1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_fsops.h"
27 #include "xfs_icache.h"
28 #include "xfs_sysfs.h"
29 #include "xfs_rmap_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_reflink.h"
32 #include "xfs_extent_busy.h"
33 #include "xfs_health.h"
34 #include "xfs_trace.h"
35
36 static DEFINE_MUTEX(xfs_uuid_table_mutex);
37 static int xfs_uuid_table_size;
38 static uuid_t *xfs_uuid_table;
39
40 void
xfs_uuid_table_free(void)41 xfs_uuid_table_free(void)
42 {
43 if (xfs_uuid_table_size == 0)
44 return;
45 kmem_free(xfs_uuid_table);
46 xfs_uuid_table = NULL;
47 xfs_uuid_table_size = 0;
48 }
49
50 /*
51 * See if the UUID is unique among mounted XFS filesystems.
52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53 */
54 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)55 xfs_uuid_mount(
56 struct xfs_mount *mp)
57 {
58 uuid_t *uuid = &mp->m_sb.sb_uuid;
59 int hole, i;
60
61 /* Publish UUID in struct super_block */
62 uuid_copy(&mp->m_super->s_uuid, uuid);
63
64 if (mp->m_flags & XFS_MOUNT_NOUUID)
65 return 0;
66
67 if (uuid_is_null(uuid)) {
68 xfs_warn(mp, "Filesystem has null UUID - can't mount");
69 return -EINVAL;
70 }
71
72 mutex_lock(&xfs_uuid_table_mutex);
73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
74 if (uuid_is_null(&xfs_uuid_table[i])) {
75 hole = i;
76 continue;
77 }
78 if (uuid_equal(uuid, &xfs_uuid_table[i]))
79 goto out_duplicate;
80 }
81
82 if (hole < 0) {
83 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
85 0);
86 hole = xfs_uuid_table_size++;
87 }
88 xfs_uuid_table[hole] = *uuid;
89 mutex_unlock(&xfs_uuid_table_mutex);
90
91 return 0;
92
93 out_duplicate:
94 mutex_unlock(&xfs_uuid_table_mutex);
95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
96 return -EINVAL;
97 }
98
99 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)100 xfs_uuid_unmount(
101 struct xfs_mount *mp)
102 {
103 uuid_t *uuid = &mp->m_sb.sb_uuid;
104 int i;
105
106 if (mp->m_flags & XFS_MOUNT_NOUUID)
107 return;
108
109 mutex_lock(&xfs_uuid_table_mutex);
110 for (i = 0; i < xfs_uuid_table_size; i++) {
111 if (uuid_is_null(&xfs_uuid_table[i]))
112 continue;
113 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
114 continue;
115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
116 break;
117 }
118 ASSERT(i < xfs_uuid_table_size);
119 mutex_unlock(&xfs_uuid_table_mutex);
120 }
121
122
123 STATIC void
__xfs_free_perag(struct rcu_head * head)124 __xfs_free_perag(
125 struct rcu_head *head)
126 {
127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
128
129 ASSERT(atomic_read(&pag->pag_ref) == 0);
130 kmem_free(pag);
131 }
132
133 /*
134 * Free up the per-ag resources associated with the mount structure.
135 */
136 STATIC void
xfs_free_perag(xfs_mount_t * mp)137 xfs_free_perag(
138 xfs_mount_t *mp)
139 {
140 xfs_agnumber_t agno;
141 struct xfs_perag *pag;
142
143 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
144 spin_lock(&mp->m_perag_lock);
145 pag = radix_tree_delete(&mp->m_perag_tree, agno);
146 spin_unlock(&mp->m_perag_lock);
147 ASSERT(pag);
148 ASSERT(atomic_read(&pag->pag_ref) == 0);
149 xfs_iunlink_destroy(pag);
150 xfs_buf_hash_destroy(pag);
151 mutex_destroy(&pag->pag_ici_reclaim_lock);
152 call_rcu(&pag->rcu_head, __xfs_free_perag);
153 }
154 }
155
156 /*
157 * Check size of device based on the (data/realtime) block count.
158 * Note: this check is used by the growfs code as well as mount.
159 */
160 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,uint64_t nblocks)161 xfs_sb_validate_fsb_count(
162 xfs_sb_t *sbp,
163 uint64_t nblocks)
164 {
165 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
166 ASSERT(sbp->sb_blocklog >= BBSHIFT);
167
168 /* Limited by ULONG_MAX of page cache index */
169 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
170 return -EFBIG;
171 return 0;
172 }
173
174 int
xfs_initialize_perag(xfs_mount_t * mp,xfs_agnumber_t agcount,xfs_agnumber_t * maxagi)175 xfs_initialize_perag(
176 xfs_mount_t *mp,
177 xfs_agnumber_t agcount,
178 xfs_agnumber_t *maxagi)
179 {
180 xfs_agnumber_t index;
181 xfs_agnumber_t first_initialised = NULLAGNUMBER;
182 xfs_perag_t *pag;
183 int error = -ENOMEM;
184
185 /*
186 * Walk the current per-ag tree so we don't try to initialise AGs
187 * that already exist (growfs case). Allocate and insert all the
188 * AGs we don't find ready for initialisation.
