• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include <linux/iversion.h>
7 
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_defer.h"
17 #include "xfs_inode.h"
18 #include "xfs_dir2.h"
19 #include "xfs_attr.h"
20 #include "xfs_trans_space.h"
21 #include "xfs_trans.h"
22 #include "xfs_buf_item.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_bmap.h"
26 #include "xfs_bmap_util.h"
27 #include "xfs_errortag.h"
28 #include "xfs_error.h"
29 #include "xfs_quota.h"
30 #include "xfs_filestream.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_symlink.h"
34 #include "xfs_trans_priv.h"
35 #include "xfs_log.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_reflink.h"
38 
39 kmem_zone_t *xfs_inode_zone;
40 
41 /*
42  * Used in xfs_itruncate_extents().  This is the maximum number of extents
43  * freed from a file in a single transaction.
44  */
45 #define	XFS_ITRUNC_MAX_EXTENTS	2
46 
47 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
48 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
49 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
50 
51 /*
52  * helper function to extract extent size hint from inode
53  */
54 xfs_extlen_t
xfs_get_extsz_hint(struct xfs_inode * ip)55 xfs_get_extsz_hint(
56 	struct xfs_inode	*ip)
57 {
58 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
59 		return ip->i_d.di_extsize;
60 	if (XFS_IS_REALTIME_INODE(ip))
61 		return ip->i_mount->m_sb.sb_rextsize;
62 	return 0;
63 }
64 
65 /*
66  * Helper function to extract CoW extent size hint from inode.
67  * Between the extent size hint and the CoW extent size hint, we
68  * return the greater of the two.  If the value is zero (automatic),
69  * use the default size.
70  */
71 xfs_extlen_t
xfs_get_cowextsz_hint(struct xfs_inode * ip)72 xfs_get_cowextsz_hint(
73 	struct xfs_inode	*ip)
74 {
75 	xfs_extlen_t		a, b;
76 
77 	a = 0;
78 	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
79 		a = ip->i_d.di_cowextsize;
80 	b = xfs_get_extsz_hint(ip);
81 
82 	a = max(a, b);
83 	if (a == 0)
84 		return XFS_DEFAULT_COWEXTSZ_HINT;
85 	return a;
86 }
87 
88 /*
89  * These two are wrapper routines around the xfs_ilock() routine used to
90  * centralize some grungy code.  They are used in places that wish to lock the
91  * inode solely for reading the extents.  The reason these places can't just
92  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
93  * bringing in of the extents from disk for a file in b-tree format.  If the
94  * inode is in b-tree format, then we need to lock the inode exclusively until
95  * the extents are read in.  Locking it exclusively all the time would limit
96  * our parallelism unnecessarily, though.  What we do instead is check to see
97  * if the extents have been read in yet, and only lock the inode exclusively
98  * if they have not.
99  *
100  * The functions return a value which should be given to the corresponding
101  * xfs_iunlock() call.
102  */
103 uint
xfs_ilock_data_map_shared(struct xfs_inode * ip)104 xfs_ilock_data_map_shared(
105 	struct xfs_inode	*ip)
106 {
107 	uint			lock_mode = XFS_ILOCK_SHARED;
108 
109 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
110 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
111 		lock_mode = XFS_ILOCK_EXCL;
112 	xfs_ilock(ip, lock_mode);
113 	return lock_mode;
114 }
115 
116 uint
xfs_ilock_attr_map_shared(struct xfs_inode * ip)117 xfs_ilock_attr_map_shared(
118 	struct xfs_inode	*ip)
119 {
120 	uint			lock_mode = XFS_ILOCK_SHARED;
121 
122 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
123 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
124 		lock_mode = XFS_ILOCK_EXCL;
125 	xfs_ilock(ip, lock_mode);
126 	return lock_mode;
127 }
128 
129 /*
130  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
131  * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
132  * various combinations of the locks to be obtained.
133  *
134  * The 3 locks should always be ordered so that the IO lock is obtained first,
135  * the mmap lock second and the ilock last in order to prevent deadlock.
136  *
137  * Basic locking order:
138  *
139  * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
140  *
141  * mmap_sem locking order:
142  *
143  * i_rwsem -> page lock -> mmap_sem
144  * mmap_sem -> i_mmap_lock -> page_lock
145  *
146  * The difference in mmap_sem locking order mean that we cannot hold the
147  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
148  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
149  * in get_user_pages() to map the user pages into the kernel address space for
150  * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
151  * page faults already hold the mmap_sem.
152  *
153  * Hence to serialise fully against both syscall and mmap based IO, we need to
154  * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
155  * taken in places where we need to invalidate the page cache in a race
156  * free manner (e.g. truncate, hole punch and other extent manipulation
157  * functions).
158  */
159 void
xfs_ilock(xfs_inode_t * ip,uint lock_flags)160 xfs_ilock(
161 	xfs_inode_t		*ip,
162 	uint			lock_flags)
163 {
164 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
165 
166 	/*
167 	 * You can't set both SHARED and EXCL for the same lock,
168 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
169 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
170 	 */
171 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
172 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
173 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
174 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
175 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
176 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
177 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
178 
179 	if (lock_flags & XFS_IOLOCK_EXCL) {
180 		down_write_nested(&VFS_I(ip)->i_rwsem,
181 				  XFS_IOLOCK_DEP(lock_flags));
182 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
183 		down_read_nested(&VFS_I(ip)->i_rwsem,
184 				 XFS_IOLOCK_DEP(lock_flags));
185 	}
186 
187 	if (lock_flags & XFS_MMAPLOCK_EXCL)
188 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
189 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
190 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
191 
192 	if (lock_flags & XFS_ILOCK_EXCL)
193 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
194 	else if (lock_flags & XFS_ILOCK_SHARED)
195 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
196 }
197 
198 /*
199  * This is just like xfs_ilock(), except that the caller
200  * is guaranteed not to sleep.  It returns 1 if it gets
201  * the requested locks and 0 otherwise.  If the IO lock is
202  * obtained but the inode lock cannot be, then the IO lock
203  * is dropped before returning.
204  *
205  * ip -- the inode being locked
206  * lock_flags -- this parameter indicates the inode's locks to be
207  *       to be locked.  See the comment for xfs_ilock() for a list
208  *	 of valid values.
209  */
210 int
xfs_ilock_nowait(xfs_inode_t * ip,uint lock_flags)211 xfs_ilock_nowait(
212 	xfs_inode_t		*ip,
213 	uint			lock_flags)
214 {
215 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
216 
217 	/*
218 	 * You can't set both SHARED and EXCL for the same lock,
219 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
220 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
221 	 */
222 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
223 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
224 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
225 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
226 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
227 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
228 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
229 
230 	if (lock_flags & XFS_IOLOCK_EXCL) {
231 		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
232 			goto out;
233 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
234 		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
235 			goto out;
236 	}
237 
238 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
239 		if (!mrtryupdate(&ip->i_mmaplock))
240 			goto out_undo_iolock;
241 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
242 		if (!mrtryaccess(&ip->i_mmaplock))
243 			goto out_undo_iolock;
244 	}
245 
246 	if (lock_flags & XFS_ILOCK_EXCL) {
247 		if (!mrtryupdate(&ip->i_lock))
248 			goto out_undo_mmaplock;
249 	} else if (lock_flags & XFS_ILOCK_SHARED) {
250 		if (!mrtryaccess(&ip->i_lock))
251 			goto out_undo_mmaplock;
252 	}
253 	return 1;
254 
255 out_undo_mmaplock:
256 	if (lock_flags & XFS_MMAPLOCK_EXCL)
257 		mrunlock_excl(&ip->i_mmaplock);
258 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
259 		mrunlock_shared(&ip->i_mmaplock);
260 out_undo_iolock:
261 	if (lock_flags & XFS_IOLOCK_EXCL)
262 		up_write(&VFS_I(ip)->i_rwsem);
263 	else if (lock_flags & XFS_IOLOCK_SHARED)
264 		up_read(&VFS_I(ip)->i_rwsem);
265 out:
266 	return 0;
267 }
268 
269 /*
270  * xfs_iunlock() is used to drop the inode locks acquired with
271  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
272  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
273  * that we know which locks to drop.
274  *
275  * ip -- the inode being unlocked
276  * lock_flags -- this parameter indicates the inode's locks to be
277  *       to be unlocked.  See the comment for xfs_ilock() for a list
278  *	 of valid values for this parameter.
279  *
280  */
281 void
xfs_iunlock(xfs_inode_t * ip,uint lock_flags)282 xfs_iunlock(
283 	xfs_inode_t		*ip,
284 	uint			lock_flags)
285 {
286 	/*
287 	 * You can't set both SHARED and EXCL for the same lock,
288 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
289 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
290 	 */
291 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
292 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
293 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
294 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
295 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
296 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
297 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
298 	ASSERT(lock_flags != 0);
299 
300 	if (lock_flags & XFS_IOLOCK_EXCL)
301 		up_write(&VFS_I(ip)->i_rwsem);
302 	else if (lock_flags & XFS_IOLOCK_SHARED)
303 		up_read(&VFS_I(ip)->i_rwsem);
304 
305 	if (lock_flags & XFS_MMAPLOCK_EXCL)
306 		mrunlock_excl(&ip->i_mmaplock);
307 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
308 		mrunlock_shared(&ip->i_mmaplock);
309 
310 	if (lock_flags & XFS_ILOCK_EXCL)
311 		mrunlock_excl(&ip->i_lock);
312 	else if (lock_flags & XFS_ILOCK_SHARED)
313 		mrunlock_shared(&ip->i_lock);
314 
315 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
316 }
317 
318 /*
319  * give up write locks.  the i/o lock cannot be held nested
320  * if it is being demoted.
321  */
322 void
xfs_ilock_demote(xfs_inode_t * ip,uint lock_flags)323 xfs_ilock_demote(
324 	xfs_inode_t		*ip,
325 	uint			lock_flags)
326 {
327 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
328 	ASSERT((lock_flags &
329 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
330 
331 	if (lock_flags & XFS_ILOCK_EXCL)
332 		mrdemote(&ip->i_lock);
333 	if (lock_flags & XFS_MMAPLOCK_EXCL)
334 		mrdemote(&ip->i_mmaplock);
335 	if (lock_flags & XFS_IOLOCK_EXCL)
336 		downgrade_write(&VFS_I(ip)->i_rwsem);
337 
338 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
339 }
340 
341 #if defined(DEBUG) || defined(XFS_WARN)
342 int
xfs_isilocked(xfs_inode_t * ip,uint lock_flags)343 xfs_isilocked(
344 	xfs_inode_t		*ip,
345 	uint			lock_flags)
346 {
347 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
348 		if (!(lock_flags & XFS_ILOCK_SHARED))
349 			return !!ip->i_lock.mr_writer;
350 		return rwsem_is_locked(&ip->i_lock.mr_lock);
351 	}
352 
353 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
354 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
355 			return !!ip->i_mmaplock.mr_writer;
356 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
357 	}
358 
359 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
360 		if (!(lock_flags & XFS_IOLOCK_SHARED))
361 			return !debug_locks ||
362 				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
363 		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
364 	}
365 
366 	ASSERT(0);
367 	return 0;
368 }
369 #endif
370 
371 /*
372  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
373  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
374  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
375  * errors and warnings.
376  */
377 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
378 static bool
xfs_lockdep_subclass_ok(int subclass)379 xfs_lockdep_subclass_ok(
380 	int subclass)
381 {
382 	return subclass < MAX_LOCKDEP_SUBCLASSES;
383 }
384 #else
385 #define xfs_lockdep_subclass_ok(subclass)	(true)
386 #endif
387 
388 /*
389  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
390  * value. This can be called for any type of inode lock combination, including
391  * parent locking. Care must be taken to ensure we don't overrun the subclass
392  * storage fields in the class mask we build.
393  */
394 static inline int
xfs_lock_inumorder(int lock_mode,int subclass)395 xfs_lock_inumorder(int lock_mode, int subclass)
396 {
397 	int	class = 0;
398 
399 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
400 			      XFS_ILOCK_RTSUM)));
401 	ASSERT(xfs_lockdep_subclass_ok(subclass));
402 
403 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
404 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
405 		class += subclass << XFS_IOLOCK_SHIFT;
406 	}
407 
408 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
409 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
410 		class += subclass << XFS_MMAPLOCK_SHIFT;
411 	}
412 
413 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
414 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
415 		class += subclass << XFS_ILOCK_SHIFT;
416 	}
417 
418 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
419 }
420 
421 /*
422  * The following routine will lock n inodes in exclusive mode.  We assume the
423  * caller calls us with the inodes in i_ino order.
424  *
425  * We need to detect deadlock where an inode that we lock is in the AIL and we
426  * start waiting for another inode that is locked by a thread in a long running
427  * transaction (such as truncate). This can result in deadlock since the long
428  * running trans might need to wait for the inode we just locked in order to
429  * push the tail and free space in the log.
430  *
431  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
432  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
433  * lock more than one at a time, lockdep will report false positives saying we
434  * have violated locking orders.
435  */
436 static void
xfs_lock_inodes(struct xfs_inode ** ips,int inodes,uint lock_mode)437 xfs_lock_inodes(
438 	struct xfs_inode	**ips,
439 	int			inodes,
440 	uint			lock_mode)
441 {
442 	int			attempts = 0, i, j, try_lock;
443 	struct xfs_log_item	*lp;
444 
445 	/*
446 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
447 	 * support an arbitrary depth of locking here, but absolute limits on
448 	 * inodes depend on the the type of locking and the limits placed by
449 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
450 	 * the asserts.
451 	 */
452 	ASSERT(ips && inodes >= 2 && inodes <= 5);
453 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
454 			    XFS_ILOCK_EXCL));
455 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
456 			      XFS_ILOCK_SHARED)));
457 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
458 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
459 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
460 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
461 
462 	if (lock_mode & XFS_IOLOCK_EXCL) {
463 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
464 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
465 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
466 
467 	try_lock = 0;
468 	i = 0;
469 again:
470 	for (; i < inodes; i++) {
471 		ASSERT(ips[i]);
472 
473 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
474 			continue;
475 
476 		/*
477 		 * If try_lock is not set yet, make sure all locked inodes are
478 		 * not in the AIL.  If any are, set try_lock to be used later.
479 		 */
480 		if (!try_lock) {
481 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
482 				lp = &ips[j]->i_itemp->ili_item;
483 				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
484 					try_lock++;
485 			}
486 		}
487 
488 		/*
489 		 * If any of the previous locks we have locked is in the AIL,
490 		 * we must TRY to get the second and subsequent locks. If
491 		 * we can't get any, we must release all we have
492 		 * and try again.
493 		 */
494 		if (!try_lock) {
495 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
496 			continue;
497 		}
498 
499 		/* try_lock means we have an inode locked that is in the AIL. */
500 		ASSERT(i != 0);
501 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
502 			continue;
503 
504 		/*
505 		 * Unlock all previous guys and try again.  xfs_iunlock will try
506 		 * to push the tail if the inode is in the AIL.
507 		 */
508 		attempts++;
509 		for (j = i - 1; j >= 0; j--) {
510 			/*
511 			 * Check to see if we've already unlocked this one.  Not
512 			 * the first one going back, and the inode ptr is the
513 			 * same.
514 			 */
515 			if (j != (i - 1) && ips[j] == ips[j + 1])
516 				continue;
517 
518 			xfs_iunlock(ips[j], lock_mode);
519 		}
520 
521 		if ((attempts % 5) == 0) {
522 			delay(1); /* Don't just spin the CPU */
523 		}
524 		i = 0;
525 		try_lock = 0;
526 		goto again;
527 	}
528 }
529 
530 /*
531  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
532  * the mmaplock or the ilock, but not more than one type at a time. If we lock
533  * more than one at a time, lockdep will report false positives saying we have
534  * violated locking orders.  The iolock must be double-locked separately since
535  * we use i_rwsem for that.  We now support taking one lock EXCL and the other
536  * SHARED.
