• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 kmem_zone_t	*xfs_log_ticket_zone;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC int
28 xlog_commit_record(
29 	struct xlog		*log,
30 	struct xlog_ticket	*ticket,
31 	struct xlog_in_core	**iclog,
32 	xfs_lsn_t		*commitlsnp);
33 
34 STATIC struct xlog *
35 xlog_alloc_log(
36 	struct xfs_mount	*mp,
37 	struct xfs_buftarg	*log_target,
38 	xfs_daddr_t		blk_offset,
39 	int			num_bblks);
40 STATIC int
41 xlog_space_left(
42 	struct xlog		*log,
43 	atomic64_t		*head);
44 STATIC void
45 xlog_dealloc_log(
46 	struct xlog		*log);
47 
48 /* local state machine functions */
49 STATIC void xlog_state_done_syncing(
50 	struct xlog_in_core	*iclog,
51 	bool			aborted);
52 STATIC int
53 xlog_state_get_iclog_space(
54 	struct xlog		*log,
55 	int			len,
56 	struct xlog_in_core	**iclog,
57 	struct xlog_ticket	*ticket,
58 	int			*continued_write,
59 	int			*logoffsetp);
60 STATIC int
61 xlog_state_release_iclog(
62 	struct xlog		*log,
63 	struct xlog_in_core	*iclog);
64 STATIC void
65 xlog_state_switch_iclogs(
66 	struct xlog		*log,
67 	struct xlog_in_core	*iclog,
68 	int			eventual_size);
69 STATIC void
70 xlog_state_want_sync(
71 	struct xlog		*log,
72 	struct xlog_in_core	*iclog);
73 
74 STATIC void
75 xlog_grant_push_ail(
76 	struct xlog		*log,
77 	int			need_bytes);
78 STATIC void
79 xlog_regrant_reserve_log_space(
80 	struct xlog		*log,
81 	struct xlog_ticket	*ticket);
82 STATIC void
83 xlog_ungrant_log_space(
84 	struct xlog		*log,
85 	struct xlog_ticket	*ticket);
86 
87 #if defined(DEBUG)
88 STATIC void
89 xlog_verify_dest_ptr(
90 	struct xlog		*log,
91 	void			*ptr);
92 STATIC void
93 xlog_verify_grant_tail(
94 	struct xlog *log);
95 STATIC void
96 xlog_verify_iclog(
97 	struct xlog		*log,
98 	struct xlog_in_core	*iclog,
99 	int			count);
100 STATIC void
101 xlog_verify_tail_lsn(
102 	struct xlog		*log,
103 	struct xlog_in_core	*iclog,
104 	xfs_lsn_t		tail_lsn);
105 #else
106 #define xlog_verify_dest_ptr(a,b)
107 #define xlog_verify_grant_tail(a)
108 #define xlog_verify_iclog(a,b,c)
109 #define xlog_verify_tail_lsn(a,b,c)
110 #endif
111 
112 STATIC int
113 xlog_iclogs_empty(
114 	struct xlog		*log);
115 
116 static void
xlog_grant_sub_space(struct xlog * log,atomic64_t * head,int bytes)117 xlog_grant_sub_space(
118 	struct xlog		*log,
119 	atomic64_t		*head,
120 	int			bytes)
121 {
122 	int64_t	head_val = atomic64_read(head);
123 	int64_t new, old;
124 
125 	do {
126 		int	cycle, space;
127 
128 		xlog_crack_grant_head_val(head_val, &cycle, &space);
129 
130 		space -= bytes;
131 		if (space < 0) {
132 			space += log->l_logsize;
133 			cycle--;
134 		}
135 
136 		old = head_val;
137 		new = xlog_assign_grant_head_val(cycle, space);
138 		head_val = atomic64_cmpxchg(head, old, new);
139 	} while (head_val != old);
140 }
141 
142 static void
xlog_grant_add_space(struct xlog * log,atomic64_t * head,int bytes)143 xlog_grant_add_space(
144 	struct xlog		*log,
145 	atomic64_t		*head,
146 	int			bytes)
147 {
148 	int64_t	head_val = atomic64_read(head);
149 	int64_t new, old;
150 
151 	do {
152 		int		tmp;
153 		int		cycle, space;
154 
155 		xlog_crack_grant_head_val(head_val, &cycle, &space);
156 
157 		tmp = log->l_logsize - space;
158 		if (tmp > bytes)
159 			space += bytes;
160 		else {
161 			space = bytes - tmp;
162 			cycle++;
163 		}
164 
165 		old = head_val;
166 		new = xlog_assign_grant_head_val(cycle, space);
167 		head_val = atomic64_cmpxchg(head, old, new);
168 	} while (head_val != old);
169 }
170 
171 STATIC void
xlog_grant_head_init(struct xlog_grant_head * head)172 xlog_grant_head_init(
173 	struct xlog_grant_head	*head)
174 {
175 	xlog_assign_grant_head(&head->grant, 1, 0);
176 	INIT_LIST_HEAD(&head->waiters);
177 	spin_lock_init(&head->lock);
178 }
179 
180 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)181 xlog_grant_head_wake_all(
182 	struct xlog_grant_head	*head)
183 {
184 	struct xlog_ticket	*tic;
185 
186 	spin_lock(&head->lock);
187 	list_for_each_entry(tic, &head->waiters, t_queue)
188 		wake_up_process(tic->t_task);
189 	spin_unlock(&head->lock);
190 }
191 
192 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)193 xlog_ticket_reservation(
194 	struct xlog		*log,
195 	struct xlog_grant_head	*head,
196 	struct xlog_ticket	*tic)
197 {
198 	if (head == &log->l_write_head) {
199 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
200 		return tic->t_unit_res;
201 	} else {
202 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
203 			return tic->t_unit_res * tic->t_cnt;
204 		else
205 			return tic->t_unit_res;
206 	}
207 }
208 
209 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)210 xlog_grant_head_wake(
211 	struct xlog		*log,
212 	struct xlog_grant_head	*head,
213 	int			*free_bytes)
214 {
215 	struct xlog_ticket	*tic;
216 	int			need_bytes;
217 	bool			woken_task = false;
218 
219 	list_for_each_entry(tic, &head->waiters, t_queue) {
220 
221 		/*
222 		 * There is a chance that the size of the CIL checkpoints in
223 		 * progress at the last AIL push target calculation resulted in
224 		 * limiting the target to the log head (l_last_sync_lsn) at the
225 		 * time. This may not reflect where the log head is now as the
226 		 * CIL checkpoints may have completed.
227 		 *
228 		 * Hence when we are woken here, it may be that the head of the
229 		 * log that has moved rather than the tail. As the tail didn't
230 		 * move, there still won't be space available for the
231 		 * reservation we require.  However, if the AIL has already
232 		 * pushed to the target defined by the old log head location, we
233 		 * will hang here waiting for something else to update the AIL
234 		 * push target.
235 		 *
236 		 * Therefore, if there isn't space to wake the first waiter on
237 		 * the grant head, we need to push the AIL again to ensure the
238 		 * target reflects both the current log tail and log head
239 		 * position before we wait for the tail to move again.
240 		 */
241 
242 		need_bytes = xlog_ticket_reservation(log, head, tic);
243 		if (*free_bytes < need_bytes) {
244 			if (!woken_task)
245 				xlog_grant_push_ail(log, need_bytes);
246 			return false;
247 		}
248 
249 		*free_bytes -= need_bytes;
250 		trace_xfs_log_grant_wake_up(log, tic);
251 		wake_up_process(tic->t_task);
252 		woken_task = true;
253 	}
254 
255 	return true;
256 }
257 
258 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)259 xlog_grant_head_wait(
260 	struct xlog		*log,
261 	struct xlog_grant_head	*head,
262 	struct xlog_ticket	*tic,
263 	int			need_bytes) __releases(&head->lock)
264 					    __acquires(&head->lock)
265 {
266 	list_add_tail(&tic->t_queue, &head->waiters);
267 
268 	do {
269 		if (XLOG_FORCED_SHUTDOWN(log))
270 			goto shutdown;
271 		xlog_grant_push_ail(log, need_bytes);
272 
273 		__set_current_state(TASK_UNINTERRUPTIBLE);
274 		spin_unlock(&head->lock);
275 
276 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
277 
278 		trace_xfs_log_grant_sleep(log, tic);
279 		schedule();
280 		trace_xfs_log_grant_wake(log, tic);
281 
282 		spin_lock(&head->lock);
283 		if (XLOG_FORCED_SHUTDOWN(log))
284 			goto shutdown;
285 	} while (xlog_space_left(log, &head->grant) < need_bytes);
286 
287 	list_del_init(&tic->t_queue);
288 	return 0;
289 shutdown:
290 	list_del_init(&tic->t_queue);
291 	return -EIO;
292 }
293 
294 /*
295  * Atomically get the log space required for a log ticket.
296  *
297  * Once a ticket gets put onto head->waiters, it will only return after the
298  * needed reservation is satisfied.
299  *
300  * This function is structured so that it has a lock free fast path. This is
301  * necessary because every new transaction reservation will come through this
302  * path. Hence any lock will be globally hot if we take it unconditionally on
303  * every pass.
304  *
305  * As tickets are only ever moved on and off head->waiters under head->lock, we
306  * only need to take that lock if we are going to add the ticket to the queue
307  * and sleep. We can avoid taking the lock if the ticket was never added to
308  * head->waiters because the t_queue list head will be empty and we hold the
309  * only reference to it so it can safely be checked unlocked.
310  */
311 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)312 xlog_grant_head_check(
313 	struct xlog		*log,
314 	struct xlog_grant_head	*head,
315 	struct xlog_ticket	*tic,
316 	int			*need_bytes)
317 {
318 	int			free_bytes;
319 	int			error = 0;
320 
321 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
322 
323 	/*
324 	 * If there are other waiters on the queue then give them a chance at
325 	 * logspace before us.  Wake up the first waiters, if we do not wake
326 	 * up all the waiters then go to sleep waiting for more free space,
327 	 * otherwise try to get some space for this transaction.
328 	 */
329 	*need_bytes = xlog_ticket_reservation(log, head, tic);
330 	free_bytes = xlog_space_left(log, &head->grant);
331 	if (!list_empty_careful(&head->waiters)) {
332 		spin_lock(&head->lock);
333 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
334 		    free_bytes < *need_bytes) {
335 			error = xlog_grant_head_wait(log, head, tic,
336 						     *need_bytes);
337 		}
338 		spin_unlock(&head->lock);
339 	} else if (free_bytes < *need_bytes) {
340 		spin_lock(&head->lock);
341 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
342 		spin_unlock(&head->lock);
343 	}
344 
345 	return error;
346 }
347 
348 static void
xlog_tic_reset_res(xlog_ticket_t * tic)349 xlog_tic_reset_res(xlog_ticket_t *tic)
350 {
351 	tic->t_res_num = 0;
352 	tic->t_res_arr_sum = 0;
353 	tic->t_res_num_ophdrs = 0;
354 }
355 
356 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)357 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
358 {
359 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
360 		/* add to overflow and start again */
361 		tic->t_res_o_flow += tic->t_res_arr_sum;
362 		tic->t_res_num = 0;
363 		tic->t_res_arr_sum = 0;
364 	}
365 
366 	tic->t_res_arr[tic->t_res_num].r_len = len;
367 	tic->t_res_arr[tic->t_res_num].r_type = type;
368 	tic->t_res_arr_sum += len;
369 	tic->t_res_num++;
370 }
371 
372 bool
xfs_log_writable(struct xfs_mount * mp)373 xfs_log_writable(
374 	struct xfs_mount	*mp)
375 {
376 	/*
377 	 * Never write to the log on norecovery mounts, if the block device is
378 	 * read-only, or if the filesystem is shutdown. Read-only mounts still
379 	 * allow internal writes for log recovery and unmount purposes, so don't
380 	 * restrict that case here.
381 	 */
382 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
383 		return false;
384 	if (xfs_readonly_buftarg(mp->m_log->l_targ))
385 		return false;
386 	if (XFS_FORCED_SHUTDOWN(mp))
387 		return false;
388 	return true;
389 }
390 
391 /*
392  * Replenish the byte reservation required by moving the grant write head.
393  */
394 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)395 xfs_log_regrant(
396 	struct xfs_mount	*mp,
397 	struct xlog_ticket	*tic)
398 {
399 	struct xlog		*log = mp->m_log;
400 	int			need_bytes;
401 	int			error = 0;
402 
403 	if (XLOG_FORCED_SHUTDOWN(log))
404 		return -EIO;
405 
406 	XFS_STATS_INC(mp, xs_try_logspace);
407 
408 	/*
409 	 * This is a new transaction on the ticket, so we need to change the
410 	 * transaction ID so that the next transaction has a different TID in
411 	 * the log. Just add one to the existing tid so that we can see chains
412 	 * of rolling transactions in the log easily.
413 	 */
414 	tic->t_tid++;
415 
416 	xlog_grant_push_ail(log, tic->t_unit_res);
417 
418 	tic->t_curr_res = tic->t_unit_res;
419 	xlog_tic_reset_res(tic);
420 
421 	if (tic->t_cnt > 0)
422 		return 0;
423 
424 	trace_xfs_log_regrant(log, tic);
425 
426 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
427 				      &need_bytes);
428 	if (error)
429 		goto out_error;
430 
431 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
432 	trace_xfs_log_regrant_exit(log, tic);
433 	xlog_verify_grant_tail(log);
434 	return 0;
435 
436 out_error:
437 	/*
438 	 * If we are failing, make sure the ticket doesn't have any current
439 	 * reservations.  We don't want to add this back when the ticket/
440 	 * transaction gets cancelled.
441 	 */
442 	tic->t_curr_res = 0;
443 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
444 	return error;
445 }
446 
447 /*
448  * Reserve log space and return a ticket corresponding to the reservation.
449  *
450  * Each reservation is going to reserve extra space for a log record header.
451  * When writes happen to the on-disk log, we don't subtract the length of the
452  * log record header from any reservation.  By wasting space in each
453  * reservation, we prevent over allocation problems.
454  */
455 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,uint8_t client,bool permanent)456 xfs_log_reserve(
457 	struct xfs_mount	*mp,
458 	int		 	unit_bytes,
459 	int		 	cnt,
460 	struct xlog_ticket	**ticp,
461 	uint8_t		 	client,
462 	bool			permanent)
463 {
464 	struct xlog		*log = mp->m_log;
465 	struct xlog_ticket	*tic;
466 	int			need_bytes;
467 	int			error = 0;
468 
469 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
470 
471 	if (XLOG_FORCED_SHUTDOWN(log))
472 		return -EIO;
473 
474 	XFS_STATS_INC(mp, xs_try_logspace);
475 
476 	ASSERT(*ticp == NULL);
477 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 0);
478 	*ticp = tic;
479 
480 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
481 					    : tic->t_unit_res);
482 
483 	trace_xfs_log_reserve(log, tic);
484 
485 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
486 				      &need_bytes);
487 	if (error)
488 		goto out_error;
489 
490 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
491 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
492 	trace_xfs_log_reserve_exit(log, tic);
493 	xlog_verify_grant_tail(log);
494 	return 0;
495 
496 out_error:
497 	/*
498 	 * If we are failing, make sure the ticket doesn't have any current
499 	 * reservations.  We don't want to add this back when the ticket/
500 	 * transaction gets cancelled.
501 	 */
502 	tic->t_curr_res = 0;
503 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
504 	return error;
505 }
506 
507 
508 /*
509  * NOTES:
510  *
511  *	1. currblock field gets updated at startup and after in-core logs
512  *		marked as with WANT_SYNC.
513  */
514 
515 /*
516  * This routine is called when a user of a log manager ticket is done with
517  * the reservation.  If the ticket was ever used, then a commit record for
518  * the associated transaction is written out as a log operation header with
519  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
520  * a given ticket.  If the ticket was one with a permanent reservation, then
521  * a few operations are done differently.  Permanent reservation tickets by
522  * default don't release the reservation.  They just commit the current
523  * transaction with the belief that the reservation is still needed.  A flag
524  * must be passed in before permanent reservations are actually released.
525  * When these type of tickets are not released, they need to be set into
526  * the inited state again.  By doing this, a start record will be written
527  * out when the next write occurs.
528  */
529 xfs_lsn_t
xfs_log_done(struct xfs_mount * mp,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,bool regrant)530 xfs_log_done(
531 	struct xfs_mount	*mp,
532 	struct xlog_ticket	*ticket,
533 	struct xlog_in_core	**iclog,
534 	bool			regrant)
535 {
536 	struct xlog		*log = mp->m_log;
537 	xfs_lsn_t		lsn = 0;
538 
539 	if (XLOG_FORCED_SHUTDOWN(log) ||
540 	    /*
541 	     * If nothing was ever written, don't write out commit record.
542 	     * If we get an error, just continue and give back the log ticket.
543 	     */
544 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
545 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
546 		lsn = (xfs_lsn_t) -1;
547 		regrant = false;
548 	}
549 
550 
551 	if (!regrant) {
552 		trace_xfs_log_done_nonperm(log, ticket);
553 
554 		/*
555 		 * Release ticket if not permanent reservation or a specific
556 		 * request has been made to release a permanent reservation.