189 */
190 for (index = 0; index < agcount; index++) {
191 pag = xfs_perag_get(mp, index);
192 if (pag) {
193 xfs_perag_put(pag);
194 continue;
195 }
196
197 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
198 if (!pag) {
199 error = -ENOMEM;
200 goto out_unwind_new_pags;
201 }
202 pag->pag_agno = index;
203 pag->pag_mount = mp;
204 spin_lock_init(&pag->pag_ici_lock);
205 mutex_init(&pag->pag_ici_reclaim_lock);
206 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
207
208 error = xfs_buf_hash_init(pag);
209 if (error)
210 goto out_free_pag;
211 init_waitqueue_head(&pag->pagb_wait);
212 spin_lock_init(&pag->pagb_lock);
213 pag->pagb_count = 0;
214 pag->pagb_tree = RB_ROOT;
215
216 error = radix_tree_preload(GFP_NOFS);
217 if (error)
218 goto out_hash_destroy;
219
220 spin_lock(&mp->m_perag_lock);
221 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
222 WARN_ON_ONCE(1);
223 spin_unlock(&mp->m_perag_lock);
224 radix_tree_preload_end();
225 error = -EEXIST;
226 goto out_hash_destroy;
227 }
228 spin_unlock(&mp->m_perag_lock);
229 radix_tree_preload_end();
230 /* first new pag is fully initialized */
231 if (first_initialised == NULLAGNUMBER)
232 first_initialised = index;
233 error = xfs_iunlink_init(pag);
234 if (error)
235 goto out_hash_destroy;
236 spin_lock_init(&pag->pag_state_lock);
237 }
238
239 index = xfs_set_inode_alloc(mp, agcount);
240
241 if (maxagi)
242 *maxagi = index;
243
244 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
245 return 0;
246
247 out_hash_destroy:
248 xfs_buf_hash_destroy(pag);
249 out_free_pag:
250 mutex_destroy(&pag->pag_ici_reclaim_lock);
251 kmem_free(pag);
252 out_unwind_new_pags:
253 /* unwind any prior newly initialized pags */
254 for (index = first_initialised; index < agcount; index++) {
255 pag = radix_tree_delete(&mp->m_perag_tree, index);
256 if (!pag)
257 break;
258 xfs_buf_hash_destroy(pag);
259 xfs_iunlink_destroy(pag);
260 mutex_destroy(&pag->pag_ici_reclaim_lock);
261 kmem_free(pag);
262 }
263 return error;
264 }
265
266 /*
267 * xfs_readsb
268 *
269 * Does the initial read of the superblock.
270 */
271 int
xfs_readsb(struct xfs_mount * mp,int flags)272 xfs_readsb(
273 struct xfs_mount *mp,
274 int flags)
275 {
276 unsigned int sector_size;
277 struct xfs_buf *bp;
278 struct xfs_sb *sbp = &mp->m_sb;
279 int error;
280 int loud = !(flags & XFS_MFSI_QUIET);
281 const struct xfs_buf_ops *buf_ops;
282
283 ASSERT(mp->m_sb_bp == NULL);
284 ASSERT(mp->m_ddev_targp != NULL);
285
286 /*
287 * For the initial read, we must guess at the sector
288 * size based on the block device. It's enough to
289 * get the sb_sectsize out of the superblock and
290 * then reread with the proper length.
291 * We don't verify it yet, because it may not be complete.
292 */
293 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
294 buf_ops = NULL;
295
296 /*
297 * Allocate a (locked) buffer to hold the superblock. This will be kept
298 * around at all times to optimize access to the superblock. Therefore,
299 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
300 * elevated.
301 */
302 reread:
303 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
304 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
305 buf_ops);
306 if (error) {
307 if (loud)
308 xfs_warn(mp, "SB validate failed with error %d.", error);
309 /* bad CRC means corrupted metadata */
310 if (error == -EFSBADCRC)
311 error = -EFSCORRUPTED;
312 return error;
313 }
314
315 /*
316 * Initialize the mount structure from the superblock.
317 */
318 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
319
320 /*
321 * If we haven't validated the superblock, do so now before we try
322 * to check the sector size and reread the superblock appropriately.
323 */
324 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
325 if (loud)
326 xfs_warn(mp, "Invalid superblock magic number");
327 error = -EINVAL;
328 goto release_buf;
329 }
330
331 /*
332 * We must be able to do sector-sized and sector-aligned IO.
333 */
334 if (sector_size > sbp->sb_sectsize) {
335 if (loud)
336 xfs_warn(mp, "device supports %u byte sectors (not %u)",
337 sector_size, sbp->sb_sectsize);
338 error = -ENOSYS;
339 goto release_buf;
340 }
341
342 if (buf_ops == NULL) {
343 /*
344 * Re-read the superblock so the buffer is correctly sized,
345 * and properly verified.
346 */
347 xfs_buf_relse(bp);
348 sector_size = sbp->sb_sectsize;
349 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
350 goto reread;
351 }
352
353 xfs_reinit_percpu_counters(mp);
354
355 /* no need to be quiet anymore, so reset the buf ops */
356 bp->b_ops = &xfs_sb_buf_ops;
357
358 mp->m_sb_bp = bp;
359 xfs_buf_unlock(bp);
360 return 0;
361
362 release_buf:
363 xfs_buf_relse(bp);
364 return error;
365 }
366
367 /*
368 * If the sunit/swidth change would move the precomputed root inode value, we
369 * must reject the ondisk change because repair will stumble over that.
370 * However, we allow the mount to proceed because we never rejected this
371 * combination before. Returns true to update the sb, false otherwise.
372 */
373 static inline int
xfs_check_new_dalign(struct xfs_mount * mp,int new_dalign,bool * update_sb)374 xfs_check_new_dalign(
375 struct xfs_mount *mp,
376 int new_dalign,
377 bool *update_sb)
378 {
379 struct xfs_sb *sbp = &mp->m_sb;
380 xfs_ino_t calc_ino;
381
382 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
383 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
384
385 if (sbp->sb_rootino == calc_ino) {
386 *update_sb = true;
387 return 0;
388 }
389
390 xfs_warn(mp,
391 "Cannot change stripe alignment; would require moving root inode.");
392
393 /*
394 * XXX: Next time we add a new incompat feature, this should start
395 * returning -EINVAL to fail the mount. Until then, spit out a warning
396 * that we're ignoring the administrator's instructions.
