1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_refcount_item.h"
18 #include "xfs_log.h"
19 #include "xfs_refcount.h"
20 #include "xfs_error.h"
21
22 kmem_zone_t *xfs_cui_zone;
23 kmem_zone_t *xfs_cud_zone;
24
CUI_ITEM(struct xfs_log_item * lip)25 static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip)
26 {
27 return container_of(lip, struct xfs_cui_log_item, cui_item);
28 }
29
30 void
xfs_cui_item_free(struct xfs_cui_log_item * cuip)31 xfs_cui_item_free(
32 struct xfs_cui_log_item *cuip)
33 {
34 if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS)
35 kmem_free(cuip);
36 else
37 kmem_zone_free(xfs_cui_zone, cuip);
38 }
39
40 /*
41 * Freeing the CUI requires that we remove it from the AIL if it has already
42 * been placed there. However, the CUI may not yet have been placed in the AIL
43 * when called by xfs_cui_release() from CUD processing due to the ordering of
44 * committed vs unpin operations in bulk insert operations. Hence the reference
45 * count to ensure only the last caller frees the CUI.
46 */
47 void
xfs_cui_release(struct xfs_cui_log_item * cuip)48 xfs_cui_release(
49 struct xfs_cui_log_item *cuip)
50 {
51 ASSERT(atomic_read(&cuip->cui_refcount) > 0);
52 if (atomic_dec_and_test(&cuip->cui_refcount)) {
53 xfs_trans_ail_remove(&cuip->cui_item, SHUTDOWN_LOG_IO_ERROR);
54 xfs_cui_item_free(cuip);
55 }
56 }
57
58
59 STATIC void
xfs_cui_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)60 xfs_cui_item_size(
61 struct xfs_log_item *lip,
62 int *nvecs,
63 int *nbytes)
64 {
65 struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
66
67 *nvecs += 1;
68 *nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents);
69 }
70
71 /*
72 * This is called to fill in the vector of log iovecs for the
73 * given cui log item. We use only 1 iovec, and we point that
74 * at the cui_log_format structure embedded in the cui item.
75 * It is at this point that we assert that all of the extent
76 * slots in the cui item have been filled.
77 */
78 STATIC void
xfs_cui_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)79 xfs_cui_item_format(
80 struct xfs_log_item *lip,
81 struct xfs_log_vec *lv)
82 {
83 struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
84 struct xfs_log_iovec *vecp = NULL;
85
86 ASSERT(atomic_read(&cuip->cui_next_extent) ==
87 cuip->cui_format.cui_nextents);
88
89 cuip->cui_format.cui_type = XFS_LI_CUI;
90 cuip->cui_format.cui_size = 1;
91
92 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format,
93 xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents));
94 }
95
96 /*
97 * The unpin operation is the last place an CUI is manipulated in the log. It is
98 * either inserted in the AIL or aborted in the event of a log I/O error. In
99 * either case, the CUI transaction has been successfully committed to make it
100 * this far. Therefore, we expect whoever committed the CUI to either construct
101 * and commit the CUD or drop the CUD's reference in the event of error. Simply
102 * drop the log's CUI reference now that the log is done with it.
103 */
104 STATIC void
xfs_cui_item_unpin(struct xfs_log_item * lip,int remove)105 xfs_cui_item_unpin(
106 struct xfs_log_item *lip,
107 int remove)
108 {
109 struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
110
111 xfs_cui_release(cuip);
112 }
113
114 /*
115 * The CUI has been either committed or aborted if the transaction has been
116 * cancelled. If the transaction was cancelled, an CUD isn't going to be
117 * constructed and thus we free the CUI here directly.
118 */
119 STATIC void
xfs_cui_item_release(struct xfs_log_item * lip)120 xfs_cui_item_release(
121 struct xfs_log_item *lip)
122 {
123 xfs_cui_release(CUI_ITEM(lip));
124 }
125
CUD_ITEM(struct xfs_log_item * lip)126 static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip)
127 {
128 return container_of(lip, struct xfs_cud_log_item, cud_item);
129 }
130
131 STATIC void
xfs_cud_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)132 xfs_cud_item_size(
133 struct xfs_log_item *lip,
134 int *nvecs,
135 int *nbytes)
136 {
137 *nvecs += 1;
138 *nbytes += sizeof(struct xfs_cud_log_format);
139 }
140
141 /*
142 * This is called to fill in the vector of log iovecs for the
143 * given cud log item. We use only 1 iovec, and we point that
144 * at the cud_log_format structure embedded in the cud item.
