2->blkno;
1744 }
1745 }
1746 } else {
1747 ASSERT(state->inleaf == 1);
1748 args->index = args->index2 = blk1->index;
1749 args->blkno = args->blkno2 = blk1->blkno;
1750 }
1751 }
1752
1753 /*
1754 * Examine entries until we reduce the absolute difference in
1755 * byte usage between the two blocks to a minimum.
1756 * GROT: Is this really necessary? With other than a 512 byte blocksize,
1757 * GROT: there will always be enough room in either block for a new entry.
1758 * GROT: Do a double-split for this case?
1759 */
1760 STATIC int
xfs_attr3_leaf_figure_balance(struct xfs_da_state * state,struct xfs_da_state_blk * blk1,struct xfs_attr3_icleaf_hdr * ichdr1,struct xfs_da_state_blk * blk2,struct xfs_attr3_icleaf_hdr * ichdr2,int * countarg,int * usedbytesarg)1761 xfs_attr3_leaf_figure_balance(
1762 struct xfs_da_state *state,
1763 struct xfs_da_state_blk *blk1,
1764 struct xfs_attr3_icleaf_hdr *ichdr1,
1765 struct xfs_da_state_blk *blk2,
1766 struct xfs_attr3_icleaf_hdr *ichdr2,
1767 int *countarg,
1768 int *usedbytesarg)
1769 {
1770 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr;
1771 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr;
1772 struct xfs_attr_leaf_entry *entry;
1773 int count;
1774 int max;
1775 int index;
1776 int totallen = 0;
1777 int half;
1778 int lastdelta;
1779 int foundit = 0;
1780 int tmp;
1781
1782 /*
1783 * Examine entries until we reduce the absolute difference in
1784 * byte usage between the two blocks to a minimum.
1785 */
1786 max = ichdr1->count + ichdr2->count;
1787 half = (max + 1) * sizeof(*entry);
1788 half += ichdr1->usedbytes + ichdr2->usedbytes +
1789 xfs_attr_leaf_newentsize(state->args, NULL);
1790 half /= 2;
1791 lastdelta = state->args->geo->blksize;
1792 entry = xfs_attr3_leaf_entryp(leaf1);
1793 for (count = index = 0; count < max; entry++, index++, count++) {
1794
1795 #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
1796 /*
1797 * The new entry is in the first block, account for it.
1798 */
1799 if (count == blk1->index) {
1800 tmp = totallen + sizeof(*entry) +
1801 xfs_attr_leaf_newentsize(state->args, NULL);
1802 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1803 break;
1804 lastdelta = XFS_ATTR_ABS(half - tmp);
1805 totallen = tmp;
1806 foundit = 1;
1807 }
1808
1809 /*
1810 * Wrap around into the second block if necessary.
1811 */
1812 if (count == ichdr1->count) {
1813 leaf1 = leaf2;
1814 entry = xfs_attr3_leaf_entryp(leaf1);
1815 index = 0;
1816 }
1817
1818 /*
1819 * Figure out if next leaf entry would be too much.
1820 */
1821 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
1822 index);
1823 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1824 break;
1825 lastdelta = XFS_ATTR_ABS(half - tmp);
1826 totallen = tmp;
1827 #undef XFS_ATTR_ABS
1828 }
1829
1830 /*
1831 * Calculate the number of usedbytes that will end up in lower block.
1832 * If new entry not in lower block, fix up the count.
1833 */
1834 totallen -= count * sizeof(*entry);
1835 if (foundit) {
1836 totallen -= sizeof(*entry) +
1837 xfs_attr_leaf_newentsize(state->args, NULL);
1838 }
1839
1840 *countarg = count;
1841 *usedbytesarg = totallen;
1842 return foundit;
1843 }
1844
1845 /*========================================================================
1846 * Routines used for shrinking the Btree.
1847 *========================================================================*/
1848
1849 /*
1850 * Check a leaf block and its neighbors to see if the block should be
1851 * collapsed into one or the other neighbor. Always keep the block
1852 * with the smaller block number.
1853 * If the current block is over 50% full, don't try to join it, return 0.
1854 * If the block is empty, fill in the state structure and return 2.
1855 * If it can be collapsed, fill in the state structure and return 1.
1856 * If nothing can be done, return 0.
1857 *
1858 * GROT: allow for INCOMPLETE entries in calculation.
1859 */
1860 int
xfs_attr3_leaf_toosmall(struct xfs_da_state * state,int * action)1861 xfs_attr3_leaf_toosmall(
1862 struct xfs_da_state *state,
1863 int *action)
1864 {
1865 struct xfs_attr_leafblock *leaf;
1866 struct xfs_da_state_blk *blk;
1867 struct xfs_attr3_icleaf_hdr ichdr;
1868 struct xfs_buf *bp;
1869 xfs_dablk_t blkno;
1870 int bytes;
1871 int forward;
1872 int error;
1873 int retval;
1874 int i;
1875
1876 trace_xfs_attr_leaf_toosmall(state->args);
1877
1878 /*
1879 * Check for the degenerate case of the block being over 50% full.