397 */
398 xfs_warn(mp, "Skipping superblock stripe alignment update.");
399 *update_sb = false;
400 return 0;
401 }
402
403 /*
404 * If we were provided with new sunit/swidth values as mount options, make sure
405 * that they pass basic alignment and superblock feature checks, and convert
406 * them into the same units (FSB) that everything else expects. This step
407 * /must/ be done before computing the inode geometry.
408 */
409 STATIC int
xfs_validate_new_dalign(struct xfs_mount * mp)410 xfs_validate_new_dalign(
411 struct xfs_mount *mp)
412 {
413 if (mp->m_dalign == 0)
414 return 0;
415
416 /*
417 * If stripe unit and stripe width are not multiples
418 * of the fs blocksize turn off alignment.
419 */
420 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
421 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
422 xfs_warn(mp,
423 "alignment check failed: sunit/swidth vs. blocksize(%d)",
424 mp->m_sb.sb_blocksize);
425 return -EINVAL;
426 } else {
427 /*
428 * Convert the stripe unit and width to FSBs.
429 */
430 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
431 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
432 xfs_warn(mp,
433 "alignment check failed: sunit/swidth vs. agsize(%d)",
434 mp->m_sb.sb_agblocks);
435 return -EINVAL;
436 } else if (mp->m_dalign) {
437 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
438 } else {
439 xfs_warn(mp,
440 "alignment check failed: sunit(%d) less than bsize(%d)",
441 mp->m_dalign, mp->m_sb.sb_blocksize);
442 return -EINVAL;
443 }
444 }
445
446 if (!xfs_sb_version_hasdalign(&mp->m_sb)) {
447 xfs_warn(mp,
448 "cannot change alignment: superblock does not support data alignment");
449 return -EINVAL;
450 }
451
452 return 0;
453 }
454
455 /* Update alignment values based on mount options and sb values. */
456 STATIC int
xfs_update_alignment(struct xfs_mount * mp)457 xfs_update_alignment(
458 struct xfs_mount *mp)
459 {
460 struct xfs_sb *sbp = &mp->m_sb;
461
462 if (mp->m_dalign) {
463 bool update_sb;
464 int error;
465
466 if (sbp->sb_unit == mp->m_dalign &&
467 sbp->sb_width == mp->m_swidth)
468 return 0;
469
470 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
471 if (error || !update_sb)
472 return error;
473
474 sbp->sb_unit = mp->m_dalign;
475 sbp->sb_width = mp->m_swidth;
476 mp->m_update_sb = true;
477 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
478 xfs_sb_version_hasdalign(&mp->m_sb)) {
479 mp->m_dalign = sbp->sb_unit;
480 mp->m_swidth = sbp->sb_width;
481 }
482
483 return 0;
484 }
485
486 /*
487 * Set the default minimum read and write sizes unless
488 * already specified in a mount option.
489 * We use smaller I/O sizes when the file system
490 * is being used for NFS service (wsync mount option).
491 */
492 STATIC void
xfs_set_rw_sizes(xfs_mount_t * mp)493 xfs_set_rw_sizes(xfs_mount_t *mp)
494 {
495 xfs_sb_t *sbp = &(mp->m_sb);
496 int readio_log, writeio_log;
497
498 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
499 if (mp->m_flags & XFS_MOUNT_WSYNC) {
500 readio_log = XFS_WSYNC_READIO_LOG;
501 writeio_log = XFS_WSYNC_WRITEIO_LOG;
502 } else {
503 readio_log = XFS_READIO_LOG_LARGE;
504 writeio_log = XFS_WRITEIO_LOG_LARGE;
505 }
506 } else {
507 readio_log = mp->m_readio_log;
508 writeio_log = mp->m_writeio_log;
509 }
510
511 if (sbp->sb_blocklog > readio_log) {
512 mp->m_readio_log = sbp->sb_blocklog;
513 } else {
514 mp->m_readio_log = readio_log;
515 }
516 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
517 if (sbp->sb_blocklog > writeio_log) {
518 mp->m_writeio_log = sbp->sb_blocklog;
519 } else {
520 mp->m_writeio_log = writeio_log;
521 }
522 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
523 }
524
525 /*
526 * precalculate the low space thresholds for dynamic speculative preallocation.
527 */
528 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)529 xfs_set_low_space_thresholds(
530 struct xfs_mount *mp)
531 {
532 int i;
533
534 for (i = 0; i < XFS_LOWSP_MAX; i++) {
535 uint64_t space = mp->m_sb.sb_dblocks;
536
537 do_div(space, 100);
538 mp->m_low_space[i] = space * (i + 1);
539 }
540 }
541
542 /*
543 * Check that the data (and log if separate) is an ok size.
544 */
545 STATIC int
xfs_check_sizes(struct xfs_mount * mp)546 xfs_check_sizes(
547 struct xfs_mount *mp)
548 {
549 struct xfs_buf *bp;
550 xfs_daddr_t d;
551 int error;
552
553 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
554 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
555 xfs_warn(mp, "filesystem size mismatch detected");
556 return -EFBIG;
557 }
558 error = xfs_buf_read_uncached(mp->m_ddev_targp,
559 d - XFS_FSS_TO_BB(mp, 1),
560 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
561 if (error) {
562 xfs_warn(mp, "last sector read failed");
563 return error;
564 }
565 xfs_buf_relse(bp);
566
567 if (mp->m_logdev_targp == mp->m_ddev_targp)
568 return 0;
569
570 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
571 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
572 xfs_warn(mp, "log size mismatch detected");
573 return -EFBIG;
574 }
575 error = xfs_buf_read_uncached(mp->m_logdev_targp,
576 d - XFS_FSB_TO_BB(mp, 1),
577 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
578 if (error) {
579 xfs_warn(mp, "log device read failed");
580 return error;
581 }
582 xfs_buf_relse(bp);
583 return 0;
584 }
585
586 /*
587 * Clear the quotaflags in memory and in the superblock.
