1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23
24 /*
25 * Cursor allocation zone.
26 */
27 kmem_zone_t *xfs_btree_cur_zone;
28
29 /*
30 * Btree magic numbers.
31 */
32 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
33 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
34 XFS_FIBT_MAGIC, 0 },
35 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
36 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
37 XFS_REFC_CRC_MAGIC }
38 };
39
40 uint32_t
xfs_btree_magic(int crc,xfs_btnum_t btnum)41 xfs_btree_magic(
42 int crc,
43 xfs_btnum_t btnum)
44 {
45 uint32_t magic = xfs_magics[crc][btnum];
46
47 /* Ensure we asked for crc for crc-only magics. */
48 ASSERT(magic != 0);
49 return magic;
50 }
51
52 /*
53 * Check a long btree block header. Return the address of the failing check,
54 * or NULL if everything is ok.
55 */
56 xfs_failaddr_t
__xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)57 __xfs_btree_check_lblock(
58 struct xfs_btree_cur *cur,
59 struct xfs_btree_block *block,
60 int level,
61 struct xfs_buf *bp)
62 {
63 struct xfs_mount *mp = cur->bc_mp;
64 xfs_btnum_t btnum = cur->bc_btnum;
65 int crc = xfs_sb_version_hascrc(&mp->m_sb);
66
67 if (crc) {
68 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
69 return __this_address;
70 if (block->bb_u.l.bb_blkno !=
71 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
72 return __this_address;
73 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
74 return __this_address;
75 }
76
77 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
78 return __this_address;
79 if (be16_to_cpu(block->bb_level) != level)
80 return __this_address;
81 if (be16_to_cpu(block->bb_numrecs) >
82 cur->bc_ops->get_maxrecs(cur, level))
83 return __this_address;
84 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
85 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
86 level + 1))
87 return __this_address;
88 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
89 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
90 level + 1))
91 return __this_address;
92
93 return NULL;
94 }
95
96 /* Check a long btree block header. */
97 static int
xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)98 xfs_btree_check_lblock(
99 struct xfs_btree_cur *cur,
100 struct xfs_btree_block *block,
101 int level,
102 struct xfs_buf *bp)
103 {
104 struct xfs_mount *mp = cur->bc_mp;
105 xfs_failaddr_t fa;
106
107 fa = __xfs_btree_check_lblock(cur, block, level, bp);
108 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
109 XFS_ERRTAG_BTREE_CHECK_LBLOCK))) {
110 if (bp)
111 trace_xfs_btree_corrupt(bp, _RET_IP_);
112 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
113 return -EFSCORRUPTED;
114 }
115 return 0;
116 }
117
118 /*
119 * Check a short btree block header. Return the address of the failing check,
120 * or NULL if everything is ok.
121 */
122 xfs_failaddr_t
__xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)123 __xfs_btree_check_sblock(
124 struct xfs_btree_cur *cur,
125 struct xfs_btree_block *block,
126 int level,
127 struct xfs_buf *bp)
128 {
129 struct xfs_mount *mp = cur->bc_mp;
130 xfs_btnum_t btnum = cur->bc_btnum;
131 int crc = xfs_sb_version_hascrc(&mp->m_sb);
132
133 if (crc) {
134 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
135 return __this_address;
136 if (block->bb_u.s.bb_blkno !=
137 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
138 return __this_address;
139 }
140
141 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
142 return __this_address;
143 if (be16_to_cpu(block->bb_level) != level)
144 return __this_address;
145 if (be16_to_cpu(block->bb_numrecs) >
146 cur->bc_ops->get_maxrecs(cur, level))
147 return __this_address;
148 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
149 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
150 level + 1))
151 return __this_address;
152 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
153 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
154 level + 1))
155 return __this_address;
156
157 return NULL;
158 }
159
160 /* Check a short btree block header. */
161 STATIC int
xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)162 xfs_btree_check_sblock(
163 struct xfs_btree_cur *cur,
164 struct xfs_btree_block *block,
165 int level,
166 struct xfs_buf *bp)
167 {
168 struct xfs_mount *mp = cur->bc_mp;
169 xfs_failaddr_t fa;
170
171 fa = __xfs_btree_check_sblock(cur, block, level, bp);
172 if (unlikely(XFS_TEST_ERROR(fa != NULL, mp,
173 XFS_ERRTAG_BTREE_CHECK_SBLOCK))) {
174 if (bp)
175 trace_xfs_btree_corrupt(bp, _RET_IP_);
176 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
177 return -EFSCORRUPTED;
178 }
179 return 0;
180 }
181
182 /*
183 * Debug routine: check that block header is ok.
184 */
185 int
xfs_btree_check_block(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)186 xfs_btree_check_block(
187 struct xfs_btree_cur *cur, /* btree cursor */
188 struct xfs_btree_block *block, /* generic btree block pointer */
189 int level, /* level of the btree block */
190 struct xfs_buf *bp) /* buffer containing block, if any */
191 {
192 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
193 return xfs_btree_check_lblock(cur, block, level, bp);
194 else
195 return xfs_btree_check_sblock(cur, block, level, bp);
196 }
197
198 /* Check that this long pointer is valid and points within the fs. */
199 bool
xfs_btree_check_lptr(struct xfs_btree_cur * cur,xfs_fsblock_t fsbno,int level)200 xfs_btree_check_lptr(
201 struct xfs_btree_cur *cur,
202 xfs_fsblock_t fsbno,
203 int level)
204 {
205 if (level <= 0)
206 return false;
207 return xfs_verify_fsbno(cur->bc_mp, fsbno);
208 }
209
210 /* Check that this short pointer is valid and points within the AG. */
211 bool
xfs_btree_check_sptr(struct xfs_btree_cur * cur,xfs_agblock_t agbno,int level)212 xfs_btree_check_sptr(
213 struct xfs_btree_cur *cur,
214 xfs_agblock_t agbno,
215 int level)
216 {
217 if (level <= 0)
218 return false;
219 return xfs_verify_agbno(cur->bc_mp, cur->bc_private.a.agno, agbno);
220 }
221
222 /*
223 * Check that a given (indexed) btree pointer at a certain level of a
224 * btree is valid and doesn't point past where it should.
225 */
226 static int
xfs_btree_check_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int index,int level)227 xfs_btree_check_ptr(
228 struct xfs_btree_cur *cur,
229 union xfs_btree_ptr *ptr,
230 int index,
231 int level)
232 {
233 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
234 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
235 level))
236 return 0;
237 xfs_err(cur->bc_mp,
238 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
239 cur->bc_private.b.ip->i_ino,
240 cur->bc_private.b.whichfork, cur->bc_btnum,
241 level, index);
242 } else {
243 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
244 level))
245 return 0;
246 xfs_err(cur->bc_mp,
247 "AG %u: Corrupt btree %d pointer at level %d index %d.",
248 cur->bc_private.a.agno, cur->bc_btnum,
249 level, index);
250 }
251
252 return -EFSCORRUPTED;
253 }
254
255 #ifdef DEBUG
256 # define xfs_btree_debug_check_ptr xfs_btree_check_ptr
257 #else
258 # define xfs_btree_debug_check_ptr(...) (0)
259 #endif
260
261 /*
262 * Calculate CRC on the whole btree block and stuff it into the
263 * long-form btree header.
264 *
265 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
266 * it into the buffer so recovery knows what the last modification was that made
267 * it to disk.
268 */
269 void
xfs_btree_lblock_calc_crc(struct xfs_buf * bp)270 xfs_btree_lblock_calc_crc(
271 struct xfs_buf *bp)
272 {
273 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
274 struct xfs_buf_log_item *bip = bp->b_log_item;
275
276 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
277 return;
278 if (bip)
279 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
280 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
281 }
282
283 bool
xfs_btree_lblock_verify_crc(struct xfs_buf * bp)284 xfs_btree_lblock_verify_crc(
285 struct xfs_buf *bp)
286 {
287 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
288 struct xfs_mount *mp = bp->b_mount;
289
290 if (xfs_sb_version_hascrc(&mp->m_sb)) {
291 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
292 return false;
293 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
294 }
295
296 return true;
297 }
298
299 /*
300 * Calculate CRC on the whole btree block and stuff it into the
301 * short-form btree header.
302 *
303 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
304 * it into the buffer so recovery knows what the last modification was that made
305 * it to disk.
306 */
307 void
xfs_btree_sblock_calc_crc(struct xfs_buf * bp)308 xfs_btree_sblock_calc_crc(
309 struct xfs_buf *bp)
310 {
311 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
312 struct xfs_buf_log_item *bip = bp->b_log_item;
313
314 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
315 return;
316 if (bip)
317 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
318 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
319 }
320
321 bool
xfs_btree_sblock_verify_crc(struct xfs_buf * bp)322 xfs_btree_sblock_verify_crc(
323 struct xfs_buf *bp)
324 {
325 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
326 struct xfs_mount *mp = bp->b_mount;
327
328 if (xfs_sb_version_hascrc(&mp->m_sb)) {
329 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
330 return false;
331 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
332 }
333
334 return true;
335 }
336
337 static int
xfs_btree_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)338 xfs_btree_free_block(
339 struct xfs_btree_cur *cur,
340 struct xfs_buf *bp)
341 {
342 int error;
343
344 error = cur->bc_ops->free_block(cur, bp);
345 if (!error) {
346 xfs_trans_binval(cur->bc_tp, bp);
347 XFS_BTREE_STATS_INC(cur, free);
348 }
349 return error;
350 }
351
352 /*
353 * Delete the btree cursor.
354 */
355 void
xfs_btree_del_cursor(struct xfs_btree_cur * cur,int error)356 xfs_btree_del_cursor(
357 struct xfs_btree_cur *cur, /* btree cursor */
358 int error) /* del because of error */
359 {
360 int i; /* btree level */
361
362 /*
363 * Clear the buffer pointers and release the buffers. If we're doing
364 * this because of an error, inspect all of the entries in the bc_bufs
365 * array for buffers to be unlocked. This is because some of the btree
366 * code works from level n down to 0, and if we get an error along the
367 * way we won't have initialized all the entries down to 0.
368 */
369 for (i = 0; i < cur->bc_nlevels; i++) {
370 if (cur->bc_bufs[i])
371 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
372 else if (!error)
373 break;
374 }
375
376 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
377 cur->bc_private.b.allocated == 0 ||
378 XFS_FORCED_SHUTDOWN(cur->bc_mp));
379 kmem_zone_free(xfs_btree_cur_zone, cur);
380 }
381
382 /*
383 * Duplicate the btree cursor.
384 * Allocate a new one, copy the record, re-get the buffers.
385 */
386 int /* error */
xfs_btree_dup_cursor(xfs_btree_cur_t * cur,xfs_btree_cur_t ** ncur)387 xfs_btree_dup_cursor(
388 xfs_btree_cur_t *cur, /* input cursor */
389 xfs_btree_cur_t **ncur) /* output cursor */
390 {
391 xfs_buf_t *bp; /* btree block's buffer pointer */
392 int error; /* error return value */
393 int i; /* level number of btree block */
394 xfs_mount_t *mp; /* mount structure for filesystem */
395 xfs_btree_cur_t *new; /* new cursor value */
396 xfs_trans_t *tp; /* transaction pointer, can be NULL */
397
398 tp = cur->bc_tp;
399 mp = cur->bc_mp;
400
401 /*
402 * Allocate a new cursor like the old one.
403 */
404 new = cur->bc_ops->dup_cursor(cur);
405
406 /*
407 * Copy the record currently in the cursor.
408 */
409 new->bc_rec = cur->bc_rec;
410
411 /*
412 * For each level current, re-get the buffer and copy the ptr value.
413 */
414 for (i = 0; i < new->bc_nlevels; i++) {
415 new->bc_ptrs[i] = cur->bc_ptrs[i];
416 new->bc_ra[i] = cur->bc_ra[i];
417 bp = cur->bc_bufs[i];
418 if (bp) {
419 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
420 XFS_BUF_ADDR(bp), mp->m_bsize,
421 0, &bp,
422 cur->bc_ops->buf_ops);
423 if (error) {
424 xfs_btree_del_cursor(new, error);
425 *ncur = NULL;
426 return error;
427 }
428 }
429 new->bc_bufs[i] = bp;
430 }
431 *ncur = new;
432 return 0;
433 }
434
435 /*
436 * XFS btree block layout and addressing:
437 *
438 * There are two types of blocks in the btree: leaf and non-leaf blocks.
439 *
440 * The leaf record start with a header then followed by records containing
441 * the values. A non-leaf block also starts with the same header, and
442 * then first contains lookup keys followed by an equal number of pointers
443 * to the btree blocks at the previous level.
444 *
445 * +--------+-------+-------+-------+-------+-------+-------+
446 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
447 * +--------+-------+-------+-------+-------+-------+-------+
448 *
449 * +--------+-------+-------+-------+-------+-------+-------+
450 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
451 * +--------+-------+-------+-------+-------+-------+-------+
452 *
453 * The header is called struct xfs_btree_block for reasons better left unknown
454 * and comes in different versions for short (32bit) and long (64bit) block
455 * pointers. The record and key structures are defined by the btree instances
456 * and opaque to the btree core. The block pointers are simple disk endian
457 * integers, available in a short (32bit) and long (64bit) variant.
458 *
459 * The helpers below calculate the offset of a given record, key or pointer
460 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
461 * record, key or pointer (xfs_btree_*_addr). Note that all addressing
462 * inside the btree block is done using indices starting at one, not zero!
463 *
464 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
465 * overlapping intervals. In such a tree, records are still sorted lowest to
466 * highest and indexed by the smallest key value that refers to the record.
467 * However, nodes are different: each pointer has two associated keys -- one
468 * indexing the lowest key available in the block(s) below (the same behavior
469 * as the key in a regular btree) and another indexing the highest key
470 * available in the block(s) below. Because records are /not/ sorted by the
471 * highest key, all leaf block updates require us to compute the highest key
472 * that matches any record in the leaf and to recursively update the high keys
473 * in the nodes going further up in the tree, if necessary. Nodes look like
474 * this:
475 *
476 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
477 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
478 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+
479 *
480 * To perform an interval query on an overlapped tree, perform the usual
481 * depth-first search and use the low and high keys to decide if we can skip
482 * that particular node. If a leaf node is reached, return the records that
483 * intersect the interval. Note that an interval query may return numerous
484 * entries. For a non-overlapped tree, simply search for the record associated
485 * with the lowest key and iterate forward until a non-matching record is
486 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
487 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
488 * more detail.
489 *
490 * Why do we care about overlapping intervals? Let's say you have a bunch of
491 * reverse mapping records on a reflink filesystem:
492 *
493 * 1: +- file A startblock B offset C length D -----------+
494 * 2: +- file E startblock F offset G length H --------------+
495 * 3: +- file I startblock F offset J length K --+
496 * 4: +- file L... --+
497 *
498 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally,
499 * we'd simply increment the length of record 1. But how do we find the record
500 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return
501 * record 3 because the keys are ordered first by startblock. An interval
502 * query would return records 1 and 2 because they both overlap (B+D-1), and
503 * from that we can pick out record 1 as the appropriate left neighbor.
504 *
505 * In the non-overlapped case you can do a LE lookup and decrement the cursor
506 * because a record's interval must end before the next record.
507 */
508
509 /*
510 * Return size of the btree block header for this btree instance.
511 */
xfs_btree_block_len(struct xfs_btree_cur * cur)512 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
513 {
514 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
515 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
516 return XFS_BTREE_LBLOCK_CRC_LEN;
517 return XFS_BTREE_LBLOCK_LEN;
518 }
519 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
520 return XFS_BTREE_SBLOCK_CRC_LEN;
521 return XFS_BTREE_SBLOCK_LEN;
522 }
523
524 /*
525 * Return size of btree block pointers for this btree instance.
526 */
xfs_btree_ptr_len(struct xfs_btree_cur * cur)527 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
528 {
529 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
530 sizeof(__be64) : sizeof(__be32);
531 }
532
533 /*
534 * Calculate offset of the n-th record in a btree block.
535 */
536 STATIC size_t
xfs_btree_rec_offset(struct xfs_btree_cur * cur,int n)537 xfs_btree_rec_offset(
538 struct xfs_btree_cur *cur,
539 int n)
540 {
541 return xfs_btree_block_len(cur) +
542 (n - 1) * cur->bc_ops->rec_len;
543 }
544
545 /*
546 * Calculate offset of the n-th key in a btree block.
547 */
548 STATIC size_t
xfs_btree_key_offset(struct xfs_btree_cur * cur,int n)549 xfs_btree_key_offset(
550 struct xfs_btree_cur *cur,
551 int n)
552 {
553 return xfs_btree_block_len(cur) +
554 (n - 1) * cur->bc_ops->key_len;
555 }
556
557 /*
558 * Calculate offset of the n-th high key in a btree block.
559 */
560 STATIC size_t
xfs_btree_high_key_offset(struct xfs_btree_cur * cur,int n)561 xfs_btree_high_key_offset(
562 struct xfs_btree_cur *cur,
563 int n)
564 {
565 return xfs_btree_block_len(cur) +
566 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
567 }
568
569 /*
570 * Calculate offset of the n-th block pointer in a btree block.
571 */
572 STATIC size_t
xfs_btree_ptr_offset(struct xfs_btree_cur * cur,int n,int level)573 xfs_btree_ptr_offset(
574 struct xfs_btree_cur *cur,
575 int n,
576 int level)
577 {
578 return xfs_btree_block_len(cur) +
579 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
580 (n - 1) * xfs_btree_ptr_len(cur);
581 }
582
583 /*
584 * Return a pointer to the n-th record in the btree block.
585 */
586 union xfs_btree_rec *
xfs_btree_rec_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)587 xfs_btree_rec_addr(
588 struct xfs_btree_cur *cur,
589 int n,
590 struct xfs_btree_block *block)
591 {
592 return (union xfs_btree_rec *)
593 ((char *)block + xfs_btree_rec_offset(cur, n));
594 }
595
596 /*
597 * Return a pointer to the n-th key in the btree block.
598 */
599 union xfs_btree_key *
xfs_btree_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)600 xfs_btree_key_addr(
601 struct xfs_btree_cur *cur,
602 int n,
603 struct xfs_btree_block *block)
604 {
605 return (union xfs_btree_key *)
606 ((char *)block + xfs_btree_key_offset(cur, n));
607 }
608
609 /*
610 * Return a pointer to the n-th high key in the btree block.
611 */
612 union xfs_btree_key *
xfs_btree_high_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)613 xfs_btree_high_key_addr(
614 struct xfs_btree_cur *cur,
615 int n,
616 struct xfs_btree_block *block)
617 {
618 return (union xfs_btree_key *)
619 ((char *)block + xfs_btree_high_key_offset(cur, n));
620 }
621
622 /*
623 * Return a pointer to the n-th block pointer in the btree block.
624 */
625 union xfs_btree_ptr *
xfs_btree_ptr_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)626 xfs_btree_ptr_addr(
627 struct xfs_btree_cur *cur,
628 int n,
629 struct xfs_btree_block *block)
630 {
631 int level = xfs_btree_get_level(block);
632
633 ASSERT(block->bb_level != 0);
634
635 return (union xfs_btree_ptr *)
636 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
637 }
638
639 /*
640 * Get the root block which is stored in the inode.