1880 * If so, it's not worth even looking to see if we might be able
1881 * to coalesce with a sibling.
1882 */
1883 blk = &state->path.blk[ state->path.active-1 ];
1884 leaf = blk->bp->b_addr;
1885 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf);
1886 bytes = xfs_attr3_leaf_hdr_size(leaf) +
1887 ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
1888 ichdr.usedbytes;
1889 if (bytes > (state->args->geo->blksize >> 1)) {
1890 *action = 0; /* blk over 50%, don't try to join */
1891 return 0;
1892 }
1893
1894 /*
1895 * Check for the degenerate case of the block being empty.
1896 * If the block is empty, we'll simply delete it, no need to
1897 * coalesce it with a sibling block. We choose (arbitrarily)
1898 * to merge with the forward block unless it is NULL.
1899 */
1900 if (ichdr.count == 0) {
1901 /*
1902 * Make altpath point to the block we want to keep and
1903 * path point to the block we want to drop (this one).
1904 */
1905 forward = (ichdr.forw != 0);
1906 memcpy(&state->altpath, &state->path, sizeof(state->path));
1907 error = xfs_da3_path_shift(state, &state->altpath, forward,
1908 0, &retval);
1909 if (error)
1910 return error;
1911 if (retval) {
1912 *action = 0;
1913 } else {
1914 *action = 2;
1915 }
1916 return 0;
1917 }
1918
1919 /*
1920 * Examine each sibling block to see if we can coalesce with
1921 * at least 25% free space to spare. We need to figure out
1922 * whether to merge with the forward or the backward block.
1923 * We prefer coalescing with the lower numbered sibling so as
1924 * to shrink an attribute list over time.
1925 */
1926 /* start with smaller blk num */
1927 forward = ichdr.forw < ichdr.back;
1928 for (i = 0; i < 2; forward = !forward, i++) {
1929 struct xfs_attr3_icleaf_hdr ichdr2;
1930 if (forward)
1931 blkno = ichdr.forw;
1932 else
1933 blkno = ichdr.back;
1934 if (blkno == 0)
1935 continue;
1936 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
1937 blkno, -1, &bp);
1938 if (error)
1939 return error;
1940
1941 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr);
1942
1943 bytes = state->args->geo->blksize -
1944 (state->args->geo->blksize >> 2) -
1945 ichdr.usedbytes - ichdr2.usedbytes -
1946 ((ichdr.count + ichdr2.count) *
1947 sizeof(xfs_attr_leaf_entry_t)) -
1948 xfs_attr3_leaf_hdr_size(leaf);
1949
1950 xfs_trans_brelse(state->args->trans, bp);
1951 if (bytes >= 0)
1952 break; /* fits with at least 25% to spare */
1953 }
1954 if (i >= 2) {
1955 *action = 0;
1956 return 0;
1957 }
1958
1959 /*
1960 * Make altpath point to the block we want to keep (the lower
1961 * numbered block) and path point to the block we want to drop.
1962 */
1963 memcpy(&state->altpath, &state->path, sizeof(state->path));
1964 if (blkno < blk->blkno) {
1965 error = xfs_da3_path_shift(state, &state->altpath, forward,
1966 0, &retval);
1967 } else {
1968 error = xfs_da3_path_shift(state, &state->path, forward,
1969 0, &retval);
1970 }
1971 if (error)
1972 return error;
1973 if (retval) {
1974 *action = 0;
1975 } else {
1976 *action = 1;
1977 }
1978 return 0;
1979 }
1980
1981 /*
1982 * Remove a name from the leaf attribute list structure.
1983 *
1984 * Return 1 if leaf is less than 37% full, 0 if >= 37% full.
1985 * If two leaves are 37% full, when combined they will leave 25% free.
1986 */
1987 int
xfs_attr3_leaf_remove(struct xfs_buf * bp,struct xfs_da_args * args)1988 xfs_attr3_leaf_remove(
1989 struct xfs_buf *bp,
1990 struct xfs_da_args *args)
1991 {
1992 struct xfs_attr_leafblock *leaf;
1993 struct xfs_attr3_icleaf_hdr ichdr;
1994 struct xfs_attr_leaf_entry *entry;
1995 int before;
1996 int after;
1997 int smallest;
1998 int entsize;
1999 int tablesize;
2000 int tmp;
2001 int i;
2002
2003 trace_xfs_attr_leaf_remove(args);
2004
2005 leaf = bp->b_addr;
2006 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2007
2008 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8);
2009 ASSERT(args->index >= 0 && args->index < ichdr.count);
2010 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
2011 xfs_attr3_leaf_hdr_size(leaf));
2012
2013 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2014
2015 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2016 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2017
2018 /*
2019 * Scan through free region table:
2020 * check for adjacency of free'd entry with an existing one,
2021 * find smallest free region in case we need to replace it,
2022 * adjust any map that borders the entry table,
2023 */
2024 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
2025 + xfs_attr3_leaf_hdr_size(leaf);
2026 tmp = ichdr.freemap[0].size;
2027 before = after = -1;
2028 smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
2029 entsize = xfs_attr_leaf_entsize(leaf, args->index);
2030 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
2031 ASSERT(ichdr.freemap[i].base < args->geo->blksize);
2032 ASSERT(ichdr.freemap[i].size < args->geo->blksize);
2033 if (ichdr.freemap[i].base == tablesize) {
2034 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
2035 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
2036 }
2037
2038 if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
2039 be16_to_cpu(entry->nameidx)) {
2040 before = i;
2041 } else if (ichdr.freemap[i].base ==
2042 (be16_to_cpu(entry->nameidx) + entsize)) {
2043 after = i;
2044 } else if (ichdr.freemap[i].size < tmp) {
2045 tmp = ichdr.freemap[i].size;
2046 smallest = i;
2047 }
2048 }
2049
2050 /*
2051 * Coalesce adjacent freemap regions,
2052 * or replace the smallest region.