537  */
538 void
xfs_lock_two_inodes(struct xfs_inode * ip0,uint ip0_mode,struct xfs_inode * ip1,uint ip1_mode)539 xfs_lock_two_inodes(
540 	struct xfs_inode	*ip0,
541 	uint			ip0_mode,
542 	struct xfs_inode	*ip1,
543 	uint			ip1_mode)
544 {
545 	struct xfs_inode	*temp;
546 	uint			mode_temp;
547 	int			attempts = 0;
548 	struct xfs_log_item	*lp;
549 
550 	ASSERT(hweight32(ip0_mode) == 1);
551 	ASSERT(hweight32(ip1_mode) == 1);
552 	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
553 	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
554 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
555 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
556 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
557 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
558 	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
559 	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
560 	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 
563 	ASSERT(ip0->i_ino != ip1->i_ino);
564 
565 	if (ip0->i_ino > ip1->i_ino) {
566 		temp = ip0;
567 		ip0 = ip1;
568 		ip1 = temp;
569 		mode_temp = ip0_mode;
570 		ip0_mode = ip1_mode;
571 		ip1_mode = mode_temp;
572 	}
573 
574  again:
575 	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
576 
577 	/*
578 	 * If the first lock we have locked is in the AIL, we must TRY to get
579 	 * the second lock. If we can't get it, we must release the first one
580 	 * and try again.
581 	 */
582 	lp = &ip0->i_itemp->ili_item;
583 	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
584 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
585 			xfs_iunlock(ip0, ip0_mode);
586 			if ((++attempts % 5) == 0)
587 				delay(1); /* Don't just spin the CPU */
588 			goto again;
589 		}
590 	} else {
591 		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
592 	}
593 }
594 
595 void
__xfs_iflock(struct xfs_inode * ip)596 __xfs_iflock(
597 	struct xfs_inode	*ip)
598 {
599 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
600 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
601 
602 	do {
603 		prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
604 		if (xfs_isiflocked(ip))
605 			io_schedule();
606 	} while (!xfs_iflock_nowait(ip));
607 
608 	finish_wait(wq, &wait.wq_entry);
609 }
610 
611 STATIC uint
_xfs_dic2xflags(uint16_t di_flags,uint64_t di_flags2,bool has_attr)612 _xfs_dic2xflags(
613 	uint16_t		di_flags,
614 	uint64_t		di_flags2,
615 	bool			has_attr)
616 {
617 	uint			flags = 0;
618 
619 	if (di_flags & XFS_DIFLAG_ANY) {
620 		if (di_flags & XFS_DIFLAG_REALTIME)
621 			flags |= FS_XFLAG_REALTIME;
622 		if (di_flags & XFS_DIFLAG_PREALLOC)
623 			flags |= FS_XFLAG_PREALLOC;
624 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
625 			flags |= FS_XFLAG_IMMUTABLE;
626 		if (di_flags & XFS_DIFLAG_APPEND)
627 			flags |= FS_XFLAG_APPEND;
628 		if (di_flags & XFS_DIFLAG_SYNC)
629 			flags |= FS_XFLAG_SYNC;
630 		if (di_flags & XFS_DIFLAG_NOATIME)
631 			flags |= FS_XFLAG_NOATIME;
632 		if (di_flags & XFS_DIFLAG_NODUMP)
633 			flags |= FS_XFLAG_NODUMP;
634 		if (di_flags & XFS_DIFLAG_RTINHERIT)
635 			flags |= FS_XFLAG_RTINHERIT;
636 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
637 			flags |= FS_XFLAG_PROJINHERIT;
638 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
639 			flags |= FS_XFLAG_NOSYMLINKS;
640 		if (di_flags & XFS_DIFLAG_EXTSIZE)
641 			flags |= FS_XFLAG_EXTSIZE;
642 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
643 			flags |= FS_XFLAG_EXTSZINHERIT;
644 		if (di_flags & XFS_DIFLAG_NODEFRAG)
645 			flags |= FS_XFLAG_NODEFRAG;
646 		if (di_flags & XFS_DIFLAG_FILESTREAM)
647 			flags |= FS_XFLAG_FILESTREAM;
648 	}
649 
650 	if (di_flags2 & XFS_DIFLAG2_ANY) {
651 		if (di_flags2 & XFS_DIFLAG2_DAX)
652 			flags |= FS_XFLAG_DAX;
653 		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
654 			flags |= FS_XFLAG_COWEXTSIZE;
655 	}
656 
657 	if (has_attr)
658 		flags |= FS_XFLAG_HASATTR;
659 
660 	return flags;
661 }
662 
663 uint
xfs_ip2xflags(struct xfs_inode * ip)664 xfs_ip2xflags(
665 	struct xfs_inode	*ip)
666 {
667 	struct xfs_icdinode	*dic = &ip->i_d;
668 
669 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
670 }
671 
672 /*
673  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
674  * is allowed, otherwise it has to be an exact match. If a CI match is found,
675  * ci_name->name will point to a the actual name (caller must free) or
676  * will be set to NULL if an exact match is found.
677  */
678 int
xfs_lookup(xfs_inode_t * dp,struct xfs_name * name,xfs_inode_t ** ipp,struct xfs_name * ci_name)679 xfs_lookup(
680 	xfs_inode_t		*dp,
681 	struct xfs_name		*name,
682 	xfs_inode_t		**ipp,
683 	struct xfs_name		*ci_name)
684 {
685 	xfs_ino_t		inum;
686 	int			error;
687 
688 	trace_xfs_lookup(dp, name);
689 
690 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
691 		return -EIO;
692 
693 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
694 	if (error)
695 		goto out_unlock;
696 
697 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
698 	if (error)
699 		goto out_free_name;
700 
701 	return 0;
702 
703 out_free_name:
704 	if (ci_name)
705 		kmem_free(ci_name->name);
706 out_unlock:
707 	*ipp = NULL;
708 	return error;
709 }
710 
711 /*
712  * Allocate an inode on disk and return a copy of its in-core version.
713  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
714  * appropriately within the inode.  The uid and gid for the inode are
715  * set according to the contents of the given cred structure.
716  *
717  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
718  * has a free inode available, call xfs_iget() to obtain the in-core
719  * version of the allocated inode.  Finally, fill in the inode and
720  * log its initial contents.  In this case, ialloc_context would be
721  * set to NULL.
722  *
723  * If xfs_dialloc() does not have an available inode, it will replenish
724  * its supply by doing an allocation. Since we can only do one
725  * allocation within a transaction without deadlocks, we must commit
726  * the current transaction before returning the inode itself.
727  * In this case, therefore, we will set ialloc_context and return.
728  * The caller should then commit the current transaction, start a new
729  * transaction, and call xfs_ialloc() again to actually get the inode.
730  *
731  * To ensure that some other process does not grab the inode that
732  * was allocated during the first call to xfs_ialloc(), this routine
733  * also returns the [locked] bp pointing to the head of the freelist
734  * as ialloc_context.  The caller should hold this buffer across
735  * the commit and pass it back into this routine on the second call.
736  *
737  * If we are allocating quota inodes, we do not have a parent inode
738  * to attach to or associate with (i.e. pip == NULL) because they
739  * are not linked into the directory structure - they are attached
740  * directly to the superblock - and so have no parent.
741  */
742 static int
xfs_ialloc(xfs_trans_t * tp,xfs_inode_t * pip,umode_t mode,xfs_nlink_t nlink,dev_t rdev,prid_t prid,xfs_buf_t ** ialloc_context,xfs_inode_t ** ipp)743 xfs_ialloc(
744 	xfs_trans_t	*tp,
745 	xfs_inode_t	*pip,
746 	umode_t		mode,
747 	xfs_nlink_t	nlink,
748 	dev_t		rdev,
749 	prid_t		prid,
750 	xfs_buf_t	**ialloc_context,
751 	xfs_inode_t	**ipp)
752 {
753 	struct inode	*dir = pip ? VFS_I(pip) : NULL;
754 	struct xfs_mount *mp = tp->t_mountp;
755 	xfs_ino_t	ino;
756 	xfs_inode_t	*ip;
757 	uint		flags;
758 	int		error;
759 	struct timespec64 tv;
760 	struct inode	*inode;
761 
762 	/*
763 	 * Call the space management code to pick
764 	 * the on-disk inode to be allocated.
765 	 */
766 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
767 			    ialloc_context, &ino);
768 	if (error)
769 		return error;
770 	if (*ialloc_context || ino == NULLFSINO) {
771 		*ipp = NULL;
772 		return 0;
773 	}
774 	ASSERT(*ialloc_context == NULL);
775 
776 	/*
777 	 * Protect against obviously corrupt allocation btree records. Later
778 	 * xfs_iget checks will catch re-allocation of other active in-memory
779 	 * and on-disk inodes. If we don't catch reallocating the parent inode
780 	 * here we will deadlock in xfs_iget() so we have to do these checks
781 	 * first.
782 	 */
783 	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
784 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
785 		return -EFSCORRUPTED;
786 	}
787 
788 	/*
789 	 * Get the in-core inode with the lock held exclusively.
790 	 * This is because we're setting fields here we need
791 	 * to prevent others from looking at until we're done.
792 	 */
793 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
794 			 XFS_ILOCK_EXCL, &ip);
795 	if (error)
796 		return error;
797 	ASSERT(ip != NULL);
798 	inode = VFS_I(ip);
799 	set_nlink(inode, nlink);
800 	inode->i_rdev = rdev;
801 	ip->i_d.di_projid = prid;
802 
803 	if (dir && !(dir->i_mode & S_ISGID) &&
804 	    (mp->m_flags & XFS_MOUNT_GRPID)) {
805 		inode->i_uid = current_fsuid();
806 		inode->i_gid = dir->i_gid;
807 		inode->i_mode = mode;
808 	} else {
809 		inode_init_owner(inode, dir, mode);
810 	}
811 
812 	/*
813 	 * If the group ID of the new file does not match the effective group
814 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
815 	 * (and only if the irix_sgid_inherit compatibility variable is set).
816 	 */
817 	if (irix_sgid_inherit &&
818 	    (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid))
819 		inode->i_mode &= ~S_ISGID;
820 
821 	ip->i_d.di_size = 0;
822 	ip->i_d.di_nextents = 0;
823 	ASSERT(ip->i_d.di_nblocks == 0);
824 
825 	tv = current_time(inode);
826 	inode->i_mtime = tv;
827 	inode->i_atime = tv;
828 	inode->i_ctime = tv;
829 
830 	ip->i_d.di_extsize = 0;
831 	ip->i_d.di_dmevmask = 0;
832 	ip->i_d.di_dmstate = 0;
833 	ip->i_d.di_flags = 0;
834 
835 	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
836 		inode_set_iversion(inode, 1);
837 		ip->i_d.di_flags2 = 0;
838 		ip->i_d.di_cowextsize = 0;
839 		ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
840 		ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
841 	}
842 
843 	flags = XFS_ILOG_CORE;
844 	switch (mode & S_IFMT) {
845 	case S_IFIFO:
846 	case S_IFCHR:
847 	case S_IFBLK:
848 	case S_IFSOCK:
849 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
850 		ip->i_df.if_flags = 0;
851 		flags |= XFS_ILOG_DEV;
852 		break;
853 	case S_IFREG:
854 	case S_IFDIR:
855 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
856 			uint		di_flags = 0;
857 
858 			if (S_ISDIR(mode)) {
859 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
860 					di_flags |= XFS_DIFLAG_RTINHERIT;
861 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
862 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
863 					ip->i_d.di_extsize = pip->i_d.di_extsize;
864 				}
865 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
866 					di_flags |= XFS_DIFLAG_PROJINHERIT;
867 			} else if (S_ISREG(mode)) {
868 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
869 					di_flags |= XFS_DIFLAG_REALTIME;
870 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
871 					di_flags |= XFS_DIFLAG_EXTSIZE;
872 					ip->i_d.di_extsize = pip->i_d.di_extsize;
873 				}
874 			}
875 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
876 			    xfs_inherit_noatime)
877 				di_flags |= XFS_DIFLAG_NOATIME;
878 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
879 			    xfs_inherit_nodump)
880 				di_flags |= XFS_DIFLAG_NODUMP;
881 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
882 			    xfs_inherit_sync)
883 				di_flags |= XFS_DIFLAG_SYNC;
884 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
885 			    xfs_inherit_nosymlinks)
886 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
887 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
888 			    xfs_inherit_nodefrag)
889 				di_flags |= XFS_DIFLAG_NODEFRAG;
890 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
891 				di_flags |= XFS_DIFLAG_FILESTREAM;
892 
893 			ip->i_d.di_flags |= di_flags;
894 		}
895 		if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) {
896 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
897 				ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
898 				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
899 			}
900 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
901 				ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX;
902 		}
903 		/* FALLTHROUGH */
904 	case S_IFLNK:
905 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
906 		ip->i_df.if_flags = XFS_IFEXTENTS;
907 		ip->i_df.if_bytes = 0;
908 		ip->i_df.if_u1.if_root = NULL;
909 		break;
910 	default:
911 		ASSERT(0);
912 	}
913 	/*
914 	 * Attribute fork settings for new inode.
915 	 */
916 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
917 	ip->i_d.di_anextents = 0;
918 
919 	/*
920 	 * Log the new values stuffed into the inode.
921 	 */
922 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
923 	xfs_trans_log_inode(tp, ip, flags);
924 
925 	/* now that we have an i_mode we can setup the inode structure */
926 	xfs_setup_inode(ip);
927 
928 	*ipp = ip;
929 	return 0;
930 }
931 
932 /*
933  * Allocates a new inode from disk and return a pointer to the
934  * incore copy. This routine will internally commit the current
935  * transaction and allocate a new one if the Space Manager needed
936  * to do an allocation to replenish the inode free-list.
937  *
938  * This routine is designed to be called from xfs_create and
939  * xfs_create_dir.
940  *
941  */
942 int
xfs_dir_ialloc(xfs_trans_t ** tpp,xfs_inode_t * dp,umode_t mode,xfs_nlink_t nlink,dev_t rdev,prid_t prid,xfs_inode_t ** ipp)943 xfs_dir_ialloc(
944 	xfs_trans_t	**tpp,		/* input: current transaction;
945 					   output: may be a new transaction. */
946 	xfs_inode_t	*dp,		/* directory within whose allocate
947 					   the inode. */
948 	umode_t		mode,
949 	xfs_nlink_t	nlink,
950 	dev_t		rdev,
951 	prid_t		prid,		/* project id */
952 	xfs_inode_t	**ipp)		/* pointer to inode; it will be
953 					   locked. */
954 {
955 	xfs_trans_t	*tp;
956 	xfs_inode_t	*ip;
957 	xfs_buf_t	*ialloc_context = NULL;
958 	int		code;
959 	void		*dqinfo;
960 	uint		tflags;
961 
962 	tp = *tpp;
963 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
964 
965 	/*
966 	 * xfs_ialloc will return a pointer to an incore inode if
967 	 * the Space Manager has an available inode on the free
968 	 * list. Otherwise, it will do an allocation and replenish
969 	 * the freelist.  Since we can only do one allocation per
970 	 * transaction without deadlocks, we will need to commit the
971 	 * current transaction and start a new one.  We will then
972 	 * need to call xfs_ialloc again to get the inode.
973 	 *
974 	 * If xfs_ialloc did an allocation to replenish the freelist,
975 	 * it returns the bp containing the head of the freelist as
976 	 * ialloc_context. We will hold a lock on it across the
977 	 * transaction commit so that no other process can steal
978 	 * the inode(s) that we've just allocated.
979 	 */
980 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
981 			&ip);
982 
983 	/*
984 	 * Return an error if we were unable to allocate a new inode.
985 	 * This should only happen if we run out of space on disk or
986 	 * encounter a disk error.
987 	 */
988 	if (code) {
989 		*ipp = NULL;
990 		return code;
991 	}
992 	if (!ialloc_context && !ip) {
993 		*ipp = NULL;
994 		return -ENOSPC;
995 	}
996 
997 	/*
998 	 * If the AGI buffer is non-NULL, then we were unable to get an
999 	 * inode in one operation.  We need to commit the current
1000 	 * transaction and call xfs_ialloc() again.  It is guaranteed
1001 	 * to succeed the second time.
1002 	 */
1003 	if (ialloc_context) {
1004 		/*
1005 		 * Normally, xfs_trans_commit releases all the locks.
1006 		 * We call bhold to hang on to the ialloc_context across
1007 		 * the commit.  Holding this buffer prevents any other
1008 		 * processes from doing any allocations in this
1009 		 * allocation group.
1010 		 */
1011 		xfs_trans_bhold(tp, ialloc_context);
1012 
1013 		/*
1014 		 * We want the quota changes to be associated with the next
1015 		 * transaction, NOT this one. So, detach the dqinfo from this
1016 		 * and attach it to the next transaction.
1017 		 */
1018 		dqinfo = NULL;
1019 		tflags = 0;
1020 		if (tp->t_dqinfo) {
1021 			dqinfo = (void *)tp->t_dqinfo;
1022 			tp->t_dqinfo = NULL;
1023 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1024 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1025 		}
1026 
1027 		code = xfs_trans_roll(&tp);
1028 
1029 		/*
1030 		 * Re-attach the quota info that we detached from prev trx.