557 		 */
558 		xlog_ungrant_log_space(log, ticket);
559 	} else {
560 		trace_xfs_log_done_perm(log, ticket);
561 
562 		xlog_regrant_reserve_log_space(log, ticket);
563 		/* If this ticket was a permanent reservation and we aren't
564 		 * trying to release it, reset the inited flags; so next time
565 		 * we write, a start record will be written out.
566 		 */
567 		ticket->t_flags |= XLOG_TIC_INITED;
568 	}
569 
570 	xfs_log_ticket_put(ticket);
571 	return lsn;
572 }
573 
574 int
xfs_log_release_iclog(struct xfs_mount * mp,struct xlog_in_core * iclog)575 xfs_log_release_iclog(
576 	struct xfs_mount	*mp,
577 	struct xlog_in_core	*iclog)
578 {
579 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
580 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
581 		return -EIO;
582 	}
583 
584 	return 0;
585 }
586 
587 /*
588  * Mount a log filesystem
589  *
590  * mp		- ubiquitous xfs mount point structure
591  * log_target	- buftarg of on-disk log device
592  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
593  * num_bblocks	- Number of BBSIZE blocks in on-disk log
594  *
595  * Return error or zero.
596  */
597 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)598 xfs_log_mount(
599 	xfs_mount_t	*mp,
600 	xfs_buftarg_t	*log_target,
601 	xfs_daddr_t	blk_offset,
602 	int		num_bblks)
603 {
604 	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
605 	int		error = 0;
606 	int		min_logfsbs;
607 
608 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
609 		xfs_notice(mp, "Mounting V%d Filesystem",
610 			   XFS_SB_VERSION_NUM(&mp->m_sb));
611 	} else {
612 		xfs_notice(mp,
613 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
614 			   XFS_SB_VERSION_NUM(&mp->m_sb));
615 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
616 	}
617 
618 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
619 	if (IS_ERR(mp->m_log)) {
620 		error = PTR_ERR(mp->m_log);
621 		goto out;
622 	}
623 
624 	/*
625 	 * Validate the given log space and drop a critical message via syslog
626 	 * if the log size is too small that would lead to some unexpected
627 	 * situations in transaction log space reservation stage.
628 	 *
629 	 * Note: we can't just reject the mount if the validation fails.  This
630 	 * would mean that people would have to downgrade their kernel just to
631 	 * remedy the situation as there is no way to grow the log (short of
632 	 * black magic surgery with xfs_db).
633 	 *
634 	 * We can, however, reject mounts for CRC format filesystems, as the
635 	 * mkfs binary being used to make the filesystem should never create a
636 	 * filesystem with a log that is too small.
637 	 */
638 	min_logfsbs = xfs_log_calc_minimum_size(mp);
639 
640 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
641 		xfs_warn(mp,
642 		"Log size %d blocks too small, minimum size is %d blocks",
643 			 mp->m_sb.sb_logblocks, min_logfsbs);
644 		error = -EINVAL;
645 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
646 		xfs_warn(mp,
647 		"Log size %d blocks too large, maximum size is %lld blocks",
648 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
649 		error = -EINVAL;
650 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
651 		xfs_warn(mp,
652 		"log size %lld bytes too large, maximum size is %lld bytes",
653 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
654 			 XFS_MAX_LOG_BYTES);
655 		error = -EINVAL;
656 	} else if (mp->m_sb.sb_logsunit > 1 &&
657 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
658 		xfs_warn(mp,
659 		"log stripe unit %u bytes must be a multiple of block size",
660 			 mp->m_sb.sb_logsunit);
661 		error = -EINVAL;
662 		fatal = true;
663 	}
664 	if (error) {
665 		/*
666 		 * Log check errors are always fatal on v5; or whenever bad
667 		 * metadata leads to a crash.
668 		 */
669 		if (fatal) {
670 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
671 			ASSERT(0);
672 			goto out_free_log;
673 		}
674 		xfs_crit(mp, "Log size out of supported range.");
675 		xfs_crit(mp,
676 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
677 	}
678 
679 	/*
680 	 * Initialize the AIL now we have a log.
681 	 */
682 	error = xfs_trans_ail_init(mp);
683 	if (error) {
684 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
685 		goto out_free_log;
686 	}
687 	mp->m_log->l_ailp = mp->m_ail;
688 
689 	/*
690 	 * skip log recovery on a norecovery mount.  pretend it all
691 	 * just worked.
692 	 */
693 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
694 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
695 
696 		if (readonly)
697 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
698 
699 		error = xlog_recover(mp->m_log);
700 
701 		if (readonly)
702 			mp->m_flags |= XFS_MOUNT_RDONLY;
703 		if (error) {
704 			xfs_warn(mp, "log mount/recovery failed: error %d",
705 				error);
706 			xlog_recover_cancel(mp->m_log);
707 			goto out_destroy_ail;
708 		}
709 	}
710 
711 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
712 			       "log");
713 	if (error)
714 		goto out_destroy_ail;
715 
716 	/* Normal transactions can now occur */
717 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
718 
719 	/*
720 	 * Now the log has been fully initialised and we know were our
721 	 * space grant counters are, we can initialise the permanent ticket
722 	 * needed for delayed logging to work.
723 	 */
724 	xlog_cil_init_post_recovery(mp->m_log);
725 
726 	return 0;
727 
728 out_destroy_ail:
729 	xfs_trans_ail_destroy(mp);
730 out_free_log:
731 	xlog_dealloc_log(mp->m_log);
732 out:
733 	return error;
734 }
735 
736 /*
737  * Finish the recovery of the file system.  This is separate from the
738  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
739  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
740  * here.
741  *
742  * If we finish recovery successfully, start the background log work. If we are
743  * not doing recovery, then we have a RO filesystem and we don't need to start
744  * it.
745  */
746 int
xfs_log_mount_finish(struct xfs_mount * mp)747 xfs_log_mount_finish(
748 	struct xfs_mount	*mp)
749 {
750 	int	error = 0;
751 	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
752 	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
753 
754 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
755 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
756 		return 0;
757 	} else if (readonly) {
758 		/* Allow unlinked processing to proceed */
759 		mp->m_flags &= ~XFS_MOUNT_RDONLY;
760 	}
761 
762 	/*
763 	 * During the second phase of log recovery, we need iget and
764 	 * iput to behave like they do for an active filesystem.
765 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
766 	 * of inodes before we're done replaying log items on those
767 	 * inodes.  Turn it off immediately after recovery finishes
768 	 * so that we don't leak the quota inodes if subsequent mount
769 	 * activities fail.
770 	 *
771 	 * We let all inodes involved in redo item processing end up on
772 	 * the LRU instead of being evicted immediately so that if we do
773 	 * something to an unlinked inode, the irele won't cause
774 	 * premature truncation and freeing of the inode, which results
775 	 * in log recovery failure.  We have to evict the unreferenced
776 	 * lru inodes after clearing SB_ACTIVE because we don't
777 	 * otherwise clean up the lru if there's a subsequent failure in
778 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
779 	 * else (e.g. quotacheck) references the inodes before the
780 	 * mount failure occurs.
781 	 */
782 	mp->m_super->s_flags |= SB_ACTIVE;
783 	error = xlog_recover_finish(mp->m_log);
784 	if (!error)
785 		xfs_log_work_queue(mp);
786 	mp->m_super->s_flags &= ~SB_ACTIVE;
787 	evict_inodes(mp->m_super);
788 
789 	/*
790 	 * Drain the buffer LRU after log recovery. This is required for v4
791 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
792 	 * but we do it unconditionally to make sure we're always in a clean
793 	 * cache state after mount.
794 	 *
795 	 * Don't push in the error case because the AIL may have pending intents
796 	 * that aren't removed until recovery is cancelled.
797 	 */
798 	if (!error && recovered) {
799 		xfs_log_force(mp, XFS_LOG_SYNC);
800 		xfs_ail_push_all_sync(mp->m_ail);
801 	}
802 	xfs_wait_buftarg(mp->m_ddev_targp);
803 
804 	if (readonly)
805 		mp->m_flags |= XFS_MOUNT_RDONLY;
806 
807 	return error;
808 }
809 
810 /*
811  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
812  * the log.
813  */
814 void
xfs_log_mount_cancel(struct xfs_mount * mp)815 xfs_log_mount_cancel(
816 	struct xfs_mount	*mp)
817 {
818 	xlog_recover_cancel(mp->m_log);
819 	xfs_log_unmount(mp);
820 }
821 
822 /*
823  * Final log writes as part of unmount.
824  *
825  * Mark the filesystem clean as unmount happens.  Note that during relocation
826  * this routine needs to be executed as part of source-bag while the
827  * deallocation must not be done until source-end.
828  */
829 
830 /* Actually write the unmount record to disk. */
831 static void
xfs_log_write_unmount_record(struct xfs_mount * mp)832 xfs_log_write_unmount_record(
833 	struct xfs_mount	*mp)
834 {
835 	/* the data section must be 32 bit size aligned */
836 	struct xfs_unmount_log_format magic = {
837 		.magic = XLOG_UNMOUNT_TYPE,
838 	};
839 	struct xfs_log_iovec reg = {
840 		.i_addr = &magic,
841 		.i_len = sizeof(magic),
842 		.i_type = XLOG_REG_TYPE_UNMOUNT,
843 	};
844 	struct xfs_log_vec vec = {
845 		.lv_niovecs = 1,
846 		.lv_iovecp = &reg,
847 	};
848 	struct xlog		*log = mp->m_log;
849 	struct xlog_in_core	*iclog;
850 	struct xlog_ticket	*tic = NULL;
851 	xfs_lsn_t		lsn;
852 	uint			flags = XLOG_UNMOUNT_TRANS;
853 	int			error;
854 
855 	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
856 	if (error)
857 		goto out_err;
858 
859 	/* remove inited flag, and account for space used */
860 	tic->t_flags = 0;
861 	tic->t_curr_res -= sizeof(magic);
862 	error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
863 	/*
864 	 * At this point, we're umounting anyway, so there's no point in
865 	 * transitioning log state to IOERROR. Just continue...
866 	 */
867 out_err:
868 	if (error)
869 		xfs_alert(mp, "%s: unmount record failed", __func__);
870 
871 	spin_lock(&log->l_icloglock);
872 	iclog = log->l_iclog;
873 	atomic_inc(&iclog->ic_refcnt);
874 	xlog_state_want_sync(log, iclog);
875 	spin_unlock(&log->l_icloglock);
876 	error = xlog_state_release_iclog(log, iclog);
877 
878 	spin_lock(&log->l_icloglock);
879 	switch (iclog->ic_state) {
880 	default:
881 		if (!XLOG_FORCED_SHUTDOWN(log)) {
882 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
883 			break;
884 		}
885 		/* fall through */
886 	case XLOG_STATE_ACTIVE:
887 	case XLOG_STATE_DIRTY:
888 		spin_unlock(&log->l_icloglock);
889 		break;
890 	}
891 
892 	if (tic) {
893 		trace_xfs_log_umount_write(log, tic);
894 		xlog_ungrant_log_space(log, tic);
895 		xfs_log_ticket_put(tic);
896 	}
897 }
898 
899 /*
900  * Unmount record used to have a string "Unmount filesystem--" in the
901  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
902  * We just write the magic number now since that particular field isn't
903  * currently architecture converted and "Unmount" is a bit foo.
904  * As far as I know, there weren't any dependencies on the old behaviour.
905  */
906 
907 static int
xfs_log_unmount_write(xfs_mount_t * mp)908 xfs_log_unmount_write(xfs_mount_t *mp)
909 {
910 	struct xlog	 *log = mp->m_log;
911 	xlog_in_core_t	 *iclog;
912 #ifdef DEBUG
913 	xlog_in_core_t	 *first_iclog;
914 #endif
915 	int		 error;
916 
917 	if (!xfs_log_writable(mp))
918 		return 0;
919 
920 	error = xfs_log_force(mp, XFS_LOG_SYNC);
921 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
922 
923 #ifdef DEBUG
924 	first_iclog = iclog = log->l_iclog;
925 	do {
926 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
927 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
928 			ASSERT(iclog->ic_offset == 0);
929 		}
930 		iclog = iclog->ic_next;
931 	} while (iclog != first_iclog);
932 #endif
933 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
934 		/*
935 		 * If we think the summary counters are bad, avoid writing the
936 		 * unmount record to force log recovery at next mount, after
937 		 * which the summary counters will be recalculated.  Refer to
938 		 * xlog_check_unmount_rec for more details.
939 		 */
940 		if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS),
941 				mp, XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
942 			xfs_alert(mp,
943 				"%s: will fix summary counters at next mount",
944 				__func__);
945 			return 0;
946 		}
947 		xfs_log_write_unmount_record(mp);
948 	} else {
949 		/*
950 		 * We're already in forced_shutdown mode, couldn't
951 		 * even attempt to write out the unmount transaction.
952 		 *
953 		 * Go through the motions of sync'ing and releasing
954 		 * the iclog, even though no I/O will actually happen,
955 		 * we need to wait for other log I/Os that may already
956 		 * be in progress.  Do this as a separate section of
957 		 * code so we'll know if we ever get stuck here that
958 		 * we're in this odd situation of trying to unmount
959 		 * a file system that went into forced_shutdown as
960 		 * the result of an unmount..
961 		 */
962 		spin_lock(&log->l_icloglock);
963 		iclog = log->l_iclog;
964 		atomic_inc(&iclog->ic_refcnt);
965 
966 		xlog_state_want_sync(log, iclog);
967 		spin_unlock(&log->l_icloglock);
968 		error =  xlog_state_release_iclog(log, iclog);
969 
970 		spin_lock(&log->l_icloglock);
971 
972 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
973 			|| iclog->ic_state == XLOG_STATE_DIRTY
974 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
975 
976 				xlog_wait(&iclog->ic_force_wait,
977 							&log->l_icloglock);
978 		} else {
979 			spin_unlock(&log->l_icloglock);
980 		}
981 	}
982 
983 	return error;
984 }	/* xfs_log_unmount_write */
985 
986 /*
987  * Empty the log for unmount/freeze.
988  *
989  * To do this, we first need to shut down the background log work so it is not
990  * trying to cover the log as we clean up. We then need to unpin all objects in
991  * the log so we can then flush them out. Once they have completed their IO and
992  * run the callbacks removing themselves from the AIL, we can write the unmount
993  * record.
994  */
995 void
xfs_log_quiesce(struct xfs_mount * mp)996 xfs_log_quiesce(
997 	struct xfs_mount	*mp)
998 {
999 	cancel_delayed_work_sync(&mp->m_log->l_work);
1000 	xfs_log_force(mp, XFS_LOG_SYNC);
1001 
1002 	/*
1003 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1004 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1005 	 * xfs_buf_iowait() cannot be used because it was pushed with the
1006 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1007 	 * the IO to complete.
1008 	 */
1009 	xfs_ail_push_all_sync(mp->m_ail);
1010 	xfs_wait_buftarg(mp->m_ddev_targp);
1011 	xfs_buf_lock(mp->m_sb_bp);
1012 	xfs_buf_unlock(mp->m_sb_bp);
1013 
1014 	xfs_log_unmount_write(mp);
1015 }
1016 
1017 /*
1018  * Shut down and release the AIL and Log.
1019  *
1020  * During unmount, we need to ensure we flush all the dirty metadata objects
1021  * from the AIL so that the log is empty before we write the unmount record to
1022  * the log. Once this is done, we can tear down the AIL and the log.
1023  */
1024 void
xfs_log_unmount(struct xfs_mount * mp)1025 xfs_log_unmount(
1026 	struct xfs_mount	*mp)
1027 {
1028 	xfs_log_quiesce(mp);
1029 
1030 	xfs_trans_ail_destroy(mp);
1031 
1032 	xfs_sysfs_del(&mp->m_log->l_kobj);
1033 
1034 	xlog_dealloc_log(mp->m_log);
1035 }
1036 
1037 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)1038 xfs_log_item_init(
1039 	struct xfs_mount	*mp,
1040 	struct xfs_log_item	*item,
1041 	int			type,
1042 	const struct xfs_item_ops *ops)
1043 {
1044 	item->li_mountp = mp;
1045 	item->li_ailp = mp->m_ail;
1046 	item->li_type = type;
1047 	item->li_ops = ops;
1048 	item->li_lv = NULL;
1049 
1050 	INIT_LIST_HEAD(&item->li_ail);
1051 	INIT_LIST_HEAD(&item->li_cil);
1052 	INIT_LIST_HEAD(&item->li_bio_list);
1053 	INIT_LIST_HEAD(&item->li_trans);
1054 }
1055 
1056 /*
1057  * Wake up processes waiting for log space after we have moved the log tail.
1058  */
1059 void
xfs_log_space_wake(struct xfs_mount * mp)1060 xfs_log_space_wake(
1061 	struct xfs_mount	*mp)
1062 {
1063 	struct xlog		*log = mp->m_log;
1064 	int			free_bytes;
1065 
1066 	if (XLOG_FORCED_SHUTDOWN(log))
1067 		return;
1068 
1069 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1070 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1071 
1072 		spin_lock(&log->l_write_head.lock);
1073 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1074 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1075 		spin_unlock(&log->l_write_head.lock);
1076 	}
1077 
1078 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1079 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1080 
1081 		spin_lock(&log->l_reserve_head.lock);
1082 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1083 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1084 		spin_unlock(&log->l_reserve_head.lock);
1085 	}
1086 }
1087 
1088 /*
1089  * Determine if we have a transaction that has gone to disk that needs to be
1090  * covered. To begin the transition to the idle state firstly the log needs to
1091  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1092  * we start attempting to cover the log.
