• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_fsops.h"
27 #include "xfs_icache.h"
28 #include "xfs_sysfs.h"
29 #include "xfs_rmap_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_reflink.h"
32 #include "xfs_extent_busy.h"
33 #include "xfs_health.h"
34 #include "xfs_trace.h"
35 
36 static DEFINE_MUTEX(xfs_uuid_table_mutex);
37 static int xfs_uuid_table_size;
38 static uuid_t *xfs_uuid_table;
39 
40 void
xfs_uuid_table_free(void)41 xfs_uuid_table_free(void)
42 {
43 	if (xfs_uuid_table_size == 0)
44 		return;
45 	kmem_free(xfs_uuid_table);
46 	xfs_uuid_table = NULL;
47 	xfs_uuid_table_size = 0;
48 }
49 
50 /*
51  * See if the UUID is unique among mounted XFS filesystems.
52  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53  */
54 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)55 xfs_uuid_mount(
56 	struct xfs_mount	*mp)
57 {
58 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
59 	int			hole, i;
60 
61 	/* Publish UUID in struct super_block */
62 	uuid_copy(&mp->m_super->s_uuid, uuid);
63 
64 	if (mp->m_flags & XFS_MOUNT_NOUUID)
65 		return 0;
66 
67 	if (uuid_is_null(uuid)) {
68 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
69 		return -EINVAL;
70 	}
71 
72 	mutex_lock(&xfs_uuid_table_mutex);
73 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
74 		if (uuid_is_null(&xfs_uuid_table[i])) {
75 			hole = i;
76 			continue;
77 		}
78 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
79 			goto out_duplicate;
80 	}
81 
82 	if (hole < 0) {
83 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
84 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
85 			0);
86 		hole = xfs_uuid_table_size++;
87 	}
88 	xfs_uuid_table[hole] = *uuid;
89 	mutex_unlock(&xfs_uuid_table_mutex);
90 
91 	return 0;
92 
93  out_duplicate:
94 	mutex_unlock(&xfs_uuid_table_mutex);
95 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
96 	return -EINVAL;
97 }
98 
99 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)100 xfs_uuid_unmount(
101 	struct xfs_mount	*mp)
102 {
103 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
104 	int			i;
105 
106 	if (mp->m_flags & XFS_MOUNT_NOUUID)
107 		return;
108 
109 	mutex_lock(&xfs_uuid_table_mutex);
110 	for (i = 0; i < xfs_uuid_table_size; i++) {
111 		if (uuid_is_null(&xfs_uuid_table[i]))
112 			continue;
113 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
114 			continue;
115 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
116 		break;
117 	}
118 	ASSERT(i < xfs_uuid_table_size);
119 	mutex_unlock(&xfs_uuid_table_mutex);
120 }
121 
122 
123 STATIC void
__xfs_free_perag(struct rcu_head * head)124 __xfs_free_perag(
125 	struct rcu_head	*head)
126 {
127 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
128 
129 	ASSERT(atomic_read(&pag->pag_ref) == 0);
130 	kmem_free(pag);
131 }
132 
133 /*
134  * Free up the per-ag resources associated with the mount structure.
135  */
136 STATIC void
xfs_free_perag(xfs_mount_t * mp)137 xfs_free_perag(
138 	xfs_mount_t	*mp)
139 {
140 	xfs_agnumber_t	agno;
141 	struct xfs_perag *pag;
142 
143 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
144 		spin_lock(&mp->m_perag_lock);
145 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
146 		spin_unlock(&mp->m_perag_lock);
147 		ASSERT(pag);
148 		ASSERT(atomic_read(&pag->pag_ref) == 0);
149 		xfs_iunlink_destroy(pag);
150 		xfs_buf_hash_destroy(pag);
151 		mutex_destroy(&pag->pag_ici_reclaim_lock);
152 		call_rcu(&pag->rcu_head, __xfs_free_perag);
153 	}
154 }
155 
156 /*
157  * Check size of device based on the (data/realtime) block count.
158  * Note: this check is used by the growfs code as well as mount.