1031 		 */
1032 		if (dqinfo) {
1033 			tp->t_dqinfo = dqinfo;
1034 			tp->t_flags |= tflags;
1035 		}
1036 
1037 		if (code) {
1038 			xfs_buf_relse(ialloc_context);
1039 			*tpp = tp;
1040 			*ipp = NULL;
1041 			return code;
1042 		}
1043 		xfs_trans_bjoin(tp, ialloc_context);
1044 
1045 		/*
1046 		 * Call ialloc again. Since we've locked out all
1047 		 * other allocations in this allocation group,
1048 		 * this call should always succeed.
1049 		 */
1050 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1051 				  &ialloc_context, &ip);
1052 
1053 		/*
1054 		 * If we get an error at this point, return to the caller
1055 		 * so that the current transaction can be aborted.
1056 		 */
1057 		if (code) {
1058 			*tpp = tp;
1059 			*ipp = NULL;
1060 			return code;
1061 		}
1062 		ASSERT(!ialloc_context && ip);
1063 
1064 	}
1065 
1066 	*ipp = ip;
1067 	*tpp = tp;
1068 
1069 	return 0;
1070 }
1071 
1072 /*
1073  * Decrement the link count on an inode & log the change.  If this causes the
1074  * link count to go to zero, move the inode to AGI unlinked list so that it can
1075  * be freed when the last active reference goes away via xfs_inactive().
1076  */
1077 static int			/* error */
xfs_droplink(xfs_trans_t * tp,xfs_inode_t * ip)1078 xfs_droplink(
1079 	xfs_trans_t *tp,
1080 	xfs_inode_t *ip)
1081 {
1082 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1083 
1084 	drop_nlink(VFS_I(ip));
1085 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1086 
1087 	if (VFS_I(ip)->i_nlink)
1088 		return 0;
1089 
1090 	return xfs_iunlink(tp, ip);
1091 }
1092 
1093 /*
1094  * Increment the link count on an inode & log the change.
1095  */
1096 static void
xfs_bumplink(xfs_trans_t * tp,xfs_inode_t * ip)1097 xfs_bumplink(
1098 	xfs_trans_t *tp,
1099 	xfs_inode_t *ip)
1100 {
1101 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1102 
1103 	inc_nlink(VFS_I(ip));
1104 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1105 }
1106 
1107 int
xfs_create(xfs_inode_t * dp,struct xfs_name * name,umode_t mode,dev_t rdev,xfs_inode_t ** ipp)1108 xfs_create(
1109 	xfs_inode_t		*dp,
1110 	struct xfs_name		*name,
1111 	umode_t			mode,
1112 	dev_t			rdev,
1113 	xfs_inode_t		**ipp)
1114 {
1115 	int			is_dir = S_ISDIR(mode);
1116 	struct xfs_mount	*mp = dp->i_mount;
1117 	struct xfs_inode	*ip = NULL;
1118 	struct xfs_trans	*tp = NULL;
1119 	int			error;
1120 	bool                    unlock_dp_on_error = false;
1121 	prid_t			prid;
1122 	struct xfs_dquot	*udqp = NULL;
1123 	struct xfs_dquot	*gdqp = NULL;
1124 	struct xfs_dquot	*pdqp = NULL;
1125 	struct xfs_trans_res	*tres;
1126 	uint			resblks;
1127 
1128 	trace_xfs_create(dp, name);
1129 
1130 	if (XFS_FORCED_SHUTDOWN(mp))
1131 		return -EIO;
1132 
1133 	prid = xfs_get_initial_prid(dp);
1134 
1135 	/*
1136 	 * Make sure that we have allocated dquot(s) on disk.
1137 	 */
1138 	error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
1139 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1140 					&udqp, &gdqp, &pdqp);
1141 	if (error)
1142 		return error;
1143 
1144 	if (is_dir) {
1145 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1146 		tres = &M_RES(mp)->tr_mkdir;
1147 	} else {
1148 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1149 		tres = &M_RES(mp)->tr_create;
1150 	}
1151 
1152 	/*
1153 	 * Initially assume that the file does not exist and
1154 	 * reserve the resources for that case.  If that is not
1155 	 * the case we'll drop the one we have and get a more
1156 	 * appropriate transaction later.
1157 	 */
1158 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1159 	if (error == -ENOSPC) {
1160 		/* flush outstanding delalloc blocks and retry */
1161 		xfs_flush_inodes(mp);
1162 		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1163 	}
1164 	if (error)
1165 		goto out_release_inode;
1166 
1167 	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1168 	unlock_dp_on_error = true;
1169 
1170 	/*
1171 	 * Reserve disk quota and the inode.
1172 	 */
1173 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1174 						pdqp, resblks, 1, 0);
1175 	if (error)
1176 		goto out_trans_cancel;
1177 
1178 	/*
1179 	 * A newly created regular or special file just has one directory
1180 	 * entry pointing to them, but a directory also the "." entry
1181 	 * pointing to itself.
1182 	 */
1183 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1184 	if (error)
1185 		goto out_trans_cancel;
1186 
1187 	/*
1188 	 * Now we join the directory inode to the transaction.  We do not do it
1189 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1190 	 * (and release all the locks).  An error from here on will result in
1191 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1192 	 * error path.
1193 	 */
1194 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1195 	unlock_dp_on_error = false;
1196 
1197 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1198 				   resblks ?
1199 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1200 	if (error) {
1201 		ASSERT(error != -ENOSPC);
1202 		goto out_trans_cancel;
1203 	}
1204 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1205 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1206 
1207 	if (is_dir) {
1208 		error = xfs_dir_init(tp, ip, dp);
1209 		if (error)
1210 			goto out_trans_cancel;
1211 
1212 		xfs_bumplink(tp, dp);
1213 	}
1214 
1215 	/*
1216 	 * If this is a synchronous mount, make sure that the
1217 	 * create transaction goes to disk before returning to
1218 	 * the user.
1219 	 */
1220 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1221 		xfs_trans_set_sync(tp);
1222 
1223 	/*
1224 	 * Attach the dquot(s) to the inodes and modify them incore.
1225 	 * These ids of the inode couldn't have changed since the new
1226 	 * inode has been locked ever since it was created.
1227 	 */
1228 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1229 
1230 	error = xfs_trans_commit(tp);
1231 	if (error)
1232 		goto out_release_inode;
1233 
1234 	xfs_qm_dqrele(udqp);
1235 	xfs_qm_dqrele(gdqp);
1236 	xfs_qm_dqrele(pdqp);
1237 
1238 	*ipp = ip;
1239 	return 0;
1240 
1241  out_trans_cancel:
1242 	xfs_trans_cancel(tp);
1243  out_release_inode:
1244 	/*
1245 	 * Wait until after the current transaction is aborted to finish the
1246 	 * setup of the inode and release the inode.  This prevents recursive
1247 	 * transactions and deadlocks from xfs_inactive.
1248 	 */
1249 	if (ip) {
1250 		xfs_finish_inode_setup(ip);
1251 		xfs_irele(ip);
1252 	}
1253 
1254 	xfs_qm_dqrele(udqp);
1255 	xfs_qm_dqrele(gdqp);
1256 	xfs_qm_dqrele(pdqp);
1257 
1258 	if (unlock_dp_on_error)
1259 		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1260 	return error;
1261 }
1262 
1263 int
xfs_create_tmpfile(struct xfs_inode * dp,umode_t mode,struct xfs_inode ** ipp)1264 xfs_create_tmpfile(
1265 	struct xfs_inode	*dp,
1266 	umode_t			mode,
1267 	struct xfs_inode	**ipp)
1268 {
1269 	struct xfs_mount	*mp = dp->i_mount;
1270 	struct xfs_inode	*ip = NULL;
1271 	struct xfs_trans	*tp = NULL;
1272 	int			error;
1273 	prid_t                  prid;
1274 	struct xfs_dquot	*udqp = NULL;
1275 	struct xfs_dquot	*gdqp = NULL;
1276 	struct xfs_dquot	*pdqp = NULL;
1277 	struct xfs_trans_res	*tres;
1278 	uint			resblks;
1279 
1280 	if (XFS_FORCED_SHUTDOWN(mp))
1281 		return -EIO;
1282 
1283 	prid = xfs_get_initial_prid(dp);
1284 
1285 	/*
1286 	 * Make sure that we have allocated dquot(s) on disk.
1287 	 */
1288 	error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
1289 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1290 				&udqp, &gdqp, &pdqp);
1291 	if (error)
1292 		return error;
1293 
1294 	resblks = XFS_IALLOC_SPACE_RES(mp);
1295 	tres = &M_RES(mp)->tr_create_tmpfile;
1296 
1297 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1298 	if (error)
1299 		goto out_release_inode;
1300 
1301 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1302 						pdqp, resblks, 1, 0);
1303 	if (error)
1304 		goto out_trans_cancel;
1305 
1306 	error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
1307 	if (error)
1308 		goto out_trans_cancel;
1309 
1310 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1311 		xfs_trans_set_sync(tp);
1312 
1313 	/*
1314 	 * Attach the dquot(s) to the inodes and modify them incore.
1315 	 * These ids of the inode couldn't have changed since the new
1316 	 * inode has been locked ever since it was created.
1317 	 */
1318 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1319 
1320 	error = xfs_iunlink(tp, ip);
1321 	if (error)
1322 		goto out_trans_cancel;
1323 
1324 	error = xfs_trans_commit(tp);
1325 	if (error)
1326 		goto out_release_inode;
1327 
1328 	xfs_qm_dqrele(udqp);
1329 	xfs_qm_dqrele(gdqp);
1330 	xfs_qm_dqrele(pdqp);
1331 
1332 	*ipp = ip;
1333 	return 0;
1334 
1335  out_trans_cancel:
1336 	xfs_trans_cancel(tp);
1337  out_release_inode:
1338 	/*
1339 	 * Wait until after the current transaction is aborted to finish the
1340 	 * setup of the inode and release the inode.  This prevents recursive
1341 	 * transactions and deadlocks from xfs_inactive.
1342 	 */
1343 	if (ip) {
1344 		xfs_finish_inode_setup(ip);
1345 		xfs_irele(ip);
1346 	}
1347 
1348 	xfs_qm_dqrele(udqp);
1349 	xfs_qm_dqrele(gdqp);
1350 	xfs_qm_dqrele(pdqp);
1351 
1352 	return error;
1353 }
1354 
1355 int
xfs_link(xfs_inode_t * tdp,xfs_inode_t * sip,struct xfs_name * target_name)1356 xfs_link(
1357 	xfs_inode_t		*tdp,
1358 	xfs_inode_t		*sip,
1359 	struct xfs_name		*target_name)
1360 {
1361 	xfs_mount_t		*mp = tdp->i_mount;
1362 	xfs_trans_t		*tp;
1363 	int			error;
1364 	int			resblks;
1365 
1366 	trace_xfs_link(tdp, target_name);
1367 
1368 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1369 
1370 	if (XFS_FORCED_SHUTDOWN(mp))
1371 		return -EIO;
1372 
1373 	error = xfs_qm_dqattach(sip);
1374 	if (error)
1375 		goto std_return;
1376 
1377 	error = xfs_qm_dqattach(tdp);
1378 	if (error)
1379 		goto std_return;
1380 
1381 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1382 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1383 	if (error == -ENOSPC) {
1384 		resblks = 0;
1385 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1386 	}
1387 	if (error)
1388 		goto std_return;
1389 
1390 	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1391 
1392 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1393 	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1394 
1395 	/*
1396 	 * If we are using project inheritance, we only allow hard link
1397 	 * creation in our tree when the project IDs are the same; else
1398 	 * the tree quota mechanism could be circumvented.
1399 	 */
1400 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1401 		     tdp->i_d.di_projid != sip->i_d.di_projid)) {
1402 		error = -EXDEV;
1403 		goto error_return;
1404 	}
1405 
1406 	if (!resblks) {
1407 		error = xfs_dir_canenter(tp, tdp, target_name);
1408 		if (error)
1409 			goto error_return;
1410 	}
1411 
1412 	/*
1413 	 * Handle initial link state of O_TMPFILE inode
1414 	 */
1415 	if (VFS_I(sip)->i_nlink == 0) {
1416 		error = xfs_iunlink_remove(tp, sip);
1417 		if (error)
1418 			goto error_return;
1419 	}
1420 
1421 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1422 				   resblks);
1423 	if (error)
1424 		goto error_return;
1425 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1426 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1427 
1428 	xfs_bumplink(tp, sip);
1429 
1430 	/*
1431 	 * If this is a synchronous mount, make sure that the
1432 	 * link transaction goes to disk before returning to
1433 	 * the user.
1434 	 */
1435 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1436 		xfs_trans_set_sync(tp);
1437 
1438 	return xfs_trans_commit(tp);
1439 
1440  error_return:
1441 	xfs_trans_cancel(tp);
1442  std_return:
1443 	return error;
1444 }
1445 
1446 /* Clear the reflink flag and the cowblocks tag if possible. */
1447 static void
xfs_itruncate_clear_reflink_flags(struct xfs_inode * ip)1448 xfs_itruncate_clear_reflink_flags(
1449 	struct xfs_inode	*ip)
1450 {
1451 	struct xfs_ifork	*dfork;
1452 	struct xfs_ifork	*cfork;
1453 
1454 	if (!xfs_is_reflink_inode(ip))
1455 		return;
1456 	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1457 	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1458 	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1459 		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1460 	if (cfork->if_bytes == 0)
1461 		xfs_inode_clear_cowblocks_tag(ip);
1462 }
1463 
1464 /*
1465  * Free up the underlying blocks past new_size.  The new size must be smaller
1466  * than the current size.  This routine can be used both for the attribute and
1467  * data fork, and does not modify the inode size, which is left to the caller.
1468  *
1469  * The transaction passed to this routine must have made a permanent log
1470  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1471  * given transaction and start new ones, so make sure everything involved in
1472  * the transaction is tidy before calling here.  Some transaction will be
1473  * returned to the caller to be committed.  The incoming transaction must
1474  * already include the inode, and both inode locks must be held exclusively.
1475  * The inode must also be "held" within the transaction.  On return the inode
1476  * will be "held" within the returned transaction.  This routine does NOT
1477  * require any disk space to be reserved for it within the transaction.
1478  *
1479  * If we get an error, we must return with the inode locked and linked into the
1480  * current transaction. This keeps things simple for the higher level code,
1481  * because it always knows that the inode is locked and held in the transaction
1482  * that returns to it whether errors occur or not.  We don't mark the inode
1483  * dirty on error so that transactions can be easily aborted if possible.
1484  */
1485 int
xfs_itruncate_extents_flags(struct xfs_trans ** tpp,struct xfs_inode * ip,int whichfork,xfs_fsize_t new_size,int flags)1486 xfs_itruncate_extents_flags(
1487 	struct xfs_trans	**tpp,
1488 	struct xfs_inode	*ip,
1489 	int			whichfork,
1490 	xfs_fsize_t		new_size,
1491 	int			flags)
1492 {
1493 	struct xfs_mount	*mp = ip->i_mount;
1494 	struct xfs_trans	*tp = *tpp;
1495 	xfs_fileoff_t		first_unmap_block;
1496 	xfs_filblks_t		unmap_len;
1497 	int			error = 0;
1498 
1499 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1500 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1501 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1502 	ASSERT(new_size <= XFS_ISIZE(ip));
1503 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1504 	ASSERT(ip->i_itemp != NULL);
1505 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1506 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1507 
1508 	trace_xfs_itruncate_extents_start(ip, new_size);
1509 
1510 	flags |= xfs_bmapi_aflag(whichfork);
1511 
1512 	/*
1513 	 * Since it is possible for space to become allocated beyond
1514 	 * the end of the file (in a crash where the space is allocated
1515 	 * but the inode size is not yet updated), simply remove any
1516 	 * blocks which show up between the new EOF and the maximum
1517 	 * possible file size.
1518 	 *
1519 	 * We have to free all the blocks to the bmbt maximum offset, even if
1520 	 * the page cache can't scale that far.
1521 	 */
1522 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1523 	if (first_unmap_block >= XFS_MAX_FILEOFF) {
1524 		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1525 		return 0;
1526 	}
1527 
1528 	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1529 	while (unmap_len > 0) {
1530 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1531 		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1532 				flags, XFS_ITRUNC_MAX_EXTENTS);
1533 		if (error)
1534 			goto out;
1535 
1536 		/*
1537 		 * Duplicate the transaction that has the permanent
1538 		 * reservation and commit the old transaction.