1093  *
1094  * Only if we are then in a state where covering is needed, the caller is
1095  * informed that dummy transactions are required to move the log into the idle
1096  * state.
1097  *
1098  * If there are any items in the AIl or CIL, then we do not want to attempt to
1099  * cover the log as we may be in a situation where there isn't log space
1100  * available to run a dummy transaction and this can lead to deadlocks when the
1101  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1102  * there's no point in running a dummy transaction at this point because we
1103  * can't start trying to idle the log until both the CIL and AIL are empty.
1104  */
1105 static int
xfs_log_need_covered(xfs_mount_t * mp)1106 xfs_log_need_covered(xfs_mount_t *mp)
1107 {
1108 	struct xlog	*log = mp->m_log;
1109 	int		needed = 0;
1110 
1111 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1112 		return 0;
1113 
1114 	if (!xlog_cil_empty(log))
1115 		return 0;
1116 
1117 	spin_lock(&log->l_icloglock);
1118 	switch (log->l_covered_state) {
1119 	case XLOG_STATE_COVER_DONE:
1120 	case XLOG_STATE_COVER_DONE2:
1121 	case XLOG_STATE_COVER_IDLE:
1122 		break;
1123 	case XLOG_STATE_COVER_NEED:
1124 	case XLOG_STATE_COVER_NEED2:
1125 		if (xfs_ail_min_lsn(log->l_ailp))
1126 			break;
1127 		if (!xlog_iclogs_empty(log))
1128 			break;
1129 
1130 		needed = 1;
1131 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1132 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1133 		else
1134 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1135 		break;
1136 	default:
1137 		needed = 1;
1138 		break;
1139 	}
1140 	spin_unlock(&log->l_icloglock);
1141 	return needed;
1142 }
1143 
1144 /*
1145  * We may be holding the log iclog lock upon entering this routine.
1146  */
1147 xfs_lsn_t
xlog_assign_tail_lsn_locked(struct xfs_mount * mp)1148 xlog_assign_tail_lsn_locked(
1149 	struct xfs_mount	*mp)
1150 {
1151 	struct xlog		*log = mp->m_log;
1152 	struct xfs_log_item	*lip;
1153 	xfs_lsn_t		tail_lsn;
1154 
1155 	assert_spin_locked(&mp->m_ail->ail_lock);
1156 
1157 	/*
1158 	 * To make sure we always have a valid LSN for the log tail we keep
1159 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1160 	 * and use that when the AIL was empty.
1161 	 */
1162 	lip = xfs_ail_min(mp->m_ail);
1163 	if (lip)
1164 		tail_lsn = lip->li_lsn;
1165 	else
1166 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1167 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1168 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1169 	return tail_lsn;
1170 }
1171 
1172 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)1173 xlog_assign_tail_lsn(
1174 	struct xfs_mount	*mp)
1175 {
1176 	xfs_lsn_t		tail_lsn;
1177 
1178 	spin_lock(&mp->m_ail->ail_lock);
1179 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1180 	spin_unlock(&mp->m_ail->ail_lock);
1181 
1182 	return tail_lsn;
1183 }
1184 
1185 /*
1186  * Return the space in the log between the tail and the head.  The head
1187  * is passed in the cycle/bytes formal parms.  In the special case where
1188  * the reserve head has wrapped passed the tail, this calculation is no
1189  * longer valid.  In this case, just return 0 which means there is no space
1190  * in the log.  This works for all places where this function is called
1191  * with the reserve head.  Of course, if the write head were to ever
1192  * wrap the tail, we should blow up.  Rather than catch this case here,
1193  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1194  *
1195  * This code also handles the case where the reservation head is behind
1196  * the tail.  The details of this case are described below, but the end
1197  * result is that we return the size of the log as the amount of space left.
1198  */
1199 STATIC int
xlog_space_left(struct xlog * log,atomic64_t * head)1200 xlog_space_left(
1201 	struct xlog	*log,
1202 	atomic64_t	*head)
1203 {
1204 	int		free_bytes;
1205 	int		tail_bytes;
1206 	int		tail_cycle;
1207 	int		head_cycle;
1208 	int		head_bytes;
1209 
1210 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1211 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1212 	tail_bytes = BBTOB(tail_bytes);
1213 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1214 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1215 	else if (tail_cycle + 1 < head_cycle)
1216 		return 0;
1217 	else if (tail_cycle < head_cycle) {
1218 		ASSERT(tail_cycle == (head_cycle - 1));
1219 		free_bytes = tail_bytes - head_bytes;
1220 	} else {
1221 		/*
1222 		 * The reservation head is behind the tail.
1223 		 * In this case we just want to return the size of the
1224 		 * log as the amount of space left.
1225 		 */
1226 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1227 		xfs_alert(log->l_mp,
1228 			  "  tail_cycle = %d, tail_bytes = %d",
1229 			  tail_cycle, tail_bytes);
1230 		xfs_alert(log->l_mp,
1231 			  "  GH   cycle = %d, GH   bytes = %d",
1232 			  head_cycle, head_bytes);
1233 		ASSERT(0);
1234 		free_bytes = log->l_logsize;
1235 	}
1236 	return free_bytes;
1237 }
1238 
1239 
1240 static void
xlog_ioend_work(struct work_struct * work)1241 xlog_ioend_work(
1242 	struct work_struct	*work)
1243 {
1244 	struct xlog_in_core     *iclog =
1245 		container_of(work, struct xlog_in_core, ic_end_io_work);
1246 	struct xlog		*log = iclog->ic_log;
1247 	bool			aborted = false;
1248 	int			error;
1249 
1250 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1251 #ifdef DEBUG
1252 	/* treat writes with injected CRC errors as failed */
1253 	if (iclog->ic_fail_crc)
1254 		error = -EIO;
1255 #endif
1256 
1257 	/*
1258 	 * Race to shutdown the filesystem if we see an error.
1259 	 */
1260 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1261 		xfs_alert(log->l_mp, "log I/O error %d", error);
1262 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1263 		/*
1264 		 * This flag will be propagated to the trans-committed
1265 		 * callback routines to let them know that the log-commit
1266 		 * didn't succeed.
1267 		 */
1268 		aborted = true;
1269 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1270 		aborted = true;
1271 	}
1272 
1273 	xlog_state_done_syncing(iclog, aborted);
1274 	bio_uninit(&iclog->ic_bio);
1275 
1276 	/*
1277 	 * Drop the lock to signal that we are done. Nothing references the
1278 	 * iclog after this, so an unmount waiting on this lock can now tear it
1279 	 * down safely. As such, it is unsafe to reference the iclog after the
1280 	 * unlock as we could race with it being freed.
1281 	 */
1282 	up(&iclog->ic_sema);
1283 }
1284 
1285 /*
1286  * Return size of each in-core log record buffer.
1287  *
1288  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1289  *
1290  * If the filesystem blocksize is too large, we may need to choose a
1291  * larger size since the directory code currently logs entire blocks.
1292  */
1293 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1294 xlog_get_iclog_buffer_size(
1295 	struct xfs_mount	*mp,
1296 	struct xlog		*log)
1297 {
1298 	if (mp->m_logbufs <= 0)
1299 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1300 	if (mp->m_logbsize <= 0)
1301 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1302 
1303 	log->l_iclog_bufs = mp->m_logbufs;
1304 	log->l_iclog_size = mp->m_logbsize;
1305 
1306 	/*
1307 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1308 	 */
1309 	log->l_iclog_heads =
1310 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1311 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1312 }
1313 
1314 void
xfs_log_work_queue(struct xfs_mount * mp)1315 xfs_log_work_queue(
1316 	struct xfs_mount        *mp)
1317 {
1318 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1319 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1320 }
1321 
1322 /*
1323  * Every sync period we need to unpin all items in the AIL and push them to
1324  * disk. If there is nothing dirty, then we might need to cover the log to
1325  * indicate that the filesystem is idle.
1326  */
1327 static void
xfs_log_worker(struct work_struct * work)1328 xfs_log_worker(
1329 	struct work_struct	*work)
1330 {
1331 	struct xlog		*log = container_of(to_delayed_work(work),
1332 						struct xlog, l_work);
1333 	struct xfs_mount	*mp = log->l_mp;
1334 
1335 	/* dgc: errors ignored - not fatal and nowhere to report them */
1336 	if (xfs_log_need_covered(mp)) {
1337 		/*
1338 		 * Dump a transaction into the log that contains no real change.
1339 		 * This is needed to stamp the current tail LSN into the log
1340 		 * during the covering operation.
1341 		 *
1342 		 * We cannot use an inode here for this - that will push dirty
1343 		 * state back up into the VFS and then periodic inode flushing
1344 		 * will prevent log covering from making progress. Hence we
1345 		 * synchronously log the superblock instead to ensure the
1346 		 * superblock is immediately unpinned and can be written back.
1347 		 */
1348 		xfs_sync_sb(mp, true);
1349 	} else
1350 		xfs_log_force(mp, 0);
1351 
1352 	/* start pushing all the metadata that is currently dirty */
1353 	xfs_ail_push_all(mp->m_ail);
1354 
1355 	/* queue us up again */
1356 	xfs_log_work_queue(mp);
1357 }
1358 
1359 /*
1360  * This routine initializes some of the log structure for a given mount point.
1361  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1362  * some other stuff may be filled in too.
1363  */
1364 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1365 xlog_alloc_log(
1366 	struct xfs_mount	*mp,
1367 	struct xfs_buftarg	*log_target,
1368 	xfs_daddr_t		blk_offset,
1369 	int			num_bblks)
1370 {
1371 	struct xlog		*log;
1372 	xlog_rec_header_t	*head;
1373 	xlog_in_core_t		**iclogp;
1374 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1375 	int			i;
1376 	int			error = -ENOMEM;
1377 	uint			log2_size = 0;
1378 
1379 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1380 	if (!log) {
1381 		xfs_warn(mp, "Log allocation failed: No memory!");
1382 		goto out;
1383 	}
1384 
1385 	log->l_mp	   = mp;
1386 	log->l_targ	   = log_target;
1387 	log->l_logsize     = BBTOB(num_bblks);
1388 	log->l_logBBstart  = blk_offset;
1389 	log->l_logBBsize   = num_bblks;
1390 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1391 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1392 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1393 
1394 	log->l_prev_block  = -1;
1395 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1396 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1397 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1398 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1399 
1400 	xlog_grant_head_init(&log->l_reserve_head);
1401 	xlog_grant_head_init(&log->l_write_head);
1402 
1403 	error = -EFSCORRUPTED;
1404 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1405 	        log2_size = mp->m_sb.sb_logsectlog;
1406 		if (log2_size < BBSHIFT) {
1407 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1408 				log2_size, BBSHIFT);
1409 			goto out_free_log;
1410 		}
1411 
1412 	        log2_size -= BBSHIFT;
1413 		if (log2_size > mp->m_sectbb_log) {
1414 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1415 				log2_size, mp->m_sectbb_log);
1416 			goto out_free_log;
1417 		}
1418 
1419 		/* for larger sector sizes, must have v2 or external log */
1420 		if (log2_size && log->l_logBBstart > 0 &&
1421 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1422 			xfs_warn(mp,
1423 		"log sector size (0x%x) invalid for configuration.",
1424 				log2_size);
1425 			goto out_free_log;
1426 		}
1427 	}
1428 	log->l_sectBBsize = 1 << log2_size;
1429 
1430 	xlog_get_iclog_buffer_size(mp, log);
1431 
1432 	spin_lock_init(&log->l_icloglock);
1433 	init_waitqueue_head(&log->l_flush_wait);
1434 
1435 	iclogp = &log->l_iclog;
1436 	/*
1437 	 * The amount of memory to allocate for the iclog structure is
1438 	 * rather funky due to the way the structure is defined.  It is
1439 	 * done this way so that we can use different sizes for machines
1440 	 * with different amounts of memory.  See the definition of
1441 	 * xlog_in_core_t in xfs_log_priv.h for details.
1442 	 */
1443 	ASSERT(log->l_iclog_size >= 4096);
1444 	for (i = 0; i < log->l_iclog_bufs; i++) {
1445 		int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1446 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1447 				sizeof(struct bio_vec);
1448 
1449 		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1450 		if (!iclog)
1451 			goto out_free_iclog;
1452 
1453 		*iclogp = iclog;
1454 		iclog->ic_prev = prev_iclog;
1455 		prev_iclog = iclog;
1456 
1457 		iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1458 						KM_MAYFAIL | KM_ZERO);
1459 		if (!iclog->ic_data)
1460 			goto out_free_iclog;
1461 #ifdef DEBUG
1462 		log->l_iclog_bak[i] = &iclog->ic_header;
1463 #endif
1464 		head = &iclog->ic_header;
1465 		memset(head, 0, sizeof(xlog_rec_header_t));
1466 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1467 		head->h_version = cpu_to_be32(
1468 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1469 		head->h_size = cpu_to_be32(log->l_iclog_size);
1470 		/* new fields */
1471 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1472 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1473 
1474 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1475 		iclog->ic_state = XLOG_STATE_ACTIVE;
1476 		iclog->ic_log = log;
1477 		atomic_set(&iclog->ic_refcnt, 0);
1478 		spin_lock_init(&iclog->ic_callback_lock);
1479 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1480 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1481 
1482 		init_waitqueue_head(&iclog->ic_force_wait);
1483 		init_waitqueue_head(&iclog->ic_write_wait);
1484 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1485 		sema_init(&iclog->ic_sema, 1);
1486 
1487 		iclogp = &iclog->ic_next;
1488 	}
1489 	*iclogp = log->l_iclog;			/* complete ring */
1490 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1491 
1492 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1493 			WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1494 			mp->m_fsname);
1495 	if (!log->l_ioend_workqueue)
1496 		goto out_free_iclog;
1497 
1498 	error = xlog_cil_init(log);
1499 	if (error)
1500 		goto out_destroy_workqueue;
1501 	return log;
1502 
1503 out_destroy_workqueue:
1504 	destroy_workqueue(log->l_ioend_workqueue);
1505 out_free_iclog:
1506 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1507 		prev_iclog = iclog->ic_next;
1508 		kmem_free(iclog->ic_data);
1509 		kmem_free(iclog);
1510 		if (prev_iclog == log->l_iclog)
1511 			break;
1512 	}
1513 out_free_log:
1514 	kmem_free(log);
1515 out:
1516 	return ERR_PTR(error);
1517 }	/* xlog_alloc_log */
1518 
1519 
1520 /*
1521  * Write out the commit record of a transaction associated with the given
1522  * ticket.  Return the lsn of the commit record.
1523  */
1524 STATIC int
xlog_commit_record(struct xlog * log,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,xfs_lsn_t * commitlsnp)1525 xlog_commit_record(
1526 	struct xlog		*log,
1527 	struct xlog_ticket	*ticket,
1528 	struct xlog_in_core	**iclog,
1529 	xfs_lsn_t		*commitlsnp)
1530 {
1531 	struct xfs_mount *mp = log->l_mp;
1532 	int	error;
1533 	struct xfs_log_iovec reg = {
1534 		.i_addr = NULL,
1535 		.i_len = 0,
1536 		.i_type = XLOG_REG_TYPE_COMMIT,
1537 	};
1538 	struct xfs_log_vec vec = {
1539 		.lv_niovecs = 1,
1540 		.lv_iovecp = &reg,
1541 	};
1542 
1543 	ASSERT_ALWAYS(iclog);
1544 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1545 					XLOG_COMMIT_TRANS);
1546 	if (error)
1547 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1548 	return error;
1549 }
1550 
1551 /*
1552  * Compute the LSN that we'd need to push the log tail towards in order to have
1553  * (a) enough on-disk log space to log the number of bytes specified, (b) at
1554  * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1555  * log free space already meets all three thresholds, this function returns
1556  * NULLCOMMITLSN.
1557  */
1558 xfs_lsn_t
xlog_grant_push_threshold(struct xlog * log,int need_bytes)1559 xlog_grant_push_threshold(
1560 	struct xlog	*log,
1561 	int		need_bytes)
1562 {
1563 	xfs_lsn_t	threshold_lsn = 0;
1564 	xfs_lsn_t	last_sync_lsn;
1565 	int		free_blocks;
1566 	int		free_bytes;
1567 	int		threshold_block;
1568 	int		threshold_cycle;
1569 	int		free_threshold;
1570 
1571 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1572 
1573 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1574 	free_blocks = BTOBBT(free_bytes);
1575 
1576 	/*
1577 	 * Set the threshold for the minimum number of free blocks in the
1578 	 * log to the maximum of what the caller needs, one quarter of the
1579 	 * log, and 256 blocks.
1580 	 */
1581 	free_threshold = BTOBB(need_bytes);
1582 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1583 	free_threshold = max(free_threshold, 256);
1584 	if (free_blocks >= free_threshold)
1585 		return NULLCOMMITLSN;
1586 
1587 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1588 						&threshold_block);
1589 	threshold_block += free_threshold;
1590 	if (threshold_block >= log->l_logBBsize) {
1591 		threshold_block -= log->l_logBBsize;
1592 		threshold_cycle += 1;
1593 	}
1594 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1595 					threshold_block);
1596 	/*
1597 	 * Don't pass in an lsn greater than the lsn of the last
1598 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1599 	 * so that it doesn't change between the compare and the set.