2053 */
2054 if ((before >= 0) || (after >= 0)) {
2055 if ((before >= 0) && (after >= 0)) {
2056 ichdr.freemap[before].size += entsize;
2057 ichdr.freemap[before].size += ichdr.freemap[after].size;
2058 ichdr.freemap[after].base = 0;
2059 ichdr.freemap[after].size = 0;
2060 } else if (before >= 0) {
2061 ichdr.freemap[before].size += entsize;
2062 } else {
2063 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
2064 ichdr.freemap[after].size += entsize;
2065 }
2066 } else {
2067 /*
2068 * Replace smallest region (if it is smaller than free'd entry)
2069 */
2070 if (ichdr.freemap[smallest].size < entsize) {
2071 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
2072 ichdr.freemap[smallest].size = entsize;
2073 }
2074 }
2075
2076 /*
2077 * Did we remove the first entry?
2078 */
2079 if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
2080 smallest = 1;
2081 else
2082 smallest = 0;
2083
2084 /*
2085 * Compress the remaining entries and zero out the removed stuff.
2086 */
2087 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
2088 ichdr.usedbytes -= entsize;
2089 xfs_trans_log_buf(args->trans, bp,
2090 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
2091 entsize));
2092
2093 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
2094 memmove(entry, entry + 1, tmp);
2095 ichdr.count--;
2096 xfs_trans_log_buf(args->trans, bp,
2097 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
2098
2099 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
2100 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
2101
2102 /*
2103 * If we removed the first entry, re-find the first used byte
2104 * in the name area. Note that if the entry was the "firstused",
2105 * then we don't have a "hole" in our block resulting from
2106 * removing the name.
2107 */
2108 if (smallest) {
2109 tmp = args->geo->blksize;
2110 entry = xfs_attr3_leaf_entryp(leaf);
2111 for (i = ichdr.count - 1; i >= 0; entry++, i--) {
2112 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2113 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2114
2115 if (be16_to_cpu(entry->nameidx) < tmp)
2116 tmp = be16_to_cpu(entry->nameidx);
2117 }
2118 ichdr.firstused = tmp;
2119 ASSERT(ichdr.firstused != 0);
2120 } else {
2121 ichdr.holes = 1; /* mark as needing compaction */
2122 }
2123 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
2124 xfs_trans_log_buf(args->trans, bp,
2125 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
2126 xfs_attr3_leaf_hdr_size(leaf)));
2127
2128 /*
2129 * Check if leaf is less than 50% full, caller may want to
2130 * "join" the leaf with a sibling if so.
2131 */
2132 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
2133 ichdr.count * sizeof(xfs_attr_leaf_entry_t);
2134
2135 return tmp < args->geo->magicpct; /* leaf is < 37% full */
2136 }
2137
2138 /*
2139 * Move all the attribute list entries from drop_leaf into save_leaf.
2140 */
2141 void
xfs_attr3_leaf_unbalance(struct xfs_da_state * state,struct xfs_da_state_blk * drop_blk,struct xfs_da_state_blk * save_blk)2142 xfs_attr3_leaf_unbalance(
2143 struct xfs_da_state *state,
2144 struct xfs_da_state_blk *drop_blk,
2145 struct xfs_da_state_blk *save_blk)
2146 {
2147 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
2148 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
2149 struct xfs_attr3_icleaf_hdr drophdr;
2150 struct xfs_attr3_icleaf_hdr savehdr;
2151 struct xfs_attr_leaf_entry *entry;
2152
2153 trace_xfs_attr_leaf_unbalance(state->args);
2154
2155 drop_leaf = drop_blk->bp->b_addr;
2156 save_leaf = save_blk->bp->b_addr;
2157 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf);
2158 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf);
2159 entry = xfs_attr3_leaf_entryp(drop_leaf);
2160
2161 /*
2162 * Save last hashval from dying block for later Btree fixup.