1539 		 */
1540 		error = xfs_defer_finish(&tp);
1541 		if (error)
1542 			goto out;
1543 
1544 		error = xfs_trans_roll_inode(&tp, ip);
1545 		if (error)
1546 			goto out;
1547 	}
1548 
1549 	if (whichfork == XFS_DATA_FORK) {
1550 		/* Remove all pending CoW reservations. */
1551 		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1552 				first_unmap_block, XFS_MAX_FILEOFF, true);
1553 		if (error)
1554 			goto out;
1555 
1556 		xfs_itruncate_clear_reflink_flags(ip);
1557 	}
1558 
1559 	/*
1560 	 * Always re-log the inode so that our permanent transaction can keep
1561 	 * on rolling it forward in the log.
1562 	 */
1563 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1564 
1565 	trace_xfs_itruncate_extents_end(ip, new_size);
1566 
1567 out:
1568 	*tpp = tp;
1569 	return error;
1570 }
1571 
1572 int
xfs_release(xfs_inode_t * ip)1573 xfs_release(
1574 	xfs_inode_t	*ip)
1575 {
1576 	xfs_mount_t	*mp = ip->i_mount;
1577 	int		error;
1578 
1579 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1580 		return 0;
1581 
1582 	/* If this is a read-only mount, don't do this (would generate I/O) */
1583 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1584 		return 0;
1585 
1586 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1587 		int truncated;
1588 
1589 		/*
1590 		 * If we previously truncated this file and removed old data
1591 		 * in the process, we want to initiate "early" writeout on
1592 		 * the last close.  This is an attempt to combat the notorious
1593 		 * NULL files problem which is particularly noticeable from a
1594 		 * truncate down, buffered (re-)write (delalloc), followed by
1595 		 * a crash.  What we are effectively doing here is
1596 		 * significantly reducing the time window where we'd otherwise
1597 		 * be exposed to that problem.
1598 		 */
1599 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1600 		if (truncated) {
1601 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1602 			if (ip->i_delayed_blks > 0) {
1603 				error = filemap_flush(VFS_I(ip)->i_mapping);
1604 				if (error)
1605 					return error;
1606 			}
1607 		}
1608 	}
1609 
1610 	if (VFS_I(ip)->i_nlink == 0)
1611 		return 0;
1612 
1613 	if (xfs_can_free_eofblocks(ip, false)) {
1614 
1615 		/*
1616 		 * Check if the inode is being opened, written and closed
1617 		 * frequently and we have delayed allocation blocks outstanding
1618 		 * (e.g. streaming writes from the NFS server), truncating the
1619 		 * blocks past EOF will cause fragmentation to occur.
1620 		 *
1621 		 * In this case don't do the truncation, but we have to be
1622 		 * careful how we detect this case. Blocks beyond EOF show up as
1623 		 * i_delayed_blks even when the inode is clean, so we need to
1624 		 * truncate them away first before checking for a dirty release.
1625 		 * Hence on the first dirty close we will still remove the
1626 		 * speculative allocation, but after that we will leave it in
1627 		 * place.
1628 		 */
1629 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1630 			return 0;
1631 		/*
1632 		 * If we can't get the iolock just skip truncating the blocks
1633 		 * past EOF because we could deadlock with the mmap_sem
1634 		 * otherwise. We'll get another chance to drop them once the
1635 		 * last reference to the inode is dropped, so we'll never leak
1636 		 * blocks permanently.
1637 		 */
1638 		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1639 			error = xfs_free_eofblocks(ip);
1640 			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1641 			if (error)
1642 				return error;
1643 		}
1644 
1645 		/* delalloc blocks after truncation means it really is dirty */
1646 		if (ip->i_delayed_blks)
1647 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1648 	}
1649 	return 0;
1650 }
1651 
1652 /*
1653  * xfs_inactive_truncate
1654  *
1655  * Called to perform a truncate when an inode becomes unlinked.
1656  */
1657 STATIC int
xfs_inactive_truncate(struct xfs_inode * ip)1658 xfs_inactive_truncate(
1659 	struct xfs_inode *ip)
1660 {
1661 	struct xfs_mount	*mp = ip->i_mount;
1662 	struct xfs_trans	*tp;
1663 	int			error;
1664 
1665 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1666 	if (error) {
1667 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1668 		return error;
1669 	}
1670 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1671 	xfs_trans_ijoin(tp, ip, 0);
1672 
1673 	/*
1674 	 * Log the inode size first to prevent stale data exposure in the event
1675 	 * of a system crash before the truncate completes. See the related
1676 	 * comment in xfs_vn_setattr_size() for details.
1677 	 */
1678 	ip->i_d.di_size = 0;
1679 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1680 
1681 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1682 	if (error)
1683 		goto error_trans_cancel;
1684 
1685 	ASSERT(ip->i_d.di_nextents == 0);
1686 
1687 	error = xfs_trans_commit(tp);
1688 	if (error)
1689 		goto error_unlock;
1690 
1691 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1692 	return 0;
1693 
1694 error_trans_cancel:
1695 	xfs_trans_cancel(tp);
1696 error_unlock:
1697 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1698 	return error;
1699 }
1700 
1701 /*
1702  * xfs_inactive_ifree()
1703  *
1704  * Perform the inode free when an inode is unlinked.
1705  */
1706 STATIC int
xfs_inactive_ifree(struct xfs_inode * ip)1707 xfs_inactive_ifree(
1708 	struct xfs_inode *ip)
1709 {
1710 	struct xfs_mount	*mp = ip->i_mount;
1711 	struct xfs_trans	*tp;
1712 	int			error;
1713 
1714 	/*
1715 	 * We try to use a per-AG reservation for any block needed by the finobt
1716 	 * tree, but as the finobt feature predates the per-AG reservation
1717 	 * support a degraded file system might not have enough space for the
1718 	 * reservation at mount time.  In that case try to dip into the reserved
1719 	 * pool and pray.
1720 	 *
1721 	 * Send a warning if the reservation does happen to fail, as the inode
1722 	 * now remains allocated and sits on the unlinked list until the fs is
1723 	 * repaired.
1724 	 */
1725 	if (unlikely(mp->m_finobt_nores)) {
1726 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1727 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1728 				&tp);
1729 	} else {
1730 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1731 	}
1732 	if (error) {
1733 		if (error == -ENOSPC) {
1734 			xfs_warn_ratelimited(mp,
1735 			"Failed to remove inode(s) from unlinked list. "
1736 			"Please free space, unmount and run xfs_repair.");
1737 		} else {
1738 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1739 		}
1740 		return error;
1741 	}
1742 
1743 	/*
1744 	 * We do not hold the inode locked across the entire rolling transaction
1745 	 * here. We only need to hold it for the first transaction that
1746 	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1747 	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1748 	 * here breaks the relationship between cluster buffer invalidation and
1749 	 * stale inode invalidation on cluster buffer item journal commit
1750 	 * completion, and can result in leaving dirty stale inodes hanging
1751 	 * around in memory.
1752 	 *
1753 	 * We have no need for serialising this inode operation against other
1754 	 * operations - we freed the inode and hence reallocation is required
1755 	 * and that will serialise on reallocating the space the deferops need
1756 	 * to free. Hence we can unlock the inode on the first commit of
1757 	 * the transaction rather than roll it right through the deferops. This
1758 	 * avoids relogging the XFS_ISTALE inode.
1759 	 *
1760 	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1761 	 * by asserting that the inode is still locked when it returns.
1762 	 */
1763 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1764 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1765 
1766 	error = xfs_ifree(tp, ip);
1767 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1768 	if (error) {
1769 		/*
1770 		 * If we fail to free the inode, shut down.  The cancel
1771 		 * might do that, we need to make sure.  Otherwise the
1772 		 * inode might be lost for a long time or forever.
1773 		 */
1774 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1775 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1776 				__func__, error);
1777 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1778 		}
1779 		xfs_trans_cancel(tp);
1780 		return error;
1781 	}
1782 
1783 	/*
1784 	 * Credit the quota account(s). The inode is gone.
1785 	 */
1786 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1787 
1788 	/*
1789 	 * Just ignore errors at this point.  There is nothing we can do except
1790 	 * to try to keep going. Make sure it's not a silent error.
1791 	 */
1792 	error = xfs_trans_commit(tp);
1793 	if (error)
1794 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1795 			__func__, error);
1796 
1797 	return 0;
1798 }
1799 
1800 /*
1801  * xfs_inactive
1802  *
1803  * This is called when the vnode reference count for the vnode
1804  * goes to zero.  If the file has been unlinked, then it must
1805  * now be truncated.  Also, we clear all of the read-ahead state
1806  * kept for the inode here since the file is now closed.
1807  */
1808 void
xfs_inactive(xfs_inode_t * ip)1809 xfs_inactive(
1810 	xfs_inode_t	*ip)
1811 {
1812 	struct xfs_mount	*mp;
1813 	int			error;
1814 	int			truncate = 0;
1815 
1816 	/*
1817 	 * If the inode is already free, then there can be nothing
1818 	 * to clean up here.
1819 	 */
1820 	if (VFS_I(ip)->i_mode == 0) {
1821 		ASSERT(ip->i_df.if_broot_bytes == 0);
1822 		return;
1823 	}
1824 
1825 	mp = ip->i_mount;
1826 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1827 
1828 	/* If this is a read-only mount, don't do this (would generate I/O) */
1829 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1830 		return;
1831 
1832 	/* Try to clean out the cow blocks if there are any. */
1833 	if (xfs_inode_has_cow_data(ip))
1834 		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1835 
1836 	if (VFS_I(ip)->i_nlink != 0) {
1837 		/*
1838 		 * force is true because we are evicting an inode from the
1839 		 * cache. Post-eof blocks must be freed, lest we end up with
1840 		 * broken free space accounting.
1841 		 *
1842 		 * Note: don't bother with iolock here since lockdep complains
1843 		 * about acquiring it in reclaim context. We have the only
1844 		 * reference to the inode at this point anyways.
1845 		 */
1846 		if (xfs_can_free_eofblocks(ip, true))
1847 			xfs_free_eofblocks(ip);
1848 
1849 		return;
1850 	}
1851 
1852 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1853 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1854 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1855 		truncate = 1;
1856 
1857 	error = xfs_qm_dqattach(ip);
1858 	if (error)
1859 		return;
1860 
1861 	if (S_ISLNK(VFS_I(ip)->i_mode))
1862 		error = xfs_inactive_symlink(ip);
1863 	else if (truncate)
1864 		error = xfs_inactive_truncate(ip);
1865 	if (error)
1866 		return;
1867 
1868 	/*
1869 	 * If there are attributes associated with the file then blow them away
1870 	 * now.  The code calls a routine that recursively deconstructs the
1871 	 * attribute fork. If also blows away the in-core attribute fork.
1872 	 */
1873 	if (XFS_IFORK_Q(ip)) {
1874 		error = xfs_attr_inactive(ip);
1875 		if (error)
1876 			return;
1877 	}
1878 
1879 	ASSERT(!ip->i_afp);
1880 	ASSERT(ip->i_d.di_anextents == 0);
1881 	ASSERT(ip->i_d.di_forkoff == 0);
1882 
1883 	/*
1884 	 * Free the inode.
1885 	 */
1886 	error = xfs_inactive_ifree(ip);
1887 	if (error)
1888 		return;
1889 
1890 	/*
1891 	 * Release the dquots held by inode, if any.
1892 	 */
1893 	xfs_qm_dqdetach(ip);
1894 }
1895 
1896 /*
1897  * In-Core Unlinked List Lookups
1898  * =============================
1899  *
1900  * Every inode is supposed to be reachable from some other piece of metadata
1901  * with the exception of the root directory.  Inodes with a connection to a
1902  * file descriptor but not linked from anywhere in the on-disk directory tree
1903  * are collectively known as unlinked inodes, though the filesystem itself
1904  * maintains links to these inodes so that on-disk metadata are consistent.
1905  *
1906  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1907  * header contains a number of buckets that point to an inode, and each inode
1908  * record has a pointer to the next inode in the hash chain.  This
1909  * singly-linked list causes scaling problems in the iunlink remove function
1910  * because we must walk that list to find the inode that points to the inode
1911  * being removed from the unlinked hash bucket list.
1912  *
1913  * What if we modelled the unlinked list as a collection of records capturing
1914  * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1915  * have a fast way to look up unlinked list predecessors, which avoids the
1916  * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1917  * rhashtable.
1918  *
1919  * Because this is a backref cache, we ignore operational failures since the
1920  * iunlink code can fall back to the slow bucket walk.  The only errors that
1921  * should bubble out are for obviously incorrect situations.
1922  *
1923  * All users of the backref cache MUST hold the AGI buffer lock to serialize
1924  * access or have otherwise provided for concurrency control.
1925  */
1926 
1927 /* Capture a "X.next_unlinked = Y" relationship. */
1928 struct xfs_iunlink {
1929 	struct rhash_head	iu_rhash_head;
1930 	xfs_agino_t		iu_agino;		/* X */
1931 	xfs_agino_t		iu_next_unlinked;	/* Y */
1932 };
1933 
1934 /* Unlinked list predecessor lookup hashtable construction */
1935 static int
xfs_iunlink_obj_cmpfn(struct rhashtable_compare_arg * arg,const void * obj)1936 xfs_iunlink_obj_cmpfn(
1937 	struct rhashtable_compare_arg	*arg,
1938 	const void			*obj)
1939 {
1940 	const xfs_agino_t		*key = arg->key;
1941 	const struct xfs_iunlink	*iu = obj;
1942 
1943 	if (iu->iu_next_unlinked != *key)
1944 		return 1;
1945 	return 0;
1946 }
1947 
1948 static const struct rhashtable_params xfs_iunlink_hash_params = {
1949 	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1950 	.key_len		= sizeof(xfs_agino_t),
1951 	.key_offset		= offsetof(struct xfs_iunlink,
1952 					   iu_next_unlinked),
1953 	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1954 	.automatic_shrinking	= true,
1955 	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1956 };
1957 
1958 /*
1959  * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1960  * relation is found.
1961  */
1962 static xfs_agino_t
xfs_iunlink_lookup_backref(struct xfs_perag * pag,xfs_agino_t agino)1963 xfs_iunlink_lookup_backref(
1964 	struct xfs_perag	*pag,
1965 	xfs_agino_t		agino)
1966 {
1967 	struct xfs_iunlink	*iu;
1968 
1969 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1970 			xfs_iunlink_hash_params);
1971 	return iu ? iu->iu_agino : NULLAGINO;
1972 }
1973 
1974 /*
1975  * Take ownership of an iunlink cache entry and insert it into the hash table.
1976  * If successful, the entry will be owned by the cache; if not, it is freed.
1977  * Either way, the caller does not own @iu after this call.
1978  */
1979 static int
xfs_iunlink_insert_backref(struct xfs_perag * pag,struct xfs_iunlink * iu)1980 xfs_iunlink_insert_backref(
1981 	struct xfs_perag	*pag,
1982 	struct xfs_iunlink	*iu)
1983 {
1984 	int			error;
1985 
1986 	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1987 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1988 	/*
1989 	 * Fail loudly if there already was an entry because that's a sign of
1990 	 * corruption of in-memory data.  Also fail loudly if we see an error
1991 	 * code we didn't anticipate from the rhashtable code.  Currently we
1992 	 * only anticipate ENOMEM.
1993 	 */
1994 	if (error) {
1995 		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1996 		kmem_free(iu);
1997 	}
1998 	/*
1999 	 * Absorb any runtime errors that aren't a result of corruption because
2000 	 * this is a cache and we can always fall back to bucket list scanning.
2001 	 */
2002 	if (error != 0 && error != -EEXIST)
2003 		error = 0;
2004 	return error;
2005 }
2006 
2007 /* Remember that @prev_agino.next_unlinked = @this_agino. */
2008 static int
xfs_iunlink_add_backref(struct xfs_perag * pag,xfs_agino_t prev_agino,xfs_agino_t this_agino)2009 xfs_iunlink_add_backref(
2010 	struct xfs_perag	*pag,
2011 	xfs_agino_t		prev_agino,
2012 	xfs_agino_t		this_agino)
2013 {
2014 	struct xfs_iunlink	*iu;
2015 
2016 	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2017 		return 0;
2018 
2019 	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
2020 	iu->iu_agino = prev_agino;
2021 	iu->iu_next_unlinked = this_agino;
2022 
2023 	return xfs_iunlink_insert_backref(pag, iu);
2024 }
2025 
2026 /*
2027  * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2028  * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
2029  * wasn't any such entry then we don't bother.