1600 	 */
1601 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1602 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1603 		threshold_lsn = last_sync_lsn;
1604 
1605 	return threshold_lsn;
1606 }
1607 
1608 /*
1609  * Push the tail of the log if we need to do so to maintain the free log space
1610  * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1611  * policy which pushes on an lsn which is further along in the log once we
1612  * reach the high water mark.  In this manner, we would be creating a low water
1613  * mark.
1614  */
1615 STATIC void
xlog_grant_push_ail(struct xlog * log,int need_bytes)1616 xlog_grant_push_ail(
1617 	struct xlog	*log,
1618 	int		need_bytes)
1619 {
1620 	xfs_lsn_t	threshold_lsn;
1621 
1622 	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1623 	if (threshold_lsn == NULLCOMMITLSN || XLOG_FORCED_SHUTDOWN(log))
1624 		return;
1625 
1626 	/*
1627 	 * Get the transaction layer to kick the dirty buffers out to
1628 	 * disk asynchronously. No point in trying to do this if
1629 	 * the filesystem is shutting down.
1630 	 */
1631 	xfs_ail_push(log->l_ailp, threshold_lsn);
1632 }
1633 
1634 /*
1635  * Stamp cycle number in every block
1636  */
1637 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1638 xlog_pack_data(
1639 	struct xlog		*log,
1640 	struct xlog_in_core	*iclog,
1641 	int			roundoff)
1642 {
1643 	int			i, j, k;
1644 	int			size = iclog->ic_offset + roundoff;
1645 	__be32			cycle_lsn;
1646 	char			*dp;
1647 
1648 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1649 
1650 	dp = iclog->ic_datap;
1651 	for (i = 0; i < BTOBB(size); i++) {
1652 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1653 			break;
1654 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1655 		*(__be32 *)dp = cycle_lsn;
1656 		dp += BBSIZE;
1657 	}
1658 
1659 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1660 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1661 
1662 		for ( ; i < BTOBB(size); i++) {
1663 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1664 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1665 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1666 			*(__be32 *)dp = cycle_lsn;
1667 			dp += BBSIZE;
1668 		}
1669 
1670 		for (i = 1; i < log->l_iclog_heads; i++)
1671 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1672 	}
1673 }
1674 
1675 /*
1676  * Calculate the checksum for a log buffer.
1677  *
1678  * This is a little more complicated than it should be because the various
1679  * headers and the actual data are non-contiguous.
1680  */
1681 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,int size)1682 xlog_cksum(
1683 	struct xlog		*log,
1684 	struct xlog_rec_header	*rhead,
1685 	char			*dp,
1686 	int			size)
1687 {
1688 	uint32_t		crc;
1689 
1690 	/* first generate the crc for the record header ... */
1691 	crc = xfs_start_cksum_update((char *)rhead,
1692 			      sizeof(struct xlog_rec_header),
1693 			      offsetof(struct xlog_rec_header, h_crc));
1694 
1695 	/* ... then for additional cycle data for v2 logs ... */
1696 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1697 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1698 		int		i;
1699 		int		xheads;
1700 
1701 		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1702 		if (size % XLOG_HEADER_CYCLE_SIZE)
1703 			xheads++;
1704 
1705 		for (i = 1; i < xheads; i++) {
1706 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1707 				     sizeof(struct xlog_rec_ext_header));
1708 		}
1709 	}
1710 
1711 	/* ... and finally for the payload */
1712 	crc = crc32c(crc, dp, size);
1713 
1714 	return xfs_end_cksum(crc);
1715 }
1716 
1717 static void
xlog_bio_end_io(struct bio * bio)1718 xlog_bio_end_io(
1719 	struct bio		*bio)
1720 {
1721 	struct xlog_in_core	*iclog = bio->bi_private;
1722 
1723 	queue_work(iclog->ic_log->l_ioend_workqueue,
1724 		   &iclog->ic_end_io_work);
1725 }
1726 
1727 static void
xlog_map_iclog_data(struct bio * bio,void * data,size_t count)1728 xlog_map_iclog_data(
1729 	struct bio		*bio,
1730 	void			*data,
1731 	size_t			count)
1732 {
1733 	do {
1734 		struct page	*page = kmem_to_page(data);
1735 		unsigned int	off = offset_in_page(data);
1736 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1737 
1738 		WARN_ON_ONCE(bio_add_page(bio, page, len, off) != len);
1739 
1740 		data += len;
1741 		count -= len;
1742 	} while (count);
1743 }
1744 
1745 STATIC void
xlog_write_iclog(struct xlog * log,struct xlog_in_core * iclog,uint64_t bno,unsigned int count,bool need_flush)1746 xlog_write_iclog(
1747 	struct xlog		*log,
1748 	struct xlog_in_core	*iclog,
1749 	uint64_t		bno,
1750 	unsigned int		count,
1751 	bool			need_flush)
1752 {
1753 	ASSERT(bno < log->l_logBBsize);
1754 
1755 	/*
1756 	 * We lock the iclogbufs here so that we can serialise against I/O
1757 	 * completion during unmount.  We might be processing a shutdown
1758 	 * triggered during unmount, and that can occur asynchronously to the
1759 	 * unmount thread, and hence we need to ensure that completes before
1760 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1761 	 * across the log IO to archieve that.
1762 	 */
1763 	down(&iclog->ic_sema);
1764 	if (unlikely(iclog->ic_state & XLOG_STATE_IOERROR)) {
1765 		/*
1766 		 * It would seem logical to return EIO here, but we rely on
1767 		 * the log state machine to propagate I/O errors instead of
1768 		 * doing it here.  We kick of the state machine and unlock
1769 		 * the buffer manually, the code needs to be kept in sync
1770 		 * with the I/O completion path.
1771 		 */
1772 		xlog_state_done_syncing(iclog, XFS_LI_ABORTED);
1773 		up(&iclog->ic_sema);
1774 		return;
1775 	}
1776 
1777 	iclog->ic_io_size = count;
1778 
1779 	bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1780 	bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1781 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1782 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1783 	iclog->ic_bio.bi_private = iclog;
1784 	iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA;
1785 	if (need_flush)
1786 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1787 
1788 	xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, iclog->ic_io_size);
1789 	if (is_vmalloc_addr(iclog->ic_data))
1790 		flush_kernel_vmap_range(iclog->ic_data, iclog->ic_io_size);
1791 
1792 	/*
1793 	 * If this log buffer would straddle the end of the log we will have
1794 	 * to split it up into two bios, so that we can continue at the start.
1795 	 */
1796 	if (bno + BTOBB(count) > log->l_logBBsize) {
1797 		struct bio *split;
1798 
1799 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1800 				  GFP_NOIO, &fs_bio_set);
1801 		bio_chain(split, &iclog->ic_bio);
1802 		submit_bio(split);
1803 
1804 		/* restart at logical offset zero for the remainder */
1805 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1806 	}
1807 
1808 	submit_bio(&iclog->ic_bio);
1809 }
1810 
1811 /*
1812  * We need to bump cycle number for the part of the iclog that is
1813  * written to the start of the log. Watch out for the header magic
1814  * number case, though.
1815  */
1816 static void
xlog_split_iclog(struct xlog * log,void * data,uint64_t bno,unsigned int count)1817 xlog_split_iclog(
1818 	struct xlog		*log,
1819 	void			*data,
1820 	uint64_t		bno,
1821 	unsigned int		count)
1822 {
1823 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1824 	unsigned int		i;
1825 
1826 	for (i = split_offset; i < count; i += BBSIZE) {
1827 		uint32_t cycle = get_unaligned_be32(data + i);
1828 
1829 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1830 			cycle++;
1831 		put_unaligned_be32(cycle, data + i);
1832 	}
1833 }
1834 
1835 static int
xlog_calc_iclog_size(struct xlog * log,struct xlog_in_core * iclog,uint32_t * roundoff)1836 xlog_calc_iclog_size(
1837 	struct xlog		*log,
1838 	struct xlog_in_core	*iclog,
1839 	uint32_t		*roundoff)
1840 {
1841 	uint32_t		count_init, count;
1842 	bool			use_lsunit;
1843 
1844 	use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1845 			log->l_mp->m_sb.sb_logsunit > 1;
1846 
1847 	/* Add for LR header */
1848 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1849 
1850 	/* Round out the log write size */
1851 	if (use_lsunit) {
1852 		/* we have a v2 stripe unit to use */
1853 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1854 	} else {
1855 		count = BBTOB(BTOBB(count_init));
1856 	}
1857 
1858 	ASSERT(count >= count_init);
1859 	*roundoff = count - count_init;
1860 
1861 	if (use_lsunit)
1862 		ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1863 	else
1864 		ASSERT(*roundoff < BBTOB(1));
1865 	return count;
1866 }
1867 
1868 /*
1869  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1870  * fashion.  Previously, we should have moved the current iclog
1871  * ptr in the log to point to the next available iclog.  This allows further
1872  * write to continue while this code syncs out an iclog ready to go.
1873  * Before an in-core log can be written out, the data section must be scanned
1874  * to save away the 1st word of each BBSIZE block into the header.  We replace
1875  * it with the current cycle count.  Each BBSIZE block is tagged with the
1876  * cycle count because there in an implicit assumption that drives will
1877  * guarantee that entire 512 byte blocks get written at once.  In other words,
1878  * we can't have part of a 512 byte block written and part not written.  By
1879  * tagging each block, we will know which blocks are valid when recovering
1880  * after an unclean shutdown.
1881  *
1882  * This routine is single threaded on the iclog.  No other thread can be in
1883  * this routine with the same iclog.  Changing contents of iclog can there-
1884  * fore be done without grabbing the state machine lock.  Updating the global
1885  * log will require grabbing the lock though.
1886  *
1887  * The entire log manager uses a logical block numbering scheme.  Only
1888  * xlog_write_iclog knows about the fact that the log may not start with
1889  * block zero on a given device.
1890  */
1891 STATIC void
xlog_sync(struct xlog * log,struct xlog_in_core * iclog)1892 xlog_sync(
1893 	struct xlog		*log,
1894 	struct xlog_in_core	*iclog)
1895 {
1896 	unsigned int		count;		/* byte count of bwrite */
1897 	unsigned int		roundoff;       /* roundoff to BB or stripe */
1898 	uint64_t		bno;
1899 	unsigned int		size;
1900 	bool			need_flush = true, split = false;
1901 
1902 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1903 
1904 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1905 
1906 	/* move grant heads by roundoff in sync */
1907 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1908 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1909 
1910 	/* put cycle number in every block */
1911 	xlog_pack_data(log, iclog, roundoff);
1912 
1913 	/* real byte length */
1914 	size = iclog->ic_offset;
1915 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1916 		size += roundoff;
1917 	iclog->ic_header.h_len = cpu_to_be32(size);
1918 
1919 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1920 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1921 
1922 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1923 
1924 	/* Do we need to split this write into 2 parts? */
1925 	if (bno + BTOBB(count) > log->l_logBBsize) {
1926 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1927 		split = true;
1928 	}
1929 
1930 	/* calculcate the checksum */
1931 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1932 					    iclog->ic_datap, size);
1933 	/*
1934 	 * Intentionally corrupt the log record CRC based on the error injection
1935 	 * frequency, if defined. This facilitates testing log recovery in the
1936 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1937 	 * write on I/O completion and shutdown the fs. The subsequent mount
1938 	 * detects the bad CRC and attempts to recover.
1939 	 */
1940 #ifdef DEBUG
1941 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1942 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1943 		iclog->ic_fail_crc = true;
1944 		xfs_warn(log->l_mp,
1945 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1946 			 be64_to_cpu(iclog->ic_header.h_lsn));
1947 	}
1948 #endif
1949 
1950 	/*
1951 	 * Flush the data device before flushing the log to make sure all meta
1952 	 * data written back from the AIL actually made it to disk before
1953 	 * stamping the new log tail LSN into the log buffer.  For an external
1954 	 * log we need to issue the flush explicitly, and unfortunately
1955 	 * synchronously here; for an internal log we can simply use the block
1956 	 * layer state machine for preflushes.
1957 	 */
1958 	if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1959 		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1960 		need_flush = false;
1961 	}
1962 
1963 	xlog_verify_iclog(log, iclog, count);
1964 	xlog_write_iclog(log, iclog, bno, count, need_flush);
1965 }
1966 
1967 /*
1968  * Deallocate a log structure
1969  */
1970 STATIC void
xlog_dealloc_log(struct xlog * log)1971 xlog_dealloc_log(
1972 	struct xlog	*log)
1973 {
1974 	xlog_in_core_t	*iclog, *next_iclog;
1975 	int		i;
1976 
1977 	xlog_cil_destroy(log);
1978 
1979 	/*
1980 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1981 	 * is done before we tear down these buffers.
1982 	 */
1983 	iclog = log->l_iclog;
1984 	for (i = 0; i < log->l_iclog_bufs; i++) {
1985 		down(&iclog->ic_sema);
1986 		up(&iclog->ic_sema);
1987 		iclog = iclog->ic_next;
1988 	}
1989 
1990 	iclog = log->l_iclog;
1991 	for (i = 0; i < log->l_iclog_bufs; i++) {
1992 		next_iclog = iclog->ic_next;
1993 		kmem_free(iclog->ic_data);
1994 		kmem_free(iclog);
1995 		iclog = next_iclog;
1996 	}
1997 
1998 	log->l_mp->m_log = NULL;
1999 	destroy_workqueue(log->l_ioend_workqueue);
2000 	kmem_free(log);
2001 }	/* xlog_dealloc_log */
2002 
2003 /*
2004  * Update counters atomically now that memcpy is done.
2005  */
2006 /* ARGSUSED */
2007 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)2008 xlog_state_finish_copy(
2009 	struct xlog		*log,
2010 	struct xlog_in_core	*iclog,
2011 	int			record_cnt,
2012 	int			copy_bytes)
2013 {
2014 	spin_lock(&log->l_icloglock);
2015 
2016 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2017 	iclog->ic_offset += copy_bytes;
2018 
2019 	spin_unlock(&log->l_icloglock);
2020 }	/* xlog_state_finish_copy */
2021 
2022 
2023 
2024 
2025 /*
2026  * print out info relating to regions written which consume
2027  * the reservation
2028  */
2029 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)2030 xlog_print_tic_res(
2031 	struct xfs_mount	*mp,
2032 	struct xlog_ticket	*ticket)
2033 {
2034 	uint i;
2035 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2036 
2037 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2038 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2039 	static char *res_type_str[] = {
2040 	    REG_TYPE_STR(BFORMAT, "bformat"),
2041 	    REG_TYPE_STR(BCHUNK, "bchunk"),
2042 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2043 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2044 	    REG_TYPE_STR(IFORMAT, "iformat"),
2045 	    REG_TYPE_STR(ICORE, "icore"),
2046 	    REG_TYPE_STR(IEXT, "iext"),
2047 	    REG_TYPE_STR(IBROOT, "ibroot"),
2048 	    REG_TYPE_STR(ILOCAL, "ilocal"),
2049 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2050 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2051 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2052 	    REG_TYPE_STR(QFORMAT, "qformat"),
2053 	    REG_TYPE_STR(DQUOT, "dquot"),
2054 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2055 	    REG_TYPE_STR(LRHEADER, "LR header"),
2056 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2057 	    REG_TYPE_STR(COMMIT, "commit"),
2058 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2059 	    REG_TYPE_STR(ICREATE, "inode create"),
2060 	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2061 	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2062 	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2063 	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2064 	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2065 	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2066 	};
2067 	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2068 #undef REG_TYPE_STR
2069 
2070 	xfs_warn(mp, "ticket reservation summary:");
2071 	xfs_warn(mp, "  unit res    = %d bytes",
2072 		 ticket->t_unit_res);
2073 	xfs_warn(mp, "  current res = %d bytes",
2074 		 ticket->t_curr_res);
2075 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2076 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2077 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2078 		 ticket->t_res_num_ophdrs, ophdr_spc);
2079 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2080 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2081 	xfs_warn(mp, "  num regions = %u",
2082 		 ticket->t_res_num);
2083 
2084 	for (i = 0; i < ticket->t_res_num; i++) {
2085 		uint r_type = ticket->t_res_arr[i].r_type;
2086 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2087 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2088 			    "bad-rtype" : res_type_str[r_type]),
2089 			    ticket->t_res_arr[i].r_len);
2090 	}
2091 }
2092 
2093 /*
2094  * Print a summary of the transaction.