641 *
642 * For now this btree implementation assumes the btree root is always
643 * stored in the if_broot field of an inode fork.
644 */
645 STATIC struct xfs_btree_block *
xfs_btree_get_iroot(struct xfs_btree_cur * cur)646 xfs_btree_get_iroot(
647 struct xfs_btree_cur *cur)
648 {
649 struct xfs_ifork *ifp;
650
651 ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
652 return (struct xfs_btree_block *)ifp->if_broot;
653 }
654
655 /*
656 * Retrieve the block pointer from the cursor at the given level.
657 * This may be an inode btree root or from a buffer.
658 */
659 struct xfs_btree_block * /* generic btree block pointer */
xfs_btree_get_block(struct xfs_btree_cur * cur,int level,struct xfs_buf ** bpp)660 xfs_btree_get_block(
661 struct xfs_btree_cur *cur, /* btree cursor */
662 int level, /* level in btree */
663 struct xfs_buf **bpp) /* buffer containing the block */
664 {
665 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
666 (level == cur->bc_nlevels - 1)) {
667 *bpp = NULL;
668 return xfs_btree_get_iroot(cur);
669 }
670
671 *bpp = cur->bc_bufs[level];
672 return XFS_BUF_TO_BLOCK(*bpp);
673 }
674
675 /*
676 * Get a buffer for the block, return it with no data read.
677 * Long-form addressing.
678 */
679 xfs_buf_t * /* buffer for fsbno */
xfs_btree_get_bufl(xfs_mount_t * mp,xfs_trans_t * tp,xfs_fsblock_t fsbno)680 xfs_btree_get_bufl(
681 xfs_mount_t *mp, /* file system mount point */
682 xfs_trans_t *tp, /* transaction pointer */
683 xfs_fsblock_t fsbno) /* file system block number */
684 {
685 xfs_daddr_t d; /* real disk block address */
686
687 ASSERT(fsbno != NULLFSBLOCK);
688 d = XFS_FSB_TO_DADDR(mp, fsbno);
689 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, 0);
690 }
691
692 /*
693 * Get a buffer for the block, return it with no data read.
694 * Short-form addressing.
695 */
696 xfs_buf_t * /* buffer for agno/agbno */
xfs_btree_get_bufs(xfs_mount_t * mp,xfs_trans_t * tp,xfs_agnumber_t agno,xfs_agblock_t agbno)697 xfs_btree_get_bufs(
698 xfs_mount_t *mp, /* file system mount point */
699 xfs_trans_t *tp, /* transaction pointer */
700 xfs_agnumber_t agno, /* allocation group number */
701 xfs_agblock_t agbno) /* allocation group block number */
702 {
703 xfs_daddr_t d; /* real disk block address */
704
705 ASSERT(agno != NULLAGNUMBER);
706 ASSERT(agbno != NULLAGBLOCK);
707 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
708 return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, 0);
709 }
710
711 /*
712 * Check for the cursor referring to the last block at the given level.
713 */
714 int /* 1=is last block, 0=not last block */
xfs_btree_islastblock(xfs_btree_cur_t * cur,int level)715 xfs_btree_islastblock(
716 xfs_btree_cur_t *cur, /* btree cursor */
717 int level) /* level to check */
718 {
719 struct xfs_btree_block *block; /* generic btree block pointer */
720 xfs_buf_t *bp; /* buffer containing block */
721
722 block = xfs_btree_get_block(cur, level, &bp);
723 xfs_btree_check_block(cur, block, level, bp);
724 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
725 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
726 else
727 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
728 }
729
730 /*
731 * Change the cursor to point to the first record at the given level.
732 * Other levels are unaffected.
733 */
734 STATIC int /* success=1, failure=0 */
xfs_btree_firstrec(xfs_btree_cur_t * cur,int level)735 xfs_btree_firstrec(
736 xfs_btree_cur_t *cur, /* btree cursor */
737 int level) /* level to change */
738 {
739 struct xfs_btree_block *block; /* generic btree block pointer */
740 xfs_buf_t *bp; /* buffer containing block */
741
742 /*
743 * Get the block pointer for this level.
744 */
745 block = xfs_btree_get_block(cur, level, &bp);
746 if (xfs_btree_check_block(cur, block, level, bp))
747 return 0;
748 /*
749 * It's empty, there is no such record.
750 */
751 if (!block->bb_numrecs)
752 return 0;
753 /*
754 * Set the ptr value to 1, that's the first record/key.
755 */
756 cur->bc_ptrs[level] = 1;
757 return 1;
758 }
759
760 /*
761 * Change the cursor to point to the last record in the current block
762 * at the given level. Other levels are unaffected.
763 */
764 STATIC int /* success=1, failure=0 */
xfs_btree_lastrec(xfs_btree_cur_t * cur,int level)765 xfs_btree_lastrec(
766 xfs_btree_cur_t *cur, /* btree cursor */
767 int level) /* level to change */
768 {
769 struct xfs_btree_block *block; /* generic btree block pointer */
770 xfs_buf_t *bp; /* buffer containing block */
771
772 /*
773 * Get the block pointer for this level.
774 */
775 block = xfs_btree_get_block(cur, level, &bp);
776 if (xfs_btree_check_block(cur, block, level, bp))
777 return 0;
778 /*
779 * It's empty, there is no such record.
780 */
781 if (!block->bb_numrecs)
782 return 0;
783 /*
784 * Set the ptr value to numrecs, that's the last record/key.
785 */
786 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
787 return 1;
788 }
789
790 /*
791 * Compute first and last byte offsets for the fields given.
792 * Interprets the offsets table, which contains struct field offsets.
793 */
794 void
xfs_btree_offsets(int64_t fields,const short * offsets,int nbits,int * first,int * last)795 xfs_btree_offsets(
796 int64_t fields, /* bitmask of fields */
797 const short *offsets, /* table of field offsets */
798 int nbits, /* number of bits to inspect */
799 int *first, /* output: first byte offset */
800 int *last) /* output: last byte offset */
801 {
802 int i; /* current bit number */
803 int64_t imask; /* mask for current bit number */
804
805 ASSERT(fields != 0);
806 /*
807 * Find the lowest bit, so the first byte offset.
808 */
809 for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
810 if (imask & fields) {
811 *first = offsets[i];
812 break;
813 }
814 }
815 /*
816 * Find the highest bit, so the last byte offset.
817 */
818 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
819 if (imask & fields) {
820 *last = offsets[i + 1] - 1;
821 break;
822 }
823 }
824 }
825
826 /*
827 * Get a buffer for the block, return it read in.
828 * Long-form addressing.
829 */
830 int
xfs_btree_read_bufl(struct xfs_mount * mp,struct xfs_trans * tp,xfs_fsblock_t fsbno,struct xfs_buf ** bpp,int refval,const struct xfs_buf_ops * ops)831 xfs_btree_read_bufl(
832 struct xfs_mount *mp, /* file system mount point */
833 struct xfs_trans *tp, /* transaction pointer */
834 xfs_fsblock_t fsbno, /* file system block number */
835 struct xfs_buf **bpp, /* buffer for fsbno */
836 int refval, /* ref count value for buffer */
837 const struct xfs_buf_ops *ops)
838 {
839 struct xfs_buf *bp; /* return value */
840 xfs_daddr_t d; /* real disk block address */
841 int error;
842
843 if (!xfs_verify_fsbno(mp, fsbno))
844 return -EFSCORRUPTED;
845 d = XFS_FSB_TO_DADDR(mp, fsbno);
846 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
847 mp->m_bsize, 0, &bp, ops);
848 if (error)
849 return error;
850 if (bp)
851 xfs_buf_set_ref(bp, refval);
852 *bpp = bp;
853 return 0;
854 }
855
856 /*
857 * Read-ahead the block, don't wait for it, don't return a buffer.
858 * Long-form addressing.
859 */
860 /* ARGSUSED */
861 void
xfs_btree_reada_bufl(struct xfs_mount * mp,xfs_fsblock_t fsbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)862 xfs_btree_reada_bufl(
863 struct xfs_mount *mp, /* file system mount point */
864 xfs_fsblock_t fsbno, /* file system block number */
865 xfs_extlen_t count, /* count of filesystem blocks */
866 const struct xfs_buf_ops *ops)
867 {
868 xfs_daddr_t d;
869
870 ASSERT(fsbno != NULLFSBLOCK);
871 d = XFS_FSB_TO_DADDR(mp, fsbno);
872 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
873 }
874
875 /*
876 * Read-ahead the block, don't wait for it, don't return a buffer.
877 * Short-form addressing.
878 */
879 /* ARGSUSED */
880 void
xfs_btree_reada_bufs(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)881 xfs_btree_reada_bufs(
882 struct xfs_mount *mp, /* file system mount point */
883 xfs_agnumber_t agno, /* allocation group number */
884 xfs_agblock_t agbno, /* allocation group block number */
885 xfs_extlen_t count, /* count of filesystem blocks */
886 const struct xfs_buf_ops *ops)
887 {
888 xfs_daddr_t d;
889
890 ASSERT(agno != NULLAGNUMBER);
891 ASSERT(agbno != NULLAGBLOCK);
892 d = XFS_AGB_TO_DADDR(mp, agno, agbno);
893 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
894 }
895
896 STATIC int
xfs_btree_readahead_lblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)897 xfs_btree_readahead_lblock(
898 struct xfs_btree_cur *cur,
899 int lr,
900 struct xfs_btree_block *block)
901 {
902 int rval = 0;
903 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib);
904 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib);
905
906 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
907 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
908 cur->bc_ops->buf_ops);
909 rval++;
910 }
911
912 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
913 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
914 cur->bc_ops->buf_ops);
915 rval++;
916 }
917
918 return rval;
919 }
920
921 STATIC int
xfs_btree_readahead_sblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)922 xfs_btree_readahead_sblock(
923 struct xfs_btree_cur *cur,
924 int lr,
925 struct xfs_btree_block *block)
926 {
927 int rval = 0;
928 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib);
929 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib);
930
931
932 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
933 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
934 left, 1, cur->bc_ops->buf_ops);
935 rval++;
936 }
937
938 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
939 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
940 right, 1, cur->bc_ops->buf_ops);
941 rval++;
942 }
943
944 return rval;
945 }
946
947 /*
948 * Read-ahead btree blocks, at the given level.
949 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
950 */
951 STATIC int
xfs_btree_readahead(struct xfs_btree_cur * cur,int lev,int lr)952 xfs_btree_readahead(
953 struct xfs_btree_cur *cur, /* btree cursor */
954 int lev, /* level in btree */
955 int lr) /* left/right bits */
956 {
957 struct xfs_btree_block *block;
958
959 /*
960 * No readahead needed if we are at the root level and the
961 * btree root is stored in the inode.
962 */
963 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
964 (lev == cur->bc_nlevels - 1))
965 return 0;
966
967 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
968 return 0;
969
970 cur->bc_ra[lev] |= lr;
971 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
972
973 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
974 return xfs_btree_readahead_lblock(cur, lr, block);
975 return xfs_btree_readahead_sblock(cur, lr, block);
976 }
977
978 STATIC int
xfs_btree_ptr_to_daddr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_daddr_t * daddr)979 xfs_btree_ptr_to_daddr(
980 struct xfs_btree_cur *cur,
981 union xfs_btree_ptr *ptr,
982 xfs_daddr_t *daddr)
983 {
984 xfs_fsblock_t fsbno;
985 xfs_agblock_t agbno;
986 int error;
987
988 error = xfs_btree_check_ptr(cur, ptr, 0, 1);
989 if (error)
990 return error;
991
992 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
993 fsbno = be64_to_cpu(ptr->l);
994 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
995 } else {
996 agbno = be32_to_cpu(ptr->s);
997 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
998 agbno);
999 }
1000
1001 return 0;
1002 }
1003
1004 /*
1005 * Readahead @count btree blocks at the given @ptr location.
1006 *
1007 * We don't need to care about long or short form btrees here as we have a
1008 * method of converting the ptr directly to a daddr available to us.
1009 */
1010 STATIC void
xfs_btree_readahead_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_extlen_t count)1011 xfs_btree_readahead_ptr(
1012 struct xfs_btree_cur *cur,
1013 union xfs_btree_ptr *ptr,
1014 xfs_extlen_t count)
1015 {
1016 xfs_daddr_t daddr;
1017
1018 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1019 return;
1020 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1021 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1022 }
1023
1024 /*
1025 * Set the buffer for level "lev" in the cursor to bp, releasing
1026 * any previous buffer.
1027 */
1028 STATIC void
xfs_btree_setbuf(xfs_btree_cur_t * cur,int lev,xfs_buf_t * bp)1029 xfs_btree_setbuf(
1030 xfs_btree_cur_t *cur, /* btree cursor */
1031 int lev, /* level in btree */
1032 xfs_buf_t *bp) /* new buffer to set */
1033 {
1034 struct xfs_btree_block *b; /* btree block */
1035
1036 if (cur->bc_bufs[lev])
1037 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1038 cur->bc_bufs[lev] = bp;
1039 cur->bc_ra[lev] = 0;
1040
1041 b = XFS_BUF_TO_BLOCK(bp);
1042 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1043 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1044 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1045 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1046 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1047 } else {
1048 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1049 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1050 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1051 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1052 }
1053 }
1054
1055 bool
xfs_btree_ptr_is_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1056 xfs_btree_ptr_is_null(
1057 struct xfs_btree_cur *cur,
1058 union xfs_btree_ptr *ptr)
1059 {
1060 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1061 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1062 else
1063 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1064 }
1065
1066 STATIC void
xfs_btree_set_ptr_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1067 xfs_btree_set_ptr_null(
1068 struct xfs_btree_cur *cur,
1069 union xfs_btree_ptr *ptr)
1070 {
1071 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1072 ptr->l = cpu_to_be64(NULLFSBLOCK);
1073 else
1074 ptr->s = cpu_to_be32(NULLAGBLOCK);
1075 }
1076
1077 /*
1078 * Get/set/init sibling pointers
1079 */
1080 void
xfs_btree_get_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1081 xfs_btree_get_sibling(
1082 struct xfs_btree_cur *cur,
1083 struct xfs_btree_block *block,
1084 union xfs_btree_ptr *ptr,
1085 int lr)
1086 {
1087 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1088
1089 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1090 if (lr == XFS_BB_RIGHTSIB)
1091 ptr->l = block->bb_u.l.bb_rightsib;
1092 else
1093 ptr->l = block->bb_u.l.bb_leftsib;
1094 } else {
1095 if (lr == XFS_BB_RIGHTSIB)
1096 ptr->s = block->bb_u.s.bb_rightsib;
1097 else
1098 ptr->s = block->bb_u.s.bb_leftsib;
1099 }
1100 }
1101
1102 STATIC void
xfs_btree_set_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1103 xfs_btree_set_sibling(
1104 struct xfs_btree_cur *cur,
1105 struct xfs_btree_block *block,
1106 union xfs_btree_ptr *ptr,
1107 int lr)
1108 {
1109 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1110
1111 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1112 if (lr == XFS_BB_RIGHTSIB)
1113 block->bb_u.l.bb_rightsib = ptr->l;
1114 else
1115 block->bb_u.l.bb_leftsib = ptr->l;
1116 } else {
1117 if (lr == XFS_BB_RIGHTSIB)
1118 block->bb_u.s.bb_rightsib = ptr->s;
1119 else
1120 block->bb_u.s.bb_leftsib = ptr->s;
1121 }
1122 }
1123
1124 void
xfs_btree_init_block_int(struct xfs_mount * mp,struct xfs_btree_block * buf,xfs_daddr_t blkno,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner,unsigned int flags)1125 xfs_btree_init_block_int(
1126 struct xfs_mount *mp,
1127 struct xfs_btree_block *buf,
1128 xfs_daddr_t blkno,
1129 xfs_btnum_t btnum,
1130 __u16 level,
1131 __u16 numrecs,
1132 __u64 owner,
1133 unsigned int flags)
1134 {
1135 int crc = xfs_sb_version_hascrc(&mp->m_sb);
1136 __u32 magic = xfs_btree_magic(crc, btnum);
1137
1138 buf->bb_magic = cpu_to_be32(magic);
1139 buf->bb_level = cpu_to_be16(level);
1140 buf->bb_numrecs = cpu_to_be16(numrecs);
1141
1142 if (flags & XFS_BTREE_LONG_PTRS) {
1143 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1144 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1145 if (crc) {
1146 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1147 buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1148 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1149 buf->bb_u.l.bb_pad = 0;
1150 buf->bb_u.l.bb_lsn = 0;
1151 }
1152 } else {
1153 /* owner is a 32 bit value on short blocks */
1154 __u32 __owner = (__u32)owner;
1155
1156 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1157 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1158 if (crc) {
1159 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1160 buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1161 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1162 buf->bb_u.s.bb_lsn = 0;
1163 }
1164 }
1165 }
1166
1167 void
xfs_btree_init_block(struct xfs_mount * mp,struct xfs_buf * bp,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner)1168 xfs_btree_init_block(
1169 struct xfs_mount *mp,
1170 struct xfs_buf *bp,
1171 xfs_btnum_t btnum,
1172 __u16 level,
1173 __u16 numrecs,
1174 __u64 owner)
1175 {
1176 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1177 btnum, level, numrecs, owner, 0);
1178 }
1179
1180 STATIC void
xfs_btree_init_block_cur(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,int numrecs)1181 xfs_btree_init_block_cur(
1182 struct xfs_btree_cur *cur,
1183 struct xfs_buf *bp,
1184 int level,
1185 int numrecs)
1186 {
1187 __u64 owner;
1188
1189 /*
1190 * we can pull the owner from the cursor right now as the different
1191 * owners align directly with the pointer size of the btree. This may
1192 * change in future, but is safe for current users of the generic btree
1193 * code.
1194 */
1195 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1196 owner = cur->bc_private.b.ip->i_ino;
1197 else
1198 owner = cur->bc_private.a.agno;
1199
1200 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1201 cur->bc_btnum, level, numrecs,
1202 owner, cur->bc_flags);
1203 }
1204
1205 /*
1206 * Return true if ptr is the last record in the btree and
1207 * we need to track updates to this record. The decision
1208 * will be further refined in the update_lastrec method.