2030  */
2031 static int
xfs_iunlink_change_backref(struct xfs_perag * pag,xfs_agino_t agino,xfs_agino_t next_unlinked)2032 xfs_iunlink_change_backref(
2033 	struct xfs_perag	*pag,
2034 	xfs_agino_t		agino,
2035 	xfs_agino_t		next_unlinked)
2036 {
2037 	struct xfs_iunlink	*iu;
2038 	int			error;
2039 
2040 	/* Look up the old entry; if there wasn't one then exit. */
2041 	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2042 			xfs_iunlink_hash_params);
2043 	if (!iu)
2044 		return 0;
2045 
2046 	/*
2047 	 * Remove the entry.  This shouldn't ever return an error, but if we
2048 	 * couldn't remove the old entry we don't want to add it again to the
2049 	 * hash table, and if the entry disappeared on us then someone's
2050 	 * violated the locking rules and we need to fail loudly.  Either way
2051 	 * we cannot remove the inode because internal state is or would have
2052 	 * been corrupt.
2053 	 */
2054 	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2055 			&iu->iu_rhash_head, xfs_iunlink_hash_params);
2056 	if (error)
2057 		return error;
2058 
2059 	/* If there is no new next entry just free our item and return. */
2060 	if (next_unlinked == NULLAGINO) {
2061 		kmem_free(iu);
2062 		return 0;
2063 	}
2064 
2065 	/* Update the entry and re-add it to the hash table. */
2066 	iu->iu_next_unlinked = next_unlinked;
2067 	return xfs_iunlink_insert_backref(pag, iu);
2068 }
2069 
2070 /* Set up the in-core predecessor structures. */
2071 int
xfs_iunlink_init(struct xfs_perag * pag)2072 xfs_iunlink_init(
2073 	struct xfs_perag	*pag)
2074 {
2075 	return rhashtable_init(&pag->pagi_unlinked_hash,
2076 			&xfs_iunlink_hash_params);
2077 }
2078 
2079 /* Free the in-core predecessor structures. */
2080 static void
xfs_iunlink_free_item(void * ptr,void * arg)2081 xfs_iunlink_free_item(
2082 	void			*ptr,
2083 	void			*arg)
2084 {
2085 	struct xfs_iunlink	*iu = ptr;
2086 	bool			*freed_anything = arg;
2087 
2088 	*freed_anything = true;
2089 	kmem_free(iu);
2090 }
2091 
2092 void
xfs_iunlink_destroy(struct xfs_perag * pag)2093 xfs_iunlink_destroy(
2094 	struct xfs_perag	*pag)
2095 {
2096 	bool			freed_anything = false;
2097 
2098 	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2099 			xfs_iunlink_free_item, &freed_anything);
2100 
2101 	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2102 }
2103 
2104 /*
2105  * Point the AGI unlinked bucket at an inode and log the results.  The caller
2106  * is responsible for validating the old value.
2107  */
2108 STATIC int
xfs_iunlink_update_bucket(struct xfs_trans * tp,xfs_agnumber_t agno,struct xfs_buf * agibp,unsigned int bucket_index,xfs_agino_t new_agino)2109 xfs_iunlink_update_bucket(
2110 	struct xfs_trans	*tp,
2111 	xfs_agnumber_t		agno,
2112 	struct xfs_buf		*agibp,
2113 	unsigned int		bucket_index,
2114 	xfs_agino_t		new_agino)
2115 {
2116 	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agibp);
2117 	xfs_agino_t		old_value;
2118 	int			offset;
2119 
2120 	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2121 
2122 	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2123 	trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2124 			old_value, new_agino);
2125 
2126 	/*
2127 	 * We should never find the head of the list already set to the value
2128 	 * passed in because either we're adding or removing ourselves from the
2129 	 * head of the list.
2130 	 */
2131 	if (old_value == new_agino) {
2132 		xfs_buf_mark_corrupt(agibp);
2133 		return -EFSCORRUPTED;
2134 	}
2135 
2136 	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2137 	offset = offsetof(struct xfs_agi, agi_unlinked) +
2138 			(sizeof(xfs_agino_t) * bucket_index);
2139 	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2140 	return 0;
2141 }
2142 
2143 /* Set an on-disk inode's next_unlinked pointer. */
2144 STATIC void
xfs_iunlink_update_dinode(struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agino_t agino,struct xfs_buf * ibp,struct xfs_dinode * dip,struct xfs_imap * imap,xfs_agino_t next_agino)2145 xfs_iunlink_update_dinode(
2146 	struct xfs_trans	*tp,
2147 	xfs_agnumber_t		agno,
2148 	xfs_agino_t		agino,
2149 	struct xfs_buf		*ibp,
2150 	struct xfs_dinode	*dip,
2151 	struct xfs_imap		*imap,
2152 	xfs_agino_t		next_agino)
2153 {
2154 	struct xfs_mount	*mp = tp->t_mountp;
2155 	int			offset;
2156 
2157 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2158 
2159 	trace_xfs_iunlink_update_dinode(mp, agno, agino,
2160 			be32_to_cpu(dip->di_next_unlinked), next_agino);
2161 
2162 	dip->di_next_unlinked = cpu_to_be32(next_agino);
2163 	offset = imap->im_boffset +
2164 			offsetof(struct xfs_dinode, di_next_unlinked);
2165 
2166 	/* need to recalc the inode CRC if appropriate */
2167 	xfs_dinode_calc_crc(mp, dip);
2168 	xfs_trans_inode_buf(tp, ibp);
2169 	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2170 	xfs_inobp_check(mp, ibp);
2171 }
2172 
2173 /* Set an in-core inode's unlinked pointer and return the old value. */
2174 STATIC int
xfs_iunlink_update_inode(struct xfs_trans * tp,struct xfs_inode * ip,xfs_agnumber_t agno,xfs_agino_t next_agino,xfs_agino_t * old_next_agino)2175 xfs_iunlink_update_inode(
2176 	struct xfs_trans	*tp,
2177 	struct xfs_inode	*ip,
2178 	xfs_agnumber_t		agno,
2179 	xfs_agino_t		next_agino,
2180 	xfs_agino_t		*old_next_agino)
2181 {
2182 	struct xfs_mount	*mp = tp->t_mountp;
2183 	struct xfs_dinode	*dip;
2184 	struct xfs_buf		*ibp;
2185 	xfs_agino_t		old_value;
2186 	int			error;
2187 
2188 	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2189 
2190 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0);
2191 	if (error)
2192 		return error;
2193 
2194 	/* Make sure the old pointer isn't garbage. */
2195 	old_value = be32_to_cpu(dip->di_next_unlinked);
2196 	if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2197 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2198 				sizeof(*dip), __this_address);
2199 		error = -EFSCORRUPTED;
2200 		goto out;
2201 	}
2202 
2203 	/*
2204 	 * Since we're updating a linked list, we should never find that the
2205 	 * current pointer is the same as the new value, unless we're
2206 	 * terminating the list.
2207 	 */
2208 	*old_next_agino = old_value;
2209 	if (old_value == next_agino) {
2210 		if (next_agino != NULLAGINO) {
2211 			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2212 					dip, sizeof(*dip), __this_address);
2213 			error = -EFSCORRUPTED;
2214 		}
2215 		goto out;
2216 	}
2217 
2218 	/* Ok, update the new pointer. */
2219 	xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2220 			ibp, dip, &ip->i_imap, next_agino);
2221 	return 0;
2222 out:
2223 	xfs_trans_brelse(tp, ibp);
2224 	return error;
2225 }
2226 
2227 /*
2228  * This is called when the inode's link count has gone to 0 or we are creating
2229  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2230  *
2231  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2232  * list when the inode is freed.
2233  */
2234 STATIC int
xfs_iunlink(struct xfs_trans * tp,struct xfs_inode * ip)2235 xfs_iunlink(
2236 	struct xfs_trans	*tp,
2237 	struct xfs_inode	*ip)
2238 {
2239 	struct xfs_mount	*mp = tp->t_mountp;
2240 	struct xfs_agi		*agi;
2241 	struct xfs_buf		*agibp;
2242 	xfs_agino_t		next_agino;
2243 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2244 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2245 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2246 	int			error;
2247 
2248 	ASSERT(VFS_I(ip)->i_nlink == 0);
2249 	ASSERT(VFS_I(ip)->i_mode != 0);
2250 	trace_xfs_iunlink(ip);
2251 
2252 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2253 	error = xfs_read_agi(mp, tp, agno, &agibp);
2254 	if (error)
2255 		return error;
2256 	agi = XFS_BUF_TO_AGI(agibp);
2257 
2258 	/*
2259 	 * Get the index into the agi hash table for the list this inode will
2260 	 * go on.  Make sure the pointer isn't garbage and that this inode
2261 	 * isn't already on the list.
2262 	 */
2263 	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2264 	if (next_agino == agino ||
2265 	    !xfs_verify_agino_or_null(mp, agno, next_agino)) {
2266 		xfs_buf_mark_corrupt(agibp);
2267 		return -EFSCORRUPTED;
2268 	}
2269 
2270 	if (next_agino != NULLAGINO) {
2271 		struct xfs_perag	*pag;
2272 		xfs_agino_t		old_agino;
2273 
2274 		/*
2275 		 * There is already another inode in the bucket, so point this
2276 		 * inode to the current head of the list.
2277 		 */
2278 		error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2279 				&old_agino);
2280 		if (error)
2281 			return error;
2282 		ASSERT(old_agino == NULLAGINO);
2283 
2284 		/*
2285 		 * agino has been unlinked, add a backref from the next inode
2286 		 * back to agino.
2287 		 */
2288 		pag = xfs_perag_get(mp, agno);
2289 		error = xfs_iunlink_add_backref(pag, agino, next_agino);
2290 		xfs_perag_put(pag);
2291 		if (error)
2292 			return error;
2293 	}
2294 
2295 	/* Point the head of the list to point to this inode. */
2296 	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2297 }
2298 
2299 /* Return the imap, dinode pointer, and buffer for an inode. */
2300 STATIC int
xfs_iunlink_map_ino(struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agino_t agino,struct xfs_imap * imap,struct xfs_dinode ** dipp,struct xfs_buf ** bpp)2301 xfs_iunlink_map_ino(
2302 	struct xfs_trans	*tp,
2303 	xfs_agnumber_t		agno,
2304 	xfs_agino_t		agino,
2305 	struct xfs_imap		*imap,
2306 	struct xfs_dinode	**dipp,
2307 	struct xfs_buf		**bpp)
2308 {
2309 	struct xfs_mount	*mp = tp->t_mountp;
2310 	int			error;
2311 
2312 	imap->im_blkno = 0;
2313 	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2314 	if (error) {
2315 		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2316 				__func__, error);
2317 		return error;
2318 	}
2319 
2320 	error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0);
2321 	if (error) {
2322 		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2323 				__func__, error);
2324 		return error;
2325 	}
2326 
2327 	return 0;
2328 }
2329 
2330 /*
2331  * Walk the unlinked chain from @head_agino until we find the inode that
2332  * points to @target_agino.  Return the inode number, map, dinode pointer,
2333  * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2334  *
2335  * @tp, @pag, @head_agino, and @target_agino are input parameters.
2336  * @agino, @imap, @dipp, and @bpp are all output parameters.
2337  *
2338  * Do not call this function if @target_agino is the head of the list.
2339  */
2340 STATIC int
xfs_iunlink_map_prev(struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agino_t head_agino,xfs_agino_t target_agino,xfs_agino_t * agino,struct xfs_imap * imap,struct xfs_dinode ** dipp,struct xfs_buf ** bpp,struct xfs_perag * pag)2341 xfs_iunlink_map_prev(
2342 	struct xfs_trans	*tp,
2343 	xfs_agnumber_t		agno,
2344 	xfs_agino_t		head_agino,
2345 	xfs_agino_t		target_agino,
2346 	xfs_agino_t		*agino,
2347 	struct xfs_imap		*imap,
2348 	struct xfs_dinode	**dipp,
2349 	struct xfs_buf		**bpp,
2350 	struct xfs_perag	*pag)
2351 {
2352 	struct xfs_mount	*mp = tp->t_mountp;
2353 	xfs_agino_t		next_agino;
2354 	int			error;
2355 
2356 	ASSERT(head_agino != target_agino);
2357 	*bpp = NULL;
2358 
2359 	/* See if our backref cache can find it faster. */
2360 	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2361 	if (*agino != NULLAGINO) {
2362 		error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2363 		if (error)
2364 			return error;
2365 
2366 		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2367 			return 0;
2368 
2369 		/*
2370 		 * If we get here the cache contents were corrupt, so drop the
2371 		 * buffer and fall back to walking the bucket list.
2372 		 */
2373 		xfs_trans_brelse(tp, *bpp);
2374 		*bpp = NULL;
2375 		WARN_ON_ONCE(1);
2376 	}
2377 
2378 	trace_xfs_iunlink_map_prev_fallback(mp, agno);
2379 
2380 	/* Otherwise, walk the entire bucket until we find it. */
2381 	next_agino = head_agino;
2382 	while (next_agino != target_agino) {
2383 		xfs_agino_t	unlinked_agino;
2384 
2385 		if (*bpp)
2386 			xfs_trans_brelse(tp, *bpp);
2387 
2388 		*agino = next_agino;
2389 		error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2390 				bpp);
2391 		if (error)
2392 			return error;
2393 
2394 		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2395 		/*
2396 		 * Make sure this pointer is valid and isn't an obvious
2397 		 * infinite loop.
2398 		 */
2399 		if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2400 		    next_agino == unlinked_agino) {
2401 			XFS_CORRUPTION_ERROR(__func__,
2402 					XFS_ERRLEVEL_LOW, mp,
2403 					*dipp, sizeof(**dipp));
2404 			error = -EFSCORRUPTED;
2405 			return error;
2406 		}
2407 		next_agino = unlinked_agino;
2408 	}
2409 
2410 	return 0;
2411 }
2412 
2413 /*
2414  * Pull the on-disk inode from the AGI unlinked list.
2415  */
2416 STATIC int
xfs_iunlink_remove(struct xfs_trans * tp,struct xfs_inode * ip)2417 xfs_iunlink_remove(
2418 	struct xfs_trans	*tp,
2419 	struct xfs_inode	*ip)
2420 {
2421 	struct xfs_mount	*mp = tp->t_mountp;
2422 	struct xfs_agi		*agi;
2423 	struct xfs_buf		*agibp;
2424 	struct xfs_buf		*last_ibp;
2425 	struct xfs_dinode	*last_dip = NULL;
2426 	struct xfs_perag	*pag = NULL;
2427 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2428 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2429 	xfs_agino_t		next_agino;
2430 	xfs_agino_t		head_agino;
2431 	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2432 	int			error;
2433 
2434 	trace_xfs_iunlink_remove(ip);
2435 
2436 	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2437 	error = xfs_read_agi(mp, tp, agno, &agibp);
2438 	if (error)
2439 		return error;
2440 	agi = XFS_BUF_TO_AGI(agibp);
2441 
2442 	/*
2443 	 * Get the index into the agi hash table for the list this inode will
2444 	 * go on.  Make sure the head pointer isn't garbage.
2445 	 */
2446 	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2447 	if (!xfs_verify_agino(mp, agno, head_agino)) {
2448 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2449 				agi, sizeof(*agi));
2450 		return -EFSCORRUPTED;
2451 	}
2452 
2453 	/*
2454 	 * Set our inode's next_unlinked pointer to NULL and then return
2455 	 * the old pointer value so that we can update whatever was previous
2456 	 * to us in the list to point to whatever was next in the list.
2457 	 */
2458 	error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2459 	if (error)
2460 		return error;
2461 
2462 	/*
2463 	 * If there was a backref pointing from the next inode back to this
2464 	 * one, remove it because we've removed this inode from the list.
2465 	 *
2466 	 * Later, if this inode was in the middle of the list we'll update
2467 	 * this inode's backref to point from the next inode.