145 * It is at this point that we assert that all of the extent
146 * slots in the cud item have been filled.
147 */
148 STATIC void
xfs_cud_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)149 xfs_cud_item_format(
150 struct xfs_log_item *lip,
151 struct xfs_log_vec *lv)
152 {
153 struct xfs_cud_log_item *cudp = CUD_ITEM(lip);
154 struct xfs_log_iovec *vecp = NULL;
155
156 cudp->cud_format.cud_type = XFS_LI_CUD;
157 cudp->cud_format.cud_size = 1;
158
159 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format,
160 sizeof(struct xfs_cud_log_format));
161 }
162
163 /*
164 * The CUD is either committed or aborted if the transaction is cancelled. If
165 * the transaction is cancelled, drop our reference to the CUI and free the
166 * CUD.
167 */
168 STATIC void
xfs_cud_item_release(struct xfs_log_item * lip)169 xfs_cud_item_release(
170 struct xfs_log_item *lip)
171 {
172 struct xfs_cud_log_item *cudp = CUD_ITEM(lip);
173
174 xfs_cui_release(cudp->cud_cuip);
175 kmem_zone_free(xfs_cud_zone, cudp);
176 }
177
178 static const struct xfs_item_ops xfs_cud_item_ops = {
179 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED,
180 .iop_size = xfs_cud_item_size,
181 .iop_format = xfs_cud_item_format,
182 .iop_release = xfs_cud_item_release,
183 };
184
185 static struct xfs_cud_log_item *
xfs_trans_get_cud(struct xfs_trans * tp,struct xfs_cui_log_item * cuip)186 xfs_trans_get_cud(
187 struct xfs_trans *tp,
188 struct xfs_cui_log_item *cuip)
189 {
190 struct xfs_cud_log_item *cudp;
191
192 cudp = kmem_zone_zalloc(xfs_cud_zone, 0);
193 xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD,
194 &xfs_cud_item_ops);
195 cudp->cud_cuip = cuip;
196 cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id;
197
198 xfs_trans_add_item(tp, &cudp->cud_item);
199 return cudp;
200 }
201
202 /*
203 * Finish an refcount update and log it to the CUD. Note that the
204 * transaction is marked dirty regardless of whether the refcount
205 * update succeeds or fails to support the CUI/CUD lifecycle rules.
206 */
207 static int
xfs_trans_log_finish_refcount_update(struct xfs_trans * tp,struct xfs_cud_log_item * cudp,enum xfs_refcount_intent_type type,xfs_fsblock_t startblock,xfs_extlen_t blockcount,xfs_fsblock_t * new_fsb,xfs_extlen_t * new_len,struct xfs_btree_cur ** pcur)208 xfs_trans_log_finish_refcount_update(
209 struct xfs_trans *tp,
210 struct xfs_cud_log_item *cudp,
211 enum xfs_refcount_intent_type type,
212 xfs_fsblock_t startblock,
213 xfs_extlen_t blockcount,
214 xfs_fsblock_t *new_fsb,
215 xfs_extlen_t *new_len,
216 struct xfs_btree_cur **pcur)
217 {
218 int error;
219
220 error = xfs_refcount_finish_one(tp, type, startblock,
221 blockcount, new_fsb, new_len, pcur);
222
223 /*
224 * Mark the transaction dirty, even on error. This ensures the
225 * transaction is aborted, which:
226 *
227 * 1.) releases the CUI and frees the CUD
228 * 2.) shuts down the filesystem
229 */
230 tp->t_flags |= XFS_TRANS_DIRTY;
231 set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags);
232
233 return error;
234 }
235
236 /* Sort refcount intents by AG. */
237 static int
xfs_refcount_update_diff_items(void * priv,struct list_head * a,struct list_head * b)238 xfs_refcount_update_diff_items(
239 void *priv,
240 struct list_head *a,
241 struct list_head *b)
242 {
243 struct xfs_mount *mp = priv;
244 struct xfs_refcount_intent *ra;
245 struct xfs_refcount_intent *rb;
246
247 ra = container_of(a, struct xfs_refcount_intent, ri_list);
248 rb = container_of(b, struct xfs_refcount_intent, ri_list);
249 return XFS_FSB_TO_AGNO(mp, ra->ri_startblock) -
250 XFS_FSB_TO_AGNO(mp, rb->ri_startblock);
251 }
252
253 /* Set the phys extent flags for this reverse mapping. */
254 static void
xfs_trans_set_refcount_flags(struct xfs_phys_extent * refc,enum xfs_refcount_intent_type type)255 xfs_trans_set_refcount_flags(
256 struct xfs_phys_extent *refc,
257 enum xfs_refcount_intent_type type)
258 {
259 refc->pe_flags = 0;
260 switch (type) {
261 case XFS_REFCOUNT_INCREASE:
262 case XFS_REFCOUNT_DECREASE:
263 case XFS_REFCOUNT_ALLOC_COW:
264 case XFS_REFCOUNT_FREE_COW:
265 refc->pe_flags |= type;
266 break;
267 default:
268 ASSERT(0);
269 }
270 }
271
272 /* Log refcount updates in the intent item. */
273 STATIC void
xfs_refcount_update_log_item(struct xfs_trans * tp,struct xfs_cui_log_item * cuip,struct xfs_refcount_intent * refc)274 xfs_refcount_update_log_item(
275 struct xfs_trans *tp,
276 struct xfs_cui_log_item *cuip,
277 struct xfs_refcount_intent *refc)
278 {
279 uint next_extent;
280 struct xfs_phys_extent *ext;
281
282 tp->t_flags |= XFS_TRANS_DIRTY;
283 set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags);
284
285 /*
286 * atomic_inc_return gives us the value after the increment;
287 * we want to use it as an array index so we need to subtract 1 from
288 * it.