2163 */
2164 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
2165
2166 /*
2167 * Check if we need a temp buffer, or can we do it in place.
2168 * Note that we don't check "leaf" for holes because we will
2169 * always be dropping it, toosmall() decided that for us already.
2170 */
2171 if (savehdr.holes == 0) {
2172 /*
2173 * dest leaf has no holes, so we add there. May need
2174 * to make some room in the entry array.
2175 */
2176 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2177 drop_blk->bp, &drophdr)) {
2178 xfs_attr3_leaf_moveents(state->args,
2179 drop_leaf, &drophdr, 0,
2180 save_leaf, &savehdr, 0,
2181 drophdr.count);
2182 } else {
2183 xfs_attr3_leaf_moveents(state->args,
2184 drop_leaf, &drophdr, 0,
2185 save_leaf, &savehdr,
2186 savehdr.count, drophdr.count);
2187 }
2188 } else {
2189 /*
2190 * Destination has holes, so we make a temporary copy
2191 * of the leaf and add them both to that.
2192 */
2193 struct xfs_attr_leafblock *tmp_leaf;
2194 struct xfs_attr3_icleaf_hdr tmphdr;
2195
2196 tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0);
2197
2198 /*
2199 * Copy the header into the temp leaf so that all the stuff
2200 * not in the incore header is present and gets copied back in
2201 * once we've moved all the entries.
2202 */
2203 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf));
2204
2205 memset(&tmphdr, 0, sizeof(tmphdr));
2206 tmphdr.magic = savehdr.magic;
2207 tmphdr.forw = savehdr.forw;
2208 tmphdr.back = savehdr.back;
2209 tmphdr.firstused = state->args->geo->blksize;
2210
2211 /* write the header to the temp buffer to initialise it */
2212 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr);
2213
2214 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2215 drop_blk->bp, &drophdr)) {
2216 xfs_attr3_leaf_moveents(state->args,
2217 drop_leaf, &drophdr, 0,
2218 tmp_leaf, &tmphdr, 0,
2219 drophdr.count);
2220 xfs_attr3_leaf_moveents(state->args,
2221 save_leaf, &savehdr, 0,
2222 tmp_leaf, &tmphdr, tmphdr.count,
2223 savehdr.count);
2224 } else {
2225 xfs_attr3_leaf_moveents(state->args,
2226 save_leaf, &savehdr, 0,
2227 tmp_leaf, &tmphdr, 0,
2228 savehdr.count);
2229 xfs_attr3_leaf_moveents(state->args,
2230 drop_leaf, &drophdr, 0,
2231 tmp_leaf, &tmphdr, tmphdr.count,
2232 drophdr.count);
2233 }
2234 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize);
2235 savehdr = tmphdr; /* struct copy */
2236 kmem_free(tmp_leaf);
2237 }
2238
2239 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr);
2240 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
2241 state->args->geo->blksize - 1);
2242
2243 /*
2244 * Copy out last hashval in each block for B-tree code.
2245 */
2246 entry = xfs_attr3_leaf_entryp(save_leaf);
2247 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
2248 }
2249
2250 /*========================================================================
2251 * Routines used for finding things in the Btree.
2252 *========================================================================*/
2253
2254 /*
2255 * Look up a name in a leaf attribute list structure.
2256 * This is the internal routine, it uses the caller's buffer.
2257 *
2258 * Note that duplicate keys are allowed, but only check within the
2259 * current leaf node. The Btree code must check in adjacent leaf nodes.
2260 *
2261 * Return in args->index the index into the entry[] array of either
2262 * the found entry, or where the entry should have been (insert before
2263 * that entry).
2264 *
2265 * Don't change the args->value unless we find the attribute.
2266 */
2267 int
xfs_attr3_leaf_lookup_int(struct xfs_buf * bp,struct xfs_da_args * args)2268 xfs_attr3_leaf_lookup_int(
2269 struct xfs_buf *bp,
2270 struct xfs_da_args *args)
2271 {
2272 struct xfs_attr_leafblock *leaf;
2273 struct xfs_attr3_icleaf_hdr ichdr;
2274 struct xfs_attr_leaf_entry *entry;
2275 struct xfs_attr_leaf_entry *entries;
2276 struct xfs_attr_leaf_name_local *name_loc;
2277 struct xfs_attr_leaf_name_remote *name_rmt;
2278 xfs_dahash_t hashval;
2279 int probe;
2280 int span;
2281
2282 trace_xfs_attr_leaf_lookup(args);
2283
2284 leaf = bp->b_addr;
2285 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2286 entries = xfs_attr3_leaf_entryp(leaf);
2287 if (ichdr.count >= args->geo->blksize / 8) {
2288 xfs_buf_mark_corrupt(bp);
2289 return -EFSCORRUPTED;
2290 }
2291
2292 /*
2293 * Binary search. (note: small blocks will skip this loop)
2294 */
2295 hashval = args->hashval;
2296 probe = span = ichdr.count / 2;
2297 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
2298 span /= 2;
2299 if (be32_to_cpu(entry->hashval) < hashval)
2300 probe += span;
2301 else if (be32_to_cpu(entry->hashval) > hashval)
2302 probe -= span;
2303 else
2304 break;
2305 }
2306 if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) {
2307 xfs_buf_mark_corrupt(bp);
2308 return -EFSCORRUPTED;
2309 }
2310 if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) {
2311 xfs_buf_mark_corrupt(bp);
2312 return -EFSCORRUPTED;
2313 }
2314
2315 /*
2316 * Since we may have duplicate hashval's, find the first matching
2317 * hashval in the leaf.