159  */
160 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,uint64_t nblocks)161 xfs_sb_validate_fsb_count(
162 	xfs_sb_t	*sbp,
163 	uint64_t	nblocks)
164 {
165 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
166 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
167 
168 	/* Limited by ULONG_MAX of page cache index */
169 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
170 		return -EFBIG;
171 	return 0;
172 }
173 
174 int
xfs_initialize_perag(xfs_mount_t * mp,xfs_agnumber_t agcount,xfs_agnumber_t * maxagi)175 xfs_initialize_perag(
176 	xfs_mount_t	*mp,
177 	xfs_agnumber_t	agcount,
178 	xfs_agnumber_t	*maxagi)
179 {
180 	xfs_agnumber_t	index;
181 	xfs_agnumber_t	first_initialised = NULLAGNUMBER;
182 	xfs_perag_t	*pag;
183 	int		error = -ENOMEM;
184 
185 	/*
186 	 * Walk the current per-ag tree so we don't try to initialise AGs
187 	 * that already exist (growfs case). Allocate and insert all the
188 	 * AGs we don't find ready for initialisation.
189 	 */
190 	for (index = 0; index < agcount; index++) {
191 		pag = xfs_perag_get(mp, index);
192 		if (pag) {
193 			xfs_perag_put(pag);
194 			continue;
195 		}
196 
197 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
198 		if (!pag) {
199 			error = -ENOMEM;
200 			goto out_unwind_new_pags;
201 		}
202 		pag->pag_agno = index;
203 		pag->pag_mount = mp;
204 		spin_lock_init(&pag->pag_ici_lock);
205 		mutex_init(&pag->pag_ici_reclaim_lock);
206 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
207 
208 		error = xfs_buf_hash_init(pag);
209 		if (error)
210 			goto out_free_pag;
211 		init_waitqueue_head(&pag->pagb_wait);
212 		spin_lock_init(&pag->pagb_lock);
213 		pag->pagb_count = 0;
214 		pag->pagb_tree = RB_ROOT;
215 
216 		error = radix_tree_preload(GFP_NOFS);
217 		if (error)
218 			goto out_hash_destroy;
219 
220 		spin_lock(&mp->m_perag_lock);
221 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
222 			WARN_ON_ONCE(1);
223 			spin_unlock(&mp->m_perag_lock);
224 			radix_tree_preload_end();
225 			error = -EEXIST;
226 			goto out_hash_destroy;
227 		}
228 		spin_unlock(&mp->m_perag_lock);
229 		radix_tree_preload_end();
230 		/* first new pag is fully initialized */
231 		if (first_initialised == NULLAGNUMBER)
232 			first_initialised = index;
233 		error = xfs_iunlink_init(pag);
234 		if (error)
235 			goto out_hash_destroy;
236 		spin_lock_init(&pag->pag_state_lock);
237 	}
238 
239 	index = xfs_set_inode_alloc(mp, agcount);
240 
241 	if (maxagi)
242 		*maxagi = index;
243 
244 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
245 	return 0;
246 
247 out_hash_destroy:
248 	xfs_buf_hash_destroy(pag);
249 out_free_pag:
250 	mutex_destroy(&pag->pag_ici_reclaim_lock);
251 	kmem_free(pag);
252 out_unwind_new_pags:
253 	/* unwind any prior newly initialized pags */
254 	for (index = first_initialised; index < agcount; index++) {
255 		pag = radix_tree_delete(&mp->m_perag_tree, index);
256 		if (!pag)
257 			break;
258 		xfs_buf_hash_destroy(pag);
259 		xfs_iunlink_destroy(pag);
260 		mutex_destroy(&pag->pag_ici_reclaim_lock);
261 		kmem_free(pag);
262 	}
263 	return error;
264 }
265 
266 /*
267  * xfs_readsb
268  *
269  * Does the initial read of the superblock.
270  */
271 int
xfs_readsb(struct xfs_mount * mp,int flags)272 xfs_readsb(
273 	struct xfs_mount *mp,
274 	int		flags)
275 {
276 	unsigned int	sector_size;
277 	struct xfs_buf	*bp;
278 	struct xfs_sb	*sbp = &mp->m_sb;
279 	int		error;
280 	int		loud = !(flags & XFS_MFSI_QUIET);
281 	const struct xfs_buf_ops *buf_ops;
282 
283 	ASSERT(mp->m_sb_bp == NULL);
284 	ASSERT(mp->m_ddev_targp != NULL);
285 
286 	/*
287 	 * For the initial read, we must guess at the sector
288 	 * size based on the block device.  It's enough to
289 	 * get the sb_sectsize out of the superblock and
290 	 * then reread with the proper length.