2095  */
2096 void
xlog_print_trans(struct xfs_trans * tp)2097 xlog_print_trans(
2098 	struct xfs_trans	*tp)
2099 {
2100 	struct xfs_mount	*mp = tp->t_mountp;
2101 	struct xfs_log_item	*lip;
2102 
2103 	/* dump core transaction and ticket info */
2104 	xfs_warn(mp, "transaction summary:");
2105 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2106 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2107 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2108 
2109 	xlog_print_tic_res(mp, tp->t_ticket);
2110 
2111 	/* dump each log item */
2112 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2113 		struct xfs_log_vec	*lv = lip->li_lv;
2114 		struct xfs_log_iovec	*vec;
2115 		int			i;
2116 
2117 		xfs_warn(mp, "log item: ");
2118 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2119 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2120 		if (!lv)
2121 			continue;
2122 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2123 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2124 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2125 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2126 
2127 		/* dump each iovec for the log item */
2128 		vec = lv->lv_iovecp;
2129 		for (i = 0; i < lv->lv_niovecs; i++) {
2130 			int dumplen = min(vec->i_len, 32);
2131 
2132 			xfs_warn(mp, "  iovec[%d]", i);
2133 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2134 			xfs_warn(mp, "    len	= %d", vec->i_len);
2135 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2136 			xfs_hex_dump(vec->i_addr, dumplen);
2137 
2138 			vec++;
2139 		}
2140 	}
2141 }
2142 
2143 /*
2144  * Calculate the potential space needed by the log vector.  Each region gets
2145  * its own xlog_op_header_t and may need to be double word aligned.
2146  */
2147 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector)2148 xlog_write_calc_vec_length(
2149 	struct xlog_ticket	*ticket,
2150 	struct xfs_log_vec	*log_vector)
2151 {
2152 	struct xfs_log_vec	*lv;
2153 	int			headers = 0;
2154 	int			len = 0;
2155 	int			i;
2156 
2157 	/* acct for start rec of xact */
2158 	if (ticket->t_flags & XLOG_TIC_INITED)
2159 		headers++;
2160 
2161 	for (lv = log_vector; lv; lv = lv->lv_next) {
2162 		/* we don't write ordered log vectors */
2163 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2164 			continue;
2165 
2166 		headers += lv->lv_niovecs;
2167 
2168 		for (i = 0; i < lv->lv_niovecs; i++) {
2169 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2170 
2171 			len += vecp->i_len;
2172 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2173 		}
2174 	}
2175 
2176 	ticket->t_res_num_ophdrs += headers;
2177 	len += headers * sizeof(struct xlog_op_header);
2178 
2179 	return len;
2180 }
2181 
2182 /*
2183  * If first write for transaction, insert start record  We can't be trying to
2184  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2185  */
2186 static int
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)2187 xlog_write_start_rec(
2188 	struct xlog_op_header	*ophdr,
2189 	struct xlog_ticket	*ticket)
2190 {
2191 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2192 		return 0;
2193 
2194 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2195 	ophdr->oh_clientid = ticket->t_clientid;
2196 	ophdr->oh_len = 0;
2197 	ophdr->oh_flags = XLOG_START_TRANS;
2198 	ophdr->oh_res2 = 0;
2199 
2200 	ticket->t_flags &= ~XLOG_TIC_INITED;
2201 
2202 	return sizeof(struct xlog_op_header);
2203 }
2204 
2205 static xlog_op_header_t *
xlog_write_setup_ophdr(struct xlog * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)2206 xlog_write_setup_ophdr(
2207 	struct xlog		*log,
2208 	struct xlog_op_header	*ophdr,
2209 	struct xlog_ticket	*ticket,
2210 	uint			flags)
2211 {
2212 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2213 	ophdr->oh_clientid = ticket->t_clientid;
2214 	ophdr->oh_res2 = 0;
2215 
2216 	/* are we copying a commit or unmount record? */
2217 	ophdr->oh_flags = flags;
2218 
2219 	/*
2220 	 * We've seen logs corrupted with bad transaction client ids.  This
2221 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2222 	 * and shut down the filesystem.
2223 	 */
2224 	switch (ophdr->oh_clientid)  {
2225 	case XFS_TRANSACTION:
2226 	case XFS_VOLUME:
2227 	case XFS_LOG:
2228 		break;
2229 	default:
2230 		xfs_warn(log->l_mp,
2231 			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2232 			ophdr->oh_clientid, ticket);
2233 		return NULL;
2234 	}
2235 
2236 	return ophdr;
2237 }
2238 
2239 /*
2240  * Set up the parameters of the region copy into the log. This has
2241  * to handle region write split across multiple log buffers - this
2242  * state is kept external to this function so that this code can
2243  * be written in an obvious, self documenting manner.
2244  */
2245 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)2246 xlog_write_setup_copy(
2247 	struct xlog_ticket	*ticket,
2248 	struct xlog_op_header	*ophdr,
2249 	int			space_available,
2250 	int			space_required,
2251 	int			*copy_off,
2252 	int			*copy_len,
2253 	int			*last_was_partial_copy,
2254 	int			*bytes_consumed)
2255 {
2256 	int			still_to_copy;
2257 
2258 	still_to_copy = space_required - *bytes_consumed;
2259 	*copy_off = *bytes_consumed;
2260 
2261 	if (still_to_copy <= space_available) {
2262 		/* write of region completes here */
2263 		*copy_len = still_to_copy;
2264 		ophdr->oh_len = cpu_to_be32(*copy_len);
2265 		if (*last_was_partial_copy)
2266 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2267 		*last_was_partial_copy = 0;
2268 		*bytes_consumed = 0;
2269 		return 0;
2270 	}
2271 
2272 	/* partial write of region, needs extra log op header reservation */
2273 	*copy_len = space_available;
2274 	ophdr->oh_len = cpu_to_be32(*copy_len);
2275 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2276 	if (*last_was_partial_copy)
2277 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2278 	*bytes_consumed += *copy_len;
2279 	(*last_was_partial_copy)++;
2280 
2281 	/* account for new log op header */
2282 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2283 	ticket->t_res_num_ophdrs++;
2284 
2285 	return sizeof(struct xlog_op_header);
2286 }
2287 
2288 static int
xlog_write_copy_finish(struct xlog * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset,struct xlog_in_core ** commit_iclog)2289 xlog_write_copy_finish(
2290 	struct xlog		*log,
2291 	struct xlog_in_core	*iclog,
2292 	uint			flags,
2293 	int			*record_cnt,
2294 	int			*data_cnt,
2295 	int			*partial_copy,
2296 	int			*partial_copy_len,
2297 	int			log_offset,
2298 	struct xlog_in_core	**commit_iclog)
2299 {
2300 	if (*partial_copy) {
2301 		/*
2302 		 * This iclog has already been marked WANT_SYNC by
2303 		 * xlog_state_get_iclog_space.
2304 		 */
2305 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2306 		*record_cnt = 0;
2307 		*data_cnt = 0;
2308 		return xlog_state_release_iclog(log, iclog);
2309 	}
2310 
2311 	*partial_copy = 0;
2312 	*partial_copy_len = 0;
2313 
2314 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2315 		/* no more space in this iclog - push it. */
2316 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2317 		*record_cnt = 0;
2318 		*data_cnt = 0;
2319 
2320 		spin_lock(&log->l_icloglock);
2321 		xlog_state_want_sync(log, iclog);
2322 		spin_unlock(&log->l_icloglock);
2323 
2324 		if (!commit_iclog)
2325 			return xlog_state_release_iclog(log, iclog);
2326 		ASSERT(flags & XLOG_COMMIT_TRANS);
2327 		*commit_iclog = iclog;
2328 	}
2329 
2330 	return 0;
2331 }
2332 
2333 /*
2334  * Write some region out to in-core log
2335  *
2336  * This will be called when writing externally provided regions or when
2337  * writing out a commit record for a given transaction.
2338  *
2339  * General algorithm:
2340  *	1. Find total length of this write.  This may include adding to the
2341  *		lengths passed in.
2342  *	2. Check whether we violate the tickets reservation.
2343  *	3. While writing to this iclog
2344  *	    A. Reserve as much space in this iclog as can get
2345  *	    B. If this is first write, save away start lsn
2346  *	    C. While writing this region:
2347  *		1. If first write of transaction, write start record
2348  *		2. Write log operation header (header per region)
2349  *		3. Find out if we can fit entire region into this iclog
2350  *		4. Potentially, verify destination memcpy ptr
2351  *		5. Memcpy (partial) region
2352  *		6. If partial copy, release iclog; otherwise, continue
2353  *			copying more regions into current iclog
2354  *	4. Mark want sync bit (in simulation mode)
2355  *	5. Release iclog for potential flush to on-disk log.
2356  *
2357  * ERRORS:
2358  * 1.	Panic if reservation is overrun.  This should never happen since
2359  *	reservation amounts are generated internal to the filesystem.
2360  * NOTES:
2361  * 1. Tickets are single threaded data structures.
2362  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2363  *	syncing routine.  When a single log_write region needs to span
2364  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2365  *	on all log operation writes which don't contain the end of the
2366  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2367  *	operation which contains the end of the continued log_write region.
2368  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2369  *	we don't really know exactly how much space will be used.  As a result,
2370  *	we don't update ic_offset until the end when we know exactly how many
2371  *	bytes have been written out.
2372  */
2373 int
xlog_write(struct xlog * log,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,xfs_lsn_t * start_lsn,struct xlog_in_core ** commit_iclog,uint flags)2374 xlog_write(
2375 	struct xlog		*log,
2376 	struct xfs_log_vec	*log_vector,
2377 	struct xlog_ticket	*ticket,
2378 	xfs_lsn_t		*start_lsn,
2379 	struct xlog_in_core	**commit_iclog,
2380 	uint			flags)
2381 {
2382 	struct xlog_in_core	*iclog = NULL;
2383 	struct xfs_log_iovec	*vecp;
2384 	struct xfs_log_vec	*lv;
2385 	int			len;
2386 	int			index;
2387 	int			partial_copy = 0;
2388 	int			partial_copy_len = 0;
2389 	int			contwr = 0;
2390 	int			record_cnt = 0;
2391 	int			data_cnt = 0;
2392 	int			error;
2393 
2394 	*start_lsn = 0;
2395 
2396 	len = xlog_write_calc_vec_length(ticket, log_vector);
2397 
2398 	/*
2399 	 * Region headers and bytes are already accounted for.
2400 	 * We only need to take into account start records and
2401 	 * split regions in this function.
2402 	 */
2403 	if (ticket->t_flags & XLOG_TIC_INITED)
2404 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2405 
2406 	/*
2407 	 * Commit record headers need to be accounted for. These
2408 	 * come in as separate writes so are easy to detect.
2409 	 */
2410 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2411 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2412 
2413 	if (ticket->t_curr_res < 0) {
2414 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2415 		     "ctx ticket reservation ran out. Need to up reservation");
2416 		xlog_print_tic_res(log->l_mp, ticket);
2417 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2418 	}
2419 
2420 	index = 0;
2421 	lv = log_vector;
2422 	vecp = lv->lv_iovecp;
2423 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2424 		void		*ptr;
2425 		int		log_offset;
2426 
2427 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2428 						   &contwr, &log_offset);
2429 		if (error)
2430 			return error;
2431 
2432 		ASSERT(log_offset <= iclog->ic_size - 1);
2433 		ptr = iclog->ic_datap + log_offset;
2434 
2435 		/* start_lsn is the first lsn written to. That's all we need. */
2436 		if (!*start_lsn)
2437 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2438 
2439 		/*
2440 		 * This loop writes out as many regions as can fit in the amount
2441 		 * of space which was allocated by xlog_state_get_iclog_space().
2442 		 */
2443 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2444 			struct xfs_log_iovec	*reg;
2445 			struct xlog_op_header	*ophdr;
2446 			int			start_rec_copy;
2447 			int			copy_len;
2448 			int			copy_off;
2449 			bool			ordered = false;
2450 
2451 			/* ordered log vectors have no regions to write */
2452 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2453 				ASSERT(lv->lv_niovecs == 0);
2454 				ordered = true;
2455 				goto next_lv;
2456 			}
2457 
2458 			reg = &vecp[index];
2459 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2460 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2461 
2462 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2463 			if (start_rec_copy) {
2464 				record_cnt++;
2465 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2466 						   start_rec_copy);
2467 			}
2468 
2469 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2470 			if (!ophdr)
2471 				return -EIO;
2472 
2473 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2474 					   sizeof(struct xlog_op_header));
2475 
2476 			len += xlog_write_setup_copy(ticket, ophdr,
2477 						     iclog->ic_size-log_offset,
2478 						     reg->i_len,
2479 						     &copy_off, &copy_len,
2480 						     &partial_copy,
2481 						     &partial_copy_len);
2482 			xlog_verify_dest_ptr(log, ptr);
2483 
2484 			/*
2485 			 * Copy region.
2486 			 *
2487 			 * Unmount records just log an opheader, so can have
2488 			 * empty payloads with no data region to copy. Hence we
2489 			 * only copy the payload if the vector says it has data
2490 			 * to copy.
2491 			 */
2492 			ASSERT(copy_len >= 0);
2493 			if (copy_len > 0) {
2494 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2495 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2496 						   copy_len);
2497 			}
2498 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2499 			record_cnt++;
2500 			data_cnt += contwr ? copy_len : 0;
2501 
2502 			error = xlog_write_copy_finish(log, iclog, flags,
2503 						       &record_cnt, &data_cnt,
2504 						       &partial_copy,
2505 						       &partial_copy_len,
2506 						       log_offset,
2507 						       commit_iclog);
2508 			if (error)
2509 				return error;
2510 
2511 			/*
2512 			 * if we had a partial copy, we need to get more iclog
2513 			 * space but we don't want to increment the region
2514 			 * index because there is still more is this region to
2515 			 * write.
2516 			 *
2517 			 * If we completed writing this region, and we flushed
2518 			 * the iclog (indicated by resetting of the record
2519 			 * count), then we also need to get more log space. If
2520 			 * this was the last record, though, we are done and
2521 			 * can just return.
2522 			 */
2523 			if (partial_copy)
2524 				break;
2525 
2526 			if (++index == lv->lv_niovecs) {
2527 next_lv:
2528 				lv = lv->lv_next;
2529 				index = 0;
2530 				if (lv)
2531 					vecp = lv->lv_iovecp;
2532 			}
2533 			if (record_cnt == 0 && !ordered) {
2534 				if (!lv)
2535 					return 0;
2536 				break;
2537 			}
2538 		}
2539 	}
2540 
2541 	ASSERT(len == 0);
2542 
2543 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2544 	if (!commit_iclog)
2545 		return xlog_state_release_iclog(log, iclog);
2546 
2547 	ASSERT(flags & XLOG_COMMIT_TRANS);
2548 	*commit_iclog = iclog;
2549 	return 0;
2550 }
2551 
2552 
2553 /*****************************************************************************
2554  *
2555  *		State Machine functions
2556  *
2557  *****************************************************************************
2558  */
2559 
2560 /*
2561  * An iclog has just finished IO completion processing, so we need to update
2562  * the iclog state and propagate that up into the overall log state. Hence we
2563  * prepare the iclog for cleaning, and then clean all the pending dirty iclogs
2564  * starting from the head, and then wake up any threads that are waiting for the
2565  * iclog to be marked clean.
2566  *
2567  * The ordering of marking iclogs ACTIVE must be maintained, so an iclog
2568  * doesn't become ACTIVE beyond one that is SYNCING.  This is also required to
2569  * maintain the notion that we use a ordered wait queue to hold off would be
2570  * writers to the log when every iclog is trying to sync to disk.
2571  *
2572  * Caller must hold the icloglock before calling us.
2573  *
2574  * State Change: !IOERROR -> DIRTY -> ACTIVE
2575  */
2576 STATIC void
xlog_state_clean_iclog(struct xlog * log,struct xlog_in_core * dirty_iclog)2577 xlog_state_clean_iclog(
2578 	struct xlog		*log,
2579 	struct xlog_in_core	*dirty_iclog)
2580 {
2581 	struct xlog_in_core	*iclog;
2582 	int			changed = 0;
2583 
2584 	/* Prepare the completed iclog. */
2585 	if (!(dirty_iclog->ic_state & XLOG_STATE_IOERROR))
2586 		dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2587 
2588 	/* Walk all the iclogs to update the ordered active state. */
2589 	iclog = log->l_iclog;
2590 	do {
2591 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2592 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2593 			iclog->ic_offset       = 0;
2594 			ASSERT(list_empty_careful(&iclog->ic_callbacks));
2595 			/*
2596 			 * If the number of ops in this iclog indicate it just
2597 			 * contains the dummy transaction, we can
2598 			 * change state into IDLE (the second time around).
2599 			 * Otherwise we should change the state into
2600 			 * NEED a dummy.
2601 			 * We don't need to cover the dummy.
2602 			 */
2603 			if (!changed &&
2604 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2605 			   		XLOG_COVER_OPS)) {
2606 				changed = 1;
2607 			} else {
2608 				/*
2609 				 * We have two dirty iclogs so start over
2610 				 * This could also be num of ops indicates
2611 				 * this is not the dummy going out.
2612 				 */
2613 				changed = 2;
2614 			}
2615 			iclog->ic_header.h_num_logops = 0;
2616 			memset(iclog->ic_header.h_cycle_data, 0,
2617 			      sizeof(iclog->ic_header.h_cycle_data));
2618 			iclog->ic_header.h_lsn = 0;
2619 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2620 			/* do nothing */;
2621 		else
2622 			break;	/* stop cleaning */
2623 		iclog = iclog->ic_next;
2624 	} while (iclog != log->l_iclog);
2625 
2626 
2627 	/*
2628 	 * Wake up threads waiting in xfs_log_force() for the dirty iclog
2629 	 * to be cleaned.
2630 	 */
2631 	wake_up_all(&dirty_iclog->ic_force_wait);
2632 
2633 	/*
2634 	 * Change state for the dummy log recording.