2318 */
2319 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
2320 entry--;
2321 probe--;
2322 }
2323 while (probe < ichdr.count &&
2324 be32_to_cpu(entry->hashval) < hashval) {
2325 entry++;
2326 probe++;
2327 }
2328 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
2329 args->index = probe;
2330 return -ENOATTR;
2331 }
2332
2333 /*
2334 * Duplicate keys may be present, so search all of them for a match.
2335 */
2336 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
2337 entry++, probe++) {
2338 /*
2339 * GROT: Add code to remove incomplete entries.
2340 */
2341 /*
2342 * If we are looking for INCOMPLETE entries, show only those.
2343 * If we are looking for complete entries, show only those.
2344 */
2345 if (!!(args->op_flags & XFS_DA_OP_INCOMPLETE) !=
2346 !!(entry->flags & XFS_ATTR_INCOMPLETE)) {
2347 continue;
2348 }
2349 if (entry->flags & XFS_ATTR_LOCAL) {
2350 name_loc = xfs_attr3_leaf_name_local(leaf, probe);
2351 if (name_loc->namelen != args->namelen)
2352 continue;
2353 if (memcmp(args->name, name_loc->nameval,
2354 args->namelen) != 0)
2355 continue;
2356 if (!xfs_attr_namesp_match(args->flags, entry->flags))
2357 continue;
2358 args->index = probe;
2359 return -EEXIST;
2360 } else {
2361 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
2362 if (name_rmt->namelen != args->namelen)
2363 continue;
2364 if (memcmp(args->name, name_rmt->name,
2365 args->namelen) != 0)
2366 continue;
2367 if (!xfs_attr_namesp_match(args->flags, entry->flags))
2368 continue;
2369 args->index = probe;
2370 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2371 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2372 args->rmtblkcnt = xfs_attr3_rmt_blocks(
2373 args->dp->i_mount,
2374 args->rmtvaluelen);
2375 return -EEXIST;
2376 }
2377 }
2378 args->index = probe;
2379 return -ENOATTR;
2380 }
2381
2382 /*
2383 * Get the value associated with an attribute name from a leaf attribute
2384 * list structure.
2385 *
2386 * If ATTR_KERNOVAL is specified, only the length needs to be returned.
2387 * Unlike a lookup, we only return an error if the attribute does not
2388 * exist or we can't retrieve the value.
2389 */
2390 int
xfs_attr3_leaf_getvalue(struct xfs_buf * bp,struct xfs_da_args * args)2391 xfs_attr3_leaf_getvalue(
2392 struct xfs_buf *bp,
2393 struct xfs_da_args *args)
2394 {
2395 struct xfs_attr_leafblock *leaf;
2396 struct xfs_attr3_icleaf_hdr ichdr;
2397 struct xfs_attr_leaf_entry *entry;
2398 struct xfs_attr_leaf_name_local *name_loc;
2399 struct xfs_attr_leaf_name_remote *name_rmt;
2400
2401 leaf = bp->b_addr;
2402 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2403 ASSERT(ichdr.count < args->geo->blksize / 8);
2404 ASSERT(args->index < ichdr.count);
2405
2406 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2407 if (entry->flags & XFS_ATTR_LOCAL) {
2408 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2409 ASSERT(name_loc->namelen == args->namelen);
2410 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
2411 return xfs_attr_copy_value(args,
2412 &name_loc->nameval[args->namelen],
2413 be16_to_cpu(name_loc->valuelen));
2414 }
2415
2416 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2417 ASSERT(name_rmt->namelen == args->namelen);
2418 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
2419 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2420 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2421 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount,
2422 args->rmtvaluelen);
2423 return xfs_attr_copy_value(args, NULL, args->rmtvaluelen);
2424 }
2425
2426 /*========================================================================
2427 * Utility routines.
2428 *========================================================================*/
2429
2430 /*
2431 * Move the indicated entries from one leaf to another.
2432 * NOTE: this routine modifies both source and destination leaves.