289 */
290 next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1;
291 ASSERT(next_extent < cuip->cui_format.cui_nextents);
292 ext = &cuip->cui_format.cui_extents[next_extent];
293 ext->pe_startblock = refc->ri_startblock;
294 ext->pe_len = refc->ri_blockcount;
295 xfs_trans_set_refcount_flags(ext, refc->ri_type);
296 }
297
298 static struct xfs_log_item *
xfs_refcount_update_create_intent(struct xfs_trans * tp,struct list_head * items,unsigned int count,bool sort)299 xfs_refcount_update_create_intent(
300 struct xfs_trans *tp,
301 struct list_head *items,
302 unsigned int count,
303 bool sort)
304 {
305 struct xfs_mount *mp = tp->t_mountp;
306 struct xfs_cui_log_item *cuip = xfs_cui_init(mp, count);
307 struct xfs_refcount_intent *refc;
308
309 ASSERT(count > 0);
310
311 xfs_trans_add_item(tp, &cuip->cui_item);
312 if (sort)
313 list_sort(mp, items, xfs_refcount_update_diff_items);
314 list_for_each_entry(refc, items, ri_list)
315 xfs_refcount_update_log_item(tp, cuip, refc);
316 return &cuip->cui_item;
317 }
318
319 /* Get an CUD so we can process all the deferred refcount updates. */
320 STATIC void *
xfs_refcount_update_create_done(struct xfs_trans * tp,struct xfs_log_item * intent,unsigned int count)321 xfs_refcount_update_create_done(
322 struct xfs_trans *tp,
323 struct xfs_log_item *intent,
324 unsigned int count)
325 {
326 return xfs_trans_get_cud(tp, CUI_ITEM(intent));
327 }
328
329 /* Process a deferred refcount update. */
330 STATIC int
xfs_refcount_update_finish_item(struct xfs_trans * tp,struct list_head * item,void * done_item,void ** state)331 xfs_refcount_update_finish_item(
332 struct xfs_trans *tp,
333 struct list_head *item,
334 void *done_item,
335 void **state)
336 {
337 struct xfs_refcount_intent *refc;
338 xfs_fsblock_t new_fsb;
339 xfs_extlen_t new_aglen;
340 int error;
341
342 refc = container_of(item, struct xfs_refcount_intent, ri_list);
343 error = xfs_trans_log_finish_refcount_update(tp, done_item,
344 refc->ri_type,
345 refc->ri_startblock,
346 refc->ri_blockcount,
347 &new_fsb, &new_aglen,
348 (struct xfs_btree_cur **)state);
349 /* Did we run out of reservation? Requeue what we didn't finish. */
350 if (!error && new_aglen > 0) {
351 ASSERT(refc->ri_type == XFS_REFCOUNT_INCREASE ||
352 refc->ri_type == XFS_REFCOUNT_DECREASE);
353 refc->ri_startblock = new_fsb;
354 refc->ri_blockcount = new_aglen;
355 return -EAGAIN;
356 }
357 kmem_free(refc);
358 return error;
359 }
360
361 /* Clean up after processing deferred refcounts. */
362 STATIC void
xfs_refcount_update_finish_cleanup(struct xfs_trans * tp,void * state,int error)363 xfs_refcount_update_finish_cleanup(
364 struct xfs_trans *tp,
365 void *state,
366 int error)
367 {
368 struct xfs_btree_cur *rcur = state;
369
370 xfs_refcount_finish_one_cleanup(tp, rcur, error);
371 }
372
373 /* Abort all pending CUIs. */
374 STATIC void
xfs_refcount_update_abort_intent(struct xfs_log_item * intent)375 xfs_refcount_update_abort_intent(
376 struct xfs_log_item *intent)
377 {
378 xfs_cui_release(CUI_ITEM(intent));
379 }
380
381 /* Cancel a deferred refcount update. */
382 STATIC void
xfs_refcount_update_cancel_item(struct list_head * item)383 xfs_refcount_update_cancel_item(