2635 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2636 	 * we are done writing the dummy record.
2637 	 * If we are done with the second dummy recored (DONE2), then
2638 	 * we go to IDLE.
2639 	 */
2640 	if (changed) {
2641 		switch (log->l_covered_state) {
2642 		case XLOG_STATE_COVER_IDLE:
2643 		case XLOG_STATE_COVER_NEED:
2644 		case XLOG_STATE_COVER_NEED2:
2645 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2646 			break;
2647 
2648 		case XLOG_STATE_COVER_DONE:
2649 			if (changed == 1)
2650 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2651 			else
2652 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2653 			break;
2654 
2655 		case XLOG_STATE_COVER_DONE2:
2656 			if (changed == 1)
2657 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2658 			else
2659 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2660 			break;
2661 
2662 		default:
2663 			ASSERT(0);
2664 		}
2665 	}
2666 }
2667 
2668 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2669 xlog_get_lowest_lsn(
2670 	struct xlog		*log)
2671 {
2672 	struct xlog_in_core	*iclog = log->l_iclog;
2673 	xfs_lsn_t		lowest_lsn = 0, lsn;
2674 
2675 	do {
2676 		if (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))
2677 			continue;
2678 
2679 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2680 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2681 			lowest_lsn = lsn;
2682 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2683 
2684 	return lowest_lsn;
2685 }
2686 
2687 /*
2688  * Completion of a iclog IO does not imply that a transaction has completed, as
2689  * transactions can be large enough to span many iclogs. We cannot change the
2690  * tail of the log half way through a transaction as this may be the only
2691  * transaction in the log and moving the tail to point to the middle of it
2692  * will prevent recovery from finding the start of the transaction. Hence we
2693  * should only update the last_sync_lsn if this iclog contains transaction
2694  * completion callbacks on it.
2695  *
2696  * We have to do this before we drop the icloglock to ensure we are the only one
2697  * that can update it.
2698  *
2699  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2700  * the reservation grant head pushing. This is due to the fact that the push
2701  * target is bound by the current last_sync_lsn value. Hence if we have a large
2702  * amount of log space bound up in this committing transaction then the
2703  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2704  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2705  * should push the AIL to ensure the push target (and hence the grant head) is
2706  * no longer bound by the old log head location and can move forwards and make
2707  * progress again.
2708  */
2709 static void
xlog_state_set_callback(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t header_lsn)2710 xlog_state_set_callback(
2711 	struct xlog		*log,
2712 	struct xlog_in_core	*iclog,
2713 	xfs_lsn_t		header_lsn)
2714 {
2715 	iclog->ic_state = XLOG_STATE_CALLBACK;
2716 
2717 	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2718 			   header_lsn) <= 0);
2719 
2720 	if (list_empty_careful(&iclog->ic_callbacks))
2721 		return;
2722 
2723 	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2724 	xlog_grant_push_ail(log, 0);
2725 }
2726 
2727 /*
2728  * Return true if we need to stop processing, false to continue to the next
2729  * iclog. The caller will need to run callbacks if the iclog is returned in the
2730  * XLOG_STATE_CALLBACK state.
2731  */
2732 static bool
xlog_state_iodone_process_iclog(struct xlog * log,struct xlog_in_core * iclog,struct xlog_in_core * completed_iclog,bool * ioerror)2733 xlog_state_iodone_process_iclog(
2734 	struct xlog		*log,
2735 	struct xlog_in_core	*iclog,
2736 	struct xlog_in_core	*completed_iclog,
2737 	bool			*ioerror)
2738 {
2739 	xfs_lsn_t		lowest_lsn;
2740 	xfs_lsn_t		header_lsn;
2741 
2742 	/* Skip all iclogs in the ACTIVE & DIRTY states */
2743 	if (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))
2744 		return false;
2745 
2746 	/*
2747 	 * Between marking a filesystem SHUTDOWN and stopping the log, we do
2748 	 * flush all iclogs to disk (if there wasn't a log I/O error). So, we do
2749 	 * want things to go smoothly in case of just a SHUTDOWN  w/o a
2750 	 * LOG_IO_ERROR.
2751 	 */
2752 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
2753 		*ioerror = true;
2754 		return false;
2755 	}
2756 
2757 	/*
2758 	 * Can only perform callbacks in order.  Since this iclog is not in the
2759 	 * DONE_SYNC/ DO_CALLBACK state, we skip the rest and just try to clean
2760 	 * up.  If we set our iclog to DO_CALLBACK, we will not process it when
2761 	 * we retry since a previous iclog is in the CALLBACK and the state
2762 	 * cannot change since we are holding the l_icloglock.
2763 	 */
2764 	if (!(iclog->ic_state &
2765 			(XLOG_STATE_DONE_SYNC | XLOG_STATE_DO_CALLBACK))) {
2766 		if (completed_iclog &&
2767 		    (completed_iclog->ic_state == XLOG_STATE_DONE_SYNC)) {
2768 			completed_iclog->ic_state = XLOG_STATE_DO_CALLBACK;
2769 		}
2770 		return true;
2771 	}
2772 
2773 	/*
2774 	 * We now have an iclog that is in either the DO_CALLBACK or DONE_SYNC
2775 	 * states. The other states (WANT_SYNC, SYNCING, or CALLBACK were caught
2776 	 * by the above if and are going to clean (i.e. we aren't doing their
2777 	 * callbacks) see the above if.
2778 	 *
2779 	 * We will do one more check here to see if we have chased our tail
2780 	 * around. If this is not the lowest lsn iclog, then we will leave it
2781 	 * for another completion to process.
2782 	 */
2783 	header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2784 	lowest_lsn = xlog_get_lowest_lsn(log);
2785 	if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2786 		return false;
2787 
2788 	xlog_state_set_callback(log, iclog, header_lsn);
2789 	return false;
2790 
2791 }
2792 
2793 /*
2794  * Keep processing entries in the iclog callback list until we come around and
2795  * it is empty.  We need to atomically see that the list is empty and change the
2796  * state to DIRTY so that we don't miss any more callbacks being added.
2797  *
2798  * This function is called with the icloglock held and returns with it held. We
2799  * drop it while running callbacks, however, as holding it over thousands of
2800  * callbacks is unnecessary and causes excessive contention if we do.
2801  */
2802 static void
xlog_state_do_iclog_callbacks(struct xlog * log,struct xlog_in_core * iclog,bool aborted)2803 xlog_state_do_iclog_callbacks(
2804 	struct xlog		*log,
2805 	struct xlog_in_core	*iclog,
2806 	bool			aborted)
2807 {
2808 	spin_unlock(&log->l_icloglock);
2809 	spin_lock(&iclog->ic_callback_lock);
2810 	while (!list_empty(&iclog->ic_callbacks)) {
2811 		LIST_HEAD(tmp);
2812 
2813 		list_splice_init(&iclog->ic_callbacks, &tmp);
2814 
2815 		spin_unlock(&iclog->ic_callback_lock);
2816 		xlog_cil_process_committed(&tmp, aborted);
2817 		spin_lock(&iclog->ic_callback_lock);
2818 	}
2819 
2820 	/*
2821 	 * Pick up the icloglock while still holding the callback lock so we
2822 	 * serialise against anyone trying to add more callbacks to this iclog
2823 	 * now we've finished processing.
2824 	 */
2825 	spin_lock(&log->l_icloglock);
2826 	spin_unlock(&iclog->ic_callback_lock);
2827 }
2828 
2829 #ifdef DEBUG
2830 /*
2831  * Make one last gasp attempt to see if iclogs are being left in limbo.  If the
2832  * above loop finds an iclog earlier than the current iclog and in one of the
2833  * syncing states, the current iclog is put into DO_CALLBACK and the callbacks
2834  * are deferred to the completion of the earlier iclog. Walk the iclogs in order
2835  * and make sure that no iclog is in DO_CALLBACK unless an earlier iclog is in
2836  * one of the syncing states.
2837  *
2838  * Note that SYNCING|IOERROR is a valid state so we cannot just check for
2839  * ic_state == SYNCING.
2840  */
2841 static void
xlog_state_callback_check_state(struct xlog * log)2842 xlog_state_callback_check_state(
2843 	struct xlog		*log)
2844 {
2845 	struct xlog_in_core	*first_iclog = log->l_iclog;
2846 	struct xlog_in_core	*iclog = first_iclog;
2847 
2848 	do {
2849 		ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2850 		/*
2851 		 * Terminate the loop if iclogs are found in states
2852 		 * which will cause other threads to clean up iclogs.
2853 		 *
2854 		 * SYNCING - i/o completion will go through logs
2855 		 * DONE_SYNC - interrupt thread should be waiting for
2856 		 *              l_icloglock
2857 		 * IOERROR - give up hope all ye who enter here
2858 		 */
2859 		if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2860 		    iclog->ic_state & XLOG_STATE_SYNCING ||
2861 		    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2862 		    iclog->ic_state == XLOG_STATE_IOERROR )
2863 			break;
2864 		iclog = iclog->ic_next;
2865 	} while (first_iclog != iclog);
2866 }
2867 #else
2868 #define xlog_state_callback_check_state(l)	((void)0)
2869 #endif
2870 
2871 STATIC void
xlog_state_do_callback(struct xlog * log,bool aborted,struct xlog_in_core * ciclog)2872 xlog_state_do_callback(
2873 	struct xlog		*log,
2874 	bool			aborted,
2875 	struct xlog_in_core	*ciclog)
2876 {
2877 	struct xlog_in_core	*iclog;
2878 	struct xlog_in_core	*first_iclog;
2879 	bool			did_callbacks = false;
2880 	bool			cycled_icloglock;
2881 	bool			ioerror;
2882 	int			flushcnt = 0;
2883 	int			repeats = 0;
2884 
2885 	spin_lock(&log->l_icloglock);
2886 	do {
2887 		/*
2888 		 * Scan all iclogs starting with the one pointed to by the
2889 		 * log.  Reset this starting point each time the log is
2890 		 * unlocked (during callbacks).
2891 		 *
2892 		 * Keep looping through iclogs until one full pass is made
2893 		 * without running any callbacks.
2894 		 */
2895 		first_iclog = log->l_iclog;
2896 		iclog = log->l_iclog;
2897 		cycled_icloglock = false;
2898 		ioerror = false;
2899 		repeats++;
2900 
2901 		do {
2902 			if (xlog_state_iodone_process_iclog(log, iclog,
2903 							ciclog, &ioerror))
2904 				break;
2905 
2906 			if (!(iclog->ic_state &
2907 			      (XLOG_STATE_CALLBACK | XLOG_STATE_IOERROR))) {
2908 				iclog = iclog->ic_next;
2909 				continue;
2910 			}
2911 
2912 			/*
2913 			 * Running callbacks will drop the icloglock which means
2914 			 * we'll have to run at least one more complete loop.
2915 			 */
2916 			cycled_icloglock = true;
2917 			xlog_state_do_iclog_callbacks(log, iclog, aborted);
2918 
2919 			xlog_state_clean_iclog(log, iclog);
2920 			iclog = iclog->ic_next;
2921 		} while (first_iclog != iclog);
2922 
2923 		did_callbacks |= cycled_icloglock;
2924 
2925 		if (repeats > 5000) {
2926 			flushcnt += repeats;
2927 			repeats = 0;
2928 			xfs_warn(log->l_mp,
2929 				"%s: possible infinite loop (%d iterations)",
2930 				__func__, flushcnt);
2931 		}
2932 	} while (!ioerror && cycled_icloglock);
2933 
2934 	if (did_callbacks)
2935 		xlog_state_callback_check_state(log);
2936 
2937 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2938 		wake_up_all(&log->l_flush_wait);
2939 
2940 	spin_unlock(&log->l_icloglock);
2941 }
2942 
2943 
2944 /*
2945  * Finish transitioning this iclog to the dirty state.
2946  *
2947  * Make sure that we completely execute this routine only when this is
2948  * the last call to the iclog.  There is a good chance that iclog flushes,
2949  * when we reach the end of the physical log, get turned into 2 separate
2950  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2951  * routine.  By using the reference count bwritecnt, we guarantee that only
2952  * the second completion goes through.
2953  *
2954  * Callbacks could take time, so they are done outside the scope of the
2955  * global state machine log lock.
2956  */
2957 STATIC void
xlog_state_done_syncing(struct xlog_in_core * iclog,bool aborted)2958 xlog_state_done_syncing(
2959 	struct xlog_in_core	*iclog,
2960 	bool			aborted)
2961 {
2962 	struct xlog		*log = iclog->ic_log;
2963 
2964 	spin_lock(&log->l_icloglock);
2965 
2966 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2967 	       iclog->ic_state == XLOG_STATE_IOERROR);
2968 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2969 
2970 	/*
2971 	 * If we got an error, either on the first buffer, or in the case of
2972 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2973 	 * and none should ever be attempted to be written to disk
2974 	 * again.
2975 	 */
2976 	if (iclog->ic_state != XLOG_STATE_IOERROR)
2977 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2978 
2979 	/*
2980 	 * Someone could be sleeping prior to writing out the next
2981 	 * iclog buffer, we wake them all, one will get to do the
2982 	 * I/O, the others get to wait for the result.
2983 	 */
2984 	wake_up_all(&iclog->ic_write_wait);
2985 	spin_unlock(&log->l_icloglock);
2986 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2987 }	/* xlog_state_done_syncing */
2988 
2989 
2990 /*
2991  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2992  * sleep.  We wait on the flush queue on the head iclog as that should be
2993  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2994  * we will wait here and all new writes will sleep until a sync completes.
2995  *
2996  * The in-core logs are used in a circular fashion. They are not used
2997  * out-of-order even when an iclog past the head is free.
2998  *
2999  * return:
3000  *	* log_offset where xlog_write() can start writing into the in-core
3001  *		log's data space.
3002  *	* in-core log pointer to which xlog_write() should write.
3003  *	* boolean indicating this is a continued write to an in-core log.
3004  *		If this is the last write, then the in-core log's offset field
3005  *		needs to be incremented, depending on the amount of data which
3006  *		is copied.
3007  */
3008 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * continued_write,int * logoffsetp)3009 xlog_state_get_iclog_space(
3010 	struct xlog		*log,
3011 	int			len,
3012 	struct xlog_in_core	**iclogp,
3013 	struct xlog_ticket	*ticket,
3014 	int			*continued_write,
3015 	int			*logoffsetp)
3016 {
3017 	int		  log_offset;
3018 	xlog_rec_header_t *head;
3019 	xlog_in_core_t	  *iclog;
3020 	int		  error;
3021 
3022 restart:
3023 	spin_lock(&log->l_icloglock);
3024 	if (XLOG_FORCED_SHUTDOWN(log)) {
3025 		spin_unlock(&log->l_icloglock);
3026 		return -EIO;
3027 	}
3028 
3029 	iclog = log->l_iclog;
3030 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
3031 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
3032 
3033 		/* Wait for log writes to have flushed */
3034 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3035 		goto restart;
3036 	}
3037 
3038 	head = &iclog->ic_header;
3039 
3040 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
3041 	log_offset = iclog->ic_offset;
3042 
3043 	/* On the 1st write to an iclog, figure out lsn.  This works
3044 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3045 	 * committing to.  If the offset is set, that's how many blocks
3046 	 * must be written.
3047 	 */
3048 	if (log_offset == 0) {
3049 		ticket->t_curr_res -= log->l_iclog_hsize;
3050 		xlog_tic_add_region(ticket,
3051 				    log->l_iclog_hsize,
3052 				    XLOG_REG_TYPE_LRHEADER);
3053 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3054 		head->h_lsn = cpu_to_be64(
3055 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3056 		ASSERT(log->l_curr_block >= 0);
3057 	}
3058 
3059 	/* If there is enough room to write everything, then do it.  Otherwise,
3060 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3061 	 * bit is on, so this will get flushed out.  Don't update ic_offset
3062 	 * until you know exactly how many bytes get copied.  Therefore, wait
3063 	 * until later to update ic_offset.
3064 	 *
3065 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3066 	 * can fit into remaining data section.
3067 	 */
3068 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3069 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3070 
3071 		/*
3072 		 * If I'm the only one writing to this iclog, sync it to disk.
3073 		 * We need to do an atomic compare and decrement here to avoid
3074 		 * racing with concurrent atomic_dec_and_lock() calls in
3075 		 * xlog_state_release_iclog() when there is more than one
3076 		 * reference to the iclog.
3077 		 */
3078 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3079 			/* we are the only one */
3080 			spin_unlock(&log->l_icloglock);
3081 			error = xlog_state_release_iclog(log, iclog);
3082 			if (error)
3083 				return error;
3084 		} else {
3085 			spin_unlock(&log->l_icloglock);
3086 		}
3087 		goto restart;
3088 	}
3089 
3090 	/* Do we have enough room to write the full amount in the remainder
3091 	 * of this iclog?  Or must we continue a write on the next iclog and
3092 	 * mark this iclog as completely taken?  In the case where we switch
3093 	 * iclogs (to mark it taken), this particular iclog will release/sync
3094 	 * to disk in xlog_write().