588 */
589 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)590 xfs_mount_reset_sbqflags(
591 struct xfs_mount *mp)
592 {
593 mp->m_qflags = 0;
594
595 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
596 if (mp->m_sb.sb_qflags == 0)
597 return 0;
598 spin_lock(&mp->m_sb_lock);
599 mp->m_sb.sb_qflags = 0;
600 spin_unlock(&mp->m_sb_lock);
601
602 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
603 return 0;
604
605 return xfs_sync_sb(mp, false);
606 }
607
608 uint64_t
xfs_default_resblks(xfs_mount_t * mp)609 xfs_default_resblks(xfs_mount_t *mp)
610 {
611 uint64_t resblks;
612
613 /*
614 * We default to 5% or 8192 fsbs of space reserved, whichever is
615 * smaller. This is intended to cover concurrent allocation
616 * transactions when we initially hit enospc. These each require a 4
617 * block reservation. Hence by default we cover roughly 2000 concurrent
618 * allocation reservations.
619 */
620 resblks = mp->m_sb.sb_dblocks;
621 do_div(resblks, 20);
622 resblks = min_t(uint64_t, resblks, 8192);
623 return resblks;
624 }
625
626 /* Ensure the summary counts are correct. */
627 STATIC int
xfs_check_summary_counts(struct xfs_mount * mp)628 xfs_check_summary_counts(
629 struct xfs_mount *mp)
630 {
631 /*
632 * The AG0 superblock verifier rejects in-progress filesystems,
633 * so we should never see the flag set this far into mounting.
634 */
635 if (mp->m_sb.sb_inprogress) {
636 xfs_err(mp, "sb_inprogress set after log recovery??");
637 WARN_ON(1);
638 return -EFSCORRUPTED;
639 }
640
641 /*
642 * Now the log is mounted, we know if it was an unclean shutdown or
643 * not. If it was, with the first phase of recovery has completed, we
644 * have consistent AG blocks on disk. We have not recovered EFIs yet,
645 * but they are recovered transactionally in the second recovery phase
646 * later.
647 *
648 * If the log was clean when we mounted, we can check the summary
649 * counters. If any of them are obviously incorrect, we can recompute
650 * them from the AGF headers in the next step.
651 */
652 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
653 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
654 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
655 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
656 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
657
658 /*
659 * We can safely re-initialise incore superblock counters from the
660 * per-ag data. These may not be correct if the filesystem was not
661 * cleanly unmounted, so we waited for recovery to finish before doing
662 * this.
663 *
664 * If the filesystem was cleanly unmounted or the previous check did
665 * not flag anything weird, then we can trust the values in the
666 * superblock to be correct and we don't need to do anything here.
667 * Otherwise, recalculate the summary counters.
668 */
669 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
670 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
671 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
672 return 0;
673
674 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
675 }
676
677 /*
678 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
679 * internal inode structures can be sitting in the CIL and AIL at this point,
680 * so we need to unpin them, write them back and/or reclaim them before unmount
681 * can proceed.
682 *
683 * An inode cluster that has been freed can have its buffer still pinned in
684 * memory because the transaction is still sitting in a iclog. The stale inodes
685 * on that buffer will be pinned to the buffer until the transaction hits the
686 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
687 * may never see the pinned buffer, so nothing will push out the iclog and
688 * unpin the buffer.
689 *
690 * Hence we need to force the log to unpin everything first. However, log
691 * forces don't wait for the discards they issue to complete, so we have to
692 * explicitly wait for them to complete here as well.
693 *
694 * Then we can tell the world we are unmounting so that error handling knows
695 * that the filesystem is going away and we should error out anything that we
696 * have been retrying in the background. This will prevent never-ending
697 * retries in AIL pushing from hanging the unmount.
698 *
699 * Finally, we can push the AIL to clean all the remaining dirty objects, then
700 * reclaim the remaining inodes that are still in memory at this point in time.
701 */
702 static void
xfs_unmount_flush_inodes(struct xfs_mount * mp)703 xfs_unmount_flush_inodes(
704 struct xfs_mount *mp)
705 {
706 xfs_log_force(mp, XFS_LOG_SYNC);
707 xfs_extent_busy_wait_all(mp);
708 flush_workqueue(xfs_discard_wq);
709
710 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
711
712 xfs_ail_push_all_sync(mp->m_ail);
713 cancel_delayed_work_sync(&mp->m_reclaim_work);
714 xfs_reclaim_inodes(mp, SYNC_WAIT);
715 xfs_health_unmount(mp);
716 }
717
718 /*
719 * This function does the following on an initial mount of a file system:
720 * - reads the superblock from disk and init the mount struct
721 * - if we're a 32-bit kernel, do a size check on the superblock
722 * so we don't mount terabyte filesystems
723 * - init mount struct realtime fields
724 * - allocate inode hash table for fs
725 * - init directory manager
726 * - perform recovery and init the log manager
727 */
728 int
xfs_mountfs(struct xfs_mount * mp)729 xfs_mountfs(
730 struct xfs_mount *mp)
731 {
732 struct xfs_sb *sbp = &(mp->m_sb);
733 struct xfs_inode *rip;
734 struct xfs_ino_geometry *igeo = M_IGEO(mp);
735 uint64_t resblks;
736 uint quotamount = 0;
737 uint quotaflags = 0;
738 int error = 0;
739
740 xfs_sb_mount_common(mp, sbp);
741
742 /*
743 * Check for a mismatched features2 values. Older kernels read & wrote
744 * into the wrong sb offset for sb_features2 on some platforms due to
745 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
746 * which made older superblock reading/writing routines swap it as a
747 * 64-bit value.