2433 */
2434 /*ARGSUSED*/
2435 STATIC void
xfs_attr3_leaf_moveents(struct xfs_da_args * args,struct xfs_attr_leafblock * leaf_s,struct xfs_attr3_icleaf_hdr * ichdr_s,int start_s,struct xfs_attr_leafblock * leaf_d,struct xfs_attr3_icleaf_hdr * ichdr_d,int start_d,int count)2436 xfs_attr3_leaf_moveents(
2437 struct xfs_da_args *args,
2438 struct xfs_attr_leafblock *leaf_s,
2439 struct xfs_attr3_icleaf_hdr *ichdr_s,
2440 int start_s,
2441 struct xfs_attr_leafblock *leaf_d,
2442 struct xfs_attr3_icleaf_hdr *ichdr_d,
2443 int start_d,
2444 int count)
2445 {
2446 struct xfs_attr_leaf_entry *entry_s;
2447 struct xfs_attr_leaf_entry *entry_d;
2448 int desti;
2449 int tmp;
2450 int i;
2451
2452 /*
2453 * Check for nothing to do.
2454 */
2455 if (count == 0)
2456 return;
2457
2458 /*
2459 * Set up environment.
2460 */
2461 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
2462 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
2463 ASSERT(ichdr_s->magic == ichdr_d->magic);
2464 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8);
2465 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
2466 + xfs_attr3_leaf_hdr_size(leaf_s));
2467 ASSERT(ichdr_d->count < args->geo->blksize / 8);
2468 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
2469 + xfs_attr3_leaf_hdr_size(leaf_d));
2470
2471 ASSERT(start_s < ichdr_s->count);
2472 ASSERT(start_d <= ichdr_d->count);
2473 ASSERT(count <= ichdr_s->count);
2474
2475
2476 /*
2477 * Move the entries in the destination leaf up to make a hole?
2478 */
2479 if (start_d < ichdr_d->count) {
2480 tmp = ichdr_d->count - start_d;
2481 tmp *= sizeof(xfs_attr_leaf_entry_t);
2482 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2483 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
2484 memmove(entry_d, entry_s, tmp);
2485 }
2486
2487 /*
2488 * Copy all entry's in the same (sorted) order,
2489 * but allocate attribute info packed and in sequence.
2490 */
2491 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2492 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2493 desti = start_d;
2494 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
2495 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
2496 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
2497 #ifdef GROT
2498 /*
2499 * Code to drop INCOMPLETE entries. Difficult to use as we
2500 * may also need to change the insertion index. Code turned
2501 * off for 6.2, should be revisited later.
2502 */
2503 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
2504 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2505 ichdr_s->usedbytes -= tmp;
2506 ichdr_s->count -= 1;
2507 entry_d--; /* to compensate for ++ in loop hdr */
2508 desti--;
2509 if ((start_s + i) < offset)
2510 result++; /* insertion index adjustment */
2511 } else {
2512 #endif /* GROT */
2513 ichdr_d->firstused -= tmp;
2514 /* both on-disk, don't endian flip twice */
2515 entry_d->hashval = entry_s->hashval;
2516 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
2517 entry_d->flags = entry_s->flags;
2518 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
2519 <= args->geo->blksize);
2520 memmove(xfs_attr3_leaf_name(leaf_d, desti),
2521 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
2522 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
2523 <= args->geo->blksize);
2524 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2525 ichdr_s->usedbytes -= tmp;
2526 ichdr_d->usedbytes += tmp;
2527 ichdr_s->count -= 1;
2528 ichdr_d->count += 1;
2529 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
2530 + xfs_attr3_leaf_hdr_size(leaf_d);
2531 ASSERT(ichdr_d->firstused >= tmp);
2532 #ifdef GROT
2533 }
2534 #endif /* GROT */
2535 }
2536
2537 /*
2538 * Zero out the entries we just copied.
2539 */
2540 if (start_s == ichdr_s->count) {
2541 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2542 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2543 ASSERT(((char *)entry_s + tmp) <=
2544 ((char *)leaf_s + args->geo->blksize));
2545 memset(entry_s, 0, tmp);
2546 } else {
2547 /*
2548 * Move the remaining entries down to fill the hole,
2549 * then zero the entries at the top.
2550 */
2551 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
2552 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
2553 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2554 memmove(entry_d, entry_s, tmp);
2555
2556 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2557 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
2558 ASSERT(((char *)entry_s + tmp) <=
2559 ((char *)leaf_s + args->geo->blksize));
2560 memset(entry_s, 0, tmp);
2561 }
2562
2563 /*
2564 * Fill in the freemap information
2565 */
2566 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
2567 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
2568 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
2569 ichdr_d->freemap[1].base = 0;
2570 ichdr_d->freemap[2].base = 0;
2571 ichdr_d->freemap[1].size = 0;
2572 ichdr_d->freemap[2].size = 0;
2573 ichdr_s->holes = 1; /* leaf may not be compact */
2574 }
2575
2576 /*
2577 * Pick up the last hashvalue from a leaf block.