2468 	 */
2469 	if (next_agino != NULLAGINO) {
2470 		pag = xfs_perag_get(mp, agno);
2471 		error = xfs_iunlink_change_backref(pag, next_agino,
2472 				NULLAGINO);
2473 		if (error)
2474 			goto out;
2475 	}
2476 
2477 	if (head_agino == agino) {
2478 		/* Point the head of the list to the next unlinked inode. */
2479 		error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2480 				next_agino);
2481 		if (error)
2482 			goto out;
2483 	} else {
2484 		struct xfs_imap	imap;
2485 		xfs_agino_t	prev_agino;
2486 
2487 		if (!pag)
2488 			pag = xfs_perag_get(mp, agno);
2489 
2490 		/* We need to search the list for the inode being freed. */
2491 		error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2492 				&prev_agino, &imap, &last_dip, &last_ibp,
2493 				pag);
2494 		if (error)
2495 			goto out;
2496 
2497 		/* Point the previous inode on the list to the next inode. */
2498 		xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2499 				last_dip, &imap, next_agino);
2500 
2501 		/*
2502 		 * Now we deal with the backref for this inode.  If this inode
2503 		 * pointed at a real inode, change the backref that pointed to
2504 		 * us to point to our old next.  If this inode was the end of
2505 		 * the list, delete the backref that pointed to us.  Note that
2506 		 * change_backref takes care of deleting the backref if
2507 		 * next_agino is NULLAGINO.
2508 		 */
2509 		error = xfs_iunlink_change_backref(pag, agino, next_agino);
2510 		if (error)
2511 			goto out;
2512 	}
2513 
2514 out:
2515 	if (pag)
2516 		xfs_perag_put(pag);
2517 	return error;
2518 }
2519 
2520 /*
2521  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2522  * inodes that are in memory - they all must be marked stale and attached to
2523  * the cluster buffer.
2524  */
2525 STATIC int
xfs_ifree_cluster(xfs_inode_t * free_ip,xfs_trans_t * tp,struct xfs_icluster * xic)2526 xfs_ifree_cluster(
2527 	xfs_inode_t		*free_ip,
2528 	xfs_trans_t		*tp,
2529 	struct xfs_icluster	*xic)
2530 {
2531 	xfs_mount_t		*mp = free_ip->i_mount;
2532 	int			nbufs;
2533 	int			i, j;
2534 	int			ioffset;
2535 	xfs_daddr_t		blkno;
2536 	xfs_buf_t		*bp;
2537 	xfs_inode_t		*ip;
2538 	struct xfs_inode_log_item *iip;
2539 	struct xfs_log_item	*lip;
2540 	struct xfs_perag	*pag;
2541 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2542 	xfs_ino_t		inum;
2543 
2544 	inum = xic->first_ino;
2545 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2546 	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2547 
2548 	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2549 		/*
2550 		 * The allocation bitmap tells us which inodes of the chunk were
2551 		 * physically allocated. Skip the cluster if an inode falls into
2552 		 * a sparse region.
2553 		 */
2554 		ioffset = inum - xic->first_ino;
2555 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2556 			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2557 			continue;
2558 		}
2559 
2560 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2561 					 XFS_INO_TO_AGBNO(mp, inum));
2562 
2563 		/*
2564 		 * We obtain and lock the backing buffer first in the process
2565 		 * here, as we have to ensure that any dirty inode that we
2566 		 * can't get the flush lock on is attached to the buffer.
2567 		 * If we scan the in-memory inodes first, then buffer IO can
2568 		 * complete before we get a lock on it, and hence we may fail
2569 		 * to mark all the active inodes on the buffer stale.
2570 		 */
2571 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2572 					mp->m_bsize * igeo->blocks_per_cluster,
2573 					XBF_UNMAPPED);
2574 
2575 		if (!bp) {
2576 			xfs_perag_put(pag);
2577 			return -ENOMEM;
2578 		}
2579 
2580 		/*
2581 		 * This buffer may not have been correctly initialised as we
2582 		 * didn't read it from disk. That's not important because we are
2583 		 * only using to mark the buffer as stale in the log, and to
2584 		 * attach stale cached inodes on it. That means it will never be
2585 		 * dispatched for IO. If it is, we want to know about it, and we
2586 		 * want it to fail. We can acheive this by adding a write
2587 		 * verifier to the buffer.
2588 		 */
2589 		bp->b_ops = &xfs_inode_buf_ops;
2590 
2591 		/*
2592 		 * Walk the inodes already attached to the buffer and mark them
2593 		 * stale. These will all have the flush locks held, so an
2594 		 * in-memory inode walk can't lock them. By marking them all
2595 		 * stale first, we will not attempt to lock them in the loop
2596 		 * below as the XFS_ISTALE flag will be set.
2597 		 */
2598 		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2599 			if (lip->li_type == XFS_LI_INODE) {
2600 				iip = (struct xfs_inode_log_item *)lip;
2601 				ASSERT(iip->ili_logged == 1);
2602 				lip->li_cb = xfs_istale_done;
2603 				xfs_trans_ail_copy_lsn(mp->m_ail,
2604 							&iip->ili_flush_lsn,
2605 							&iip->ili_item.li_lsn);
2606 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2607 			}
2608 		}
2609 
2610 
2611 		/*
2612 		 * For each inode in memory attempt to add it to the inode
2613 		 * buffer and set it up for being staled on buffer IO
2614 		 * completion.  This is safe as we've locked out tail pushing
2615 		 * and flushing by locking the buffer.
2616 		 *
2617 		 * We have already marked every inode that was part of a
2618 		 * transaction stale above, which means there is no point in
2619 		 * even trying to lock them.
2620 		 */
2621 		for (i = 0; i < igeo->inodes_per_cluster; i++) {
2622 retry:
2623 			rcu_read_lock();
2624 			ip = radix_tree_lookup(&pag->pag_ici_root,
2625 					XFS_INO_TO_AGINO(mp, (inum + i)));
2626 
2627 			/* Inode not in memory, nothing to do */
2628 			if (!ip) {
2629 				rcu_read_unlock();
2630 				continue;
2631 			}
2632 
2633 			/*
2634 			 * because this is an RCU protected lookup, we could
2635 			 * find a recently freed or even reallocated inode
2636 			 * during the lookup. We need to check under the
2637 			 * i_flags_lock for a valid inode here. Skip it if it
2638 			 * is not valid, the wrong inode or stale.
2639 			 */
2640 			spin_lock(&ip->i_flags_lock);
2641 			if (ip->i_ino != inum + i ||
2642 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2643 				spin_unlock(&ip->i_flags_lock);
2644 				rcu_read_unlock();
2645 				continue;
2646 			}
2647 			spin_unlock(&ip->i_flags_lock);
2648 
2649 			/*
2650 			 * Don't try to lock/unlock the current inode, but we
2651 			 * _cannot_ skip the other inodes that we did not find
2652 			 * in the list attached to the buffer and are not
2653 			 * already marked stale. If we can't lock it, back off
2654 			 * and retry.
2655 			 */
2656 			if (ip != free_ip) {
2657 				if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2658 					rcu_read_unlock();
2659 					delay(1);
2660 					goto retry;
2661 				}
2662 
2663 				/*
2664 				 * Check the inode number again in case we're
2665 				 * racing with freeing in xfs_reclaim_inode().
2666 				 * See the comments in that function for more
2667 				 * information as to why the initial check is
2668 				 * not sufficient.
2669 				 */
2670 				if (ip->i_ino != inum + i) {
2671 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2672 					rcu_read_unlock();
2673 					continue;
2674 				}
2675 			}
2676 			rcu_read_unlock();
2677 
2678 			xfs_iflock(ip);
2679 			xfs_iflags_set(ip, XFS_ISTALE);
2680 
2681 			/*
2682 			 * we don't need to attach clean inodes or those only
2683 			 * with unlogged changes (which we throw away, anyway).
2684 			 */
2685 			iip = ip->i_itemp;
2686 			if (!iip || xfs_inode_clean(ip)) {
2687 				ASSERT(ip != free_ip);
2688 				xfs_ifunlock(ip);
2689 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2690 				continue;
2691 			}
2692 
2693 			iip->ili_last_fields = iip->ili_fields;
2694 			iip->ili_fields = 0;
2695 			iip->ili_fsync_fields = 0;
2696 			iip->ili_logged = 1;
2697 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2698 						&iip->ili_item.li_lsn);
2699 
2700 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2701 						  &iip->ili_item);
2702 
2703 			if (ip != free_ip)
2704 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2705 		}
2706 
2707 		xfs_trans_stale_inode_buf(tp, bp);
2708 		xfs_trans_binval(tp, bp);
2709 	}
2710 
2711 	xfs_perag_put(pag);
2712 	return 0;
2713 }
2714 
2715 /*
2716  * Free any local-format buffers sitting around before we reset to
2717  * extents format.
2718  */
2719 static inline void
xfs_ifree_local_data(struct xfs_inode * ip,int whichfork)2720 xfs_ifree_local_data(
2721 	struct xfs_inode	*ip,
2722 	int			whichfork)
2723 {
2724 	struct xfs_ifork	*ifp;
2725 
2726 	if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2727 		return;
2728 
2729 	ifp = XFS_IFORK_PTR(ip, whichfork);
2730 	xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2731 }
2732 
2733 /*
2734  * This is called to return an inode to the inode free list.
2735  * The inode should already be truncated to 0 length and have
2736  * no pages associated with it.  This routine also assumes that
2737  * the inode is already a part of the transaction.
2738  *
2739  * The on-disk copy of the inode will have been added to the list
2740  * of unlinked inodes in the AGI. We need to remove the inode from
2741  * that list atomically with respect to freeing it here.
2742  */
2743 int
xfs_ifree(struct xfs_trans * tp,struct xfs_inode * ip)2744 xfs_ifree(
2745 	struct xfs_trans	*tp,
2746 	struct xfs_inode	*ip)
2747 {
2748 	int			error;
2749 	struct xfs_icluster	xic = { 0 };
2750 
2751 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2752 	ASSERT(VFS_I(ip)->i_nlink == 0);
2753 	ASSERT(ip->i_d.di_nextents == 0);
2754 	ASSERT(ip->i_d.di_anextents == 0);
2755 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2756 	ASSERT(ip->i_d.di_nblocks == 0);
2757 
2758 	/*
2759 	 * Pull the on-disk inode from the AGI unlinked list.
2760 	 */
2761 	error = xfs_iunlink_remove(tp, ip);
2762 	if (error)
2763 		return error;
2764 
2765 	error = xfs_difree(tp, ip->i_ino, &xic);
2766 	if (error)
2767 		return error;
2768 
2769 	xfs_ifree_local_data(ip, XFS_DATA_FORK);
2770 	xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2771 
2772 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2773 	ip->i_d.di_flags = 0;
2774 	ip->i_d.di_flags2 = 0;
2775 	ip->i_d.di_dmevmask = 0;
2776 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2777 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2778 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2779 
2780 	/* Don't attempt to replay owner changes for a deleted inode */
2781 	ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2782 
2783 	/*
2784 	 * Bump the generation count so no one will be confused
2785 	 * by reincarnations of this inode.
2786 	 */
2787 	VFS_I(ip)->i_generation++;
2788 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2789 
2790 	if (xic.deleted)
2791 		error = xfs_ifree_cluster(ip, tp, &xic);
2792 
2793 	return error;
2794 }
2795 
2796 /*
2797  * This is called to unpin an inode.  The caller must have the inode locked
2798  * in at least shared mode so that the buffer cannot be subsequently pinned
2799  * once someone is waiting for it to be unpinned.
2800  */
2801 static void
xfs_iunpin(struct xfs_inode * ip)2802 xfs_iunpin(
2803 	struct xfs_inode	*ip)
2804 {
2805 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2806 
2807 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2808 
2809 	/* Give the log a push to start the unpinning I/O */
2810 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2811 
2812 }
2813 
2814 static void
__xfs_iunpin_wait(struct xfs_inode * ip)2815 __xfs_iunpin_wait(
2816 	struct xfs_inode	*ip)
2817 {
2818 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2819 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2820 
2821 	xfs_iunpin(ip);
2822 
2823 	do {
2824 		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2825 		if (xfs_ipincount(ip))
2826 			io_schedule();
2827 	} while (xfs_ipincount(ip));
2828 	finish_wait(wq, &wait.wq_entry);
2829 }
2830 
2831 void
xfs_iunpin_wait(struct xfs_inode * ip)2832 xfs_iunpin_wait(
2833 	struct xfs_inode	*ip)
2834 {
2835 	if (xfs_ipincount(ip))
2836 		__xfs_iunpin_wait(ip);
2837 }
2838 
2839 /*
2840  * Removing an inode from the namespace involves removing the directory entry
2841  * and dropping the link count on the inode. Removing the directory entry can
2842  * result in locking an AGF (directory blocks were freed) and removing a link
2843  * count can result in placing the inode on an unlinked list which results in
2844  * locking an AGI.
2845  *
2846  * The big problem here is that we have an ordering constraint on AGF and AGI
2847  * locking - inode allocation locks the AGI, then can allocate a new extent for
2848  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2849  * removes the inode from the unlinked list, requiring that we lock the AGI
2850  * first, and then freeing the inode can result in an inode chunk being freed
2851  * and hence freeing disk space requiring that we lock an AGF.
2852  *
2853  * Hence the ordering that is imposed by other parts of the code is AGI before
2854  * AGF. This means we cannot remove the directory entry before we drop the inode
2855  * reference count and put it on the unlinked list as this results in a lock
2856  * order of AGF then AGI, and this can deadlock against inode allocation and
2857  * freeing. Therefore we must drop the link counts before we remove the
2858  * directory entry.
2859  *
2860  * This is still safe from a transactional point of view - it is not until we
2861  * get to xfs_defer_finish() that we have the possibility of multiple
2862  * transactions in this operation. Hence as long as we remove the directory
2863  * entry and drop the link count in the first transaction of the remove
2864  * operation, there are no transactional constraints on the ordering here.
2865  */
2866 int
xfs_remove(xfs_inode_t * dp,struct xfs_name * name,xfs_inode_t * ip)2867 xfs_remove(
2868 	xfs_inode_t             *dp,
2869 	struct xfs_name		*name,
2870 	xfs_inode_t		*ip)
2871 {
2872 	xfs_mount_t		*mp = dp->i_mount;
2873 	xfs_trans_t             *tp = NULL;
2874 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2875 	int                     error = 0;
2876 	uint			resblks;
2877 
2878 	trace_xfs_remove(dp, name);
2879 
2880 	if (XFS_FORCED_SHUTDOWN(mp))
2881 		return -EIO;
2882 
2883 	error = xfs_qm_dqattach(dp);
2884 	if (error)
2885 		goto std_return;
2886 
2887 	error = xfs_qm_dqattach(ip);
2888 	if (error)
2889 		goto std_return;
2890 
2891 	/*
2892 	 * We try to get the real space reservation first,
2893 	 * allowing for directory btree deletion(s) implying
2894 	 * possible bmap insert(s).  If we can't get the space
2895 	 * reservation then we use 0 instead, and avoid the bmap
2896 	 * btree insert(s) in the directory code by, if the bmap
2897 	 * insert tries to happen, instead trimming the LAST
2898 	 * block from the directory.
2899 	 */
2900 	resblks = XFS_REMOVE_SPACE_RES(mp);
2901 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2902 	if (error == -ENOSPC) {
2903 		resblks = 0;
2904 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2905 				&tp);
2906 	}
2907 	if (error) {
2908 		ASSERT(error != -ENOSPC);
2909 		goto std_return;
2910 	}
2911 
2912 	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2913 
2914 	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2915 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2916 
2917 	/*
2918 	 * If we're removing a directory perform some additional validation.
2919 	 */
2920 	if (is_dir) {
2921 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2922 		if (VFS_I(ip)->i_nlink != 2) {
2923 			error = -ENOTEMPTY;
2924 			goto out_trans_cancel;
2925 		}
2926 		if (!xfs_dir_isempty(ip)) {
2927 			error = -ENOTEMPTY;
2928 			goto out_trans_cancel;
2929 		}
2930 
2931 		/* Drop the link from ip's "..".  */
2932 		error = xfs_droplink(tp, dp);
2933 		if (error)
2934 			goto out_trans_cancel;
2935 
2936 		/* Drop the "." link from ip to self.  */
2937 		error = xfs_droplink(tp, ip);
2938 		if (error)
2939 			goto out_trans_cancel;
2940 	} else {
2941 		/*
2942 		 * When removing a non-directory we need to log the parent
2943 		 * inode here.  For a directory this is done implicitly
2944 		 * by the xfs_droplink call for the ".." entry.
2945 		 */
2946 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2947 	}
2948 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2949 
2950 	/* Drop the link from dp to ip. */
2951 	error = xfs_droplink(tp, ip);
2952 	if (error)
2953 		goto out_trans_cancel;
2954 
2955 	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2956 	if (error) {
2957 		ASSERT(error != -ENOENT);
2958 		goto out_trans_cancel;
2959 	}
2960 
2961 	/*
2962 	 * If this is a synchronous mount, make sure that the
2963 	 * remove transaction goes to disk before returning to
2964 	 * the user.