1209 */
1210 STATIC int
xfs_btree_is_lastrec(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level)1211 xfs_btree_is_lastrec(
1212 struct xfs_btree_cur *cur,
1213 struct xfs_btree_block *block,
1214 int level)
1215 {
1216 union xfs_btree_ptr ptr;
1217
1218 if (level > 0)
1219 return 0;
1220 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1221 return 0;
1222
1223 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1224 if (!xfs_btree_ptr_is_null(cur, &ptr))
1225 return 0;
1226 return 1;
1227 }
1228
1229 STATIC void
xfs_btree_buf_to_ptr(struct xfs_btree_cur * cur,struct xfs_buf * bp,union xfs_btree_ptr * ptr)1230 xfs_btree_buf_to_ptr(
1231 struct xfs_btree_cur *cur,
1232 struct xfs_buf *bp,
1233 union xfs_btree_ptr *ptr)
1234 {
1235 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1236 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1237 XFS_BUF_ADDR(bp)));
1238 else {
1239 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1240 XFS_BUF_ADDR(bp)));
1241 }
1242 }
1243
1244 STATIC void
xfs_btree_set_refs(struct xfs_btree_cur * cur,struct xfs_buf * bp)1245 xfs_btree_set_refs(
1246 struct xfs_btree_cur *cur,
1247 struct xfs_buf *bp)
1248 {
1249 switch (cur->bc_btnum) {
1250 case XFS_BTNUM_BNO:
1251 case XFS_BTNUM_CNT:
1252 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1253 break;
1254 case XFS_BTNUM_INO:
1255 case XFS_BTNUM_FINO:
1256 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1257 break;
1258 case XFS_BTNUM_BMAP:
1259 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1260 break;
1261 case XFS_BTNUM_RMAP:
1262 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1263 break;
1264 case XFS_BTNUM_REFC:
1265 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1266 break;
1267 default:
1268 ASSERT(0);
1269 }
1270 }
1271
1272 STATIC int
xfs_btree_get_buf_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1273 xfs_btree_get_buf_block(
1274 struct xfs_btree_cur *cur,
1275 union xfs_btree_ptr *ptr,
1276 struct xfs_btree_block **block,
1277 struct xfs_buf **bpp)
1278 {
1279 struct xfs_mount *mp = cur->bc_mp;
1280 xfs_daddr_t d;
1281 int error;
1282
1283 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1284 if (error)
1285 return error;
1286 *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1287 mp->m_bsize, 0);
1288
1289 if (!*bpp)
1290 return -ENOMEM;
1291
1292 (*bpp)->b_ops = cur->bc_ops->buf_ops;
1293 *block = XFS_BUF_TO_BLOCK(*bpp);
1294 return 0;
1295 }
1296
1297 /*
1298 * Read in the buffer at the given ptr and return the buffer and
1299 * the block pointer within the buffer.
1300 */
1301 STATIC int
xfs_btree_read_buf_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int flags,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1302 xfs_btree_read_buf_block(
1303 struct xfs_btree_cur *cur,
1304 union xfs_btree_ptr *ptr,
1305 int flags,
1306 struct xfs_btree_block **block,
1307 struct xfs_buf **bpp)
1308 {
1309 struct xfs_mount *mp = cur->bc_mp;
1310 xfs_daddr_t d;
1311 int error;
1312
1313 /* need to sort out how callers deal with failures first */
1314 ASSERT(!(flags & XBF_TRYLOCK));
1315
1316 error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1317 if (error)
1318 return error;
1319 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1320 mp->m_bsize, flags, bpp,
1321 cur->bc_ops->buf_ops);
1322 if (error)
1323 return error;
1324
1325 xfs_btree_set_refs(cur, *bpp);
1326 *block = XFS_BUF_TO_BLOCK(*bpp);
1327 return 0;
1328 }
1329
1330 /*
1331 * Copy keys from one btree block to another.
1332 */
1333 STATIC void
xfs_btree_copy_keys(struct xfs_btree_cur * cur,union xfs_btree_key * dst_key,union xfs_btree_key * src_key,int numkeys)1334 xfs_btree_copy_keys(
1335 struct xfs_btree_cur *cur,
1336 union xfs_btree_key *dst_key,
1337 union xfs_btree_key *src_key,
1338 int numkeys)
1339 {
1340 ASSERT(numkeys >= 0);
1341 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1342 }
1343
1344 /*
1345 * Copy records from one btree block to another.
1346 */
1347 STATIC void
xfs_btree_copy_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * dst_rec,union xfs_btree_rec * src_rec,int numrecs)1348 xfs_btree_copy_recs(
1349 struct xfs_btree_cur *cur,
1350 union xfs_btree_rec *dst_rec,
1351 union xfs_btree_rec *src_rec,
1352 int numrecs)
1353 {
1354 ASSERT(numrecs >= 0);
1355 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1356 }
1357
1358 /*
1359 * Copy block pointers from one btree block to another.
1360 */
1361 STATIC void
xfs_btree_copy_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * dst_ptr,union xfs_btree_ptr * src_ptr,int numptrs)1362 xfs_btree_copy_ptrs(
1363 struct xfs_btree_cur *cur,
1364 union xfs_btree_ptr *dst_ptr,
1365 union xfs_btree_ptr *src_ptr,
1366 int numptrs)
1367 {
1368 ASSERT(numptrs >= 0);
1369 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1370 }
1371
1372 /*
1373 * Shift keys one index left/right inside a single btree block.
1374 */
1375 STATIC void
xfs_btree_shift_keys(struct xfs_btree_cur * cur,union xfs_btree_key * key,int dir,int numkeys)1376 xfs_btree_shift_keys(
1377 struct xfs_btree_cur *cur,
1378 union xfs_btree_key *key,
1379 int dir,
1380 int numkeys)
1381 {
1382 char *dst_key;
1383
1384 ASSERT(numkeys >= 0);
1385 ASSERT(dir == 1 || dir == -1);
1386
1387 dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1388 memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1389 }
1390
1391 /*
1392 * Shift records one index left/right inside a single btree block.
1393 */
1394 STATIC void
xfs_btree_shift_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,int dir,int numrecs)1395 xfs_btree_shift_recs(
1396 struct xfs_btree_cur *cur,
1397 union xfs_btree_rec *rec,
1398 int dir,
1399 int numrecs)
1400 {
1401 char *dst_rec;
1402
1403 ASSERT(numrecs >= 0);
1404 ASSERT(dir == 1 || dir == -1);
1405
1406 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1407 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1408 }
1409
1410 /*
1411 * Shift block pointers one index left/right inside a single btree block.
1412 */
1413 STATIC void
xfs_btree_shift_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int dir,int numptrs)1414 xfs_btree_shift_ptrs(
1415 struct xfs_btree_cur *cur,
1416 union xfs_btree_ptr *ptr,
1417 int dir,
1418 int numptrs)
1419 {
1420 char *dst_ptr;
1421
1422 ASSERT(numptrs >= 0);
1423 ASSERT(dir == 1 || dir == -1);
1424
1425 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1426 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1427 }
1428
1429 /*
1430 * Log key values from the btree block.
1431 */
1432 STATIC void
xfs_btree_log_keys(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1433 xfs_btree_log_keys(
1434 struct xfs_btree_cur *cur,
1435 struct xfs_buf *bp,
1436 int first,
1437 int last)
1438 {
1439
1440 if (bp) {
1441 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1442 xfs_trans_log_buf(cur->bc_tp, bp,
1443 xfs_btree_key_offset(cur, first),
1444 xfs_btree_key_offset(cur, last + 1) - 1);
1445 } else {
1446 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1447 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1448 }
1449 }
1450
1451 /*
1452 * Log record values from the btree block.
1453 */
1454 void
xfs_btree_log_recs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1455 xfs_btree_log_recs(
1456 struct xfs_btree_cur *cur,
1457 struct xfs_buf *bp,
1458 int first,
1459 int last)
1460 {
1461
1462 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1463 xfs_trans_log_buf(cur->bc_tp, bp,
1464 xfs_btree_rec_offset(cur, first),
1465 xfs_btree_rec_offset(cur, last + 1) - 1);
1466
1467 }
1468
1469 /*
1470 * Log block pointer fields from a btree block (nonleaf).
1471 */
1472 STATIC void
xfs_btree_log_ptrs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1473 xfs_btree_log_ptrs(
1474 struct xfs_btree_cur *cur, /* btree cursor */
1475 struct xfs_buf *bp, /* buffer containing btree block */
1476 int first, /* index of first pointer to log */
1477 int last) /* index of last pointer to log */
1478 {
1479
1480 if (bp) {
1481 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
1482 int level = xfs_btree_get_level(block);
1483
1484 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1485 xfs_trans_log_buf(cur->bc_tp, bp,
1486 xfs_btree_ptr_offset(cur, first, level),
1487 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1488 } else {
1489 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1490 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1491 }
1492
1493 }
1494
1495 /*
1496 * Log fields from a btree block header.
1497 */
1498 void
xfs_btree_log_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,int fields)1499 xfs_btree_log_block(
1500 struct xfs_btree_cur *cur, /* btree cursor */
1501 struct xfs_buf *bp, /* buffer containing btree block */
1502 int fields) /* mask of fields: XFS_BB_... */
1503 {
1504 int first; /* first byte offset logged */
1505 int last; /* last byte offset logged */
1506 static const short soffsets[] = { /* table of offsets (short) */
1507 offsetof(struct xfs_btree_block, bb_magic),
1508 offsetof(struct xfs_btree_block, bb_level),
1509 offsetof(struct xfs_btree_block, bb_numrecs),
1510 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1511 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1512 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1513 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1514 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1515 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1516 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1517 XFS_BTREE_SBLOCK_CRC_LEN
1518 };
1519 static const short loffsets[] = { /* table of offsets (long) */
1520 offsetof(struct xfs_btree_block, bb_magic),
1521 offsetof(struct xfs_btree_block, bb_level),
1522 offsetof(struct xfs_btree_block, bb_numrecs),
1523 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1524 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1525 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1526 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1527 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1528 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1529 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1530 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1531 XFS_BTREE_LBLOCK_CRC_LEN
1532 };
1533
1534 if (bp) {
1535 int nbits;
1536
1537 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1538 /*
1539 * We don't log the CRC when updating a btree
1540 * block but instead recreate it during log
1541 * recovery. As the log buffers have checksums
1542 * of their own this is safe and avoids logging a crc
1543 * update in a lot of places.
1544 */
1545 if (fields == XFS_BB_ALL_BITS)
1546 fields = XFS_BB_ALL_BITS_CRC;
1547 nbits = XFS_BB_NUM_BITS_CRC;
1548 } else {
1549 nbits = XFS_BB_NUM_BITS;
1550 }
1551 xfs_btree_offsets(fields,
1552 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1553 loffsets : soffsets,
1554 nbits, &first, &last);
1555 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1556 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1557 } else {
1558 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1559 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1560 }
1561 }
1562
1563 /*
1564 * Increment cursor by one record at the level.
1565 * For nonzero levels the leaf-ward information is untouched.
1566 */
1567 int /* error */
xfs_btree_increment(struct xfs_btree_cur * cur,int level,int * stat)1568 xfs_btree_increment(
1569 struct xfs_btree_cur *cur,
1570 int level,
1571 int *stat) /* success/failure */
1572 {
1573 struct xfs_btree_block *block;
1574 union xfs_btree_ptr ptr;
1575 struct xfs_buf *bp;
1576 int error; /* error return value */
1577 int lev;
1578
1579 ASSERT(level < cur->bc_nlevels);
1580
1581 /* Read-ahead to the right at this level. */
1582 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1583
1584 /* Get a pointer to the btree block. */
1585 block = xfs_btree_get_block(cur, level, &bp);
1586
1587 #ifdef DEBUG
1588 error = xfs_btree_check_block(cur, block, level, bp);
1589 if (error)
1590 goto error0;
1591 #endif
1592
1593 /* We're done if we remain in the block after the increment. */
1594 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1595 goto out1;
1596
1597 /* Fail if we just went off the right edge of the tree. */
1598 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1599 if (xfs_btree_ptr_is_null(cur, &ptr))
1600 goto out0;
1601
1602 XFS_BTREE_STATS_INC(cur, increment);
1603
1604 /*
1605 * March up the tree incrementing pointers.
1606 * Stop when we don't go off the right edge of a block.
1607 */
1608 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1609 block = xfs_btree_get_block(cur, lev, &bp);
1610
1611 #ifdef DEBUG
1612 error = xfs_btree_check_block(cur, block, lev, bp);
1613 if (error)
1614 goto error0;
1615 #endif
1616
1617 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1618 break;
1619
1620 /* Read-ahead the right block for the next loop. */
1621 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1622 }
1623
1624 /*
1625 * If we went off the root then we are either seriously
1626 * confused or have the tree root in an inode.
1627 */
1628 if (lev == cur->bc_nlevels) {
1629 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1630 goto out0;
1631 ASSERT(0);
1632 error = -EFSCORRUPTED;
1633 goto error0;
1634 }
1635 ASSERT(lev < cur->bc_nlevels);
1636
1637 /*
1638 * Now walk back down the tree, fixing up the cursor's buffer
1639 * pointers and key numbers.
1640 */
1641 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1642 union xfs_btree_ptr *ptrp;
1643
1644 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1645 --lev;
1646 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1647 if (error)
1648 goto error0;
1649
1650 xfs_btree_setbuf(cur, lev, bp);
1651 cur->bc_ptrs[lev] = 1;
1652 }
1653 out1:
1654 *stat = 1;
1655 return 0;
1656
1657 out0:
1658 *stat = 0;
1659 return 0;
1660
1661 error0:
1662 return error;
1663 }
1664
1665 /*
1666 * Decrement cursor by one record at the level.
1667 * For nonzero levels the leaf-ward information is untouched.
1668 */
1669 int /* error */
xfs_btree_decrement(struct xfs_btree_cur * cur,int level,int * stat)1670 xfs_btree_decrement(
1671 struct xfs_btree_cur *cur,
1672 int level,
1673 int *stat) /* success/failure */
1674 {
1675 struct xfs_btree_block *block;
1676 xfs_buf_t *bp;
1677 int error; /* error return value */
1678 int lev;
1679 union xfs_btree_ptr ptr;
1680
1681 ASSERT(level < cur->bc_nlevels);
1682
1683 /* Read-ahead to the left at this level. */
1684 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1685
1686 /* We're done if we remain in the block after the decrement. */
1687 if (--cur->bc_ptrs[level] > 0)
1688 goto out1;
1689
1690 /* Get a pointer to the btree block. */
1691 block = xfs_btree_get_block(cur, level, &bp);
1692
1693 #ifdef DEBUG
1694 error = xfs_btree_check_block(cur, block, level, bp);
1695 if (error)
1696 goto error0;
1697 #endif
1698
1699 /* Fail if we just went off the left edge of the tree. */
1700 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1701 if (xfs_btree_ptr_is_null(cur, &ptr))
1702 goto out0;
1703
1704 XFS_BTREE_STATS_INC(cur, decrement);
1705
1706 /*
1707 * March up the tree decrementing pointers.
1708 * Stop when we don't go off the left edge of a block.
1709 */
1710 for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1711 if (--cur->bc_ptrs[lev] > 0)
1712 break;
1713 /* Read-ahead the left block for the next loop. */
1714 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1715 }
1716
1717 /*
1718 * If we went off the root then we are seriously confused.
1719 * or the root of the tree is in an inode.
1720 */
1721 if (lev == cur->bc_nlevels) {
1722 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1723 goto out0;
1724 ASSERT(0);
1725 error = -EFSCORRUPTED;
1726 goto error0;
1727 }
1728 ASSERT(lev < cur->bc_nlevels);
1729
1730 /*
1731 * Now walk back down the tree, fixing up the cursor's buffer
1732 * pointers and key numbers.
1733 */
1734 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1735 union xfs_btree_ptr *ptrp;
1736
1737 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1738 --lev;
1739 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1740 if (error)
1741 goto error0;
1742 xfs_btree_setbuf(cur, lev, bp);
1743 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1744 }
1745 out1:
1746 *stat = 1;
1747 return 0;
1748
1749 out0:
1750 *stat = 0;
1751 return 0;
1752
1753 error0:
1754 return error;
1755 }
1756
1757 int
xfs_btree_lookup_get_block(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * pp,struct xfs_btree_block ** blkp)1758 xfs_btree_lookup_get_block(
1759 struct xfs_btree_cur *cur, /* btree cursor */
1760 int level, /* level in the btree */
1761 union xfs_btree_ptr *pp, /* ptr to btree block */
1762 struct xfs_btree_block **blkp) /* return btree block */
1763 {
1764 struct xfs_buf *bp; /* buffer pointer for btree block */
1765 xfs_daddr_t daddr;
1766 int error = 0;
1767
1768 /* special case the root block if in an inode */
1769 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1770 (level == cur->bc_nlevels - 1)) {
1771 *blkp = xfs_btree_get_iroot(cur);
1772 return 0;
1773 }
1774
1775 /*
1776 * If the old buffer at this level for the disk address we are
1777 * looking for re-use it.
1778 *
1779 * Otherwise throw it away and get a new one.
1780 */
1781 bp = cur->bc_bufs[level];
1782 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1783 if (error)
1784 return error;
1785 if (bp && XFS_BUF_ADDR(bp) == daddr) {
1786 *blkp = XFS_BUF_TO_BLOCK(bp);
1787 return 0;
1788 }
1789
1790 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1791 if (error)
1792 return error;
1793
1794 /* Check the inode owner since the verifiers don't. */
1795 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1796 !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
1797 (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1798 be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1799 cur->bc_private.b.ip->i_ino)
1800 goto out_bad;
1801
1802 /* Did we get the level we were looking for? */
1803 if (be16_to_cpu((*blkp)->bb_level) != level)
1804 goto out_bad;
1805
1806 /* Check that internal nodes have at least one record. */
1807 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1808 goto out_bad;
1809
1810 xfs_btree_setbuf(cur, level, bp);
1811 return 0;
1812
1813 out_bad:
1814 *blkp = NULL;
1815 xfs_buf_mark_corrupt(bp);
1816 xfs_trans_brelse(cur->bc_tp, bp);
1817 return -EFSCORRUPTED;
1818 }
1819
1820 /*
1821 * Get current search key. For level 0 we don't actually have a key
1822 * structure so we make one up from the record. For all other levels
1823 * we just return the right key.
1824 */
1825 STATIC union xfs_btree_key *
xfs_lookup_get_search_key(struct xfs_btree_cur * cur,int level,int keyno,struct xfs_btree_block * block,union xfs_btree_key * kp)1826 xfs_lookup_get_search_key(
1827 struct xfs_btree_cur *cur,
1828 int level,
1829 int keyno,
1830 struct xfs_btree_block *block,
1831 union xfs_btree_key *kp)
1832 {
1833 if (level == 0) {
1834 cur->bc_ops->init_key_from_rec(kp,
1835 xfs_btree_rec_addr(cur, keyno, block));
1836 return kp;
1837 }
1838
1839 return xfs_btree_key_addr(cur, keyno, block);
1840 }
1841
1842 /*
1843 * Lookup the record. The cursor is made to point to it, based on dir.
1844 * stat is set to 0 if can't find any such record, 1 for success.
1845 */
1846 int /* error */
xfs_btree_lookup(struct xfs_btree_cur * cur,xfs_lookup_t dir,int * stat)1847 xfs_btree_lookup(
1848 struct xfs_btree_cur *cur, /* btree cursor */
1849 xfs_lookup_t dir, /* <=, ==, or >= */
1850 int *stat) /* success/failure */
1851 {
1852 struct xfs_btree_block *block; /* current btree block */
1853 int64_t diff; /* difference for the current key */
1854 int error; /* error return value */
1855 int keyno; /* current key number */
1856 int level; /* level in the btree */
1857 union xfs_btree_ptr *pp; /* ptr to btree block */
1858 union xfs_btree_ptr ptr; /* ptr to btree block */
1859
1860 XFS_BTREE_STATS_INC(cur, lookup);
1861
1862 /* No such thing as a zero-level tree. */
1863 if (cur->bc_nlevels == 0) {
1864 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, cur->bc_mp);
1865 return -EFSCORRUPTED;
1866 }
1867
1868 block = NULL;
1869 keyno = 0;
1870
1871 /* initialise start pointer from cursor */
1872 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1873 pp = &ptr;
1874
1875 /*
1876 * Iterate over each level in the btree, starting at the root.