2578 */
2579 xfs_dahash_t
xfs_attr_leaf_lasthash(struct xfs_buf * bp,int * count)2580 xfs_attr_leaf_lasthash(
2581 struct xfs_buf *bp,
2582 int *count)
2583 {
2584 struct xfs_attr3_icleaf_hdr ichdr;
2585 struct xfs_attr_leaf_entry *entries;
2586 struct xfs_mount *mp = bp->b_mount;
2587
2588 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr);
2589 entries = xfs_attr3_leaf_entryp(bp->b_addr);
2590 if (count)
2591 *count = ichdr.count;
2592 if (!ichdr.count)
2593 return 0;
2594 return be32_to_cpu(entries[ichdr.count - 1].hashval);
2595 }
2596
2597 /*
2598 * Calculate the number of bytes used to store the indicated attribute
2599 * (whether local or remote only calculate bytes in this block).
2600 */
2601 STATIC int
xfs_attr_leaf_entsize(xfs_attr_leafblock_t * leaf,int index)2602 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
2603 {
2604 struct xfs_attr_leaf_entry *entries;
2605 xfs_attr_leaf_name_local_t *name_loc;
2606 xfs_attr_leaf_name_remote_t *name_rmt;
2607 int size;
2608
2609 entries = xfs_attr3_leaf_entryp(leaf);
2610 if (entries[index].flags & XFS_ATTR_LOCAL) {
2611 name_loc = xfs_attr3_leaf_name_local(leaf, index);
2612 size = xfs_attr_leaf_entsize_local(name_loc->namelen,
2613 be16_to_cpu(name_loc->valuelen));
2614 } else {
2615 name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
2616 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
2617 }
2618 return size;
2619 }
2620
2621 /*
2622 * Calculate the number of bytes that would be required to store the new
2623 * attribute (whether local or remote only calculate bytes in this block).
2624 * This routine decides as a side effect whether the attribute will be
2625 * a "local" or a "remote" attribute.
2626 */
2627 int
xfs_attr_leaf_newentsize(struct xfs_da_args * args,int * local)2628 xfs_attr_leaf_newentsize(
2629 struct xfs_da_args *args,
2630 int *local)
2631 {
2632 int size;
2633
2634 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen);
2635 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) {
2636 if (local)
2637 *local = 1;
2638 return size;
2639 }
2640 if (local)
2641 *local = 0;
2642 return xfs_attr_leaf_entsize_remote(args->namelen);
2643 }
2644
2645
2646 /*========================================================================
2647 * Manage the INCOMPLETE flag in a leaf entry
2648 *========================================================================*/
2649
2650 /*
2651 * Clear the INCOMPLETE flag on an entry in a leaf block.
2652 */
2653 int
xfs_attr3_leaf_clearflag(struct xfs_da_args * args)2654 xfs_attr3_leaf_clearflag(
2655 struct xfs_da_args *args)
2656 {
2657 struct xfs_attr_leafblock *leaf;
2658 struct xfs_attr_leaf_entry *entry;
2659 struct xfs_attr_leaf_name_remote *name_rmt;
2660 struct xfs_buf *bp;
2661 int error;
2662 #ifdef DEBUG
2663 struct xfs_attr3_icleaf_hdr ichdr;
2664 xfs_attr_leaf_name_local_t *name_loc;
2665 int namelen;
2666 char *name;
2667 #endif /* DEBUG */
2668
2669 trace_xfs_attr_leaf_clearflag(args);
2670 /*
2671 * Set up the operation.
2672 */
2673 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp);
2674 if (error)
2675 return error;
2676
2677 leaf = bp->b_addr;
2678 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2679 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
2680
2681 #ifdef DEBUG
2682 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2683 ASSERT(args->index < ichdr.count);
2684 ASSERT(args->index >= 0);
2685
2686 if (entry->flags & XFS_ATTR_LOCAL) {
2687 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2688 namelen = name_loc->namelen;
2689 name = (char *)name_loc->nameval;
2690 } else {
2691 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2692 namelen = name_rmt->namelen;
2693 name = (char *)name_rmt->name;
2694 }
2695 ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
2696 ASSERT(namelen == args->namelen);
2697 ASSERT(memcmp(name, args->name, namelen) == 0);
2698 #endif /* DEBUG */
2699
2700 entry->flags &= ~XFS_ATTR_INCOMPLETE;
2701 xfs_trans_log_buf(args->trans, bp,
2702 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2703
2704 if (args->rmtblkno) {
2705 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
2706 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2707 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2708 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2709 xfs_trans_log_buf(args->trans, bp,
2710 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2711 }
2712
2713 /*
2714 * Commit the flag value change and start the next trans in series.
2715 */
2716 return xfs_trans_roll_inode(&args->trans, args->dp);
2717 }
2718
2719 /*
2720 * Set the INCOMPLETE flag on an entry in a leaf block.
2721 */
2722 int
xfs_attr3_leaf_setflag(struct xfs_da_args * args)2723 xfs_attr3_leaf_setflag(
2724 struct xfs_da_args *args)
2725 {
2726 struct xfs_attr_leafblock *leaf;
2727 struct xfs_attr_leaf_entry *entry;
2728 struct xfs_attr_leaf_name_remote *name_rmt;
2729 struct xfs_buf *bp;
2730 int error;
2731 #ifdef DEBUG
2732 struct xfs_attr3_icleaf_hdr ichdr;
2733 #endif
2734
2735 trace_xfs_attr_leaf_setflag(args);
2736
2737 /*
2738 * Set up the operation.