2965 	 */
2966 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2967 		xfs_trans_set_sync(tp);
2968 
2969 	error = xfs_trans_commit(tp);
2970 	if (error)
2971 		goto std_return;
2972 
2973 	if (is_dir && xfs_inode_is_filestream(ip))
2974 		xfs_filestream_deassociate(ip);
2975 
2976 	return 0;
2977 
2978  out_trans_cancel:
2979 	xfs_trans_cancel(tp);
2980  std_return:
2981 	return error;
2982 }
2983 
2984 /*
2985  * Enter all inodes for a rename transaction into a sorted array.
2986  */
2987 #define __XFS_SORT_INODES	5
2988 STATIC void
xfs_sort_for_rename(struct xfs_inode * dp1,struct xfs_inode * dp2,struct xfs_inode * ip1,struct xfs_inode * ip2,struct xfs_inode * wip,struct xfs_inode ** i_tab,int * num_inodes)2989 xfs_sort_for_rename(
2990 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2991 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2992 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2993 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2994 	struct xfs_inode	*wip,	/* in: whiteout inode */
2995 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2996 	int			*num_inodes)  /* in/out: inodes in array */
2997 {
2998 	int			i, j;
2999 
3000 	ASSERT(*num_inodes == __XFS_SORT_INODES);
3001 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
3002 
3003 	/*
3004 	 * i_tab contains a list of pointers to inodes.  We initialize
3005 	 * the table here & we'll sort it.  We will then use it to
3006 	 * order the acquisition of the inode locks.
3007 	 *
3008 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
3009 	 */
3010 	i = 0;
3011 	i_tab[i++] = dp1;
3012 	i_tab[i++] = dp2;
3013 	i_tab[i++] = ip1;
3014 	if (ip2)
3015 		i_tab[i++] = ip2;
3016 	if (wip)
3017 		i_tab[i++] = wip;
3018 	*num_inodes = i;
3019 
3020 	/*
3021 	 * Sort the elements via bubble sort.  (Remember, there are at
3022 	 * most 5 elements to sort, so this is adequate.)
3023 	 */
3024 	for (i = 0; i < *num_inodes; i++) {
3025 		for (j = 1; j < *num_inodes; j++) {
3026 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
3027 				struct xfs_inode *temp = i_tab[j];
3028 				i_tab[j] = i_tab[j-1];
3029 				i_tab[j-1] = temp;
3030 			}
3031 		}
3032 	}
3033 }
3034 
3035 static int
xfs_finish_rename(struct xfs_trans * tp)3036 xfs_finish_rename(
3037 	struct xfs_trans	*tp)
3038 {
3039 	/*
3040 	 * If this is a synchronous mount, make sure that the rename transaction
3041 	 * goes to disk before returning to the user.
3042 	 */
3043 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
3044 		xfs_trans_set_sync(tp);
3045 
3046 	return xfs_trans_commit(tp);
3047 }
3048 
3049 /*
3050  * xfs_cross_rename()
3051  *
3052  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3053  */
3054 STATIC int
xfs_cross_rename(struct xfs_trans * tp,struct xfs_inode * dp1,struct xfs_name * name1,struct xfs_inode * ip1,struct xfs_inode * dp2,struct xfs_name * name2,struct xfs_inode * ip2,int spaceres)3055 xfs_cross_rename(
3056 	struct xfs_trans	*tp,
3057 	struct xfs_inode	*dp1,
3058 	struct xfs_name		*name1,
3059 	struct xfs_inode	*ip1,
3060 	struct xfs_inode	*dp2,
3061 	struct xfs_name		*name2,
3062 	struct xfs_inode	*ip2,
3063 	int			spaceres)
3064 {
3065 	int		error = 0;
3066 	int		ip1_flags = 0;
3067 	int		ip2_flags = 0;
3068 	int		dp2_flags = 0;
3069 
3070 	/* Swap inode number for dirent in first parent */
3071 	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
3072 	if (error)
3073 		goto out_trans_abort;
3074 
3075 	/* Swap inode number for dirent in second parent */
3076 	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
3077 	if (error)
3078 		goto out_trans_abort;
3079 
3080 	/*
3081 	 * If we're renaming one or more directories across different parents,
3082 	 * update the respective ".." entries (and link counts) to match the new
3083 	 * parents.
3084 	 */
3085 	if (dp1 != dp2) {
3086 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3087 
3088 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3089 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3090 						dp1->i_ino, spaceres);
3091 			if (error)
3092 				goto out_trans_abort;
3093 
3094 			/* transfer ip2 ".." reference to dp1 */
3095 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3096 				error = xfs_droplink(tp, dp2);
3097 				if (error)
3098 					goto out_trans_abort;
3099 				xfs_bumplink(tp, dp1);
3100 			}
3101 
3102 			/*
3103 			 * Although ip1 isn't changed here, userspace needs
3104 			 * to be warned about the change, so that applications
3105 			 * relying on it (like backup ones), will properly
3106 			 * notify the change
3107 			 */
3108 			ip1_flags |= XFS_ICHGTIME_CHG;
3109 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3110 		}
3111 
3112 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3113 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3114 						dp2->i_ino, spaceres);
3115 			if (error)
3116 				goto out_trans_abort;
3117 
3118 			/* transfer ip1 ".." reference to dp2 */
3119 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3120 				error = xfs_droplink(tp, dp1);
3121 				if (error)
3122 					goto out_trans_abort;
3123 				xfs_bumplink(tp, dp2);
3124 			}
3125 
3126 			/*
3127 			 * Although ip2 isn't changed here, userspace needs
3128 			 * to be warned about the change, so that applications
3129 			 * relying on it (like backup ones), will properly
3130 			 * notify the change
3131 			 */
3132 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3133 			ip2_flags |= XFS_ICHGTIME_CHG;
3134 		}
3135 	}
3136 
3137 	if (ip1_flags) {
3138 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
3139 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3140 	}
3141 	if (ip2_flags) {
3142 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
3143 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3144 	}
3145 	if (dp2_flags) {
3146 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
3147 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3148 	}
3149 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3150 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3151 	return xfs_finish_rename(tp);
3152 
3153 out_trans_abort:
3154 	xfs_trans_cancel(tp);
3155 	return error;
3156 }
3157 
3158 /*
3159  * xfs_rename_alloc_whiteout()
3160  *
3161  * Return a referenced, unlinked, unlocked inode that that can be used as a
3162  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3163  * crash between allocating the inode and linking it into the rename transaction
3164  * recovery will free the inode and we won't leak it.
3165  */
3166 static int
xfs_rename_alloc_whiteout(struct xfs_inode * dp,struct xfs_inode ** wip)3167 xfs_rename_alloc_whiteout(
3168 	struct xfs_inode	*dp,
3169 	struct xfs_inode	**wip)
3170 {
3171 	struct xfs_inode	*tmpfile;
3172 	int			error;
3173 
3174 	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3175 	if (error)
3176 		return error;
3177 
3178 	/*
3179 	 * Prepare the tmpfile inode as if it were created through the VFS.
3180 	 * Complete the inode setup and flag it as linkable.  nlink is already
3181 	 * zero, so we can skip the drop_nlink.
3182 	 */
3183 	xfs_setup_iops(tmpfile);
3184 	xfs_finish_inode_setup(tmpfile);
3185 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3186 
3187 	*wip = tmpfile;
3188 	return 0;
3189 }
3190 
3191 /*
3192  * xfs_rename
3193  */
3194 int
xfs_rename(struct xfs_inode * src_dp,struct xfs_name * src_name,struct xfs_inode * src_ip,struct xfs_inode * target_dp,struct xfs_name * target_name,struct xfs_inode * target_ip,unsigned int flags)3195 xfs_rename(
3196 	struct xfs_inode	*src_dp,
3197 	struct xfs_name		*src_name,
3198 	struct xfs_inode	*src_ip,
3199 	struct xfs_inode	*target_dp,
3200 	struct xfs_name		*target_name,
3201 	struct xfs_inode	*target_ip,
3202 	unsigned int		flags)
3203 {
3204 	struct xfs_mount	*mp = src_dp->i_mount;
3205 	struct xfs_trans	*tp;
3206 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3207 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3208 	int			i;
3209 	int			num_inodes = __XFS_SORT_INODES;
3210 	bool			new_parent = (src_dp != target_dp);
3211 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3212 	int			spaceres;
3213 	int			error;
3214 
3215 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3216 
3217 	if ((flags & RENAME_EXCHANGE) && !target_ip)
3218 		return -EINVAL;
3219 
3220 	/*
3221 	 * If we are doing a whiteout operation, allocate the whiteout inode
3222 	 * we will be placing at the target and ensure the type is set
3223 	 * appropriately.
3224 	 */
3225 	if (flags & RENAME_WHITEOUT) {
3226 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
3227 		if (error)
3228 			return error;
3229 
3230 		/* setup target dirent info as whiteout */
3231 		src_name->type = XFS_DIR3_FT_CHRDEV;
3232 	}
3233 
3234 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3235 				inodes, &num_inodes);
3236 
3237 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3238 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3239 	if (error == -ENOSPC) {
3240 		spaceres = 0;
3241 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3242 				&tp);
3243 	}
3244 	if (error)
3245 		goto out_release_wip;
3246 
3247 	/*
3248 	 * Attach the dquots to the inodes
3249 	 */
3250 	error = xfs_qm_vop_rename_dqattach(inodes);
3251 	if (error)
3252 		goto out_trans_cancel;
3253 
3254 	/*
3255 	 * Lock all the participating inodes. Depending upon whether
3256 	 * the target_name exists in the target directory, and
3257 	 * whether the target directory is the same as the source
3258 	 * directory, we can lock from 2 to 4 inodes.
3259 	 */
3260 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3261 
3262 	/*
3263 	 * Join all the inodes to the transaction. From this point on,
3264 	 * we can rely on either trans_commit or trans_cancel to unlock
3265 	 * them.
3266 	 */
3267 	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3268 	if (new_parent)
3269 		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3270 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3271 	if (target_ip)
3272 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3273 	if (wip)
3274 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3275 
3276 	/*
3277 	 * If we are using project inheritance, we only allow renames
3278 	 * into our tree when the project IDs are the same; else the
3279 	 * tree quota mechanism would be circumvented.
3280 	 */
3281 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3282 		     target_dp->i_d.di_projid != src_ip->i_d.di_projid)) {
3283 		error = -EXDEV;
3284 		goto out_trans_cancel;
3285 	}
3286 
3287 	/* RENAME_EXCHANGE is unique from here on. */
3288 	if (flags & RENAME_EXCHANGE)
3289 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3290 					target_dp, target_name, target_ip,
3291 					spaceres);
3292 
3293 	/*
3294 	 * Check for expected errors before we dirty the transaction
3295 	 * so we can return an error without a transaction abort.
3296 	 */
3297 	if (target_ip == NULL) {
3298 		/*
3299 		 * If there's no space reservation, check the entry will
3300 		 * fit before actually inserting it.
3301 		 */
3302 		if (!spaceres) {
3303 			error = xfs_dir_canenter(tp, target_dp, target_name);
3304 			if (error)
3305 				goto out_trans_cancel;
3306 		}
3307 	} else {
3308 		/*
3309 		 * If target exists and it's a directory, check that whether
3310 		 * it can be destroyed.
3311 		 */
3312 		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3313 		    (!xfs_dir_isempty(target_ip) ||
3314 		     (VFS_I(target_ip)->i_nlink > 2))) {
3315 			error = -EEXIST;
3316 			goto out_trans_cancel;
3317 		}
3318 	}
3319 
3320 	/*
3321 	 * Lock the AGI buffers we need to handle bumping the nlink of the
3322 	 * whiteout inode off the unlinked list and to handle dropping the
3323 	 * nlink of the target inode.  Per locking order rules, do this in
3324 	 * increasing AG order and before directory block allocation tries to
3325 	 * grab AGFs because we grab AGIs before AGFs.
3326 	 *
3327 	 * The (vfs) caller must ensure that if src is a directory then
3328 	 * target_ip is either null or an empty directory.
3329 	 */
3330 	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3331 		if (inodes[i] == wip ||
3332 		    (inodes[i] == target_ip &&
3333 		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3334 			struct xfs_buf	*bp;
3335 			xfs_agnumber_t	agno;
3336 
3337 			agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3338 			error = xfs_read_agi(mp, tp, agno, &bp);
3339 			if (error)
3340 				goto out_trans_cancel;
3341 		}
3342 	}
3343 
3344 	/*
3345 	 * Directory entry creation below may acquire the AGF. Remove
3346 	 * the whiteout from the unlinked list first to preserve correct
3347 	 * AGI/AGF locking order. This dirties the transaction so failures
3348 	 * after this point will abort and log recovery will clean up the
3349 	 * mess.
3350 	 *
3351 	 * For whiteouts, we need to bump the link count on the whiteout
3352 	 * inode. After this point, we have a real link, clear the tmpfile
3353 	 * state flag from the inode so it doesn't accidentally get misused
3354 	 * in future.
3355 	 */
3356 	if (wip) {
3357 		ASSERT(VFS_I(wip)->i_nlink == 0);
3358 		error = xfs_iunlink_remove(tp, wip);
3359 		if (error)
3360 			goto out_trans_cancel;
3361 
3362 		xfs_bumplink(tp, wip);
3363 		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3364 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3365 	}
3366 
3367 	/*
3368 	 * Set up the target.
3369 	 */
3370 	if (target_ip == NULL) {
3371 		/*
3372 		 * If target does not exist and the rename crosses
3373 		 * directories, adjust the target directory link count
3374 		 * to account for the ".." reference from the new entry.
3375 		 */
3376 		error = xfs_dir_createname(tp, target_dp, target_name,
3377 					   src_ip->i_ino, spaceres);
3378 		if (error)
3379 			goto out_trans_cancel;
3380 
3381 		xfs_trans_ichgtime(tp, target_dp,
3382 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3383 
3384 		if (new_parent && src_is_directory) {
3385 			xfs_bumplink(tp, target_dp);
3386 		}
3387 	} else { /* target_ip != NULL */
3388 		/*
3389 		 * Link the source inode under the target name.
3390 		 * If the source inode is a directory and we are moving
3391 		 * it across directories, its ".." entry will be
3392 		 * inconsistent until we replace that down below.
3393 		 *
3394 		 * In case there is already an entry with the same
3395 		 * name at the destination directory, remove it first.
3396 		 */
3397 		error = xfs_dir_replace(tp, target_dp, target_name,
3398 					src_ip->i_ino, spaceres);
3399 		if (error)
3400 			goto out_trans_cancel;
3401 
3402 		xfs_trans_ichgtime(tp, target_dp,
3403 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3404 
3405 		/*
3406 		 * Decrement the link count on the target since the target
3407 		 * dir no longer points to it.
3408 		 */
3409 		error = xfs_droplink(tp, target_ip);
3410 		if (error)
3411 			goto out_trans_cancel;
3412 
3413 		if (src_is_directory) {
3414 			/*
3415 			 * Drop the link from the old "." entry.
3416 			 */
3417 			error = xfs_droplink(tp, target_ip);
3418 			if (error)
3419 				goto out_trans_cancel;
3420 		}
3421 	} /* target_ip != NULL */
3422 
3423 	/*
3424 	 * Remove the source.
3425 	 */
3426 	if (new_parent && src_is_directory) {
3427 		/*
3428 		 * Rewrite the ".." entry to point to the new
3429 		 * directory.
3430 		 */
3431 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3432 					target_dp->i_ino, spaceres);
3433 		ASSERT(error != -EEXIST);
3434 		if (error)
3435 			goto out_trans_cancel;
3436 	}
3437 
3438 	/*
3439 	 * We always want to hit the ctime on the source inode.
3440 	 *
3441 	 * This isn't strictly required by the standards since the source
3442 	 * inode isn't really being changed, but old unix file systems did
3443 	 * it and some incremental backup programs won't work without it.
3444 	 */
3445 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3446 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3447 
3448 	/*
3449 	 * Adjust the link count on src_dp.  This is necessary when
3450 	 * renaming a directory, either within one parent when
3451 	 * the target existed, or across two parent directories.
3452 	 */
3453 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3454 
3455 		/*
3456 		 * Decrement link count on src_directory since the
3457 		 * entry that's moved no longer points to it.
3458 		 */
3459 		error = xfs_droplink(tp, src_dp);
3460 		if (error)
3461 			goto out_trans_cancel;
3462 	}
3463 
3464 	/*
3465 	 * For whiteouts, we only need to update the source dirent with the
3466 	 * inode number of the whiteout inode rather than removing it
3467 	 * altogether.