748 *
749 * For backwards compatibility, we make both slots equal.
750 *
751 * If we detect a mismatched field, we OR the set bits into the existing
752 * features2 field in case it has already been modified; we don't want
753 * to lose any features. We then update the bad location with the ORed
754 * value so that older kernels will see any features2 flags. The
755 * superblock writeback code ensures the new sb_features2 is copied to
756 * sb_bad_features2 before it is logged or written to disk.
757 */
758 if (xfs_sb_has_mismatched_features2(sbp)) {
759 xfs_warn(mp, "correcting sb_features alignment problem");
760 sbp->sb_features2 |= sbp->sb_bad_features2;
761 mp->m_update_sb = true;
762
763 /*
764 * Re-check for ATTR2 in case it was found in bad_features2
765 * slot.
766 */
767 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
768 !(mp->m_flags & XFS_MOUNT_NOATTR2))
769 mp->m_flags |= XFS_MOUNT_ATTR2;
770 }
771
772 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
773 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
774 xfs_sb_version_removeattr2(&mp->m_sb);
775 mp->m_update_sb = true;
776
777 /* update sb_versionnum for the clearing of the morebits */
778 if (!sbp->sb_features2)
779 mp->m_update_sb = true;
780 }
781
782 /* always use v2 inodes by default now */
783 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
784 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
785 mp->m_update_sb = true;
786 }
787
788 /*
789 * If we were given new sunit/swidth options, do some basic validation
790 * checks and convert the incore dalign and swidth values to the
791 * same units (FSB) that everything else uses. This /must/ happen
792 * before computing the inode geometry.
793 */
794 error = xfs_validate_new_dalign(mp);
795 if (error)
796 goto out;
797
798 xfs_alloc_compute_maxlevels(mp);
799 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
800 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
801 xfs_ialloc_setup_geometry(mp);
802 xfs_rmapbt_compute_maxlevels(mp);
803 xfs_refcountbt_compute_maxlevels(mp);
804
805 /*
806 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
807 * is NOT aligned turn off m_dalign since allocator alignment is within
808 * an ag, therefore ag has to be aligned at stripe boundary. Note that
809 * we must compute the free space and rmap btree geometry before doing
810 * this.
811 */
812 error = xfs_update_alignment(mp);
813 if (error)
814 goto out;
815
816 /* enable fail_at_unmount as default */
817 mp->m_fail_unmount = true;
818
819 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
820 if (error)
821 goto out;
822
823 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
824 &mp->m_kobj, "stats");
825 if (error)
826 goto out_remove_sysfs;
827
828 error = xfs_error_sysfs_init(mp);
829 if (error)
830 goto out_del_stats;
831
832 error = xfs_errortag_init(mp);
833 if (error)
834 goto out_remove_error_sysfs;
835
836 error = xfs_uuid_mount(mp);
837 if (error)
838 goto out_remove_errortag;
839
840 /*
841 * Set the minimum read and write sizes
842 */
843 xfs_set_rw_sizes(mp);
844
845 /* set the low space thresholds for dynamic preallocation */
846 xfs_set_low_space_thresholds(mp);
847
848 /*
849 * If enabled, sparse inode chunk alignment is expected to match the
850 * cluster size. Full inode chunk alignment must match the chunk size,
851 * but that is checked on sb read verification...
852 */
853 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
854 mp->m_sb.sb_spino_align !=
855 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
856 xfs_warn(mp,
857 "Sparse inode block alignment (%u) must match cluster size (%llu).",
858 mp->m_sb.sb_spino_align,
859 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
860 error = -EINVAL;
861 goto out_remove_uuid;
862 }
863
864 /*
865 * Check that the data (and log if separate) is an ok size.
866 */
867 error = xfs_check_sizes(mp);
868 if (error)
869 goto out_remove_uuid;
870
871 /*
872 * Initialize realtime fields in the mount structure
873 */
874 error = xfs_rtmount_init(mp);
875 if (error) {
876 xfs_warn(mp, "RT mount failed");
877 goto out_remove_uuid;
878 }
879
880 /*
881 * Copies the low order bits of the timestamp and the randomly
882 * set "sequence" number out of a UUID.
883 */
884 mp->m_fixedfsid[0] =
885 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
886 get_unaligned_be16(&sbp->sb_uuid.b[4]);
887 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
888
889 error = xfs_da_mount(mp);
890 if (error) {
891 xfs_warn(mp, "Failed dir/attr init: %d", error);
892 goto out_remove_uuid;
893 }
894
895 /*
896 * Initialize the precomputed transaction reservations values.
897 */
898 xfs_trans_init(mp);
899
900 /*
901 * Allocate and initialize the per-ag data.
902 */
903 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
904 if (error) {
905 xfs_warn(mp, "Failed per-ag init: %d", error);
906 goto out_free_dir;
907 }
908
909 if (!sbp->sb_logblocks) {
910 xfs_warn(mp, "no log defined");
911 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
912 error = -EFSCORRUPTED;
913 goto out_free_perag;
914 }
915
916 /*
917 * Log's mount-time initialization. The first part of recovery can place
918 * some items on the AIL, to be handled when recovery is finished or
919 * cancelled.
920 */
921 error = xfs_log_mount(mp, mp->m_logdev_targp,
922 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
923 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
924 if (error) {
925 xfs_warn(mp, "log mount failed");
926 goto out_fail_wait;
927 }
928
929 /* Make sure the summary counts are ok. */
930 error = xfs_check_summary_counts(mp);
931 if (error)
932 goto out_log_dealloc;
933
934 /*
935 * Get and sanity-check the root inode.
936 * Save the pointer to it in the mount structure.