291 	 * We don't verify it yet, because it may not be complete.
292 	 */
293 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
294 	buf_ops = NULL;
295 
296 	/*
297 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
298 	 * around at all times to optimize access to the superblock. Therefore,
299 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
300 	 * elevated.
301 	 */
302 reread:
303 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
304 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
305 				      buf_ops);
306 	if (error) {
307 		if (loud)
308 			xfs_warn(mp, "SB validate failed with error %d.", error);
309 		/* bad CRC means corrupted metadata */
310 		if (error == -EFSBADCRC)
311 			error = -EFSCORRUPTED;
312 		return error;
313 	}
314 
315 	/*
316 	 * Initialize the mount structure from the superblock.
317 	 */
318 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
319 
320 	/*
321 	 * If we haven't validated the superblock, do so now before we try
322 	 * to check the sector size and reread the superblock appropriately.
323 	 */
324 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
325 		if (loud)
326 			xfs_warn(mp, "Invalid superblock magic number");
327 		error = -EINVAL;
328 		goto release_buf;
329 	}
330 
331 	/*
332 	 * We must be able to do sector-sized and sector-aligned IO.
333 	 */
334 	if (sector_size > sbp->sb_sectsize) {
335 		if (loud)
336 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
337 				sector_size, sbp->sb_sectsize);
338 		error = -ENOSYS;
339 		goto release_buf;
340 	}
341 
342 	if (buf_ops == NULL) {
343 		/*
344 		 * Re-read the superblock so the buffer is correctly sized,
345 		 * and properly verified.
346 		 */
347 		xfs_buf_relse(bp);
348 		sector_size = sbp->sb_sectsize;
349 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
350 		goto reread;
351 	}
352 
353 	xfs_reinit_percpu_counters(mp);
354 
355 	/* no need to be quiet anymore, so reset the buf ops */
356 	bp->b_ops = &xfs_sb_buf_ops;
357 
358 	mp->m_sb_bp = bp;
359 	xfs_buf_unlock(bp);
360 	return 0;
361 
362 release_buf:
363 	xfs_buf_relse(bp);
364 	return error;
365 }
366 
367 /*
368  * If the sunit/swidth change would move the precomputed root inode value, we
369  * must reject the ondisk change because repair will stumble over that.
370  * However, we allow the mount to proceed because we never rejected this
371  * combination before.  Returns true to update the sb, false otherwise.
372  */
373 static inline int
xfs_check_new_dalign(struct xfs_mount * mp,int new_dalign,bool * update_sb)374 xfs_check_new_dalign(
375 	struct xfs_mount	*mp,
376 	int			new_dalign,
377 	bool			*update_sb)
378 {
379 	struct xfs_sb		*sbp = &mp->m_sb;
380 	xfs_ino_t		calc_ino;
381 
382 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
383 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
384 
385 	if (sbp->sb_rootino == calc_ino) {
386 		*update_sb = true;
387 		return 0;
388 	}
389 
390 	xfs_warn(mp,
391 "Cannot change stripe alignment; would require moving root inode.");
392 
393 	/*
394 	 * XXX: Next time we add a new incompat feature, this should start
395 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
396 	 * that we're ignoring the administrator's instructions.
397 	 */
398 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
399 	*update_sb = false;
400 	return 0;
401 }
402 
403 /*
404  * If we were provided with new sunit/swidth values as mount options, make sure
405  * that they pass basic alignment and superblock feature checks, and convert
406  * them into the same units (FSB) that everything else expects.  This step
407  * /must/ be done before computing the inode geometry.
408  */
409 STATIC int
xfs_validate_new_dalign(struct xfs_mount * mp)410 xfs_validate_new_dalign(
411 	struct xfs_mount	*mp)
412 {
413 	if (mp->m_dalign == 0)
414 		return 0;
415 
416 	/*
417 	 * If stripe unit and stripe width are not multiples
418 	 * of the fs blocksize turn off alignment.
419 	 */
420 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
421 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
422 		xfs_warn(mp,
423 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
424 			mp->m_sb.sb_blocksize);
425 		return -EINVAL;
426 	} else {
427 		/*
428 		 * Convert the stripe unit and width to FSBs.