3468 	 */
3469 	if (wip) {
3470 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3471 					spaceres);
3472 	} else
3473 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3474 					   spaceres);
3475 	if (error)
3476 		goto out_trans_cancel;
3477 
3478 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3479 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3480 	if (new_parent)
3481 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3482 
3483 	error = xfs_finish_rename(tp);
3484 	if (wip)
3485 		xfs_irele(wip);
3486 	return error;
3487 
3488 out_trans_cancel:
3489 	xfs_trans_cancel(tp);
3490 out_release_wip:
3491 	if (wip)
3492 		xfs_irele(wip);
3493 	return error;
3494 }
3495 
3496 STATIC int
xfs_iflush_cluster(struct xfs_inode * ip,struct xfs_buf * bp)3497 xfs_iflush_cluster(
3498 	struct xfs_inode	*ip,
3499 	struct xfs_buf		*bp)
3500 {
3501 	struct xfs_mount	*mp = ip->i_mount;
3502 	struct xfs_perag	*pag;
3503 	unsigned long		first_index, mask;
3504 	int			cilist_size;
3505 	struct xfs_inode	**cilist;
3506 	struct xfs_inode	*cip;
3507 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
3508 	int			nr_found;
3509 	int			clcount = 0;
3510 	int			i;
3511 
3512 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3513 
3514 	cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *);
3515 	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3516 	if (!cilist)
3517 		goto out_put;
3518 
3519 	mask = ~(igeo->inodes_per_cluster - 1);
3520 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3521 	rcu_read_lock();
3522 	/* really need a gang lookup range call here */
3523 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3524 					first_index, igeo->inodes_per_cluster);
3525 	if (nr_found == 0)
3526 		goto out_free;
3527 
3528 	for (i = 0; i < nr_found; i++) {
3529 		cip = cilist[i];
3530 		if (cip == ip)
3531 			continue;
3532 
3533 		/*
3534 		 * because this is an RCU protected lookup, we could find a
3535 		 * recently freed or even reallocated inode during the lookup.
3536 		 * We need to check under the i_flags_lock for a valid inode
3537 		 * here. Skip it if it is not valid or the wrong inode.
3538 		 */
3539 		spin_lock(&cip->i_flags_lock);
3540 		if (!cip->i_ino ||
3541 		    __xfs_iflags_test(cip, XFS_ISTALE)) {
3542 			spin_unlock(&cip->i_flags_lock);
3543 			continue;
3544 		}
3545 
3546 		/*
3547 		 * Once we fall off the end of the cluster, no point checking
3548 		 * any more inodes in the list because they will also all be
3549 		 * outside the cluster.
3550 		 */
3551 		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3552 			spin_unlock(&cip->i_flags_lock);
3553 			break;
3554 		}
3555 		spin_unlock(&cip->i_flags_lock);
3556 
3557 		/*
3558 		 * Do an un-protected check to see if the inode is dirty and
3559 		 * is a candidate for flushing.  These checks will be repeated
3560 		 * later after the appropriate locks are acquired.
3561 		 */
3562 		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3563 			continue;
3564 
3565 		/*
3566 		 * Try to get locks.  If any are unavailable or it is pinned,
3567 		 * then this inode cannot be flushed and is skipped.
3568 		 */
3569 
3570 		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3571 			continue;
3572 		if (!xfs_iflock_nowait(cip)) {
3573 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3574 			continue;
3575 		}
3576 		if (xfs_ipincount(cip)) {
3577 			xfs_ifunlock(cip);
3578 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3579 			continue;
3580 		}
3581 
3582 
3583 		/*
3584 		 * Check the inode number again, just to be certain we are not
3585 		 * racing with freeing in xfs_reclaim_inode(). See the comments
3586 		 * in that function for more information as to why the initial
3587 		 * check is not sufficient.
3588 		 */
3589 		if (!cip->i_ino) {
3590 			xfs_ifunlock(cip);
3591 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3592 			continue;
3593 		}
3594 
3595 		/*
3596 		 * arriving here means that this inode can be flushed.  First
3597 		 * re-check that it's dirty before flushing.
3598 		 */
3599 		if (!xfs_inode_clean(cip)) {
3600 			int	error;
3601 			error = xfs_iflush_int(cip, bp);
3602 			if (error) {
3603 				xfs_iunlock(cip, XFS_ILOCK_SHARED);
3604 				goto cluster_corrupt_out;
3605 			}
3606 			clcount++;
3607 		} else {
3608 			xfs_ifunlock(cip);
3609 		}
3610 		xfs_iunlock(cip, XFS_ILOCK_SHARED);
3611 	}
3612 
3613 	if (clcount) {
3614 		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3615 		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3616 	}
3617 
3618 out_free:
3619 	rcu_read_unlock();
3620 	kmem_free(cilist);
3621 out_put:
3622 	xfs_perag_put(pag);
3623 	return 0;
3624 
3625 
3626 cluster_corrupt_out:
3627 	/*
3628 	 * Corruption detected in the clustering loop.  Invalidate the
3629 	 * inode buffer and shut down the filesystem.
3630 	 */
3631 	rcu_read_unlock();
3632 
3633 	/*
3634 	 * We'll always have an inode attached to the buffer for completion
3635 	 * process by the time we are called from xfs_iflush(). Hence we have
3636 	 * always need to do IO completion processing to abort the inodes
3637 	 * attached to the buffer.  handle them just like the shutdown case in
3638 	 * xfs_buf_submit().
3639 	 */
3640 	ASSERT(bp->b_iodone);
3641 	bp->b_flags |= XBF_ASYNC;
3642 	bp->b_flags &= ~XBF_DONE;
3643 	xfs_buf_stale(bp);
3644 	xfs_buf_ioerror(bp, -EIO);
3645 	xfs_buf_ioend(bp);
3646 
3647 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3648 
3649 	/* abort the corrupt inode, as it was not attached to the buffer */
3650 	xfs_iflush_abort(cip, false);
3651 	kmem_free(cilist);
3652 	xfs_perag_put(pag);
3653 	return -EFSCORRUPTED;
3654 }
3655 
3656 /*
3657  * Flush dirty inode metadata into the backing buffer.
3658  *
3659  * The caller must have the inode lock and the inode flush lock held.  The
3660  * inode lock will still be held upon return to the caller, and the inode
3661  * flush lock will be released after the inode has reached the disk.
3662  *
3663  * The caller must write out the buffer returned in *bpp and release it.
3664  */
3665 int
xfs_iflush(struct xfs_inode * ip,struct xfs_buf ** bpp)3666 xfs_iflush(
3667 	struct xfs_inode	*ip,
3668 	struct xfs_buf		**bpp)
3669 {
3670 	struct xfs_mount	*mp = ip->i_mount;
3671 	struct xfs_buf		*bp = NULL;
3672 	struct xfs_dinode	*dip;
3673 	int			error;
3674 
3675 	XFS_STATS_INC(mp, xs_iflush_count);
3676 
3677 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3678 	ASSERT(xfs_isiflocked(ip));
3679 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3680 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3681 
3682 	*bpp = NULL;
3683 
3684 	xfs_iunpin_wait(ip);
3685 
3686 	/*
3687 	 * For stale inodes we cannot rely on the backing buffer remaining
3688 	 * stale in cache for the remaining life of the stale inode and so
3689 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3690 	 * inodes below. We have to check this after ensuring the inode is
3691 	 * unpinned so that it is safe to reclaim the stale inode after the
3692 	 * flush call.
3693 	 */
3694 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3695 		xfs_ifunlock(ip);
3696 		return 0;
3697 	}
3698 
3699 	/*
3700 	 * This may have been unpinned because the filesystem is shutting
3701 	 * down forcibly. If that's the case we must not write this inode
3702 	 * to disk, because the log record didn't make it to disk.
3703 	 *
3704 	 * We also have to remove the log item from the AIL in this case,
3705 	 * as we wait for an empty AIL as part of the unmount process.
3706 	 */
3707 	if (XFS_FORCED_SHUTDOWN(mp)) {
3708 		error = -EIO;
3709 		goto abort_out;
3710 	}
3711 
3712 	/*
3713 	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3714 	 * operation here, so we may get  an EAGAIN error. In that case, we
3715 	 * simply want to return with the inode still dirty.
3716 	 *
3717 	 * If we get any other error, we effectively have a corruption situation
3718 	 * and we cannot flush the inode, so we treat it the same as failing
3719 	 * xfs_iflush_int().
3720 	 */
3721 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3722 			       0);
3723 	if (error == -EAGAIN) {
3724 		xfs_ifunlock(ip);
3725 		return error;
3726 	}
3727 	if (error)
3728 		goto corrupt_out;
3729 
3730 	/*
3731 	 * First flush out the inode that xfs_iflush was called with.
3732 	 */
3733 	error = xfs_iflush_int(ip, bp);
3734 	if (error)
3735 		goto corrupt_out;
3736 
3737 	/*
3738 	 * If the buffer is pinned then push on the log now so we won't
3739 	 * get stuck waiting in the write for too long.
3740 	 */
3741 	if (xfs_buf_ispinned(bp))
3742 		xfs_log_force(mp, 0);
3743 
3744 	/*
3745 	 * inode clustering: try to gather other inodes into this write
3746 	 *
3747 	 * Note: Any error during clustering will result in the filesystem
3748 	 * being shut down and completion callbacks run on the cluster buffer.
3749 	 * As we have already flushed and attached this inode to the buffer,
3750 	 * it has already been aborted and released by xfs_iflush_cluster() and
3751 	 * so we have no further error handling to do here.
3752 	 */
3753 	error = xfs_iflush_cluster(ip, bp);
3754 	if (error)
3755 		return error;
3756 
3757 	*bpp = bp;
3758 	return 0;
3759 
3760 corrupt_out:
3761 	if (bp)
3762 		xfs_buf_relse(bp);
3763 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3764 abort_out:
3765 	/* abort the corrupt inode, as it was not attached to the buffer */
3766 	xfs_iflush_abort(ip, false);
3767 	return error;
3768 }
3769 
3770 /*
3771  * If there are inline format data / attr forks attached to this inode,
3772  * make sure they're not corrupt.
3773  */
3774 bool
xfs_inode_verify_forks(struct xfs_inode * ip)3775 xfs_inode_verify_forks(
3776 	struct xfs_inode	*ip)
3777 {
3778 	struct xfs_ifork	*ifp;
3779 	xfs_failaddr_t		fa;
3780 
3781 	fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3782 	if (fa) {
3783 		ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3784 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3785 				ifp->if_u1.if_data, ifp->if_bytes, fa);
3786 		return false;
3787 	}
3788 
3789 	fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3790 	if (fa) {
3791 		ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3792 		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3793 				ifp ? ifp->if_u1.if_data : NULL,
3794 				ifp ? ifp->if_bytes : 0, fa);
3795 		return false;
3796 	}
3797 	return true;
3798 }
3799 
3800 STATIC int
xfs_iflush_int(struct xfs_inode * ip,struct xfs_buf * bp)3801 xfs_iflush_int(
3802 	struct xfs_inode	*ip,
3803 	struct xfs_buf		*bp)
3804 {
3805 	struct xfs_inode_log_item *iip = ip->i_itemp;
3806 	struct xfs_dinode	*dip;
3807 	struct xfs_mount	*mp = ip->i_mount;
3808 
3809 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3810 	ASSERT(xfs_isiflocked(ip));
3811 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3812 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3813 	ASSERT(iip != NULL && iip->ili_fields != 0);
3814 
3815 	/* set *dip = inode's place in the buffer */
3816 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3817 
3818 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3819 			       mp, XFS_ERRTAG_IFLUSH_1)) {
3820 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3821 			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3822 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3823 		goto corrupt_out;
3824 	}
3825 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3826 		if (XFS_TEST_ERROR(
3827 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3828 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3829 		    mp, XFS_ERRTAG_IFLUSH_3)) {
3830 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3831 				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3832 				__func__, ip->i_ino, ip);
3833 			goto corrupt_out;
3834 		}
3835 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3836 		if (XFS_TEST_ERROR(
3837 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3838 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3839 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3840 		    mp, XFS_ERRTAG_IFLUSH_4)) {
3841 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3842 				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3843 				__func__, ip->i_ino, ip);
3844 			goto corrupt_out;
3845 		}
3846 	}
3847 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3848 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3849 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3850 			"%s: detected corrupt incore inode %Lu, "
3851 			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3852 			__func__, ip->i_ino,
3853 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3854 			ip->i_d.di_nblocks, ip);
3855 		goto corrupt_out;
3856 	}
3857 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3858 				mp, XFS_ERRTAG_IFLUSH_6)) {
3859 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3860 			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3861 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3862 		goto corrupt_out;
3863 	}
3864 
3865 	/*
3866 	 * Inode item log recovery for v2 inodes are dependent on the
3867 	 * di_flushiter count for correct sequencing. We bump the flush
3868 	 * iteration count so we can detect flushes which postdate a log record
3869 	 * during recovery. This is redundant as we now log every change and
3870 	 * hence this can't happen but we need to still do it to ensure
3871 	 * backwards compatibility with old kernels that predate logging all
3872 	 * inode changes.
3873 	 */
3874 	if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3875 		ip->i_d.di_flushiter++;
3876 
3877 	/* Check the inline fork data before we write out. */
3878 	if (!xfs_inode_verify_forks(ip))
3879 		goto corrupt_out;
3880 
3881 	/*
3882 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3883 	 * copy out the core of the inode, because if the inode is dirty at all
3884 	 * the core must be.
3885 	 */
3886 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3887 
3888 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3889 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3890 		ip->i_d.di_flushiter = 0;
3891 
3892 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3893 	if (XFS_IFORK_Q(ip))
3894 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3895 	xfs_inobp_check(mp, bp);
3896 
3897 	/*
3898 	 * We've recorded everything logged in the inode, so we'd like to clear
3899 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3900 	 * However, we can't stop logging all this information until the data
3901 	 * we've copied into the disk buffer is written to disk.  If we did we
3902 	 * might overwrite the copy of the inode in the log with all the data
3903 	 * after re-logging only part of it, and in the face of a crash we
3904 	 * wouldn't have all the data we need to recover.
3905 	 *
3906 	 * What we do is move the bits to the ili_last_fields field.  When
3907 	 * logging the inode, these bits are moved back to the ili_fields field.
3908 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3909 	 * know that the information those bits represent is permanently on
3910 	 * disk.  As long as the flush completes before the inode is logged
3911 	 * again, then both ili_fields and ili_last_fields will be cleared.
3912 	 *
3913 	 * We can play with the ili_fields bits here, because the inode lock
3914 	 * must be held exclusively in order to set bits there and the flush
3915 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3916 	 * done routine can tell whether or not to look in the AIL.  Also, store
3917 	 * the current LSN of the inode so that we can tell whether the item has
3918 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3919 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3920 	 * atomically.
3921 	 */
3922 	iip->ili_last_fields = iip->ili_fields;
3923 	iip->ili_fields = 0;
3924 	iip->ili_fsync_fields = 0;
3925 	iip->ili_logged = 1;
3926 
3927 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3928 				&iip->ili_item.li_lsn);
3929 
3930 	/*
3931 	 * Attach the function xfs_iflush_done to the inode's
3932 	 * buffer.  This will remove the inode from the AIL
3933 	 * and unlock the inode's flush lock when the inode is
3934 	 * completely written to disk.
3935 	 */
3936 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3937 
3938 	/* generate the checksum. */
3939 	xfs_dinode_calc_crc(mp, dip);
3940 
3941 	ASSERT(!list_empty(&bp->b_li_list));
3942 	ASSERT(bp->b_iodone != NULL);
3943 	return 0;
3944 
3945 corrupt_out:
3946 	return -EFSCORRUPTED;
3947 }
3948 
3949 /* Release an inode. */
3950 void
xfs_irele(struct xfs_inode * ip)3951 xfs_irele(
3952 	struct xfs_inode	*ip)
3953 {
3954 	trace_xfs_irele(ip, _RET_IP_);
3955 	iput(VFS_I(ip));
3956 }
3957 
3958 /*
3959  * Ensure all commited transactions touching the inode are written to the log.
3960  */
3961 int
xfs_log_force_inode(struct xfs_inode * ip)3962 xfs_log_force_inode(
3963 	struct xfs_inode	*ip)
3964 {
3965 	xfs_lsn_t		lsn = 0;
3966 
3967 	xfs_ilock(ip, XFS_ILOCK_SHARED);
3968 	if (xfs_ipincount(ip))
3969 		lsn = ip->i_itemp->ili_last_lsn;
3970 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3971 
3972 	if (!lsn)
3973 		return 0;
3974 	return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL);
3975 }
3976