937 */
938 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
939 XFS_ILOCK_EXCL, &rip);
940 if (error) {
941 xfs_warn(mp,
942 "Failed to read root inode 0x%llx, error %d",
943 sbp->sb_rootino, -error);
944 goto out_log_dealloc;
945 }
946
947 ASSERT(rip != NULL);
948
949 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
950 xfs_warn(mp, "corrupted root inode %llu: not a directory",
951 (unsigned long long)rip->i_ino);
952 xfs_iunlock(rip, XFS_ILOCK_EXCL);
953 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
954 mp);
955 error = -EFSCORRUPTED;
956 goto out_rele_rip;
957 }
958 mp->m_rootip = rip; /* save it */
959
960 xfs_iunlock(rip, XFS_ILOCK_EXCL);
961
962 /*
963 * Initialize realtime inode pointers in the mount structure
964 */
965 error = xfs_rtmount_inodes(mp);
966 if (error) {
967 /*
968 * Free up the root inode.
969 */
970 xfs_warn(mp, "failed to read RT inodes");
971 goto out_rele_rip;
972 }
973
974 /*
975 * If this is a read-only mount defer the superblock updates until
976 * the next remount into writeable mode. Otherwise we would never
977 * perform the update e.g. for the root filesystem.
978 */
979 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
980 error = xfs_sync_sb(mp, false);
981 if (error) {
982 xfs_warn(mp, "failed to write sb changes");
983 goto out_rtunmount;
984 }
985 }
986
987 /*
988 * Initialise the XFS quota management subsystem for this mount
989 */
990 if (XFS_IS_QUOTA_RUNNING(mp)) {
991 error = xfs_qm_newmount(mp, "amount, "aflags);
992 if (error)
993 goto out_rtunmount;
994 } else {
995 ASSERT(!XFS_IS_QUOTA_ON(mp));
996
997 /*
998 * If a file system had quotas running earlier, but decided to
999 * mount without -o uquota/pquota/gquota options, revoke the
1000 * quotachecked license.
1001 */
1002 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1003 xfs_notice(mp, "resetting quota flags");
1004 error = xfs_mount_reset_sbqflags(mp);
1005 if (error)
1006 goto out_rtunmount;
1007 }
1008 }
1009
1010 /*
1011 * Finish recovering the file system. This part needed to be delayed
1012 * until after the root and real-time bitmap inodes were consistently
1013 * read in.
1014 */
1015 error = xfs_log_mount_finish(mp);
1016 if (error) {
1017 xfs_warn(mp, "log mount finish failed");
1018 goto out_rtunmount;
1019 }
1020
1021 /*
1022 * Now the log is fully replayed, we can transition to full read-only
1023 * mode for read-only mounts. This will sync all the metadata and clean
1024 * the log so that the recovery we just performed does not have to be
1025 * replayed again on the next mount.
1026 *
1027 * We use the same quiesce mechanism as the rw->ro remount, as they are
1028 * semantically identical operations.
1029 */
1030 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
1031 XFS_MOUNT_RDONLY) {
1032 xfs_quiesce_attr(mp);
1033 }
1034
1035 /*
1036 * Complete the quota initialisation, post-log-replay component.
1037 */
1038 if (quotamount) {
1039 ASSERT(mp->m_qflags == 0);
1040 mp->m_qflags = quotaflags;
1041
1042 xfs_qm_mount_quotas(mp);
1043 }
1044
1045 /*
1046 * Now we are mounted, reserve a small amount of unused space for
1047 * privileged transactions. This is needed so that transaction
1048 * space required for critical operations can dip into this pool
1049 * when at ENOSPC. This is needed for operations like create with
1050 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1051 * are not allowed to use this reserved space.
1052 *
1053 * This may drive us straight to ENOSPC on mount, but that implies
1054 * we were already there on the last unmount. Warn if this occurs.
1055 */
1056 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1057 resblks = xfs_default_resblks(mp);
1058 error = xfs_reserve_blocks(mp, &resblks, NULL);
1059 if (error)
1060 xfs_warn(mp,
1061 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1062
1063 /* Recover any CoW blocks that never got remapped. */
1064 error = xfs_reflink_recover_cow(mp);
1065 if (error) {
1066 xfs_err(mp,
1067 "Error %d recovering leftover CoW allocations.", error);
1068 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1069 goto out_quota;
1070 }
1071
1072 /* Reserve AG blocks for future btree expansion. */
1073 error = xfs_fs_reserve_ag_blocks(mp);
1074 if (error && error != -ENOSPC)
1075 goto out_agresv;
1076 }
1077
1078 return 0;
1079
1080 out_agresv:
1081 xfs_fs_unreserve_ag_blocks(mp);
1082 out_quota:
1083 xfs_qm_unmount_quotas(mp);
1084 out_rtunmount:
1085 xfs_rtunmount_inodes(mp);
1086 out_rele_rip:
1087 xfs_irele(rip);
1088 /* Clean out dquots that might be in memory after quotacheck. */
1089 xfs_qm_unmount(mp);
1090 /*
1091 * Flush all inode reclamation work and flush the log.
1092 * We have to do this /after/ rtunmount and qm_unmount because those
1093 * two will have scheduled delayed reclaim for the rt/quota inodes.
1094 *
1095 * This is slightly different from the unmountfs call sequence
1096 * because we could be tearing down a partially set up mount. In
1097 * particular, if log_mount_finish fails we bail out without calling
1098 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1099 * quota inodes.