1877 * For each level above the leaves, find the key we need, based
1878 * on the lookup record, then follow the corresponding block
1879 * pointer down to the next level.
1880 */
1881 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1882 /* Get the block we need to do the lookup on. */
1883 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1884 if (error)
1885 goto error0;
1886
1887 if (diff == 0) {
1888 /*
1889 * If we already had a key match at a higher level, we
1890 * know we need to use the first entry in this block.
1891 */
1892 keyno = 1;
1893 } else {
1894 /* Otherwise search this block. Do a binary search. */
1895
1896 int high; /* high entry number */
1897 int low; /* low entry number */
1898
1899 /* Set low and high entry numbers, 1-based. */
1900 low = 1;
1901 high = xfs_btree_get_numrecs(block);
1902 if (!high) {
1903 /* Block is empty, must be an empty leaf. */
1904 if (level != 0 || cur->bc_nlevels != 1) {
1905 XFS_CORRUPTION_ERROR(__func__,
1906 XFS_ERRLEVEL_LOW,
1907 cur->bc_mp, block,
1908 sizeof(*block));
1909 return -EFSCORRUPTED;
1910 }
1911
1912 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1913 *stat = 0;
1914 return 0;
1915 }
1916
1917 /* Binary search the block. */
1918 while (low <= high) {
1919 union xfs_btree_key key;
1920 union xfs_btree_key *kp;
1921
1922 XFS_BTREE_STATS_INC(cur, compare);
1923
1924 /* keyno is average of low and high. */
1925 keyno = (low + high) >> 1;
1926
1927 /* Get current search key */
1928 kp = xfs_lookup_get_search_key(cur, level,
1929 keyno, block, &key);
1930
1931 /*
1932 * Compute difference to get next direction:
1933 * - less than, move right
1934 * - greater than, move left
1935 * - equal, we're done
1936 */
1937 diff = cur->bc_ops->key_diff(cur, kp);
1938 if (diff < 0)
1939 low = keyno + 1;
1940 else if (diff > 0)
1941 high = keyno - 1;
1942 else
1943 break;
1944 }
1945 }
1946
1947 /*
1948 * If there are more levels, set up for the next level
1949 * by getting the block number and filling in the cursor.
1950 */
1951 if (level > 0) {
1952 /*
1953 * If we moved left, need the previous key number,
1954 * unless there isn't one.
1955 */
1956 if (diff > 0 && --keyno < 1)
1957 keyno = 1;
1958 pp = xfs_btree_ptr_addr(cur, keyno, block);
1959
1960 error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1961 if (error)
1962 goto error0;
1963
1964 cur->bc_ptrs[level] = keyno;
1965 }
1966 }
1967
1968 /* Done with the search. See if we need to adjust the results. */
1969 if (dir != XFS_LOOKUP_LE && diff < 0) {
1970 keyno++;
1971 /*
1972 * If ge search and we went off the end of the block, but it's
1973 * not the last block, we're in the wrong block.
1974 */
1975 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1976 if (dir == XFS_LOOKUP_GE &&
1977 keyno > xfs_btree_get_numrecs(block) &&
1978 !xfs_btree_ptr_is_null(cur, &ptr)) {
1979 int i;
1980
1981 cur->bc_ptrs[0] = keyno;
1982 error = xfs_btree_increment(cur, 0, &i);
1983 if (error)
1984 goto error0;
1985 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1986 *stat = 1;
1987 return 0;
1988 }
1989 } else if (dir == XFS_LOOKUP_LE && diff > 0)
1990 keyno--;
1991 cur->bc_ptrs[0] = keyno;
1992
1993 /* Return if we succeeded or not. */
1994 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1995 *stat = 0;
1996 else if (dir != XFS_LOOKUP_EQ || diff == 0)
1997 *stat = 1;
1998 else
1999 *stat = 0;
2000 return 0;
2001
2002 error0:
2003 return error;
2004 }
2005
2006 /* Find the high key storage area from a regular key. */
2007 union xfs_btree_key *
xfs_btree_high_key_from_key(struct xfs_btree_cur * cur,union xfs_btree_key * key)2008 xfs_btree_high_key_from_key(
2009 struct xfs_btree_cur *cur,
2010 union xfs_btree_key *key)
2011 {
2012 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2013 return (union xfs_btree_key *)((char *)key +
2014 (cur->bc_ops->key_len / 2));
2015 }
2016
2017 /* Determine the low (and high if overlapped) keys of a leaf block */
2018 STATIC void
xfs_btree_get_leaf_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2019 xfs_btree_get_leaf_keys(
2020 struct xfs_btree_cur *cur,
2021 struct xfs_btree_block *block,
2022 union xfs_btree_key *key)
2023 {
2024 union xfs_btree_key max_hkey;
2025 union xfs_btree_key hkey;
2026 union xfs_btree_rec *rec;
2027 union xfs_btree_key *high;
2028 int n;
2029
2030 rec = xfs_btree_rec_addr(cur, 1, block);
2031 cur->bc_ops->init_key_from_rec(key, rec);
2032
2033 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2034
2035 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2036 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2037 rec = xfs_btree_rec_addr(cur, n, block);
2038 cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2039 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2040 > 0)
2041 max_hkey = hkey;
2042 }
2043
2044 high = xfs_btree_high_key_from_key(cur, key);
2045 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2046 }
2047 }
2048
2049 /* Determine the low (and high if overlapped) keys of a node block */
2050 STATIC void
xfs_btree_get_node_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2051 xfs_btree_get_node_keys(
2052 struct xfs_btree_cur *cur,
2053 struct xfs_btree_block *block,
2054 union xfs_btree_key *key)
2055 {
2056 union xfs_btree_key *hkey;
2057 union xfs_btree_key *max_hkey;
2058 union xfs_btree_key *high;
2059 int n;
2060
2061 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2062 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2063 cur->bc_ops->key_len / 2);
2064
2065 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2066 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2067 hkey = xfs_btree_high_key_addr(cur, n, block);
2068 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2069 max_hkey = hkey;
2070 }
2071
2072 high = xfs_btree_high_key_from_key(cur, key);
2073 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2074 } else {
2075 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2076 cur->bc_ops->key_len);
2077 }
2078 }
2079
2080 /* Derive the keys for any btree block. */
2081 void
xfs_btree_get_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2082 xfs_btree_get_keys(
2083 struct xfs_btree_cur *cur,
2084 struct xfs_btree_block *block,
2085 union xfs_btree_key *key)
2086 {
2087 if (be16_to_cpu(block->bb_level) == 0)
2088 xfs_btree_get_leaf_keys(cur, block, key);
2089 else
2090 xfs_btree_get_node_keys(cur, block, key);
2091 }
2092
2093 /*
2094 * Decide if we need to update the parent keys of a btree block. For
2095 * a standard btree this is only necessary if we're updating the first
2096 * record/key. For an overlapping btree, we must always update the
2097 * keys because the highest key can be in any of the records or keys
2098 * in the block.
2099 */
2100 static inline bool
xfs_btree_needs_key_update(struct xfs_btree_cur * cur,int ptr)2101 xfs_btree_needs_key_update(
2102 struct xfs_btree_cur *cur,
2103 int ptr)
2104 {
2105 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2106 }
2107
2108 /*
2109 * Update the low and high parent keys of the given level, progressing
2110 * towards the root. If force_all is false, stop if the keys for a given
2111 * level do not need updating.
2112 */
2113 STATIC int
__xfs_btree_updkeys(struct xfs_btree_cur * cur,int level,struct xfs_btree_block * block,struct xfs_buf * bp0,bool force_all)2114 __xfs_btree_updkeys(
2115 struct xfs_btree_cur *cur,
2116 int level,
2117 struct xfs_btree_block *block,
2118 struct xfs_buf *bp0,
2119 bool force_all)
2120 {
2121 union xfs_btree_key key; /* keys from current level */
2122 union xfs_btree_key *lkey; /* keys from the next level up */
2123 union xfs_btree_key *hkey;
2124 union xfs_btree_key *nlkey; /* keys from the next level up */
2125 union xfs_btree_key *nhkey;
2126 struct xfs_buf *bp;
2127 int ptr;
2128
2129 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2130
2131 /* Exit if there aren't any parent levels to update. */
2132 if (level + 1 >= cur->bc_nlevels)
2133 return 0;
2134
2135 trace_xfs_btree_updkeys(cur, level, bp0);
2136
2137 lkey = &key;
2138 hkey = xfs_btree_high_key_from_key(cur, lkey);
2139 xfs_btree_get_keys(cur, block, lkey);
2140 for (level++; level < cur->bc_nlevels; level++) {
2141 #ifdef DEBUG
2142 int error;
2143 #endif
2144 block = xfs_btree_get_block(cur, level, &bp);
2145 trace_xfs_btree_updkeys(cur, level, bp);
2146 #ifdef DEBUG
2147 error = xfs_btree_check_block(cur, block, level, bp);
2148 if (error)
2149 return error;
2150 #endif
2151 ptr = cur->bc_ptrs[level];
2152 nlkey = xfs_btree_key_addr(cur, ptr, block);
2153 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2154 if (!force_all &&
2155 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2156 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2157 break;
2158 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2159 xfs_btree_log_keys(cur, bp, ptr, ptr);
2160 if (level + 1 >= cur->bc_nlevels)
2161 break;
2162 xfs_btree_get_node_keys(cur, block, lkey);
2163 }
2164
2165 return 0;
2166 }
2167
2168 /* Update all the keys from some level in cursor back to the root. */
2169 STATIC int
xfs_btree_updkeys_force(struct xfs_btree_cur * cur,int level)2170 xfs_btree_updkeys_force(
2171 struct xfs_btree_cur *cur,
2172 int level)
2173 {
2174 struct xfs_buf *bp;
2175 struct xfs_btree_block *block;
2176
2177 block = xfs_btree_get_block(cur, level, &bp);
2178 return __xfs_btree_updkeys(cur, level, block, bp, true);
2179 }
2180
2181 /*
2182 * Update the parent keys of the given level, progressing towards the root.
2183 */
2184 STATIC int
xfs_btree_update_keys(struct xfs_btree_cur * cur,int level)2185 xfs_btree_update_keys(
2186 struct xfs_btree_cur *cur,
2187 int level)
2188 {
2189 struct xfs_btree_block *block;
2190 struct xfs_buf *bp;
2191 union xfs_btree_key *kp;
2192 union xfs_btree_key key;
2193 int ptr;
2194
2195 ASSERT(level >= 0);
2196
2197 block = xfs_btree_get_block(cur, level, &bp);
2198 if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2199 return __xfs_btree_updkeys(cur, level, block, bp, false);
2200
2201 /*
2202 * Go up the tree from this level toward the root.
2203 * At each level, update the key value to the value input.
2204 * Stop when we reach a level where the cursor isn't pointing
2205 * at the first entry in the block.
2206 */
2207 xfs_btree_get_keys(cur, block, &key);
2208 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2209 #ifdef DEBUG
2210 int error;
2211 #endif
2212 block = xfs_btree_get_block(cur, level, &bp);
2213 #ifdef DEBUG
2214 error = xfs_btree_check_block(cur, block, level, bp);
2215 if (error)
2216 return error;
2217 #endif
2218 ptr = cur->bc_ptrs[level];
2219 kp = xfs_btree_key_addr(cur, ptr, block);
2220 xfs_btree_copy_keys(cur, kp, &key, 1);
2221 xfs_btree_log_keys(cur, bp, ptr, ptr);
2222 }
2223
2224 return 0;
2225 }
2226
2227 /*
2228 * Update the record referred to by cur to the value in the
2229 * given record. This either works (return 0) or gets an
2230 * EFSCORRUPTED error.
2231 */
2232 int
xfs_btree_update(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)2233 xfs_btree_update(
2234 struct xfs_btree_cur *cur,
2235 union xfs_btree_rec *rec)
2236 {
2237 struct xfs_btree_block *block;
2238 struct xfs_buf *bp;
2239 int error;
2240 int ptr;
2241 union xfs_btree_rec *rp;
2242
2243 /* Pick up the current block. */
2244 block = xfs_btree_get_block(cur, 0, &bp);
2245
2246 #ifdef DEBUG
2247 error = xfs_btree_check_block(cur, block, 0, bp);
2248 if (error)
2249 goto error0;
2250 #endif
2251 /* Get the address of the rec to be updated. */
2252 ptr = cur->bc_ptrs[0];
2253 rp = xfs_btree_rec_addr(cur, ptr, block);
2254
2255 /* Fill in the new contents and log them. */
2256 xfs_btree_copy_recs(cur, rp, rec, 1);
2257 xfs_btree_log_recs(cur, bp, ptr, ptr);
2258
2259 /*
2260 * If we are tracking the last record in the tree and
2261 * we are at the far right edge of the tree, update it.
2262 */
2263 if (xfs_btree_is_lastrec(cur, block, 0)) {
2264 cur->bc_ops->update_lastrec(cur, block, rec,
2265 ptr, LASTREC_UPDATE);
2266 }
2267
2268 /* Pass new key value up to our parent. */
2269 if (xfs_btree_needs_key_update(cur, ptr)) {
2270 error = xfs_btree_update_keys(cur, 0);
2271 if (error)
2272 goto error0;
2273 }
2274
2275 return 0;
2276
2277 error0:
2278 return error;
2279 }
2280
2281 /*
2282 * Move 1 record left from cur/level if possible.
2283 * Update cur to reflect the new path.
2284 */
2285 STATIC int /* error */
xfs_btree_lshift(struct xfs_btree_cur * cur,int level,int * stat)2286 xfs_btree_lshift(
2287 struct xfs_btree_cur *cur,
2288 int level,
2289 int *stat) /* success/failure */
2290 {
2291 struct xfs_buf *lbp; /* left buffer pointer */
2292 struct xfs_btree_block *left; /* left btree block */
2293 int lrecs; /* left record count */
2294 struct xfs_buf *rbp; /* right buffer pointer */
2295 struct xfs_btree_block *right; /* right btree block */
2296 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2297 int rrecs; /* right record count */
2298 union xfs_btree_ptr lptr; /* left btree pointer */
2299 union xfs_btree_key *rkp = NULL; /* right btree key */
2300 union xfs_btree_ptr *rpp = NULL; /* right address pointer */
2301 union xfs_btree_rec *rrp = NULL; /* right record pointer */
2302 int error; /* error return value */
2303 int i;
2304
2305 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2306 level == cur->bc_nlevels - 1)
2307 goto out0;
2308
2309 /* Set up variables for this block as "right". */
2310 right = xfs_btree_get_block(cur, level, &rbp);
2311
2312 #ifdef DEBUG
2313 error = xfs_btree_check_block(cur, right, level, rbp);
2314 if (error)
2315 goto error0;
2316 #endif
2317
2318 /* If we've got no left sibling then we can't shift an entry left. */
2319 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2320 if (xfs_btree_ptr_is_null(cur, &lptr))
2321 goto out0;
2322
2323 /*
2324 * If the cursor entry is the one that would be moved, don't
2325 * do it... it's too complicated.
2326 */
2327 if (cur->bc_ptrs[level] <= 1)
2328 goto out0;
2329
2330 /* Set up the left neighbor as "left". */
2331 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2332 if (error)
2333 goto error0;
2334
2335 /* If it's full, it can't take another entry. */
2336 lrecs = xfs_btree_get_numrecs(left);
2337 if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2338 goto out0;
2339
2340 rrecs = xfs_btree_get_numrecs(right);
2341
2342 /*
2343 * We add one entry to the left side and remove one for the right side.
2344 * Account for it here, the changes will be updated on disk and logged
2345 * later.
2346 */
2347 lrecs++;
2348 rrecs--;
2349
2350 XFS_BTREE_STATS_INC(cur, lshift);
2351 XFS_BTREE_STATS_ADD(cur, moves, 1);
2352
2353 /*
2354 * If non-leaf, copy a key and a ptr to the left block.
2355 * Log the changes to the left block.
2356 */
2357 if (level > 0) {
2358 /* It's a non-leaf. Move keys and pointers. */
2359 union xfs_btree_key *lkp; /* left btree key */
2360 union xfs_btree_ptr *lpp; /* left address pointer */
2361
2362 lkp = xfs_btree_key_addr(cur, lrecs, left);
2363 rkp = xfs_btree_key_addr(cur, 1, right);
2364
2365 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2366 rpp = xfs_btree_ptr_addr(cur, 1, right);
2367
2368 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2369 if (error)
2370 goto error0;
2371
2372 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2373 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2374
2375 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2376 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2377
2378 ASSERT(cur->bc_ops->keys_inorder(cur,
2379 xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2380 } else {
2381 /* It's a leaf. Move records. */
2382 union xfs_btree_rec *lrp; /* left record pointer */
2383
2384 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2385 rrp = xfs_btree_rec_addr(cur, 1, right);
2386
2387 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2388 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2389
2390 ASSERT(cur->bc_ops->recs_inorder(cur,
2391 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2392 }
2393
2394 xfs_btree_set_numrecs(left, lrecs);
2395 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2396
2397 xfs_btree_set_numrecs(right, rrecs);
2398 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2399
2400 /*
2401 * Slide the contents of right down one entry.
2402 */
2403 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2404 if (level > 0) {
2405 /* It's a nonleaf. operate on keys and ptrs */
2406 int i; /* loop index */
2407
2408 for (i = 0; i < rrecs; i++) {
2409 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2410 if (error)
2411 goto error0;
2412 }
2413
2414 xfs_btree_shift_keys(cur,
2415 xfs_btree_key_addr(cur, 2, right),
2416 -1, rrecs);
2417 xfs_btree_shift_ptrs(cur,
2418 xfs_btree_ptr_addr(cur, 2, right),
2419 -1, rrecs);
2420
2421 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2422 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2423 } else {
2424 /* It's a leaf. operate on records */
2425 xfs_btree_shift_recs(cur,
2426 xfs_btree_rec_addr(cur, 2, right),
2427 -1, rrecs);
2428 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2429 }
2430
2431 /*
2432 * Using a temporary cursor, update the parent key values of the
2433 * block on the left.
2434 */
2435 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2436 error = xfs_btree_dup_cursor(cur, &tcur);
2437 if (error)
2438 goto error0;
2439 i = xfs_btree_firstrec(tcur, level);
2440 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2441
2442 error = xfs_btree_decrement(tcur, level, &i);
2443 if (error)
2444 goto error1;
2445
2446 /* Update the parent high keys of the left block, if needed. */
2447 error = xfs_btree_update_keys(tcur, level);
2448 if (error)
2449 goto error1;
2450
2451 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2452 }
2453
2454 /* Update the parent keys of the right block. */
2455 error = xfs_btree_update_keys(cur, level);
2456 if (error)
2457 goto error0;
2458
2459 /* Slide the cursor value left one. */
2460 cur->bc_ptrs[level]--;
2461
2462 *stat = 1;
2463 return 0;
2464
2465 out0:
2466 *stat = 0;
2467 return 0;
2468
2469 error0:
2470 return error;
2471
2472 error1:
2473 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2474 return error;
2475 }
2476
2477 /*
2478 * Move 1 record right from cur/level if possible.