3095 	 */
3096 	if (len <= iclog->ic_size - iclog->ic_offset) {
3097 		*continued_write = 0;
3098 		iclog->ic_offset += len;
3099 	} else {
3100 		*continued_write = 1;
3101 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3102 	}
3103 	*iclogp = iclog;
3104 
3105 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3106 	spin_unlock(&log->l_icloglock);
3107 
3108 	*logoffsetp = log_offset;
3109 	return 0;
3110 }	/* xlog_state_get_iclog_space */
3111 
3112 /* The first cnt-1 times through here we don't need to
3113  * move the grant write head because the permanent
3114  * reservation has reserved cnt times the unit amount.
3115  * Release part of current permanent unit reservation and
3116  * reset current reservation to be one units worth.  Also
3117  * move grant reservation head forward.
3118  */
3119 STATIC void
xlog_regrant_reserve_log_space(struct xlog * log,struct xlog_ticket * ticket)3120 xlog_regrant_reserve_log_space(
3121 	struct xlog		*log,
3122 	struct xlog_ticket	*ticket)
3123 {
3124 	trace_xfs_log_regrant_reserve_enter(log, ticket);
3125 
3126 	if (ticket->t_cnt > 0)
3127 		ticket->t_cnt--;
3128 
3129 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3130 					ticket->t_curr_res);
3131 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3132 					ticket->t_curr_res);
3133 	ticket->t_curr_res = ticket->t_unit_res;
3134 	xlog_tic_reset_res(ticket);
3135 
3136 	trace_xfs_log_regrant_reserve_sub(log, ticket);
3137 
3138 	/* just return if we still have some of the pre-reserved space */
3139 	if (ticket->t_cnt > 0)
3140 		return;
3141 
3142 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3143 					ticket->t_unit_res);
3144 
3145 	trace_xfs_log_regrant_reserve_exit(log, ticket);
3146 
3147 	ticket->t_curr_res = ticket->t_unit_res;
3148 	xlog_tic_reset_res(ticket);
3149 }	/* xlog_regrant_reserve_log_space */
3150 
3151 
3152 /*
3153  * Give back the space left from a reservation.
3154  *
3155  * All the information we need to make a correct determination of space left
3156  * is present.  For non-permanent reservations, things are quite easy.  The
3157  * count should have been decremented to zero.  We only need to deal with the
3158  * space remaining in the current reservation part of the ticket.  If the
3159  * ticket contains a permanent reservation, there may be left over space which
3160  * needs to be released.  A count of N means that N-1 refills of the current
3161  * reservation can be done before we need to ask for more space.  The first
3162  * one goes to fill up the first current reservation.  Once we run out of
3163  * space, the count will stay at zero and the only space remaining will be
3164  * in the current reservation field.
3165  */
3166 STATIC void
xlog_ungrant_log_space(struct xlog * log,struct xlog_ticket * ticket)3167 xlog_ungrant_log_space(
3168 	struct xlog		*log,
3169 	struct xlog_ticket	*ticket)
3170 {
3171 	int	bytes;
3172 
3173 	if (ticket->t_cnt > 0)
3174 		ticket->t_cnt--;
3175 
3176 	trace_xfs_log_ungrant_enter(log, ticket);
3177 	trace_xfs_log_ungrant_sub(log, ticket);
3178 
3179 	/*
3180 	 * If this is a permanent reservation ticket, we may be able to free
3181 	 * up more space based on the remaining count.
3182 	 */
3183 	bytes = ticket->t_curr_res;
3184 	if (ticket->t_cnt > 0) {
3185 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3186 		bytes += ticket->t_unit_res*ticket->t_cnt;
3187 	}
3188 
3189 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3190 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3191 
3192 	trace_xfs_log_ungrant_exit(log, ticket);
3193 
3194 	xfs_log_space_wake(log->l_mp);
3195 }
3196 
3197 /*
3198  * Flush iclog to disk if this is the last reference to the given iclog and
3199  * the WANT_SYNC bit is set.
3200  *
3201  * When this function is entered, the iclog is not necessarily in the
3202  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3203  *
3204  *
3205  */
3206 STATIC int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog)3207 xlog_state_release_iclog(
3208 	struct xlog		*log,
3209 	struct xlog_in_core	*iclog)
3210 {
3211 	int		sync = 0;	/* do we sync? */
3212 
3213 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3214 		return -EIO;
3215 
3216 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3217 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3218 		return 0;
3219 
3220 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3221 		spin_unlock(&log->l_icloglock);
3222 		return -EIO;
3223 	}
3224 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3225 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3226 
3227 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3228 		/* update tail before writing to iclog */
3229 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3230 		sync++;
3231 		iclog->ic_state = XLOG_STATE_SYNCING;
3232 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3233 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3234 		/* cycle incremented when incrementing curr_block */
3235 	}
3236 	spin_unlock(&log->l_icloglock);
3237 
3238 	/*
3239 	 * We let the log lock go, so it's possible that we hit a log I/O
3240 	 * error or some other SHUTDOWN condition that marks the iclog
3241 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3242 	 * this iclog has consistent data, so we ignore IOERROR
3243 	 * flags after this point.
3244 	 */
3245 	if (sync)
3246 		xlog_sync(log, iclog);
3247 	return 0;
3248 }	/* xlog_state_release_iclog */
3249 
3250 
3251 /*
3252  * This routine will mark the current iclog in the ring as WANT_SYNC
3253  * and move the current iclog pointer to the next iclog in the ring.
3254  * When this routine is called from xlog_state_get_iclog_space(), the
3255  * exact size of the iclog has not yet been determined.  All we know is
3256  * that every data block.  We have run out of space in this log record.
3257  */
3258 STATIC void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)3259 xlog_state_switch_iclogs(
3260 	struct xlog		*log,
3261 	struct xlog_in_core	*iclog,
3262 	int			eventual_size)
3263 {
3264 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3265 	if (!eventual_size)
3266 		eventual_size = iclog->ic_offset;
3267 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3268 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3269 	log->l_prev_block = log->l_curr_block;
3270 	log->l_prev_cycle = log->l_curr_cycle;
3271 
3272 	/* roll log?: ic_offset changed later */
3273 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3274 
3275 	/* Round up to next log-sunit */
3276 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3277 	    log->l_mp->m_sb.sb_logsunit > 1) {
3278 		uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3279 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3280 	}
3281 
3282 	if (log->l_curr_block >= log->l_logBBsize) {
3283 		/*
3284 		 * Rewind the current block before the cycle is bumped to make
3285 		 * sure that the combined LSN never transiently moves forward
3286 		 * when the log wraps to the next cycle. This is to support the
3287 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3288 		 * other cases should acquire l_icloglock.
3289 		 */
3290 		log->l_curr_block -= log->l_logBBsize;
3291 		ASSERT(log->l_curr_block >= 0);
3292 		smp_wmb();
3293 		log->l_curr_cycle++;
3294 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3295 			log->l_curr_cycle++;
3296 	}
3297 	ASSERT(iclog == log->l_iclog);
3298 	log->l_iclog = iclog->ic_next;
3299 }	/* xlog_state_switch_iclogs */
3300 
3301 /*
3302  * Write out all data in the in-core log as of this exact moment in time.
3303  *
3304  * Data may be written to the in-core log during this call.  However,
3305  * we don't guarantee this data will be written out.  A change from past
3306  * implementation means this routine will *not* write out zero length LRs.
3307  *
3308  * Basically, we try and perform an intelligent scan of the in-core logs.
3309  * If we determine there is no flushable data, we just return.  There is no
3310  * flushable data if:
3311  *
3312  *	1. the current iclog is active and has no data; the previous iclog
3313  *		is in the active or dirty state.
3314  *	2. the current iclog is drity, and the previous iclog is in the
3315  *		active or dirty state.
3316  *
3317  * We may sleep if:
3318  *
3319  *	1. the current iclog is not in the active nor dirty state.
3320  *	2. the current iclog dirty, and the previous iclog is not in the
3321  *		active nor dirty state.
3322  *	3. the current iclog is active, and there is another thread writing
3323  *		to this particular iclog.
3324  *	4. a) the current iclog is active and has no other writers
3325  *	   b) when we return from flushing out this iclog, it is still
3326  *		not in the active nor dirty state.
3327  */
3328 int
xfs_log_force(struct xfs_mount * mp,uint flags)3329 xfs_log_force(
3330 	struct xfs_mount	*mp,
3331 	uint			flags)
3332 {
3333 	struct xlog		*log = mp->m_log;
3334 	struct xlog_in_core	*iclog;
3335 	xfs_lsn_t		lsn;
3336 
3337 	XFS_STATS_INC(mp, xs_log_force);
3338 	trace_xfs_log_force(mp, 0, _RET_IP_);
3339 
3340 	xlog_cil_force(log);
3341 
3342 	spin_lock(&log->l_icloglock);
3343 	iclog = log->l_iclog;
3344 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3345 		goto out_error;
3346 
3347 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3348 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3349 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3350 		/*
3351 		 * If the head is dirty or (active and empty), then we need to
3352 		 * look at the previous iclog.
3353 		 *
3354 		 * If the previous iclog is active or dirty we are done.  There
3355 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3356 		 * previous iclog and go to sleep.
3357 		 */
3358 		iclog = iclog->ic_prev;
3359 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3360 		    iclog->ic_state == XLOG_STATE_DIRTY)
3361 			goto out_unlock;
3362 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3363 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3364 			/*
3365 			 * We are the only one with access to this iclog.
3366 			 *
3367 			 * Flush it out now.  There should be a roundoff of zero
3368 			 * to show that someone has already taken care of the
3369 			 * roundoff from the previous sync.
3370 			 */
3371 			atomic_inc(&iclog->ic_refcnt);
3372 			lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3373 			xlog_state_switch_iclogs(log, iclog, 0);
3374 			spin_unlock(&log->l_icloglock);
3375 
3376 			if (xlog_state_release_iclog(log, iclog))
3377 				return -EIO;
3378 
3379 			spin_lock(&log->l_icloglock);
3380 			if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3381 			    iclog->ic_state == XLOG_STATE_DIRTY)
3382 				goto out_unlock;
3383 		} else {
3384 			/*
3385 			 * Someone else is writing to this iclog.
3386 			 *
3387 			 * Use its call to flush out the data.  However, the
3388 			 * other thread may not force out this LR, so we mark
3389 			 * it WANT_SYNC.
3390 			 */
3391 			xlog_state_switch_iclogs(log, iclog, 0);
3392 		}
3393 	} else {
3394 		/*
3395 		 * If the head iclog is not active nor dirty, we just attach
3396 		 * ourselves to the head and go to sleep if necessary.
3397 		 */
3398 		;
3399 	}
3400 
3401 	if (!(flags & XFS_LOG_SYNC))
3402 		goto out_unlock;
3403 
3404 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3405 		goto out_error;
3406 	XFS_STATS_INC(mp, xs_log_force_sleep);
3407 	xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3408 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3409 		return -EIO;
3410 	return 0;
3411 
3412 out_unlock:
3413 	spin_unlock(&log->l_icloglock);
3414 	return 0;
3415 out_error:
3416 	spin_unlock(&log->l_icloglock);
3417 	return -EIO;
3418 }
3419 
3420 static int
__xfs_log_force_lsn(struct xfs_mount * mp,xfs_lsn_t lsn,uint flags,int * log_flushed,bool already_slept)3421 __xfs_log_force_lsn(
3422 	struct xfs_mount	*mp,
3423 	xfs_lsn_t		lsn,
3424 	uint			flags,
3425 	int			*log_flushed,
3426 	bool			already_slept)
3427 {
3428 	struct xlog		*log = mp->m_log;
3429 	struct xlog_in_core	*iclog;
3430 
3431 	spin_lock(&log->l_icloglock);
3432 	iclog = log->l_iclog;
3433 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3434 		goto out_error;
3435 
3436 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3437 		iclog = iclog->ic_next;
3438 		if (iclog == log->l_iclog)
3439 			goto out_unlock;
3440 	}
3441 
3442 	if (iclog->ic_state == XLOG_STATE_DIRTY)
3443 		goto out_unlock;
3444 
3445 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3446 		/*
3447 		 * We sleep here if we haven't already slept (e.g. this is the
3448 		 * first time we've looked at the correct iclog buf) and the
3449 		 * buffer before us is going to be sync'ed.  The reason for this
3450 		 * is that if we are doing sync transactions here, by waiting
3451 		 * for the previous I/O to complete, we can allow a few more
3452 		 * transactions into this iclog before we close it down.
3453 		 *
3454 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3455 		 * refcnt so we can release the log (which drops the ref count).
3456 		 * The state switch keeps new transaction commits from using
3457 		 * this buffer.  When the current commits finish writing into
3458 		 * the buffer, the refcount will drop to zero and the buffer
3459 		 * will go out then.
3460 		 */
3461 		if (!already_slept &&
3462 		    (iclog->ic_prev->ic_state &
3463 		     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3464 			ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3465 
3466 			XFS_STATS_INC(mp, xs_log_force_sleep);
3467 
3468 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3469 					&log->l_icloglock);
3470 			return -EAGAIN;
3471 		}
3472 		atomic_inc(&iclog->ic_refcnt);
3473 		xlog_state_switch_iclogs(log, iclog, 0);
3474 		spin_unlock(&log->l_icloglock);
3475 		if (xlog_state_release_iclog(log, iclog))
3476 			return -EIO;
3477 		if (log_flushed)
3478 			*log_flushed = 1;
3479 		spin_lock(&log->l_icloglock);
3480 	}
3481 
3482 	if (!(flags & XFS_LOG_SYNC) ||
3483 	    (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3484 		goto out_unlock;
3485 
3486 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3487 		goto out_error;
3488 
3489 	XFS_STATS_INC(mp, xs_log_force_sleep);
3490 	xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3491 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3492 		return -EIO;
3493 	return 0;
3494 
3495 out_unlock:
3496 	spin_unlock(&log->l_icloglock);
3497 	return 0;
3498 out_error:
3499 	spin_unlock(&log->l_icloglock);
3500 	return -EIO;
3501 }
3502 
3503 /*
3504  * Force the in-core log to disk for a specific LSN.
3505  *
3506  * Find in-core log with lsn.
3507  *	If it is in the DIRTY state, just return.
3508  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3509  *		state and go to sleep or return.
3510  *	If it is in any other state, go to sleep or return.
3511  *
3512  * Synchronous forces are implemented with a wait queue.  All callers trying
3513  * to force a given lsn to disk must wait on the queue attached to the
3514  * specific in-core log.  When given in-core log finally completes its write
3515  * to disk, that thread will wake up all threads waiting on the queue.
3516  */
3517 int
xfs_log_force_lsn(struct xfs_mount * mp,xfs_lsn_t lsn,uint flags,int * log_flushed)3518 xfs_log_force_lsn(
3519 	struct xfs_mount	*mp,
3520 	xfs_lsn_t		lsn,
3521 	uint			flags,
3522 	int			*log_flushed)
3523 {
3524 	int			ret;
3525 	ASSERT(lsn != 0);
3526 
3527 	XFS_STATS_INC(mp, xs_log_force);
3528 	trace_xfs_log_force(mp, lsn, _RET_IP_);
3529 
3530 	lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3531 	if (lsn == NULLCOMMITLSN)
3532 		return 0;
3533 
3534 	ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3535 	if (ret == -EAGAIN)
3536 		ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3537 	return ret;
3538 }
3539 
3540 /*
3541  * Called when we want to mark the current iclog as being ready to sync to
3542  * disk.
3543  */
3544 STATIC void
xlog_state_want_sync(struct xlog * log,struct xlog_in_core * iclog)3545 xlog_state_want_sync(
3546 	struct xlog		*log,
3547 	struct xlog_in_core	*iclog)
3548 {
3549 	assert_spin_locked(&log->l_icloglock);
3550 
3551 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3552 		xlog_state_switch_iclogs(log, iclog, 0);
3553 	} else {
3554 		ASSERT(iclog->ic_state &
3555 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3556 	}
3557 }
3558 
3559 
3560 /*****************************************************************************
3561  *
3562  *		TICKET functions
3563  *
3564  *****************************************************************************
3565  */
3566 
3567 /*
3568  * Free a used ticket when its refcount falls to zero.
3569  */
3570 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3571 xfs_log_ticket_put(
3572 	xlog_ticket_t	*ticket)
3573 {
3574 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3575 	if (atomic_dec_and_test(&ticket->t_ref))
3576 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3577 }
3578 
3579 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3580 xfs_log_ticket_get(
3581 	xlog_ticket_t	*ticket)
3582 {
3583 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3584 	atomic_inc(&ticket->t_ref);
3585 	return ticket;
3586 }
3587 
3588 /*
3589  * Figure out the total log space unit (in bytes) that would be
3590  * required for a log ticket.
3591  */
3592 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3593 xfs_log_calc_unit_res(
3594 	struct xfs_mount	*mp,
3595 	int			unit_bytes)
3596 {
3597 	struct xlog		*log = mp->m_log;
3598 	int			iclog_space;
3599 	uint			num_headers;
3600 
3601 	/*
3602 	 * Permanent reservations have up to 'cnt'-1 active log operations
3603 	 * in the log.  A unit in this case is the amount of space for one
3604 	 * of these log operations.  Normal reservations have a cnt of 1
3605 	 * and their unit amount is the total amount of space required.
3606 	 *
3607 	 * The following lines of code account for non-transaction data
3608 	 * which occupy space in the on-disk log.