1100 */
1101 xfs_unmount_flush_inodes(mp);
1102 out_log_dealloc:
1103 xfs_log_mount_cancel(mp);
1104 out_fail_wait:
1105 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1106 xfs_wait_buftarg(mp->m_logdev_targp);
1107 xfs_wait_buftarg(mp->m_ddev_targp);
1108 out_free_perag:
1109 xfs_free_perag(mp);
1110 out_free_dir:
1111 xfs_da_unmount(mp);
1112 out_remove_uuid:
1113 xfs_uuid_unmount(mp);
1114 out_remove_errortag:
1115 xfs_errortag_del(mp);
1116 out_remove_error_sysfs:
1117 xfs_error_sysfs_del(mp);
1118 out_del_stats:
1119 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1120 out_remove_sysfs:
1121 xfs_sysfs_del(&mp->m_kobj);
1122 out:
1123 return error;
1124 }
1125
1126 /*
1127 * This flushes out the inodes,dquots and the superblock, unmounts the
1128 * log and makes sure that incore structures are freed.
1129 */
1130 void
xfs_unmountfs(struct xfs_mount * mp)1131 xfs_unmountfs(
1132 struct xfs_mount *mp)
1133 {
1134 uint64_t resblks;
1135 int error;
1136
1137 xfs_stop_block_reaping(mp);
1138 xfs_fs_unreserve_ag_blocks(mp);
1139 xfs_qm_unmount_quotas(mp);
1140 xfs_rtunmount_inodes(mp);
1141 xfs_irele(mp->m_rootip);
1142
1143 xfs_unmount_flush_inodes(mp);
1144
1145 xfs_qm_unmount(mp);
1146
1147 /*
1148 * Unreserve any blocks we have so that when we unmount we don't account
1149 * the reserved free space as used. This is really only necessary for
1150 * lazy superblock counting because it trusts the incore superblock
1151 * counters to be absolutely correct on clean unmount.
1152 *
1153 * We don't bother correcting this elsewhere for lazy superblock
1154 * counting because on mount of an unclean filesystem we reconstruct the
1155 * correct counter value and this is irrelevant.
1156 *
1157 * For non-lazy counter filesystems, this doesn't matter at all because
1158 * we only every apply deltas to the superblock and hence the incore
1159 * value does not matter....
1160 */
1161 resblks = 0;
1162 error = xfs_reserve_blocks(mp, &resblks, NULL);
1163 if (error)
1164 xfs_warn(mp, "Unable to free reserved block pool. "
1165 "Freespace may not be correct on next mount.");
1166
1167 error = xfs_log_sbcount(mp);
1168 if (error)
1169 xfs_warn(mp, "Unable to update superblock counters. "
1170 "Freespace may not be correct on next mount.");
1171
1172
1173 xfs_log_unmount(mp);
1174 xfs_da_unmount(mp);
1175 xfs_uuid_unmount(mp);
1176
1177 #if defined(DEBUG)
1178 xfs_errortag_clearall(mp);
1179 #endif
1180 xfs_free_perag(mp);
1181
1182 xfs_errortag_del(mp);
1183 xfs_error_sysfs_del(mp);
1184 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1185 xfs_sysfs_del(&mp->m_kobj);
1186 }
1187
1188 /*
1189 * Determine whether modifications can proceed. The caller specifies the minimum
1190 * freeze level for which modifications should not be allowed. This allows
1191 * certain operations to proceed while the freeze sequence is in progress, if
1192 * necessary.
1193 */
1194 bool
xfs_fs_writable(struct xfs_mount * mp,int level)1195 xfs_fs_writable(
1196 struct xfs_mount *mp,
1197 int level)
1198 {
1199 ASSERT(level > SB_UNFROZEN);
1200 if ((mp->m_super->s_writers.frozen >= level) ||
1201 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1202 return false;
1203
1204 return true;
1205 }
1206
1207 /*
1208 * xfs_log_sbcount
1209 *
1210 * Sync the superblock counters to disk.
1211 *
1212 * Note this code can be called during the process of freezing, so we use the
1213 * transaction allocator that does not block when the transaction subsystem is
1214 * in its frozen state.
1215 */
1216 int
xfs_log_sbcount(xfs_mount_t * mp)1217 xfs_log_sbcount(xfs_mount_t *mp)
1218 {
1219 if (!xfs_log_writable(mp))
1220 return 0;
1221
1222 /*
1223 * we don't need to do this if we are updating the superblock
1224 * counters on every modification.
1225 */
1226 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1227 return 0;
1228
1229 return xfs_sync_sb(mp, true);
1230 }
1231
1232 /*
1233 * Deltas for the inode count are +/-64, hence we use a large batch size
1234 * of 128 so we don't need to take the counter lock on every update.
1235 */
1236 #define XFS_ICOUNT_BATCH 128
1237 int
xfs_mod_icount(struct xfs_mount * mp,int64_t delta)1238 xfs_mod_icount(
1239 struct xfs_mount *mp,
1240 int64_t delta)
1241 {
1242 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1243 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1244 ASSERT(0);
1245 percpu_counter_add(&mp->m_icount, -delta);
1246 return -EINVAL;
1247 }
1248 return 0;
1249 }
1250
1251 int
xfs_mod_ifree(struct xfs_mount * mp,int64_t delta)1252 xfs_mod_ifree(
1253 struct xfs_mount *mp,
1254 int64_t delta)
1255 {
1256 percpu_counter_add(&mp->m_ifree, delta);
1257 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1258 ASSERT(0);
1259 percpu_counter_add(&mp->m_ifree, -delta);
1260 return -EINVAL;
1261 }
1262 return 0;
1263 }
1264
1265 /*
1266 * Deltas for the block count can vary from 1 to very large, but lock contention
1267 * only occurs on frequent small block count updates such as in the delayed
1268 * allocation path for buffered writes (page a time updates). Hence we set
1269 * a large batch count (1024) to minimise global counter updates except when
1270 * we get near to ENOSPC and we have to be very accurate with our updates.