384 struct list_head *item)
385 {
386 struct xfs_refcount_intent *refc;
387
388 refc = container_of(item, struct xfs_refcount_intent, ri_list);
389 kmem_free(refc);
390 }
391
392 const struct xfs_defer_op_type xfs_refcount_update_defer_type = {
393 .max_items = XFS_CUI_MAX_FAST_EXTENTS,
394 .create_intent = xfs_refcount_update_create_intent,
395 .abort_intent = xfs_refcount_update_abort_intent,
396 .create_done = xfs_refcount_update_create_done,
397 .finish_item = xfs_refcount_update_finish_item,
398 .finish_cleanup = xfs_refcount_update_finish_cleanup,
399 .cancel_item = xfs_refcount_update_cancel_item,
400 };
401
402 /*
403 * Process a refcount update intent item that was recovered from the log.
404 * We need to update the refcountbt.
405 */
406 int
xfs_cui_recover(struct xfs_cui_log_item * cuip,struct list_head * capture_list)407 xfs_cui_recover(
408 struct xfs_cui_log_item *cuip,
409 struct list_head *capture_list)
410 {
411 int i;
412 int error = 0;
413 unsigned int refc_type;
414 struct xfs_phys_extent *refc;
415 xfs_fsblock_t startblock_fsb;
416 bool op_ok;
417 struct xfs_cud_log_item *cudp;
418 struct xfs_trans *tp;
419 struct xfs_btree_cur *rcur = NULL;
420 enum xfs_refcount_intent_type type;
421 xfs_fsblock_t new_fsb;
422 xfs_extlen_t new_len;
423 struct xfs_bmbt_irec irec;
424 bool requeue_only = false;
425 struct xfs_mount *mp = cuip->cui_item.li_mountp;
426
427 ASSERT(!test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags));
428
429 /*
430 * First check the validity of the extents described by the
431 * CUI. If any are bad, then assume that all are bad and
432 * just toss the CUI.
433 */
434 for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
435 refc = &cuip->cui_format.cui_extents[i];
436 startblock_fsb = XFS_BB_TO_FSB(mp,
437 XFS_FSB_TO_DADDR(mp, refc->pe_startblock));
438 switch (refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) {
439 case XFS_REFCOUNT_INCREASE:
440 case XFS_REFCOUNT_DECREASE:
441 case XFS_REFCOUNT_ALLOC_COW:
442 case XFS_REFCOUNT_FREE_COW:
443 op_ok = true;
444 break;
445 default:
446 op_ok = false;
447 break;
448 }
449 if (!op_ok || startblock_fsb == 0 ||
450 refc->pe_len == 0 ||
451 startblock_fsb >= mp->m_sb.sb_dblocks ||
452 refc->pe_len >= mp->m_sb.sb_agblocks ||
453 (refc->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)) {
454 /*
455 * This will pull the CUI from the AIL and
456 * free the memory associated with it.
457 */
458 set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags);
459 xfs_cui_release(cuip);
460 return -EFSCORRUPTED;
461 }
462 }
463
464 /*
465 * Under normal operation, refcount updates are deferred, so we
466 * wouldn't be adding them directly to a transaction. All
467 * refcount updates manage reservation usage internally and
468 * dynamically by deferring work that won't fit in the
469 * transaction. Normally, any work that needs to be deferred
470 * gets attached to the same defer_ops that scheduled the
471 * refcount update. However, we're in log recovery here, so we
472 * we use the passed in defer_ops and to finish up any work that
473 * doesn't fit. We need to reserve enough blocks to handle a
474 * full btree split on either end of the refcount range.