2479 * Update cur to reflect the new path.
2480 */
2481 STATIC int /* error */
xfs_btree_rshift(struct xfs_btree_cur * cur,int level,int * stat)2482 xfs_btree_rshift(
2483 struct xfs_btree_cur *cur,
2484 int level,
2485 int *stat) /* success/failure */
2486 {
2487 struct xfs_buf *lbp; /* left buffer pointer */
2488 struct xfs_btree_block *left; /* left btree block */
2489 struct xfs_buf *rbp; /* right buffer pointer */
2490 struct xfs_btree_block *right; /* right btree block */
2491 struct xfs_btree_cur *tcur; /* temporary btree cursor */
2492 union xfs_btree_ptr rptr; /* right block pointer */
2493 union xfs_btree_key *rkp; /* right btree key */
2494 int rrecs; /* right record count */
2495 int lrecs; /* left record count */
2496 int error; /* error return value */
2497 int i; /* loop counter */
2498
2499 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2500 (level == cur->bc_nlevels - 1))
2501 goto out0;
2502
2503 /* Set up variables for this block as "left". */
2504 left = xfs_btree_get_block(cur, level, &lbp);
2505
2506 #ifdef DEBUG
2507 error = xfs_btree_check_block(cur, left, level, lbp);
2508 if (error)
2509 goto error0;
2510 #endif
2511
2512 /* If we've got no right sibling then we can't shift an entry right. */
2513 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2514 if (xfs_btree_ptr_is_null(cur, &rptr))
2515 goto out0;
2516
2517 /*
2518 * If the cursor entry is the one that would be moved, don't
2519 * do it... it's too complicated.
2520 */
2521 lrecs = xfs_btree_get_numrecs(left);
2522 if (cur->bc_ptrs[level] >= lrecs)
2523 goto out0;
2524
2525 /* Set up the right neighbor as "right". */
2526 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2527 if (error)
2528 goto error0;
2529
2530 /* If it's full, it can't take another entry. */
2531 rrecs = xfs_btree_get_numrecs(right);
2532 if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2533 goto out0;
2534
2535 XFS_BTREE_STATS_INC(cur, rshift);
2536 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2537
2538 /*
2539 * Make a hole at the start of the right neighbor block, then
2540 * copy the last left block entry to the hole.
2541 */
2542 if (level > 0) {
2543 /* It's a nonleaf. make a hole in the keys and ptrs */
2544 union xfs_btree_key *lkp;
2545 union xfs_btree_ptr *lpp;
2546 union xfs_btree_ptr *rpp;
2547
2548 lkp = xfs_btree_key_addr(cur, lrecs, left);
2549 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2550 rkp = xfs_btree_key_addr(cur, 1, right);
2551 rpp = xfs_btree_ptr_addr(cur, 1, right);
2552
2553 for (i = rrecs - 1; i >= 0; i--) {
2554 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2555 if (error)
2556 goto error0;
2557 }
2558
2559 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2560 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2561
2562 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2563 if (error)
2564 goto error0;
2565
2566 /* Now put the new data in, and log it. */
2567 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2568 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2569
2570 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2571 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2572
2573 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2574 xfs_btree_key_addr(cur, 2, right)));
2575 } else {
2576 /* It's a leaf. make a hole in the records */
2577 union xfs_btree_rec *lrp;
2578 union xfs_btree_rec *rrp;
2579
2580 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2581 rrp = xfs_btree_rec_addr(cur, 1, right);
2582
2583 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2584
2585 /* Now put the new data in, and log it. */
2586 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2587 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2588 }
2589
2590 /*
2591 * Decrement and log left's numrecs, bump and log right's numrecs.
2592 */
2593 xfs_btree_set_numrecs(left, --lrecs);
2594 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2595
2596 xfs_btree_set_numrecs(right, ++rrecs);
2597 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2598
2599 /*
2600 * Using a temporary cursor, update the parent key values of the
2601 * block on the right.
2602 */
2603 error = xfs_btree_dup_cursor(cur, &tcur);
2604 if (error)
2605 goto error0;
2606 i = xfs_btree_lastrec(tcur, level);
2607 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2608
2609 error = xfs_btree_increment(tcur, level, &i);
2610 if (error)
2611 goto error1;
2612
2613 /* Update the parent high keys of the left block, if needed. */
2614 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2615 error = xfs_btree_update_keys(cur, level);
2616 if (error)
2617 goto error1;
2618 }
2619
2620 /* Update the parent keys of the right block. */
2621 error = xfs_btree_update_keys(tcur, level);
2622 if (error)
2623 goto error1;
2624
2625 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2626
2627 *stat = 1;
2628 return 0;
2629
2630 out0:
2631 *stat = 0;
2632 return 0;
2633
2634 error0:
2635 return error;
2636
2637 error1:
2638 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2639 return error;
2640 }
2641
2642 /*
2643 * Split cur/level block in half.
2644 * Return new block number and the key to its first
2645 * record (to be inserted into parent).
2646 */
2647 STATIC int /* error */
__xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2648 __xfs_btree_split(
2649 struct xfs_btree_cur *cur,
2650 int level,
2651 union xfs_btree_ptr *ptrp,
2652 union xfs_btree_key *key,
2653 struct xfs_btree_cur **curp,
2654 int *stat) /* success/failure */
2655 {
2656 union xfs_btree_ptr lptr; /* left sibling block ptr */
2657 struct xfs_buf *lbp; /* left buffer pointer */
2658 struct xfs_btree_block *left; /* left btree block */
2659 union xfs_btree_ptr rptr; /* right sibling block ptr */
2660 struct xfs_buf *rbp; /* right buffer pointer */
2661 struct xfs_btree_block *right; /* right btree block */
2662 union xfs_btree_ptr rrptr; /* right-right sibling ptr */
2663 struct xfs_buf *rrbp; /* right-right buffer pointer */
2664 struct xfs_btree_block *rrblock; /* right-right btree block */
2665 int lrecs;
2666 int rrecs;
2667 int src_index;
2668 int error; /* error return value */
2669 int i;
2670
2671 XFS_BTREE_STATS_INC(cur, split);
2672
2673 /* Set up left block (current one). */
2674 left = xfs_btree_get_block(cur, level, &lbp);
2675
2676 #ifdef DEBUG
2677 error = xfs_btree_check_block(cur, left, level, lbp);
2678 if (error)
2679 goto error0;
2680 #endif
2681
2682 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2683
2684 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2685 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2686 if (error)
2687 goto error0;
2688 if (*stat == 0)
2689 goto out0;
2690 XFS_BTREE_STATS_INC(cur, alloc);
2691
2692 /* Set up the new block as "right". */
2693 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2694 if (error)
2695 goto error0;
2696
2697 /* Fill in the btree header for the new right block. */
2698 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2699
2700 /*
2701 * Split the entries between the old and the new block evenly.
2702 * Make sure that if there's an odd number of entries now, that
2703 * each new block will have the same number of entries.
2704 */
2705 lrecs = xfs_btree_get_numrecs(left);
2706 rrecs = lrecs / 2;
2707 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2708 rrecs++;
2709 src_index = (lrecs - rrecs + 1);
2710
2711 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2712
2713 /* Adjust numrecs for the later get_*_keys() calls. */
2714 lrecs -= rrecs;
2715 xfs_btree_set_numrecs(left, lrecs);
2716 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2717
2718 /*
2719 * Copy btree block entries from the left block over to the
2720 * new block, the right. Update the right block and log the
2721 * changes.
2722 */
2723 if (level > 0) {
2724 /* It's a non-leaf. Move keys and pointers. */
2725 union xfs_btree_key *lkp; /* left btree key */
2726 union xfs_btree_ptr *lpp; /* left address pointer */
2727 union xfs_btree_key *rkp; /* right btree key */
2728 union xfs_btree_ptr *rpp; /* right address pointer */
2729
2730 lkp = xfs_btree_key_addr(cur, src_index, left);
2731 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2732 rkp = xfs_btree_key_addr(cur, 1, right);
2733 rpp = xfs_btree_ptr_addr(cur, 1, right);
2734
2735 for (i = src_index; i < rrecs; i++) {
2736 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2737 if (error)
2738 goto error0;
2739 }
2740
2741 /* Copy the keys & pointers to the new block. */
2742 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2743 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2744
2745 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2746 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2747
2748 /* Stash the keys of the new block for later insertion. */
2749 xfs_btree_get_node_keys(cur, right, key);
2750 } else {
2751 /* It's a leaf. Move records. */
2752 union xfs_btree_rec *lrp; /* left record pointer */
2753 union xfs_btree_rec *rrp; /* right record pointer */
2754
2755 lrp = xfs_btree_rec_addr(cur, src_index, left);
2756 rrp = xfs_btree_rec_addr(cur, 1, right);
2757
2758 /* Copy records to the new block. */
2759 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2760 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2761
2762 /* Stash the keys of the new block for later insertion. */
2763 xfs_btree_get_leaf_keys(cur, right, key);
2764 }
2765
2766 /*
2767 * Find the left block number by looking in the buffer.
2768 * Adjust sibling pointers.
2769 */
2770 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2771 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2772 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2773 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2774
2775 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2776 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2777
2778 /*
2779 * If there's a block to the new block's right, make that block
2780 * point back to right instead of to left.
2781 */
2782 if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2783 error = xfs_btree_read_buf_block(cur, &rrptr,
2784 0, &rrblock, &rrbp);
2785 if (error)
2786 goto error0;
2787 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2788 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2789 }
2790
2791 /* Update the parent high keys of the left block, if needed. */
2792 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2793 error = xfs_btree_update_keys(cur, level);
2794 if (error)
2795 goto error0;
2796 }
2797
2798 /*
2799 * If the cursor is really in the right block, move it there.
2800 * If it's just pointing past the last entry in left, then we'll
2801 * insert there, so don't change anything in that case.
2802 */
2803 if (cur->bc_ptrs[level] > lrecs + 1) {
2804 xfs_btree_setbuf(cur, level, rbp);
2805 cur->bc_ptrs[level] -= lrecs;
2806 }
2807 /*
2808 * If there are more levels, we'll need another cursor which refers
2809 * the right block, no matter where this cursor was.
2810 */
2811 if (level + 1 < cur->bc_nlevels) {
2812 error = xfs_btree_dup_cursor(cur, curp);
2813 if (error)
2814 goto error0;
2815 (*curp)->bc_ptrs[level + 1]++;
2816 }
2817 *ptrp = rptr;
2818 *stat = 1;
2819 return 0;
2820 out0:
2821 *stat = 0;
2822 return 0;
2823
2824 error0:
2825 return error;
2826 }
2827
2828 struct xfs_btree_split_args {
2829 struct xfs_btree_cur *cur;
2830 int level;
2831 union xfs_btree_ptr *ptrp;
2832 union xfs_btree_key *key;
2833 struct xfs_btree_cur **curp;
2834 int *stat; /* success/failure */
2835 int result;
2836 bool kswapd; /* allocation in kswapd context */
2837 struct completion *done;
2838 struct work_struct work;
2839 };
2840
2841 /*
2842 * Stack switching interfaces for allocation
2843 */
2844 static void
xfs_btree_split_worker(struct work_struct * work)2845 xfs_btree_split_worker(
2846 struct work_struct *work)
2847 {
2848 struct xfs_btree_split_args *args = container_of(work,
2849 struct xfs_btree_split_args, work);
2850 unsigned long pflags;
2851 unsigned long new_pflags = PF_MEMALLOC_NOFS;
2852
2853 /*
2854 * we are in a transaction context here, but may also be doing work
2855 * in kswapd context, and hence we may need to inherit that state
2856 * temporarily to ensure that we don't block waiting for memory reclaim
2857 * in any way.
2858 */
2859 if (args->kswapd)
2860 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2861
2862 current_set_flags_nested(&pflags, new_pflags);
2863
2864 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2865 args->key, args->curp, args->stat);
2866 complete(args->done);
2867
2868 current_restore_flags_nested(&pflags, new_pflags);
2869 }
2870
2871 /*
2872 * BMBT split requests often come in with little stack to work on. Push
2873 * them off to a worker thread so there is lots of stack to use. For the other
2874 * btree types, just call directly to avoid the context switch overhead here.
2875 */
2876 STATIC int /* error */
xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2877 xfs_btree_split(
2878 struct xfs_btree_cur *cur,
2879 int level,
2880 union xfs_btree_ptr *ptrp,
2881 union xfs_btree_key *key,
2882 struct xfs_btree_cur **curp,
2883 int *stat) /* success/failure */
2884 {
2885 struct xfs_btree_split_args args;
2886 DECLARE_COMPLETION_ONSTACK(done);
2887
2888 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2889 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2890
2891 args.cur = cur;
2892 args.level = level;
2893 args.ptrp = ptrp;
2894 args.key = key;
2895 args.curp = curp;
2896 args.stat = stat;
2897 args.done = &done;
2898 args.kswapd = current_is_kswapd();
2899 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2900 queue_work(xfs_alloc_wq, &args.work);
2901 wait_for_completion(&done);
2902 destroy_work_on_stack(&args.work);
2903 return args.result;
2904 }
2905
2906
2907 /*
2908 * Copy the old inode root contents into a real block and make the
2909 * broot point to it.
2910 */
2911 int /* error */
xfs_btree_new_iroot(struct xfs_btree_cur * cur,int * logflags,int * stat)2912 xfs_btree_new_iroot(
2913 struct xfs_btree_cur *cur, /* btree cursor */
2914 int *logflags, /* logging flags for inode */
2915 int *stat) /* return status - 0 fail */
2916 {
2917 struct xfs_buf *cbp; /* buffer for cblock */
2918 struct xfs_btree_block *block; /* btree block */
2919 struct xfs_btree_block *cblock; /* child btree block */
2920 union xfs_btree_key *ckp; /* child key pointer */
2921 union xfs_btree_ptr *cpp; /* child ptr pointer */
2922 union xfs_btree_key *kp; /* pointer to btree key */
2923 union xfs_btree_ptr *pp; /* pointer to block addr */
2924 union xfs_btree_ptr nptr; /* new block addr */
2925 int level; /* btree level */
2926 int error; /* error return code */
2927 int i; /* loop counter */
2928
2929 XFS_BTREE_STATS_INC(cur, newroot);
2930
2931 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2932
2933 level = cur->bc_nlevels - 1;
2934
2935 block = xfs_btree_get_iroot(cur);
2936 pp = xfs_btree_ptr_addr(cur, 1, block);
2937
2938 /* Allocate the new block. If we can't do it, we're toast. Give up. */
2939 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2940 if (error)
2941 goto error0;
2942 if (*stat == 0)
2943 return 0;
2944
2945 XFS_BTREE_STATS_INC(cur, alloc);
2946
2947 /* Copy the root into a real block. */
2948 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2949 if (error)
2950 goto error0;
2951
2952 /*
2953 * we can't just memcpy() the root in for CRC enabled btree blocks.
2954 * In that case have to also ensure the blkno remains correct
2955 */
2956 memcpy(cblock, block, xfs_btree_block_len(cur));
2957 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2958 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2959 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2960 else
2961 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2962 }
2963
2964 be16_add_cpu(&block->bb_level, 1);
2965 xfs_btree_set_numrecs(block, 1);
2966 cur->bc_nlevels++;
2967 cur->bc_ptrs[level + 1] = 1;
2968
2969 kp = xfs_btree_key_addr(cur, 1, block);
2970 ckp = xfs_btree_key_addr(cur, 1, cblock);
2971 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2972
2973 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2974 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2975 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2976 if (error)
2977 goto error0;
2978 }
2979
2980 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2981
2982 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2983 if (error)
2984 goto error0;
2985
2986 xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2987
2988 xfs_iroot_realloc(cur->bc_private.b.ip,
2989 1 - xfs_btree_get_numrecs(cblock),
2990 cur->bc_private.b.whichfork);
2991
2992 xfs_btree_setbuf(cur, level, cbp);
2993
2994 /*
2995 * Do all this logging at the end so that
2996 * the root is at the right level.
2997 */
2998 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2999 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3000 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3001
3002 *logflags |=
3003 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3004 *stat = 1;
3005 return 0;
3006 error0:
3007 return error;
3008 }
3009
3010 /*
3011 * Allocate a new root block, fill it in.
3012 */
3013 STATIC int /* error */
xfs_btree_new_root(struct xfs_btree_cur * cur,int * stat)3014 xfs_btree_new_root(
3015 struct xfs_btree_cur *cur, /* btree cursor */
3016 int *stat) /* success/failure */
3017 {
3018 struct xfs_btree_block *block; /* one half of the old root block */
3019 struct xfs_buf *bp; /* buffer containing block */
3020 int error; /* error return value */
3021 struct xfs_buf *lbp; /* left buffer pointer */
3022 struct xfs_btree_block *left; /* left btree block */
3023 struct xfs_buf *nbp; /* new (root) buffer */
3024 struct xfs_btree_block *new; /* new (root) btree block */
3025 int nptr; /* new value for key index, 1 or 2 */
3026 struct xfs_buf *rbp; /* right buffer pointer */
3027 struct xfs_btree_block *right; /* right btree block */
3028 union xfs_btree_ptr rptr;
3029 union xfs_btree_ptr lptr;
3030
3031 XFS_BTREE_STATS_INC(cur, newroot);
3032
3033 /* initialise our start point from the cursor */
3034 cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3035
3036 /* Allocate the new block. If we can't do it, we're toast. Give up. */
3037 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3038 if (error)
3039 goto error0;
3040 if (*stat == 0)
3041 goto out0;
3042 XFS_BTREE_STATS_INC(cur, alloc);
3043
3044 /* Set up the new block. */
3045 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3046 if (error)
3047 goto error0;
3048
3049 /* Set the root in the holding structure increasing the level by 1. */
3050 cur->bc_ops->set_root(cur, &lptr, 1);
3051
3052 /*
3053 * At the previous root level there are now two blocks: the old root,
3054 * and the new block generated when it was split. We don't know which
3055 * one the cursor is pointing at, so we set up variables "left" and
3056 * "right" for each case.
3057 */
3058 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3059
3060 #ifdef DEBUG
3061 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3062 if (error)
3063 goto error0;
3064 #endif
3065
3066 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3067 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3068 /* Our block is left, pick up the right block. */
3069 lbp = bp;
3070 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3071 left = block;
3072 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3073 if (error)
3074 goto error0;
3075 bp = rbp;
3076 nptr = 1;
3077 } else {
3078 /* Our block is right, pick up the left block. */
3079 rbp = bp;
3080 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3081 right = block;
3082 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3083 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3084 if (error)
3085 goto error0;
3086 bp = lbp;
3087 nptr = 2;
3088 }
3089
3090 /* Fill in the new block's btree header and log it. */
3091 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3092 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3093 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3094 !xfs_btree_ptr_is_null(cur, &rptr));
3095
3096 /* Fill in the key data in the new root. */
3097 if (xfs_btree_get_level(left) > 0) {
3098 /*
3099 * Get the keys for the left block's keys and put them directly
3100 * in the parent block. Do the same for the right block.