1271 */
1272 #define XFS_FDBLOCKS_BATCH 1024
1273 int
xfs_mod_fdblocks(struct xfs_mount * mp,int64_t delta,bool rsvd)1274 xfs_mod_fdblocks(
1275 struct xfs_mount *mp,
1276 int64_t delta,
1277 bool rsvd)
1278 {
1279 int64_t lcounter;
1280 long long res_used;
1281 s32 batch;
1282
1283 if (delta > 0) {
1284 /*
1285 * If the reserve pool is depleted, put blocks back into it
1286 * first. Most of the time the pool is full.
1287 */
1288 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1289 percpu_counter_add(&mp->m_fdblocks, delta);
1290 return 0;
1291 }
1292
1293 spin_lock(&mp->m_sb_lock);
1294 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1295
1296 if (res_used > delta) {
1297 mp->m_resblks_avail += delta;
1298 } else {
1299 delta -= res_used;
1300 mp->m_resblks_avail = mp->m_resblks;
1301 percpu_counter_add(&mp->m_fdblocks, delta);
1302 }
1303 spin_unlock(&mp->m_sb_lock);
1304 return 0;
1305 }
1306
1307 /*
1308 * Taking blocks away, need to be more accurate the closer we
1309 * are to zero.
1310 *
1311 * If the counter has a value of less than 2 * max batch size,
1312 * then make everything serialise as we are real close to
1313 * ENOSPC.
1314 */
1315 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1316 XFS_FDBLOCKS_BATCH) < 0)
1317 batch = 1;
1318 else
1319 batch = XFS_FDBLOCKS_BATCH;
1320
1321 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1322 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1323 XFS_FDBLOCKS_BATCH) >= 0) {
1324 /* we had space! */
1325 return 0;
1326 }
1327
1328 /*
1329 * lock up the sb for dipping into reserves before releasing the space
1330 * that took us to ENOSPC.
1331 */
1332 spin_lock(&mp->m_sb_lock);
1333 percpu_counter_add(&mp->m_fdblocks, -delta);
1334 if (!rsvd)
1335 goto fdblocks_enospc;
1336
1337 lcounter = (long long)mp->m_resblks_avail + delta;
1338 if (lcounter >= 0) {
1339 mp->m_resblks_avail = lcounter;
1340 spin_unlock(&mp->m_sb_lock);
1341 return 0;
1342 }
1343 printk_once(KERN_WARNING
1344 "Filesystem \"%s\": reserve blocks depleted! "
1345 "Consider increasing reserve pool size.",
1346 mp->m_fsname);
1347 fdblocks_enospc:
1348 spin_unlock(&mp->m_sb_lock);
1349 return -ENOSPC;
1350 }
1351
1352 int
xfs_mod_frextents(struct xfs_mount * mp,int64_t delta)1353 xfs_mod_frextents(
1354 struct xfs_mount *mp,
1355 int64_t delta)
1356 {
1357 int64_t lcounter;
1358 int ret = 0;
1359
1360 spin_lock(&mp->m_sb_lock);
1361 lcounter = mp->m_sb.sb_frextents + delta;
1362 if (lcounter < 0)
1363 ret = -ENOSPC;
1364 else
1365 mp->m_sb.sb_frextents = lcounter;
1366 spin_unlock(&mp->m_sb_lock);
1367 return ret;
1368 }
1369
1370 /*
1371 * xfs_getsb() is called to obtain the buffer for the superblock.
1372 * The buffer is returned locked and read in from disk.
1373 * The buffer should be released with a call to xfs_brelse().
1374 */
1375 struct xfs_buf *
xfs_getsb(struct xfs_mount * mp)1376 xfs_getsb(
1377 struct xfs_mount *mp)
1378 {
1379 struct xfs_buf *bp = mp->m_sb_bp;
1380
1381 xfs_buf_lock(bp);
1382 xfs_buf_hold(bp);
1383 ASSERT(bp->b_flags & XBF_DONE);
1384 return bp;
1385 }
1386
1387 /*
1388 * Used to free the superblock along various error paths.
1389 */
1390 void
xfs_freesb(struct xfs_mount * mp)1391 xfs_freesb(
1392 struct xfs_mount *mp)
1393 {
1394 struct xfs_buf *bp = mp->m_sb_bp;
1395
1396 xfs_buf_lock(bp);
1397 mp->m_sb_bp = NULL;
1398 xfs_buf_relse(bp);
1399 }
1400
1401 /*
1402 * If the underlying (data/log/rt) device is readonly, there are some
1403 * operations that cannot proceed.
1404 */
1405 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1406 xfs_dev_is_read_only(
1407 struct xfs_mount *mp,
1408 char *message)
1409 {
1410 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1411 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1412 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1413 xfs_notice(mp, "%s required on read-only device.", message);
1414 xfs_notice(mp, "write access unavailable, cannot proceed.");
1415 return -EROFS;
1416 }
1417 return 0;
1418 }
1419
1420 /* Force the summary counters to be recalculated at next mount. */
1421 void
xfs_force_summary_recalc(struct xfs_mount * mp)1422 xfs_force_summary_recalc(
1423 struct xfs_mount *mp)
1424 {
1425 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1426 return;
1427
1428 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1429 }
1430
1431 /*
1432 * Update the in-core delayed block counter.
1433 *
1434 * We prefer to update the counter without having to take a spinlock for every
1435 * counter update (i.e. batching). Each change to delayed allocation
1436 * reservations can change can easily exceed the default percpu counter
1437 * batching, so we use a larger batch factor here.
1438 *
1439 * Note that we don't currently have any callers requiring fast summation
1440 * (e.g. percpu_counter_read) so we can use a big batch value here.
1441 */
1442 #define XFS_DELALLOC_BATCH (4096)
1443 void
xfs_mod_delalloc(struct xfs_mount * mp,int64_t delta)1444 xfs_mod_delalloc(
1445 struct xfs_mount *mp,
1446 int64_t delta)
1447 {
1448 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1449 XFS_DELALLOC_BATCH);
1450 }
1451