2739 */
2740 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp);
2741 if (error)
2742 return error;
2743
2744 leaf = bp->b_addr;
2745 #ifdef DEBUG
2746 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2747 ASSERT(args->index < ichdr.count);
2748 ASSERT(args->index >= 0);
2749 #endif
2750 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2751
2752 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
2753 entry->flags |= XFS_ATTR_INCOMPLETE;
2754 xfs_trans_log_buf(args->trans, bp,
2755 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2756 if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
2757 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2758 name_rmt->valueblk = 0;
2759 name_rmt->valuelen = 0;
2760 xfs_trans_log_buf(args->trans, bp,
2761 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2762 }
2763
2764 /*
2765 * Commit the flag value change and start the next trans in series.
2766 */
2767 return xfs_trans_roll_inode(&args->trans, args->dp);
2768 }
2769
2770 /*
2771 * In a single transaction, clear the INCOMPLETE flag on the leaf entry
2772 * given by args->blkno/index and set the INCOMPLETE flag on the leaf
2773 * entry given by args->blkno2/index2.
2774 *
2775 * Note that they could be in different blocks, or in the same block.
2776 */
2777 int
xfs_attr3_leaf_flipflags(struct xfs_da_args * args)2778 xfs_attr3_leaf_flipflags(
2779 struct xfs_da_args *args)
2780 {
2781 struct xfs_attr_leafblock *leaf1;
2782 struct xfs_attr_leafblock *leaf2;
2783 struct xfs_attr_leaf_entry *entry1;
2784 struct xfs_attr_leaf_entry *entry2;
2785 struct xfs_attr_leaf_name_remote *name_rmt;
2786 struct xfs_buf *bp1;
2787 struct xfs_buf *bp2;
2788 int error;
2789 #ifdef DEBUG
2790 struct xfs_attr3_icleaf_hdr ichdr1;
2791 struct xfs_attr3_icleaf_hdr ichdr2;
2792 xfs_attr_leaf_name_local_t *name_loc;
2793 int namelen1, namelen2;
2794 char *name1, *name2;
2795 #endif /* DEBUG */
2796
2797 trace_xfs_attr_leaf_flipflags(args);
2798
2799 /*
2800 * Read the block containing the "old" attr
2801 */
2802 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp1);
2803 if (error)
2804 return error;
2805
2806 /*
2807 * Read the block containing the "new" attr, if it is different
2808 */
2809 if (args->blkno2 != args->blkno) {
2810 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2,
2811 -1, &bp2);
2812 if (error)
2813 return error;
2814 } else {
2815 bp2 = bp1;
2816 }
2817
2818 leaf1 = bp1->b_addr;
2819 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
2820
2821 leaf2 = bp2->b_addr;
2822 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
2823
2824 #ifdef DEBUG
2825 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1);
2826 ASSERT(args->index < ichdr1.count);
2827 ASSERT(args->index >= 0);
2828
2829 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2);
2830 ASSERT(args->index2 < ichdr2.count);
2831 ASSERT(args->index2 >= 0);
2832
2833 if (entry1->flags & XFS_ATTR_LOCAL) {
2834 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
2835 namelen1 = name_loc->namelen;
2836 name1 = (char *)name_loc->nameval;
2837 } else {
2838 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2839 namelen1 = name_rmt->namelen;
2840 name1 = (char *)name_rmt->name;
2841 }
2842 if (entry2->flags & XFS_ATTR_LOCAL) {
2843 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
2844 namelen2 = name_loc->namelen;
2845 name2 = (char *)name_loc->nameval;
2846 } else {
2847 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2848 namelen2 = name_rmt->namelen;
2849 name2 = (char *)name_rmt->name;
2850 }
2851 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
2852 ASSERT(namelen1 == namelen2);
2853 ASSERT(memcmp(name1, name2, namelen1) == 0);
2854 #endif /* DEBUG */
2855
2856 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
2857 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
2858
2859 entry1->flags &= ~XFS_ATTR_INCOMPLETE;
2860 xfs_trans_log_buf(args->trans, bp1,
2861 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
2862 if (args->rmtblkno) {
2863 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
2864 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2865 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2866 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2867 xfs_trans_log_buf(args->trans, bp1,
2868 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
2869 }
2870
2871 entry2->flags |= XFS_ATTR_INCOMPLETE;
2872 xfs_trans_log_buf(args->trans, bp2,
2873 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
2874 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
2875 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2876 name_rmt->valueblk = 0;
2877 name_rmt->valuelen = 0;
2878 xfs_trans_log_buf(args->trans, bp2,
2879 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
2880 }
2881
2882 /*
2883 * Commit the flag value change and start the next trans in series.
2884 */
2885 error = xfs_trans_roll_inode(&args->trans, args->dp);
2886
2887 return error;
2888 }
2889