3101 */
3102 xfs_btree_get_node_keys(cur, left,
3103 xfs_btree_key_addr(cur, 1, new));
3104 xfs_btree_get_node_keys(cur, right,
3105 xfs_btree_key_addr(cur, 2, new));
3106 } else {
3107 /*
3108 * Get the keys for the left block's records and put them
3109 * directly in the parent block. Do the same for the right
3110 * block.
3111 */
3112 xfs_btree_get_leaf_keys(cur, left,
3113 xfs_btree_key_addr(cur, 1, new));
3114 xfs_btree_get_leaf_keys(cur, right,
3115 xfs_btree_key_addr(cur, 2, new));
3116 }
3117 xfs_btree_log_keys(cur, nbp, 1, 2);
3118
3119 /* Fill in the pointer data in the new root. */
3120 xfs_btree_copy_ptrs(cur,
3121 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3122 xfs_btree_copy_ptrs(cur,
3123 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3124 xfs_btree_log_ptrs(cur, nbp, 1, 2);
3125
3126 /* Fix up the cursor. */
3127 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3128 cur->bc_ptrs[cur->bc_nlevels] = nptr;
3129 cur->bc_nlevels++;
3130 *stat = 1;
3131 return 0;
3132 error0:
3133 return error;
3134 out0:
3135 *stat = 0;
3136 return 0;
3137 }
3138
3139 STATIC int
xfs_btree_make_block_unfull(struct xfs_btree_cur * cur,int level,int numrecs,int * oindex,int * index,union xfs_btree_ptr * nptr,struct xfs_btree_cur ** ncur,union xfs_btree_key * key,int * stat)3140 xfs_btree_make_block_unfull(
3141 struct xfs_btree_cur *cur, /* btree cursor */
3142 int level, /* btree level */
3143 int numrecs,/* # of recs in block */
3144 int *oindex,/* old tree index */
3145 int *index, /* new tree index */
3146 union xfs_btree_ptr *nptr, /* new btree ptr */
3147 struct xfs_btree_cur **ncur, /* new btree cursor */
3148 union xfs_btree_key *key, /* key of new block */
3149 int *stat)
3150 {
3151 int error = 0;
3152
3153 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3154 level == cur->bc_nlevels - 1) {
3155 struct xfs_inode *ip = cur->bc_private.b.ip;
3156
3157 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3158 /* A root block that can be made bigger. */
3159 xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3160 *stat = 1;
3161 } else {
3162 /* A root block that needs replacing */
3163 int logflags = 0;
3164
3165 error = xfs_btree_new_iroot(cur, &logflags, stat);
3166 if (error || *stat == 0)
3167 return error;
3168
3169 xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3170 }
3171
3172 return 0;
3173 }
3174
3175 /* First, try shifting an entry to the right neighbor. */
3176 error = xfs_btree_rshift(cur, level, stat);
3177 if (error || *stat)
3178 return error;
3179
3180 /* Next, try shifting an entry to the left neighbor. */
3181 error = xfs_btree_lshift(cur, level, stat);
3182 if (error)
3183 return error;
3184
3185 if (*stat) {
3186 *oindex = *index = cur->bc_ptrs[level];
3187 return 0;
3188 }
3189
3190 /*
3191 * Next, try splitting the current block in half.
3192 *
3193 * If this works we have to re-set our variables because we
3194 * could be in a different block now.
3195 */
3196 error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3197 if (error || *stat == 0)
3198 return error;
3199
3200
3201 *index = cur->bc_ptrs[level];
3202 return 0;
3203 }
3204
3205 /*
3206 * Insert one record/level. Return information to the caller
3207 * allowing the next level up to proceed if necessary.
3208 */
3209 STATIC int
xfs_btree_insrec(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_rec * rec,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)3210 xfs_btree_insrec(
3211 struct xfs_btree_cur *cur, /* btree cursor */
3212 int level, /* level to insert record at */
3213 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */
3214 union xfs_btree_rec *rec, /* record to insert */
3215 union xfs_btree_key *key, /* i/o: block key for ptrp */
3216 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */
3217 int *stat) /* success/failure */
3218 {
3219 struct xfs_btree_block *block; /* btree block */
3220 struct xfs_buf *bp; /* buffer for block */
3221 union xfs_btree_ptr nptr; /* new block ptr */
3222 struct xfs_btree_cur *ncur; /* new btree cursor */
3223 union xfs_btree_key nkey; /* new block key */
3224 union xfs_btree_key *lkey;
3225 int optr; /* old key/record index */
3226 int ptr; /* key/record index */
3227 int numrecs;/* number of records */
3228 int error; /* error return value */
3229 int i;
3230 xfs_daddr_t old_bn;
3231
3232 ncur = NULL;
3233 lkey = &nkey;
3234
3235 /*
3236 * If we have an external root pointer, and we've made it to the
3237 * root level, allocate a new root block and we're done.
3238 */
3239 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3240 (level >= cur->bc_nlevels)) {
3241 error = xfs_btree_new_root(cur, stat);
3242 xfs_btree_set_ptr_null(cur, ptrp);
3243
3244 return error;
3245 }
3246
3247 /* If we're off the left edge, return failure. */
3248 ptr = cur->bc_ptrs[level];
3249 if (ptr == 0) {
3250 *stat = 0;
3251 return 0;
3252 }
3253
3254 optr = ptr;
3255
3256 XFS_BTREE_STATS_INC(cur, insrec);
3257
3258 /* Get pointers to the btree buffer and block. */
3259 block = xfs_btree_get_block(cur, level, &bp);
3260 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3261 numrecs = xfs_btree_get_numrecs(block);
3262
3263 #ifdef DEBUG
3264 error = xfs_btree_check_block(cur, block, level, bp);
3265 if (error)
3266 goto error0;
3267
3268 /* Check that the new entry is being inserted in the right place. */
3269 if (ptr <= numrecs) {
3270 if (level == 0) {
3271 ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3272 xfs_btree_rec_addr(cur, ptr, block)));
3273 } else {
3274 ASSERT(cur->bc_ops->keys_inorder(cur, key,
3275 xfs_btree_key_addr(cur, ptr, block)));
3276 }
3277 }
3278 #endif
3279
3280 /*
3281 * If the block is full, we can't insert the new entry until we
3282 * make the block un-full.
3283 */
3284 xfs_btree_set_ptr_null(cur, &nptr);
3285 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3286 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3287 &optr, &ptr, &nptr, &ncur, lkey, stat);
3288 if (error || *stat == 0)
3289 goto error0;
3290 }
3291
3292 /*
3293 * The current block may have changed if the block was
3294 * previously full and we have just made space in it.
3295 */
3296 block = xfs_btree_get_block(cur, level, &bp);
3297 numrecs = xfs_btree_get_numrecs(block);
3298
3299 #ifdef DEBUG
3300 error = xfs_btree_check_block(cur, block, level, bp);
3301 if (error)
3302 return error;
3303 #endif
3304
3305 /*
3306 * At this point we know there's room for our new entry in the block
3307 * we're pointing at.
3308 */
3309 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3310
3311 if (level > 0) {
3312 /* It's a nonleaf. make a hole in the keys and ptrs */
3313 union xfs_btree_key *kp;
3314 union xfs_btree_ptr *pp;
3315
3316 kp = xfs_btree_key_addr(cur, ptr, block);
3317 pp = xfs_btree_ptr_addr(cur, ptr, block);
3318
3319 for (i = numrecs - ptr; i >= 0; i--) {
3320 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3321 if (error)
3322 return error;
3323 }
3324
3325 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3326 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3327
3328 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3329 if (error)
3330 goto error0;
3331
3332 /* Now put the new data in, bump numrecs and log it. */
3333 xfs_btree_copy_keys(cur, kp, key, 1);
3334 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3335 numrecs++;
3336 xfs_btree_set_numrecs(block, numrecs);
3337 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3338 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3339 #ifdef DEBUG
3340 if (ptr < numrecs) {
3341 ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3342 xfs_btree_key_addr(cur, ptr + 1, block)));
3343 }
3344 #endif
3345 } else {
3346 /* It's a leaf. make a hole in the records */
3347 union xfs_btree_rec *rp;
3348
3349 rp = xfs_btree_rec_addr(cur, ptr, block);
3350
3351 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3352
3353 /* Now put the new data in, bump numrecs and log it. */
3354 xfs_btree_copy_recs(cur, rp, rec, 1);
3355 xfs_btree_set_numrecs(block, ++numrecs);
3356 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3357 #ifdef DEBUG
3358 if (ptr < numrecs) {
3359 ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3360 xfs_btree_rec_addr(cur, ptr + 1, block)));
3361 }
3362 #endif
3363 }
3364
3365 /* Log the new number of records in the btree header. */
3366 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3367
3368 /*
3369 * If we just inserted into a new tree block, we have to
3370 * recalculate nkey here because nkey is out of date.
3371 *
3372 * Otherwise we're just updating an existing block (having shoved
3373 * some records into the new tree block), so use the regular key
3374 * update mechanism.
3375 */
3376 if (bp && bp->b_bn != old_bn) {
3377 xfs_btree_get_keys(cur, block, lkey);
3378 } else if (xfs_btree_needs_key_update(cur, optr)) {
3379 error = xfs_btree_update_keys(cur, level);
3380 if (error)
3381 goto error0;
3382 }
3383
3384 /*
3385 * If we are tracking the last record in the tree and
3386 * we are at the far right edge of the tree, update it.
3387 */
3388 if (xfs_btree_is_lastrec(cur, block, level)) {
3389 cur->bc_ops->update_lastrec(cur, block, rec,
3390 ptr, LASTREC_INSREC);
3391 }
3392
3393 /*
3394 * Return the new block number, if any.
3395 * If there is one, give back a record value and a cursor too.
3396 */
3397 *ptrp = nptr;
3398 if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3399 xfs_btree_copy_keys(cur, key, lkey, 1);
3400 *curp = ncur;
3401 }
3402
3403 *stat = 1;
3404 return 0;
3405
3406 error0:
3407 return error;
3408 }
3409
3410 /*
3411 * Insert the record at the point referenced by cur.
3412 *
3413 * A multi-level split of the tree on insert will invalidate the original
3414 * cursor. All callers of this function should assume that the cursor is
3415 * no longer valid and revalidate it.
3416 */
3417 int
xfs_btree_insert(struct xfs_btree_cur * cur,int * stat)3418 xfs_btree_insert(
3419 struct xfs_btree_cur *cur,
3420 int *stat)
3421 {
3422 int error; /* error return value */
3423 int i; /* result value, 0 for failure */
3424 int level; /* current level number in btree */
3425 union xfs_btree_ptr nptr; /* new block number (split result) */
3426 struct xfs_btree_cur *ncur; /* new cursor (split result) */
3427 struct xfs_btree_cur *pcur; /* previous level's cursor */
3428 union xfs_btree_key bkey; /* key of block to insert */
3429 union xfs_btree_key *key;
3430 union xfs_btree_rec rec; /* record to insert */
3431
3432 level = 0;
3433 ncur = NULL;
3434 pcur = cur;
3435 key = &bkey;
3436
3437 xfs_btree_set_ptr_null(cur, &nptr);
3438
3439 /* Make a key out of the record data to be inserted, and save it. */
3440 cur->bc_ops->init_rec_from_cur(cur, &rec);
3441 cur->bc_ops->init_key_from_rec(key, &rec);
3442
3443 /*
3444 * Loop going up the tree, starting at the leaf level.
3445 * Stop when we don't get a split block, that must mean that
3446 * the insert is finished with this level.
3447 */
3448 do {
3449 /*
3450 * Insert nrec/nptr into this level of the tree.
3451 * Note if we fail, nptr will be null.
3452 */
3453 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3454 &ncur, &i);
3455 if (error) {
3456 if (pcur != cur)
3457 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3458 goto error0;
3459 }
3460
3461 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3462 level++;
3463
3464 /*
3465 * See if the cursor we just used is trash.
3466 * Can't trash the caller's cursor, but otherwise we should
3467 * if ncur is a new cursor or we're about to be done.
3468 */
3469 if (pcur != cur &&
3470 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3471 /* Save the state from the cursor before we trash it */
3472 if (cur->bc_ops->update_cursor)
3473 cur->bc_ops->update_cursor(pcur, cur);
3474 cur->bc_nlevels = pcur->bc_nlevels;
3475 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3476 }
3477 /* If we got a new cursor, switch to it. */
3478 if (ncur) {
3479 pcur = ncur;
3480 ncur = NULL;
3481 }
3482 } while (!xfs_btree_ptr_is_null(cur, &nptr));
3483
3484 *stat = i;
3485 return 0;
3486 error0:
3487 return error;
3488 }
3489
3490 /*
3491 * Try to merge a non-leaf block back into the inode root.
3492 *
3493 * Note: the killroot names comes from the fact that we're effectively
3494 * killing the old root block. But because we can't just delete the
3495 * inode we have to copy the single block it was pointing to into the
3496 * inode.
3497 */
3498 STATIC int
xfs_btree_kill_iroot(struct xfs_btree_cur * cur)3499 xfs_btree_kill_iroot(
3500 struct xfs_btree_cur *cur)
3501 {
3502 int whichfork = cur->bc_private.b.whichfork;
3503 struct xfs_inode *ip = cur->bc_private.b.ip;
3504 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
3505 struct xfs_btree_block *block;
3506 struct xfs_btree_block *cblock;
3507 union xfs_btree_key *kp;
3508 union xfs_btree_key *ckp;
3509 union xfs_btree_ptr *pp;
3510 union xfs_btree_ptr *cpp;
3511 struct xfs_buf *cbp;
3512 int level;
3513 int index;
3514 int numrecs;
3515 int error;
3516 #ifdef DEBUG
3517 union xfs_btree_ptr ptr;
3518 #endif
3519 int i;
3520
3521 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3522 ASSERT(cur->bc_nlevels > 1);
3523
3524 /*
3525 * Don't deal with the root block needs to be a leaf case.
3526 * We're just going to turn the thing back into extents anyway.
3527 */
3528 level = cur->bc_nlevels - 1;
3529 if (level == 1)
3530 goto out0;
3531
3532 /*
3533 * Give up if the root has multiple children.
3534 */
3535 block = xfs_btree_get_iroot(cur);
3536 if (xfs_btree_get_numrecs(block) != 1)
3537 goto out0;
3538
3539 cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3540 numrecs = xfs_btree_get_numrecs(cblock);
3541
3542 /*
3543 * Only do this if the next level will fit.
3544 * Then the data must be copied up to the inode,
3545 * instead of freeing the root you free the next level.
3546 */
3547 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3548 goto out0;
3549
3550 XFS_BTREE_STATS_INC(cur, killroot);
3551
3552 #ifdef DEBUG
3553 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3554 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3555 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3556 ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3557 #endif
3558
3559 index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3560 if (index) {
3561 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3562 cur->bc_private.b.whichfork);
3563 block = ifp->if_broot;
3564 }
3565
3566 be16_add_cpu(&block->bb_numrecs, index);
3567 ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3568
3569 kp = xfs_btree_key_addr(cur, 1, block);
3570 ckp = xfs_btree_key_addr(cur, 1, cblock);
3571 xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3572
3573 pp = xfs_btree_ptr_addr(cur, 1, block);
3574 cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3575
3576 for (i = 0; i < numrecs; i++) {
3577 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3578 if (error)
3579 return error;
3580 }
3581
3582 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3583
3584 error = xfs_btree_free_block(cur, cbp);
3585 if (error)
3586 return error;
3587
3588 cur->bc_bufs[level - 1] = NULL;
3589 be16_add_cpu(&block->bb_level, -1);
3590 xfs_trans_log_inode(cur->bc_tp, ip,
3591 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3592 cur->bc_nlevels--;
3593 out0:
3594 return 0;
3595 }
3596
3597 /*
3598 * Kill the current root node, and replace it with it's only child node.
3599 */
3600 STATIC int
xfs_btree_kill_root(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,union xfs_btree_ptr * newroot)3601 xfs_btree_kill_root(
3602 struct xfs_btree_cur *cur,
3603 struct xfs_buf *bp,
3604 int level,
3605 union xfs_btree_ptr *newroot)
3606 {
3607 int error;
3608
3609 XFS_BTREE_STATS_INC(cur, killroot);
3610
3611 /*
3612 * Update the root pointer, decreasing the level by 1 and then
3613 * free the old root.
3614 */
3615 cur->bc_ops->set_root(cur, newroot, -1);
3616
3617 error = xfs_btree_free_block(cur, bp);
3618 if (error)
3619 return error;
3620
3621 cur->bc_bufs[level] = NULL;
3622 cur->bc_ra[level] = 0;
3623 cur->bc_nlevels--;
3624
3625 return 0;
3626 }
3627
3628 STATIC int
xfs_btree_dec_cursor(struct xfs_btree_cur * cur,int level,int * stat)3629 xfs_btree_dec_cursor(
3630 struct xfs_btree_cur *cur,
3631 int level,
3632 int *stat)
3633 {
3634 int error;
3635 int i;
3636
3637 if (level > 0) {
3638 error = xfs_btree_decrement(cur, level, &i);
3639 if (error)
3640 return error;
3641 }
3642
3643 *stat = 1;
3644 return 0;
3645 }
3646
3647 /*
3648 * Single level of the btree record deletion routine.
3649 * Delete record pointed to by cur/level.
3650 * Remove the record from its block then rebalance the tree.
3651 * Return 0 for error, 1 for done, 2 to go on to the next level.
3652 */
3653 STATIC int /* error */
xfs_btree_delrec(struct xfs_btree_cur * cur,int level,int * stat)3654 xfs_btree_delrec(
3655 struct xfs_btree_cur *cur, /* btree cursor */
3656 int level, /* level removing record from */
3657 int *stat) /* fail/done/go-on */
3658 {
3659 struct xfs_btree_block *block; /* btree block */
3660 union xfs_btree_ptr cptr; /* current block ptr */
3661 struct xfs_buf *bp; /* buffer for block */
3662 int error; /* error return value */
3663 int i; /* loop counter */
3664 union xfs_btree_ptr lptr; /* left sibling block ptr */
3665 struct xfs_buf *lbp; /* left buffer pointer */
3666 struct xfs_btree_block *left; /* left btree block */
3667 int lrecs = 0; /* left record count */
3668 int ptr; /* key/record index */
3669 union xfs_btree_ptr rptr; /* right sibling block ptr */
3670 struct xfs_buf *rbp; /* right buffer pointer */
3671 struct xfs_btree_block *right; /* right btree block */
3672 struct xfs_btree_block *rrblock; /* right-right btree block */
3673 struct xfs_buf *rrbp; /* right-right buffer pointer */
3674 int rrecs = 0; /* right record count */
3675 struct xfs_btree_cur *tcur; /* temporary btree cursor */
3676 int numrecs; /* temporary numrec count */
3677
3678 tcur = NULL;
3679
3680 /* Get the index of the entry being deleted, check for nothing there. */
3681 ptr = cur->bc_ptrs[level];
3682 if (ptr == 0) {
3683 *stat = 0;
3684 return 0;
3685 }
3686
3687 /* Get the buffer & block containing the record or key/ptr. */
3688 block = xfs_btree_get_block(cur, level, &bp);
3689 numrecs = xfs_btree_get_numrecs(block);
3690
3691 #ifdef DEBUG
3692 error = xfs_btree_check_block(cur, block, level, bp);
3693 if (error)
3694 goto error0;
3695 #endif
3696
3697 /* Fail if we're off the end of the block. */
3698 if (ptr > numrecs) {
3699 *stat = 0;
3700 return 0;
3701 }
3702
3703 XFS_BTREE_STATS_INC(cur, delrec);
3704 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3705
3706 /* Excise the entries being deleted. */
3707 if (level > 0) {
3708 /* It's a nonleaf. operate on keys and ptrs */
3709 union xfs_btree_key *lkp;
3710 union xfs_btree_ptr *lpp;
3711
3712 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3713 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3714
3715 for (i = 0; i < numrecs - ptr; i++) {
3716 error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3717 if (error)
3718 goto error0;
3719 }
3720
3721 if (ptr < numrecs) {
3722 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3723 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3724 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3725 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3726 }
3727 } else {
3728 /* It's a leaf. operate on records */
3729 if (ptr < numrecs) {
3730 xfs_btree_shift_recs(cur,
3731 xfs_btree_rec_addr(cur, ptr + 1, block),
3732 -1, numrecs - ptr);
3733 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3734 }
3735 }
3736
3737 /*
3738 * Decrement and log the number of entries in the block.