3609 	 *
3610 	 * Normal form of a transaction is:
3611 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3612 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3613 	 *
3614 	 * We need to account for all the leadup data and trailer data
3615 	 * around the transaction data.
3616 	 * And then we need to account for the worst case in terms of using
3617 	 * more space.
3618 	 * The worst case will happen if:
3619 	 * - the placement of the transaction happens to be such that the
3620 	 *   roundoff is at its maximum
3621 	 * - the transaction data is synced before the commit record is synced
3622 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3623 	 *   Therefore the commit record is in its own Log Record.
3624 	 *   This can happen as the commit record is called with its
3625 	 *   own region to xlog_write().
3626 	 *   This then means that in the worst case, roundoff can happen for
3627 	 *   the commit-rec as well.
3628 	 *   The commit-rec is smaller than padding in this scenario and so it is
3629 	 *   not added separately.
3630 	 */
3631 
3632 	/* for trans header */
3633 	unit_bytes += sizeof(xlog_op_header_t);
3634 	unit_bytes += sizeof(xfs_trans_header_t);
3635 
3636 	/* for start-rec */
3637 	unit_bytes += sizeof(xlog_op_header_t);
3638 
3639 	/*
3640 	 * for LR headers - the space for data in an iclog is the size minus
3641 	 * the space used for the headers. If we use the iclog size, then we
3642 	 * undercalculate the number of headers required.
3643 	 *
3644 	 * Furthermore - the addition of op headers for split-recs might
3645 	 * increase the space required enough to require more log and op
3646 	 * headers, so take that into account too.
3647 	 *
3648 	 * IMPORTANT: This reservation makes the assumption that if this
3649 	 * transaction is the first in an iclog and hence has the LR headers
3650 	 * accounted to it, then the remaining space in the iclog is
3651 	 * exclusively for this transaction.  i.e. if the transaction is larger
3652 	 * than the iclog, it will be the only thing in that iclog.
3653 	 * Fundamentally, this means we must pass the entire log vector to
3654 	 * xlog_write to guarantee this.
3655 	 */
3656 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3657 	num_headers = howmany(unit_bytes, iclog_space);
3658 
3659 	/* for split-recs - ophdrs added when data split over LRs */
3660 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3661 
3662 	/* add extra header reservations if we overrun */
3663 	while (!num_headers ||
3664 	       howmany(unit_bytes, iclog_space) > num_headers) {
3665 		unit_bytes += sizeof(xlog_op_header_t);
3666 		num_headers++;
3667 	}
3668 	unit_bytes += log->l_iclog_hsize * num_headers;
3669 
3670 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3671 	unit_bytes += log->l_iclog_hsize;
3672 
3673 	/* for roundoff padding for transaction data and one for commit record */
3674 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3675 		/* log su roundoff */
3676 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3677 	} else {
3678 		/* BB roundoff */
3679 		unit_bytes += 2 * BBSIZE;
3680         }
3681 
3682 	return unit_bytes;
3683 }
3684 
3685 /*
3686  * Allocate and initialise a new log ticket.
3687  */
3688 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,char client,bool permanent,xfs_km_flags_t alloc_flags)3689 xlog_ticket_alloc(
3690 	struct xlog		*log,
3691 	int			unit_bytes,
3692 	int			cnt,
3693 	char			client,
3694 	bool			permanent,
3695 	xfs_km_flags_t		alloc_flags)
3696 {
3697 	struct xlog_ticket	*tic;
3698 	int			unit_res;
3699 
3700 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3701 	if (!tic)
3702 		return NULL;
3703 
3704 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3705 
3706 	atomic_set(&tic->t_ref, 1);
3707 	tic->t_task		= current;
3708 	INIT_LIST_HEAD(&tic->t_queue);
3709 	tic->t_unit_res		= unit_res;
3710 	tic->t_curr_res		= unit_res;
3711 	tic->t_cnt		= cnt;
3712 	tic->t_ocnt		= cnt;
3713 	tic->t_tid		= prandom_u32();
3714 	tic->t_clientid		= client;
3715 	tic->t_flags		= XLOG_TIC_INITED;
3716 	if (permanent)
3717 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3718 
3719 	xlog_tic_reset_res(tic);
3720 
3721 	return tic;
3722 }
3723 
3724 
3725 /******************************************************************************
3726  *
3727  *		Log debug routines
3728  *
3729  ******************************************************************************
3730  */
3731 #if defined(DEBUG)
3732 /*
3733  * Make sure that the destination ptr is within the valid data region of
3734  * one of the iclogs.  This uses backup pointers stored in a different
3735  * part of the log in case we trash the log structure.
3736  */
3737 STATIC void
xlog_verify_dest_ptr(struct xlog * log,void * ptr)3738 xlog_verify_dest_ptr(
3739 	struct xlog	*log,
3740 	void		*ptr)
3741 {
3742 	int i;
3743 	int good_ptr = 0;
3744 
3745 	for (i = 0; i < log->l_iclog_bufs; i++) {
3746 		if (ptr >= log->l_iclog_bak[i] &&
3747 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3748 			good_ptr++;
3749 	}
3750 
3751 	if (!good_ptr)
3752 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3753 }
3754 
3755 /*
3756  * Check to make sure the grant write head didn't just over lap the tail.  If
3757  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3758  * the cycles differ by exactly one and check the byte count.
3759  *
3760  * This check is run unlocked, so can give false positives. Rather than assert
3761  * on failures, use a warn-once flag and a panic tag to allow the admin to
3762  * determine if they want to panic the machine when such an error occurs. For
3763  * debug kernels this will have the same effect as using an assert but, unlinke
3764  * an assert, it can be turned off at runtime.
3765  */
3766 STATIC void
xlog_verify_grant_tail(struct xlog * log)3767 xlog_verify_grant_tail(
3768 	struct xlog	*log)
3769 {
3770 	int		tail_cycle, tail_blocks;
3771 	int		cycle, space;
3772 
3773 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3774 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3775 	if (tail_cycle != cycle) {
3776 		if (cycle - 1 != tail_cycle &&
3777 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3778 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3779 				"%s: cycle - 1 != tail_cycle", __func__);
3780 			log->l_flags |= XLOG_TAIL_WARN;
3781 		}
3782 
3783 		if (space > BBTOB(tail_blocks) &&
3784 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3785 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3786 				"%s: space > BBTOB(tail_blocks)", __func__);
3787 			log->l_flags |= XLOG_TAIL_WARN;
3788 		}
3789 	}
3790 }
3791 
3792 /* check if it will fit */
3793 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t tail_lsn)3794 xlog_verify_tail_lsn(
3795 	struct xlog		*log,
3796 	struct xlog_in_core	*iclog,
3797 	xfs_lsn_t		tail_lsn)
3798 {
3799     int blocks;
3800 
3801     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3802 	blocks =
3803 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3804 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3805 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3806     } else {
3807 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3808 
3809 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3810 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3811 
3812 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3813 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3814 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3815     }
3816 }	/* xlog_verify_tail_lsn */
3817 
3818 /*
3819  * Perform a number of checks on the iclog before writing to disk.
3820  *
3821  * 1. Make sure the iclogs are still circular
3822  * 2. Make sure we have a good magic number
3823  * 3. Make sure we don't have magic numbers in the data
3824  * 4. Check fields of each log operation header for:
3825  *	A. Valid client identifier
3826  *	B. tid ptr value falls in valid ptr space (user space code)
3827  *	C. Length in log record header is correct according to the
3828  *		individual operation headers within record.
3829  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3830  *	log, check the preceding blocks of the physical log to make sure all
3831  *	the cycle numbers agree with the current cycle number.
3832  */
3833 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count)3834 xlog_verify_iclog(
3835 	struct xlog		*log,
3836 	struct xlog_in_core	*iclog,
3837 	int			count)
3838 {
3839 	xlog_op_header_t	*ophead;
3840 	xlog_in_core_t		*icptr;
3841 	xlog_in_core_2_t	*xhdr;
3842 	void			*base_ptr, *ptr, *p;
3843 	ptrdiff_t		field_offset;
3844 	uint8_t			clientid;
3845 	int			len, i, j, k, op_len;
3846 	int			idx;
3847 
3848 	/* check validity of iclog pointers */
3849 	spin_lock(&log->l_icloglock);
3850 	icptr = log->l_iclog;
3851 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3852 		ASSERT(icptr);
3853 
3854 	if (icptr != log->l_iclog)
3855 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3856 	spin_unlock(&log->l_icloglock);
3857 
3858 	/* check log magic numbers */
3859 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3860 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3861 
3862 	base_ptr = ptr = &iclog->ic_header;
3863 	p = &iclog->ic_header;
3864 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3865 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3866 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3867 				__func__);
3868 	}
3869 
3870 	/* check fields */
3871 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3872 	base_ptr = ptr = iclog->ic_datap;
3873 	ophead = ptr;
3874 	xhdr = iclog->ic_data;
3875 	for (i = 0; i < len; i++) {
3876 		ophead = ptr;
3877 
3878 		/* clientid is only 1 byte */
3879 		p = &ophead->oh_clientid;
3880 		field_offset = p - base_ptr;
3881 		if (field_offset & 0x1ff) {
3882 			clientid = ophead->oh_clientid;
3883 		} else {
3884 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3885 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3886 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3887 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3888 				clientid = xlog_get_client_id(
3889 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3890 			} else {
3891 				clientid = xlog_get_client_id(
3892 					iclog->ic_header.h_cycle_data[idx]);
3893 			}
3894 		}
3895 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3896 			xfs_warn(log->l_mp,
3897 				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3898 				__func__, clientid, ophead,
3899 				(unsigned long)field_offset);
3900 
3901 		/* check length */
3902 		p = &ophead->oh_len;
3903 		field_offset = p - base_ptr;
3904 		if (field_offset & 0x1ff) {
3905 			op_len = be32_to_cpu(ophead->oh_len);
3906 		} else {
3907 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3908 				    (uintptr_t)iclog->ic_datap);
3909 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3910 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3911 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3912 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3913 			} else {
3914 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3915 			}
3916 		}
3917 		ptr += sizeof(xlog_op_header_t) + op_len;
3918 	}
3919 }	/* xlog_verify_iclog */
3920 #endif
3921 
3922 /*
3923  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3924  */
3925 STATIC int
xlog_state_ioerror(struct xlog * log)3926 xlog_state_ioerror(
3927 	struct xlog	*log)
3928 {
3929 	xlog_in_core_t	*iclog, *ic;
3930 
3931 	iclog = log->l_iclog;
3932 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3933 		/*
3934 		 * Mark all the incore logs IOERROR.
3935 		 * From now on, no log flushes will result.
3936 		 */
3937 		ic = iclog;
3938 		do {
3939 			ic->ic_state = XLOG_STATE_IOERROR;
3940 			ic = ic->ic_next;
3941 		} while (ic != iclog);
3942 		return 0;
3943 	}
3944 	/*
3945 	 * Return non-zero, if state transition has already happened.
3946 	 */
3947 	return 1;
3948 }
3949 
3950 /*
3951  * This is called from xfs_force_shutdown, when we're forcibly
3952  * shutting down the filesystem, typically because of an IO error.
3953  * Our main objectives here are to make sure that:
3954  *	a. if !logerror, flush the logs to disk. Anything modified
3955  *	   after this is ignored.
3956  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3957  *	   parties to find out, 'atomically'.
3958  *	c. those who're sleeping on log reservations, pinned objects and
3959  *	    other resources get woken up, and be told the bad news.
3960  *	d. nothing new gets queued up after (b) and (c) are done.
3961  *
3962  * Note: for the !logerror case we need to flush the regions held in memory out
3963  * to disk first. This needs to be done before the log is marked as shutdown,
3964  * otherwise the iclog writes will fail.
3965  */
3966 int
xfs_log_force_umount(struct xfs_mount * mp,int logerror)3967 xfs_log_force_umount(
3968 	struct xfs_mount	*mp,
3969 	int			logerror)
3970 {
3971 	struct xlog	*log;
3972 	int		retval;
3973 
3974 	log = mp->m_log;
3975 
3976 	/*
3977 	 * If this happens during log recovery, don't worry about
3978 	 * locking; the log isn't open for business yet.
3979 	 */
3980 	if (!log ||
3981 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3982 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3983 		if (mp->m_sb_bp)
3984 			mp->m_sb_bp->b_flags |= XBF_DONE;
3985 		return 0;
3986 	}
3987 
3988 	/*
3989 	 * Somebody could've already done the hard work for us.
3990 	 * No need to get locks for this.
3991 	 */
3992 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3993 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3994 		return 1;
3995 	}
3996 
3997 	/*
3998 	 * Flush all the completed transactions to disk before marking the log
3999 	 * being shut down. We need to do it in this order to ensure that
4000 	 * completed operations are safely on disk before we shut down, and that
4001 	 * we don't have to issue any buffer IO after the shutdown flags are set
4002 	 * to guarantee this.
4003 	 */
4004 	if (!logerror)
4005 		xfs_log_force(mp, XFS_LOG_SYNC);
4006 
4007 	/*
4008 	 * mark the filesystem and the as in a shutdown state and wake
4009 	 * everybody up to tell them the bad news.
4010 	 */
4011 	spin_lock(&log->l_icloglock);
4012 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4013 	if (mp->m_sb_bp)
4014 		mp->m_sb_bp->b_flags |= XBF_DONE;
4015 
4016 	/*
4017 	 * Mark the log and the iclogs with IO error flags to prevent any
4018 	 * further log IO from being issued or completed.
4019 	 */
4020 	log->l_flags |= XLOG_IO_ERROR;
4021 	retval = xlog_state_ioerror(log);
4022 	spin_unlock(&log->l_icloglock);
4023 
4024 	/*
4025 	 * We don't want anybody waiting for log reservations after this. That
4026 	 * means we have to wake up everybody queued up on reserveq as well as
4027 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
4028 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4029 	 * action is protected by the grant locks.
4030 	 */
4031 	xlog_grant_head_wake_all(&log->l_reserve_head);
4032 	xlog_grant_head_wake_all(&log->l_write_head);
4033 
4034 	/*
4035 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4036 	 * as if the log writes were completed. The abort handling in the log
4037 	 * item committed callback functions will do this again under lock to
4038 	 * avoid races.
4039 	 */
4040 	spin_lock(&log->l_cilp->xc_push_lock);
4041 	wake_up_all(&log->l_cilp->xc_commit_wait);
4042 	spin_unlock(&log->l_cilp->xc_push_lock);
4043 	xlog_state_do_callback(log, true, NULL);
4044 
4045 #ifdef XFSERRORDEBUG
4046 	{
4047 		xlog_in_core_t	*iclog;
4048 
4049 		spin_lock(&log->l_icloglock);
4050 		iclog = log->l_iclog;
4051 		do {
4052 			ASSERT(iclog->ic_callback == 0);
4053 			iclog = iclog->ic_next;
4054 		} while (iclog != log->l_iclog);
4055 		spin_unlock(&log->l_icloglock);
4056 	}
4057 #endif
4058 	/* return non-zero if log IOERROR transition had already happened */
4059 	return retval;
4060 }
4061 
4062 STATIC int
xlog_iclogs_empty(struct xlog * log)4063 xlog_iclogs_empty(
4064 	struct xlog	*log)
4065 {
4066 	xlog_in_core_t	*iclog;
4067 
4068 	iclog = log->l_iclog;
4069 	do {
4070 		/* endianness does not matter here, zero is zero in
4071 		 * any language.
4072 		 */
4073 		if (iclog->ic_header.h_num_logops)
4074 			return 0;
4075 		iclog = iclog->ic_next;
4076 	} while (iclog != log->l_iclog);
4077 	return 1;
4078 }
4079 
4080 /*
4081  * Verify that an LSN stamped into a piece of metadata is valid. This is
4082  * intended for use in read verifiers on v5 superblocks.
4083  */
4084 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)4085 xfs_log_check_lsn(
4086 	struct xfs_mount	*mp,
4087 	xfs_lsn_t		lsn)
4088 {
4089 	struct xlog		*log = mp->m_log;
4090 	bool			valid;
4091 
4092 	/*
4093 	 * norecovery mode skips mount-time log processing and unconditionally
4094 	 * resets the in-core LSN. We can't validate in this mode, but
4095 	 * modifications are not allowed anyways so just return true.
4096 	 */
4097 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4098 		return true;
4099 
4100 	/*
4101 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4102 	 * handled by recovery and thus safe to ignore here.
4103 	 */
4104 	if (lsn == NULLCOMMITLSN)
4105 		return true;
4106 
4107 	valid = xlog_valid_lsn(mp->m_log, lsn);
4108 
4109 	/* warn the user about what's gone wrong before verifier failure */
4110 	if (!valid) {
4111 		spin_lock(&log->l_icloglock);
4112 		xfs_warn(mp,
4113 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4114 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4115 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4116 			 log->l_curr_cycle, log->l_curr_block);
4117 		spin_unlock(&log->l_icloglock);
4118 	}
4119 
4120 	return valid;
4121 }
4122 
4123 bool
xfs_log_in_recovery(struct xfs_mount * mp)4124 xfs_log_in_recovery(
4125 	struct xfs_mount	*mp)
4126 {
4127 	struct xlog		*log = mp->m_log;
4128 
4129 	return log->l_flags & XLOG_ACTIVE_RECOVERY;
4130 }
4131