475 */
476 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate,
477 mp->m_refc_maxlevels * 2, 0, XFS_TRANS_RESERVE, &tp);
478 if (error)
479 return error;
480
481 cudp = xfs_trans_get_cud(tp, cuip);
482
483 for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
484 refc = &cuip->cui_format.cui_extents[i];
485 refc_type = refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK;
486 switch (refc_type) {
487 case XFS_REFCOUNT_INCREASE:
488 case XFS_REFCOUNT_DECREASE:
489 case XFS_REFCOUNT_ALLOC_COW:
490 case XFS_REFCOUNT_FREE_COW:
491 type = refc_type;
492 break;
493 default:
494 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
495 error = -EFSCORRUPTED;
496 goto abort_error;
497 }
498 if (requeue_only) {
499 new_fsb = refc->pe_startblock;
500 new_len = refc->pe_len;
501 } else
502 error = xfs_trans_log_finish_refcount_update(tp, cudp,
503 type, refc->pe_startblock, refc->pe_len,
504 &new_fsb, &new_len, &rcur);
505 if (error)
506 goto abort_error;
507
508 /* Requeue what we didn't finish. */
509 if (new_len > 0) {
510 irec.br_startblock = new_fsb;
511 irec.br_blockcount = new_len;
512 switch (type) {
513 case XFS_REFCOUNT_INCREASE:
514 xfs_refcount_increase_extent(tp, &irec);
515 break;
516 case XFS_REFCOUNT_DECREASE:
517 xfs_refcount_decrease_extent(tp, &irec);
518 break;
519 case XFS_REFCOUNT_ALLOC_COW:
520 xfs_refcount_alloc_cow_extent(tp,
521 irec.br_startblock,
522 irec.br_blockcount);
523 break;
524 case XFS_REFCOUNT_FREE_COW:
525 xfs_refcount_free_cow_extent(tp,
526 irec.br_startblock,
527 irec.br_blockcount);
528 break;
529 default:
530 ASSERT(0);
531 }
532 requeue_only = true;
533 }
534 }
535
536 xfs_refcount_finish_one_cleanup(tp, rcur, error);
537 set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags);
538 return xfs_defer_ops_capture_and_commit(tp, NULL, capture_list);
539
540 abort_error:
541 xfs_refcount_finish_one_cleanup(tp, rcur, error);
542 xfs_trans_cancel(tp);
543 return error;
544 }
545
546 /* Relog an intent item to push the log tail forward. */
547 static struct xfs_log_item *
xfs_cui_item_relog(struct xfs_log_item * intent,struct xfs_trans * tp)548 xfs_cui_item_relog(
549 struct xfs_log_item *intent,
550 struct xfs_trans *tp)
551 {
552 struct xfs_cud_log_item *cudp;
553 struct xfs_cui_log_item *cuip;
554 struct xfs_phys_extent *extp;
555 unsigned int count;
556
557 count = CUI_ITEM(intent)->cui_format.cui_nextents;
558 extp = CUI_ITEM(intent)->cui_format.cui_extents;
559
560 tp->t_flags |= XFS_TRANS_DIRTY;
561 cudp = xfs_trans_get_cud(tp, CUI_ITEM(intent));
562 set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags);
563
564 cuip = xfs_cui_init(tp->t_mountp, count);
565 memcpy(cuip->cui_format.cui_extents, extp, count * sizeof(*extp));
566 atomic_set(&cuip->cui_next_extent, count);
567 xfs_trans_add_item(tp, &cuip->cui_item);
568 set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags);
569 return &cuip->cui_item;
570 }
571
572 static const struct xfs_item_ops xfs_cui_item_ops = {
573 .iop_size = xfs_cui_item_size,
574 .iop_format = xfs_cui_item_format,
575 .iop_unpin = xfs_cui_item_unpin,
576 .iop_release = xfs_cui_item_release,
577 .iop_relog = xfs_cui_item_relog,
578 };
579
580 /*
581 * Allocate and initialize an cui item with the given number of extents.
582 */
583 struct xfs_cui_log_item *
xfs_cui_init(struct xfs_mount * mp,uint nextents)584 xfs_cui_init(
585 struct xfs_mount *mp,
586 uint nextents)
587
588 {
589 struct xfs_cui_log_item *cuip;
590
591 ASSERT(nextents > 0);
592 if (nextents > XFS_CUI_MAX_FAST_EXTENTS)
593 cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents),
594 0);
595 else
596 cuip = kmem_zone_zalloc(xfs_cui_zone, 0);
597
598 xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops);
599 cuip->cui_format.cui_nextents = nextents;
600 cuip->cui_format.cui_id = (uintptr_t)(void *)cuip;
601 atomic_set(&cuip->cui_next_extent, 0);
602 atomic_set(&cuip->cui_refcount, 2);
603
604 return cuip;
605 }
606