3739 */
3740 xfs_btree_set_numrecs(block, --numrecs);
3741 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3742
3743 /*
3744 * If we are tracking the last record in the tree and
3745 * we are at the far right edge of the tree, update it.
3746 */
3747 if (xfs_btree_is_lastrec(cur, block, level)) {
3748 cur->bc_ops->update_lastrec(cur, block, NULL,
3749 ptr, LASTREC_DELREC);
3750 }
3751
3752 /*
3753 * We're at the root level. First, shrink the root block in-memory.
3754 * Try to get rid of the next level down. If we can't then there's
3755 * nothing left to do.
3756 */
3757 if (level == cur->bc_nlevels - 1) {
3758 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3759 xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3760 cur->bc_private.b.whichfork);
3761
3762 error = xfs_btree_kill_iroot(cur);
3763 if (error)
3764 goto error0;
3765
3766 error = xfs_btree_dec_cursor(cur, level, stat);
3767 if (error)
3768 goto error0;
3769 *stat = 1;
3770 return 0;
3771 }
3772
3773 /*
3774 * If this is the root level, and there's only one entry left,
3775 * and it's NOT the leaf level, then we can get rid of this
3776 * level.
3777 */
3778 if (numrecs == 1 && level > 0) {
3779 union xfs_btree_ptr *pp;
3780 /*
3781 * pp is still set to the first pointer in the block.
3782 * Make it the new root of the btree.
3783 */
3784 pp = xfs_btree_ptr_addr(cur, 1, block);
3785 error = xfs_btree_kill_root(cur, bp, level, pp);
3786 if (error)
3787 goto error0;
3788 } else if (level > 0) {
3789 error = xfs_btree_dec_cursor(cur, level, stat);
3790 if (error)
3791 goto error0;
3792 }
3793 *stat = 1;
3794 return 0;
3795 }
3796
3797 /*
3798 * If we deleted the leftmost entry in the block, update the
3799 * key values above us in the tree.
3800 */
3801 if (xfs_btree_needs_key_update(cur, ptr)) {
3802 error = xfs_btree_update_keys(cur, level);
3803 if (error)
3804 goto error0;
3805 }
3806
3807 /*
3808 * If the number of records remaining in the block is at least
3809 * the minimum, we're done.
3810 */
3811 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3812 error = xfs_btree_dec_cursor(cur, level, stat);
3813 if (error)
3814 goto error0;
3815 return 0;
3816 }
3817
3818 /*
3819 * Otherwise, we have to move some records around to keep the
3820 * tree balanced. Look at the left and right sibling blocks to
3821 * see if we can re-balance by moving only one record.
3822 */
3823 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3824 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3825
3826 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3827 /*
3828 * One child of root, need to get a chance to copy its contents
3829 * into the root and delete it. Can't go up to next level,
3830 * there's nothing to delete there.
3831 */
3832 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3833 xfs_btree_ptr_is_null(cur, &lptr) &&
3834 level == cur->bc_nlevels - 2) {
3835 error = xfs_btree_kill_iroot(cur);
3836 if (!error)
3837 error = xfs_btree_dec_cursor(cur, level, stat);
3838 if (error)
3839 goto error0;
3840 return 0;
3841 }
3842 }
3843
3844 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3845 !xfs_btree_ptr_is_null(cur, &lptr));
3846
3847 /*
3848 * Duplicate the cursor so our btree manipulations here won't
3849 * disrupt the next level up.
3850 */
3851 error = xfs_btree_dup_cursor(cur, &tcur);
3852 if (error)
3853 goto error0;
3854
3855 /*
3856 * If there's a right sibling, see if it's ok to shift an entry
3857 * out of it.
3858 */
3859 if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3860 /*
3861 * Move the temp cursor to the last entry in the next block.
3862 * Actually any entry but the first would suffice.
3863 */
3864 i = xfs_btree_lastrec(tcur, level);
3865 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3866
3867 error = xfs_btree_increment(tcur, level, &i);
3868 if (error)
3869 goto error0;
3870 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3871
3872 i = xfs_btree_lastrec(tcur, level);
3873 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3874
3875 /* Grab a pointer to the block. */
3876 right = xfs_btree_get_block(tcur, level, &rbp);
3877 #ifdef DEBUG
3878 error = xfs_btree_check_block(tcur, right, level, rbp);
3879 if (error)
3880 goto error0;
3881 #endif
3882 /* Grab the current block number, for future use. */
3883 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3884
3885 /*
3886 * If right block is full enough so that removing one entry
3887 * won't make it too empty, and left-shifting an entry out
3888 * of right to us works, we're done.
3889 */
3890 if (xfs_btree_get_numrecs(right) - 1 >=
3891 cur->bc_ops->get_minrecs(tcur, level)) {
3892 error = xfs_btree_lshift(tcur, level, &i);
3893 if (error)
3894 goto error0;
3895 if (i) {
3896 ASSERT(xfs_btree_get_numrecs(block) >=
3897 cur->bc_ops->get_minrecs(tcur, level));
3898
3899 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3900 tcur = NULL;
3901
3902 error = xfs_btree_dec_cursor(cur, level, stat);
3903 if (error)
3904 goto error0;
3905 return 0;
3906 }
3907 }
3908
3909 /*
3910 * Otherwise, grab the number of records in right for
3911 * future reference, and fix up the temp cursor to point
3912 * to our block again (last record).
3913 */
3914 rrecs = xfs_btree_get_numrecs(right);
3915 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3916 i = xfs_btree_firstrec(tcur, level);
3917 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3918
3919 error = xfs_btree_decrement(tcur, level, &i);
3920 if (error)
3921 goto error0;
3922 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3923 }
3924 }
3925
3926 /*
3927 * If there's a left sibling, see if it's ok to shift an entry
3928 * out of it.
3929 */
3930 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3931 /*
3932 * Move the temp cursor to the first entry in the
3933 * previous block.
3934 */
3935 i = xfs_btree_firstrec(tcur, level);
3936 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3937
3938 error = xfs_btree_decrement(tcur, level, &i);
3939 if (error)
3940 goto error0;
3941 i = xfs_btree_firstrec(tcur, level);
3942 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3943
3944 /* Grab a pointer to the block. */
3945 left = xfs_btree_get_block(tcur, level, &lbp);
3946 #ifdef DEBUG
3947 error = xfs_btree_check_block(cur, left, level, lbp);
3948 if (error)
3949 goto error0;
3950 #endif
3951 /* Grab the current block number, for future use. */
3952 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3953
3954 /*
3955 * If left block is full enough so that removing one entry
3956 * won't make it too empty, and right-shifting an entry out
3957 * of left to us works, we're done.
3958 */
3959 if (xfs_btree_get_numrecs(left) - 1 >=
3960 cur->bc_ops->get_minrecs(tcur, level)) {
3961 error = xfs_btree_rshift(tcur, level, &i);
3962 if (error)
3963 goto error0;
3964 if (i) {
3965 ASSERT(xfs_btree_get_numrecs(block) >=
3966 cur->bc_ops->get_minrecs(tcur, level));
3967 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3968 tcur = NULL;
3969 if (level == 0)
3970 cur->bc_ptrs[0]++;
3971
3972 *stat = 1;
3973 return 0;
3974 }
3975 }
3976
3977 /*
3978 * Otherwise, grab the number of records in right for
3979 * future reference.
3980 */
3981 lrecs = xfs_btree_get_numrecs(left);
3982 }
3983
3984 /* Delete the temp cursor, we're done with it. */
3985 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3986 tcur = NULL;
3987
3988 /* If here, we need to do a join to keep the tree balanced. */
3989 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3990
3991 if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3992 lrecs + xfs_btree_get_numrecs(block) <=
3993 cur->bc_ops->get_maxrecs(cur, level)) {
3994 /*
3995 * Set "right" to be the starting block,
3996 * "left" to be the left neighbor.
3997 */
3998 rptr = cptr;
3999 right = block;
4000 rbp = bp;
4001 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4002 if (error)
4003 goto error0;
4004
4005 /*
4006 * If that won't work, see if we can join with the right neighbor block.
4007 */
4008 } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4009 rrecs + xfs_btree_get_numrecs(block) <=
4010 cur->bc_ops->get_maxrecs(cur, level)) {
4011 /*
4012 * Set "left" to be the starting block,
4013 * "right" to be the right neighbor.
4014 */
4015 lptr = cptr;
4016 left = block;
4017 lbp = bp;
4018 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4019 if (error)
4020 goto error0;
4021
4022 /*
4023 * Otherwise, we can't fix the imbalance.
4024 * Just return. This is probably a logic error, but it's not fatal.
4025 */
4026 } else {
4027 error = xfs_btree_dec_cursor(cur, level, stat);
4028 if (error)
4029 goto error0;
4030 return 0;
4031 }
4032
4033 rrecs = xfs_btree_get_numrecs(right);
4034 lrecs = xfs_btree_get_numrecs(left);
4035
4036 /*
4037 * We're now going to join "left" and "right" by moving all the stuff
4038 * in "right" to "left" and deleting "right".
4039 */
4040 XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4041 if (level > 0) {
4042 /* It's a non-leaf. Move keys and pointers. */
4043 union xfs_btree_key *lkp; /* left btree key */
4044 union xfs_btree_ptr *lpp; /* left address pointer */
4045 union xfs_btree_key *rkp; /* right btree key */
4046 union xfs_btree_ptr *rpp; /* right address pointer */
4047
4048 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4049 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4050 rkp = xfs_btree_key_addr(cur, 1, right);
4051 rpp = xfs_btree_ptr_addr(cur, 1, right);
4052
4053 for (i = 1; i < rrecs; i++) {
4054 error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4055 if (error)
4056 goto error0;
4057 }
4058
4059 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4060 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4061
4062 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4063 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4064 } else {
4065 /* It's a leaf. Move records. */
4066 union xfs_btree_rec *lrp; /* left record pointer */
4067 union xfs_btree_rec *rrp; /* right record pointer */
4068
4069 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4070 rrp = xfs_btree_rec_addr(cur, 1, right);
4071
4072 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4073 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4074 }
4075
4076 XFS_BTREE_STATS_INC(cur, join);
4077
4078 /*
4079 * Fix up the number of records and right block pointer in the
4080 * surviving block, and log it.
4081 */
4082 xfs_btree_set_numrecs(left, lrecs + rrecs);
4083 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4084 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4085 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4086
4087 /* If there is a right sibling, point it to the remaining block. */
4088 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4089 if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4090 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4091 if (error)
4092 goto error0;
4093 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4094 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4095 }
4096
4097 /* Free the deleted block. */
4098 error = xfs_btree_free_block(cur, rbp);
4099 if (error)
4100 goto error0;
4101
4102 /*
4103 * If we joined with the left neighbor, set the buffer in the
4104 * cursor to the left block, and fix up the index.
4105 */
4106 if (bp != lbp) {
4107 cur->bc_bufs[level] = lbp;
4108 cur->bc_ptrs[level] += lrecs;
4109 cur->bc_ra[level] = 0;
4110 }
4111 /*
4112 * If we joined with the right neighbor and there's a level above
4113 * us, increment the cursor at that level.
4114 */
4115 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4116 (level + 1 < cur->bc_nlevels)) {
4117 error = xfs_btree_increment(cur, level + 1, &i);
4118 if (error)
4119 goto error0;
4120 }
4121
4122 /*
4123 * Readjust the ptr at this level if it's not a leaf, since it's
4124 * still pointing at the deletion point, which makes the cursor
4125 * inconsistent. If this makes the ptr 0, the caller fixes it up.
4126 * We can't use decrement because it would change the next level up.
4127 */
4128 if (level > 0)
4129 cur->bc_ptrs[level]--;
4130
4131 /*
4132 * We combined blocks, so we have to update the parent keys if the
4133 * btree supports overlapped intervals. However, bc_ptrs[level + 1]
4134 * points to the old block so that the caller knows which record to
4135 * delete. Therefore, the caller must be savvy enough to call updkeys
4136 * for us if we return stat == 2. The other exit points from this
4137 * function don't require deletions further up the tree, so they can
4138 * call updkeys directly.
4139 */
4140
4141 /* Return value means the next level up has something to do. */
4142 *stat = 2;
4143 return 0;
4144
4145 error0:
4146 if (tcur)
4147 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4148 return error;
4149 }
4150
4151 /*
4152 * Delete the record pointed to by cur.
4153 * The cursor refers to the place where the record was (could be inserted)
4154 * when the operation returns.
4155 */
4156 int /* error */
xfs_btree_delete(struct xfs_btree_cur * cur,int * stat)4157 xfs_btree_delete(
4158 struct xfs_btree_cur *cur,
4159 int *stat) /* success/failure */
4160 {
4161 int error; /* error return value */
4162 int level;
4163 int i;
4164 bool joined = false;
4165
4166 /*
4167 * Go up the tree, starting at leaf level.
4168 *
4169 * If 2 is returned then a join was done; go to the next level.
4170 * Otherwise we are done.
4171 */
4172 for (level = 0, i = 2; i == 2; level++) {
4173 error = xfs_btree_delrec(cur, level, &i);
4174 if (error)
4175 goto error0;
4176 if (i == 2)
4177 joined = true;
4178 }
4179
4180 /*
4181 * If we combined blocks as part of deleting the record, delrec won't
4182 * have updated the parent high keys so we have to do that here.
4183 */
4184 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4185 error = xfs_btree_updkeys_force(cur, 0);
4186 if (error)
4187 goto error0;
4188 }
4189
4190 if (i == 0) {
4191 for (level = 1; level < cur->bc_nlevels; level++) {
4192 if (cur->bc_ptrs[level] == 0) {
4193 error = xfs_btree_decrement(cur, level, &i);
4194 if (error)
4195 goto error0;
4196 break;
4197 }
4198 }
4199 }
4200
4201 *stat = i;
4202 return 0;
4203 error0:
4204 return error;
4205 }
4206
4207 /*
4208 * Get the data from the pointed-to record.
4209 */
4210 int /* error */
xfs_btree_get_rec(struct xfs_btree_cur * cur,union xfs_btree_rec ** recp,int * stat)4211 xfs_btree_get_rec(
4212 struct xfs_btree_cur *cur, /* btree cursor */
4213 union xfs_btree_rec **recp, /* output: btree record */
4214 int *stat) /* output: success/failure */
4215 {
4216 struct xfs_btree_block *block; /* btree block */
4217 struct xfs_buf *bp; /* buffer pointer */
4218 int ptr; /* record number */
4219 #ifdef DEBUG
4220 int error; /* error return value */
4221 #endif
4222
4223 ptr = cur->bc_ptrs[0];
4224 block = xfs_btree_get_block(cur, 0, &bp);
4225
4226 #ifdef DEBUG
4227 error = xfs_btree_check_block(cur, block, 0, bp);
4228 if (error)
4229 return error;
4230 #endif
4231
4232 /*
4233 * Off the right end or left end, return failure.
4234 */
4235 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4236 *stat = 0;
4237 return 0;
4238 }
4239
4240 /*
4241 * Point to the record and extract its data.
4242 */
4243 *recp = xfs_btree_rec_addr(cur, ptr, block);
4244 *stat = 1;
4245 return 0;
4246 }
4247
4248 /* Visit a block in a btree. */
4249 STATIC int
xfs_btree_visit_block(struct xfs_btree_cur * cur,int level,xfs_btree_visit_blocks_fn fn,void * data)4250 xfs_btree_visit_block(
4251 struct xfs_btree_cur *cur,
4252 int level,
4253 xfs_btree_visit_blocks_fn fn,
4254 void *data)
4255 {
4256 struct xfs_btree_block *block;
4257 struct xfs_buf *bp;
4258 union xfs_btree_ptr rptr;
4259 int error;
4260
4261 /* do right sibling readahead */
4262 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4263 block = xfs_btree_get_block(cur, level, &bp);
4264
4265 /* process the block */
4266 error = fn(cur, level, data);
4267 if (error)
4268 return error;
4269
4270 /* now read rh sibling block for next iteration */
4271 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4272 if (xfs_btree_ptr_is_null(cur, &rptr))
4273 return -ENOENT;
4274
4275 return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4276 }
4277
4278
4279 /* Visit every block in a btree. */
4280 int
xfs_btree_visit_blocks(struct xfs_btree_cur * cur,xfs_btree_visit_blocks_fn fn,void * data)4281 xfs_btree_visit_blocks(
4282 struct xfs_btree_cur *cur,
4283 xfs_btree_visit_blocks_fn fn,
4284 void *data)
4285 {
4286 union xfs_btree_ptr lptr;
4287 int level;
4288 struct xfs_btree_block *block = NULL;
4289 int error = 0;
4290
4291 cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4292
4293 /* for each level */
4294 for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4295 /* grab the left hand block */
4296 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4297 if (error)
4298 return error;
4299
4300 /* readahead the left most block for the next level down */
4301 if (level > 0) {
4302 union xfs_btree_ptr *ptr;
4303
4304 ptr = xfs_btree_ptr_addr(cur, 1, block);
4305 xfs_btree_readahead_ptr(cur, ptr, 1);
4306
4307 /* save for the next iteration of the loop */
4308 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4309 }
4310
4311 /* for each buffer in the level */
4312 do {
4313 error = xfs_btree_visit_block(cur, level, fn, data);
4314 } while (!error);
4315
4316 if (error != -ENOENT)
4317 return error;
4318 }
4319
4320 return 0;
4321 }
4322
4323 /*
4324 * Change the owner of a btree.
4325 *
4326 * The mechanism we use here is ordered buffer logging. Because we don't know
4327 * how many buffers were are going to need to modify, we don't really want to
4328 * have to make transaction reservations for the worst case of every buffer in a
4329 * full size btree as that may be more space that we can fit in the log....
4330 *
4331 * We do the btree walk in the most optimal manner possible - we have sibling
4332 * pointers so we can just walk all the blocks on each level from left to right
4333 * in a single pass, and then move to the next level and do the same. We can
4334 * also do readahead on the sibling pointers to get IO moving more quickly,
4335 * though for slow disks this is unlikely to make much difference to performance
4336 * as the amount of CPU work we have to do before moving to the next block is
4337 * relatively small.
4338 *
4339 * For each btree block that we load, modify the owner appropriately, set the
4340 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4341 * we mark the region we change dirty so that if the buffer is relogged in
4342 * a subsequent transaction the changes we make here as an ordered buffer are
4343 * correctly relogged in that transaction. If we are in recovery context, then
4344 * just queue the modified buffer as delayed write buffer so the transaction
4345 * recovery completion writes the changes to disk.
4346 */
4347 struct xfs_btree_block_change_owner_info {
4348 uint64_t new_owner;
4349 struct list_head *buffer_list;
4350 };
4351
4352 static int
xfs_btree_block_change_owner(struct xfs_btree_cur * cur,int level,void * data)4353 xfs_btree_block_change_owner(
4354 struct xfs_btree_cur *cur,
4355 int level,
4356 void *data)
4357 {
4358 struct xfs_btree_block_change_owner_info *bbcoi = data;
4359 struct xfs_btree_block *block;
4360 struct xfs_buf *bp;
4361
4362 /* modify the owner */
4363 block = xfs_btree_get_block(cur, level, &bp);
4364 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4365 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4366 return 0;
4367 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4368 } else {
4369 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4370 return 0;
4371 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4372 }
4373
4374 /*
4375 * If the block is a root block hosted in an inode, we might not have a
4376 * buffer pointer here and we shouldn't attempt to log the change as the
4377 * information is already held in the inode and discarded when the root
4378 * block is formatted into the on-disk inode fork. We still change it,
4379 * though, so everything is consistent in memory.
4380 */
4381 if (!bp) {
4382 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4383 ASSERT(level == cur->bc_nlevels - 1);
4384 return 0;
4385 }
4386
4387 if (cur->bc_tp) {
4388 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4389 xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4390 return -EAGAIN;
4391 }
4392 } else {
4393 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4394 }
4395
4396 return 0;
4397 }
4398
4399 int
xfs_btree_change_owner(struct xfs_btree_cur * cur,uint64_t new_owner,struct list_head * buffer_list)4400 xfs_btree_change_owner(
4401 struct xfs_btree_cur *cur,
4402 uint64_t new_owner,
4403 struct list_head *buffer_list)
4404 {
4405 struct xfs_btree_block_change_owner_info bbcoi;
4406
4407 bbcoi.new_owner = new_owner;
4408 bbcoi.buffer_list = buffer_list;
4409
4410 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4411 &bbcoi);
4412 }
4413
4414 /* Verify the v5 fields of a long-format btree block. */
4415 xfs_failaddr_t
xfs_btree_lblock_v5hdr_verify(struct xfs_buf * bp,uint64_t owner)4416 xfs_btree_lblock_v5hdr_verify(
4417 struct xfs_buf *bp,
4418 uint64_t owner)
4419 {
4420 struct xfs_mount *mp = bp->b_mount;
4421 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4422
4423 if (!xfs_sb_version_hascrc(&mp->m_sb))
4424 return __this_address;
4425 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4426 return __this_address;
4427 if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4428 return __this_address;
4429 if (owner != XFS_RMAP_OWN_UNKNOWN &&
4430 be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4431 return __this_address;
4432 return NULL;
4433 }
4434
4435 /* Verify a long-format btree block. */
4436 xfs_failaddr_t
xfs_btree_lblock_verify(struct xfs_buf * bp,unsigned int max_recs)4437 xfs_btree_lblock_verify(
4438 struct xfs_buf *bp,
4439 unsigned int max_recs)
4440 {
4441 struct xfs_mount *mp = bp->b_mount;
4442 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4443
4444 /* numrecs verification */
4445 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4446 return __this_address;
4447
4448 /* sibling pointer verification */
4449 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4450 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4451 return __this_address;
4452 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4453 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4454 return __this_address;
4455
4456 return NULL;
4457 }
4458
4459 /**
4460 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4461 * btree block
4462 *
4463 * @bp: buffer containing the btree block
4464 */
4465 xfs_failaddr_t
xfs_btree_sblock_v5hdr_verify(struct xfs_buf * bp)4466 xfs_btree_sblock_v5hdr_verify(
4467 struct xfs_buf *bp)
4468 {
4469 struct xfs_mount *mp = bp->b_mount;
4470 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4471 struct xfs_perag *pag = bp->b_pag;
4472
4473 if (!xfs_sb_version_hascrc(&mp->m_sb))
4474 return __this_address;
4475 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4476 return __this_address;
4477 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4478 return __this_address;
4479 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4480 return __this_address;
4481 return NULL;
4482 }
4483
4484 /**
4485 * xfs_btree_sblock_verify() -- verify a short-format btree block
4486 *
4487 * @bp: buffer containing the btree block
4488 * @max_recs: maximum records allowed in this btree node
4489 */
4490 xfs_failaddr_t
xfs_btree_sblock_verify(struct xfs_buf * bp,unsigned int max_recs)4491 xfs_btree_sblock_verify(
4492 struct xfs_buf *bp,
4493 unsigned int max_recs)
4494 {
4495 struct xfs_mount *mp = bp->b_mount;
4496 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
4497 xfs_agblock_t agno;
4498
4499 /* numrecs verification */
4500 if (be16_to_cpu(block->bb_numrecs) > max_recs)
4501 return __this_address;
4502
4503 /* sibling pointer verification */
4504 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4505 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4506 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4507 return __this_address;
4508 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4509 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4510 return __this_address;
4511
4512 return NULL;
4513 }
4514
4515 /*
4516 * Calculate the number of btree levels needed to store a given number of
4517 * records in a short-format btree.
4518 */
4519 uint
xfs_btree_compute_maxlevels(uint * limits,unsigned long len)4520 xfs_btree_compute_maxlevels(
4521 uint *limits,
4522 unsigned long len)
4523 {
4524 uint level;
4525 unsigned long maxblocks;
4526
4527 maxblocks = (len + limits[0] - 1) / limits[0];
4528 for (level = 1; maxblocks > 1; level++)
4529 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4530 return level;
4531 }
4532
4533 /*
4534 * Query a regular btree for all records overlapping a given interval.
4535 * Start with a LE lookup of the key of low_rec and return all records
4536 * until we find a record with a key greater than the key of high_rec.
4537 */
4538 STATIC int
xfs_btree_simple_query_range(struct xfs_btree_cur * cur,union xfs_btree_key * low_key,union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4539 xfs_btree_simple_query_range(
4540 struct xfs_btree_cur *cur,
4541 union xfs_btree_key *low_key,
4542 union xfs_btree_key *high_key,
4543 xfs_btree_query_range_fn fn,
4544 void *priv)
4545 {
4546 union xfs_btree_rec *recp;
4547 union xfs_btree_key rec_key;
4548 int64_t diff;
4549 int stat;
4550 bool firstrec = true;
4551 int error;
4552
4553 ASSERT(cur->bc_ops->init_high_key_from_rec);
4554 ASSERT(cur->bc_ops->diff_two_keys);
4555
4556 /*
4557 * Find the leftmost record. The btree cursor must be set
4558 * to the low record used to generate low_key.
4559 */
4560 stat = 0;
4561 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4562 if (error)
4563 goto out;
4564
4565 /* Nothing? See if there's anything to the right. */
4566 if (!stat) {
4567 error = xfs_btree_increment(cur, 0, &stat);
4568 if (error)
4569 goto out;
4570 }
4571
4572 while (stat) {
4573 /* Find the record. */
4574 error = xfs_btree_get_rec(cur, &recp, &stat);
4575 if (error || !stat)
4576 break;
4577
4578 /* Skip if high_key(rec) < low_key. */
4579 if (firstrec) {
4580 cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4581 firstrec = false;
4582 diff = cur->bc_ops->diff_two_keys(cur, low_key,
4583 &rec_key);
4584 if (diff > 0)
4585 goto advloop;
4586 }
4587
4588 /* Stop if high_key < low_key(rec). */
4589 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4590 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4591 if (diff > 0)
4592 break;
4593
4594 /* Callback */
4595 error = fn(cur, recp, priv);
4596 if (error)
4597 break;
4598
4599 advloop:
4600 /* Move on to the next record. */
4601 error = xfs_btree_increment(cur, 0, &stat);
4602 if (error)
4603 break;
4604 }
4605
4606 out:
4607 return error;
4608 }
4609
4610 /*
4611 * Query an overlapped interval btree for all records overlapping a given
4612 * interval. This function roughly follows the algorithm given in
4613 * "Interval Trees" of _Introduction to Algorithms_, which is section
4614 * 14.3 in the 2nd and 3rd editions.
4615 *
4616 * First, generate keys for the low and high records passed in.
4617 *
4618 * For any leaf node, generate the high and low keys for the record.
4619 * If the record keys overlap with the query low/high keys, pass the
4620 * record to the function iterator.
4621 *
4622 * For any internal node, compare the low and high keys of each
4623 * pointer against the query low/high keys. If there's an overlap,
4624 * follow the pointer.
4625 *
4626 * As an optimization, we stop scanning a block when we find a low key
4627 * that is greater than the query's high key.
4628 */
4629 STATIC int
xfs_btree_overlapped_query_range(struct xfs_btree_cur * cur,union xfs_btree_key * low_key,union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4630 xfs_btree_overlapped_query_range(
4631 struct xfs_btree_cur *cur,
4632 union xfs_btree_key *low_key,
4633 union xfs_btree_key *high_key,
4634 xfs_btree_query_range_fn fn,
4635 void *priv)
4636 {
4637 union xfs_btree_ptr ptr;
4638 union xfs_btree_ptr *pp;
4639 union xfs_btree_key rec_key;
4640 union xfs_btree_key rec_hkey;
4641 union xfs_btree_key *lkp;
4642 union xfs_btree_key *hkp;
4643 union xfs_btree_rec *recp;
4644 struct xfs_btree_block *block;
4645 int64_t ldiff;
4646 int64_t hdiff;
4647 int level;
4648 struct xfs_buf *bp;
4649 int i;
4650 int error;
4651
4652 /* Load the root of the btree. */
4653 level = cur->bc_nlevels - 1;
4654 cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4655 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4656 if (error)
4657 return error;
4658 xfs_btree_get_block(cur, level, &bp);
4659 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4660 #ifdef DEBUG
4661 error = xfs_btree_check_block(cur, block, level, bp);
4662 if (error)
4663 goto out;
4664 #endif
4665 cur->bc_ptrs[level] = 1;
4666
4667 while (level < cur->bc_nlevels) {
4668 block = xfs_btree_get_block(cur, level, &bp);
4669
4670 /* End of node, pop back towards the root. */
4671 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4672 pop_up:
4673 if (level < cur->bc_nlevels - 1)
4674 cur->bc_ptrs[level + 1]++;
4675 level++;
4676 continue;
4677 }
4678
4679 if (level == 0) {
4680 /* Handle a leaf node. */
4681 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4682
4683 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4684 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4685 low_key);
4686
4687 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4688 hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4689 &rec_key);
4690
4691 /*
4692 * If (record's high key >= query's low key) and
4693 * (query's high key >= record's low key), then
4694 * this record overlaps the query range; callback.
4695 */
4696 if (ldiff >= 0 && hdiff >= 0) {
4697 error = fn(cur, recp, priv);
4698 if (error)
4699 break;
4700 } else if (hdiff < 0) {
4701 /* Record is larger than high key; pop. */
4702 goto pop_up;
4703 }
4704 cur->bc_ptrs[level]++;
4705 continue;
4706 }
4707
4708 /* Handle an internal node. */
4709 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4710 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4711 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4712
4713 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4714 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4715
4716 /*
4717 * If (pointer's high key >= query's low key) and
4718 * (query's high key >= pointer's low key), then
4719 * this record overlaps the query range; follow pointer.
4720 */
4721 if (ldiff >= 0 && hdiff >= 0) {
4722 level--;
4723 error = xfs_btree_lookup_get_block(cur, level, pp,
4724 &block);
4725 if (error)
4726 goto out;
4727 xfs_btree_get_block(cur, level, &bp);
4728 trace_xfs_btree_overlapped_query_range(cur, level, bp);
4729 #ifdef DEBUG
4730 error = xfs_btree_check_block(cur, block, level, bp);
4731 if (error)
4732 goto out;
4733 #endif
4734 cur->bc_ptrs[level] = 1;
4735 continue;
4736 } else if (hdiff < 0) {
4737 /* The low key is larger than the upper range; pop. */
4738 goto pop_up;
4739 }
4740 cur->bc_ptrs[level]++;
4741 }
4742
4743 out:
4744 /*
4745 * If we don't end this function with the cursor pointing at a record
4746 * block, a subsequent non-error cursor deletion will not release
4747 * node-level buffers, causing a buffer leak. This is quite possible
4748 * with a zero-results range query, so release the buffers if we
4749 * failed to return any results.
4750 */
4751 if (cur->bc_bufs[0] == NULL) {
4752 for (i = 0; i < cur->bc_nlevels; i++) {
4753 if (cur->bc_bufs[i]) {
4754 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4755 cur->bc_bufs[i] = NULL;
4756 cur->bc_ptrs[i] = 0;
4757 cur->bc_ra[i] = 0;
4758 }
4759 }
4760 }
4761
4762 return error;
4763 }
4764
4765 /*
4766 * Query a btree for all records overlapping a given interval of keys. The
4767 * supplied function will be called with each record found; return one of the
4768 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4769 * code. This function returns -ECANCELED, zero, or a negative error code.
4770 */
4771 int
xfs_btree_query_range(struct xfs_btree_cur * cur,union xfs_btree_irec * low_rec,union xfs_btree_irec * high_rec,xfs_btree_query_range_fn fn,void * priv)4772 xfs_btree_query_range(
4773 struct xfs_btree_cur *cur,
4774 union xfs_btree_irec *low_rec,
4775 union xfs_btree_irec *high_rec,
4776 xfs_btree_query_range_fn fn,
4777 void *priv)
4778 {
4779 union xfs_btree_rec rec;
4780 union xfs_btree_key low_key;
4781 union xfs_btree_key high_key;
4782
4783 /* Find the keys of both ends of the interval. */
4784 cur->bc_rec = *high_rec;
4785 cur->bc_ops->init_rec_from_cur(cur, &rec);
4786 cur->bc_ops->init_key_from_rec(&high_key, &rec);
4787
4788 cur->bc_rec = *low_rec;
4789 cur->bc_ops->init_rec_from_cur(cur, &rec);
4790 cur->bc_ops->init_key_from_rec(&low_key, &rec);
4791
4792 /* Enforce low key < high key. */
4793 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4794 return -EINVAL;
4795
4796 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4797 return xfs_btree_simple_query_range(cur, &low_key,
4798 &high_key, fn, priv);
4799 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4800 fn, priv);
4801 }
4802
4803 /* Query a btree for all records. */
4804 int
xfs_btree_query_all(struct xfs_btree_cur * cur,xfs_btree_query_range_fn fn,void * priv)4805 xfs_btree_query_all(
4806 struct xfs_btree_cur *cur,
4807 xfs_btree_query_range_fn fn,
4808 void *priv)
4809 {
4810 union xfs_btree_key low_key;
4811 union xfs_btree_key high_key;
4812
4813 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4814 memset(&low_key, 0, sizeof(low_key));
4815 memset(&high_key, 0xFF, sizeof(high_key));
4816
4817 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4818 }
4819
4820 /*
4821 * Calculate the number of blocks needed to store a given number of records
4822 * in a short-format (per-AG metadata) btree.
4823 */
4824 unsigned long long
xfs_btree_calc_size(uint * limits,unsigned long long len)4825 xfs_btree_calc_size(
4826 uint *limits,
4827 unsigned long long len)
4828 {
4829 int level;
4830 int maxrecs;
4831 unsigned long long rval;
4832
4833 maxrecs = limits[0];
4834 for (level = 0, rval = 0; len > 1; level++) {
4835 len += maxrecs - 1;
4836 do_div(len, maxrecs);
4837 maxrecs = limits[1];
4838 rval += len;
4839 }
4840 return rval;
4841 }
4842
4843 static int
xfs_btree_count_blocks_helper(struct xfs_btree_cur * cur,int level,void * data)4844 xfs_btree_count_blocks_helper(
4845 struct xfs_btree_cur *cur,
4846 int level,
4847 void *data)
4848 {
4849 xfs_extlen_t *blocks = data;
4850 (*blocks)++;
4851
4852 return 0;
4853 }
4854
4855 /* Count the blocks in a btree and return the result in *blocks. */
4856 int
xfs_btree_count_blocks(struct xfs_btree_cur * cur,xfs_extlen_t * blocks)4857 xfs_btree_count_blocks(
4858 struct xfs_btree_cur *cur,
4859 xfs_extlen_t *blocks)
4860 {
4861 *blocks = 0;
4862 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4863 blocks);
4864 }
4865
4866 /* Compare two btree pointers. */
4867 int64_t
xfs_btree_diff_two_ptrs(struct xfs_btree_cur * cur,const union xfs_btree_ptr * a,const union xfs_btree_ptr * b)4868 xfs_btree_diff_two_ptrs(
4869 struct xfs_btree_cur *cur,
4870 const union xfs_btree_ptr *a,
4871 const union xfs_btree_ptr *b)
4872 {
4873 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4874 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4875 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4876 }
4877
4878 /* If there's an extent, we're done. */
4879 STATIC int
xfs_btree_has_record_helper(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,void * priv)4880 xfs_btree_has_record_helper(
4881 struct xfs_btree_cur *cur,
4882 union xfs_btree_rec *rec,
4883 void *priv)
4884 {
4885 return -ECANCELED;
4886 }
4887
4888 /* Is there a record covering a given range of keys? */
4889 int
xfs_btree_has_record(struct xfs_btree_cur * cur,union xfs_btree_irec * low,union xfs_btree_irec * high,bool * exists)4890 xfs_btree_has_record(
4891 struct xfs_btree_cur *cur,
4892 union xfs_btree_irec *low,
4893 union xfs_btree_irec *high,
4894 bool *exists)
4895 {
4896 int error;
4897
4898 error = xfs_btree_query_range(cur, low, high,
4899 &xfs_btree_has_record_helper, NULL);
4900 if (error == -ECANCELED) {
4901 *exists = true;
4902 return 0;
4903 }
4904 *exists = false;
4905 return error;
4906 }
4907
4908 /* Are there more records in this btree? */
4909 bool
xfs_btree_has_more_records(struct xfs_btree_cur * cur)4910 xfs_btree_has_more_records(
4911 struct xfs_btree_cur *cur)
4912 {
4913 struct xfs_btree_block *block;
4914 struct xfs_buf *bp;
4915
4916 block = xfs_btree_get_block(cur, 0, &bp);
4917
4918 /* There are still records in this block. */
4919 if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4920 return true;
4921
4922 /* There are more record blocks. */
4923 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4924 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4925 else
4926 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4927 }
4928