429 		 */
430 		mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
431 		if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
432 			xfs_warn(mp,
433 		"alignment check failed: sunit/swidth vs. agsize(%d)",
434 				 mp->m_sb.sb_agblocks);
435 			return -EINVAL;
436 		} else if (mp->m_dalign) {
437 			mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
438 		} else {
439 			xfs_warn(mp,
440 		"alignment check failed: sunit(%d) less than bsize(%d)",
441 				 mp->m_dalign, mp->m_sb.sb_blocksize);
442 			return -EINVAL;
443 		}
444 	}
445 
446 	if (!xfs_sb_version_hasdalign(&mp->m_sb)) {
447 		xfs_warn(mp,
448 "cannot change alignment: superblock does not support data alignment");
449 		return -EINVAL;
450 	}
451 
452 	return 0;
453 }
454 
455 /* Update alignment values based on mount options and sb values. */
456 STATIC int
xfs_update_alignment(struct xfs_mount * mp)457 xfs_update_alignment(
458 	struct xfs_mount	*mp)
459 {
460 	struct xfs_sb		*sbp = &mp->m_sb;
461 
462 	if (mp->m_dalign) {
463 		bool		update_sb;
464 		int		error;
465 
466 		if (sbp->sb_unit == mp->m_dalign &&
467 		    sbp->sb_width == mp->m_swidth)
468 			return 0;
469 
470 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
471 		if (error || !update_sb)
472 			return error;
473 
474 		sbp->sb_unit = mp->m_dalign;
475 		sbp->sb_width = mp->m_swidth;
476 		mp->m_update_sb = true;
477 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
478 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
479 		mp->m_dalign = sbp->sb_unit;
480 		mp->m_swidth = sbp->sb_width;
481 	}
482 
483 	return 0;
484 }
485 
486 /*
487  * Set the default minimum read and write sizes unless
488  * already specified in a mount option.
489  * We use smaller I/O sizes when the file system
490  * is being used for NFS service (wsync mount option).
491  */
492 STATIC void
xfs_set_rw_sizes(xfs_mount_t * mp)493 xfs_set_rw_sizes(xfs_mount_t *mp)
494 {
495 	xfs_sb_t	*sbp = &(mp->m_sb);
496 	int		readio_log, writeio_log;
497 
498 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
499 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
500 			readio_log = XFS_WSYNC_READIO_LOG;
501 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
502 		} else {
503 			readio_log = XFS_READIO_LOG_LARGE;
504 			writeio_log = XFS_WRITEIO_LOG_LARGE;
505 		}
506 	} else {
507 		readio_log = mp->m_readio_log;
508 		writeio_log = mp->m_writeio_log;
509 	}
510 
511 	if (sbp->sb_blocklog > readio_log) {
512 		mp->m_readio_log = sbp->sb_blocklog;
513 	} else {
514 		mp->m_readio_log = readio_log;
515 	}
516 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
517 	if (sbp->sb_blocklog > writeio_log) {
518 		mp->m_writeio_log = sbp->sb_blocklog;
519 	} else {
520 		mp->m_writeio_log = writeio_log;
521 	}
522 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
523 }
524 
525 /*
526  * precalculate the low space thresholds for dynamic speculative preallocation.
527  */
528 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)529 xfs_set_low_space_thresholds(
530 	struct xfs_mount	*mp)
531 {
532 	int i;
533 
534 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
535 		uint64_t space = mp->m_sb.sb_dblocks;
536 
537 		do_div(space, 100);
538 		mp->m_low_space[i] = space * (i + 1);
539 	}
540 }
541 
542 /*
543  * Check that the data (and log if separate) is an ok size.
544  */
545 STATIC int
xfs_check_sizes(struct xfs_mount * mp)546 xfs_check_sizes(
547 	struct xfs_mount *mp)
548 {
549 	struct xfs_buf	*bp;
550 	xfs_daddr_t	d;
551 	int		error;
552 
553 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
554 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
555 		xfs_warn(mp, "filesystem size mismatch detected");
556 		return -EFBIG;
557 	}
558 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
559 					d - XFS_FSS_TO_BB(mp, 1),
560 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
561 	if (error) {
562 		xfs_warn(mp, "last sector read failed");
563 		return error;
564 	}
565 	xfs_buf_relse(bp);
566 
567 	if (mp->m_logdev_targp == mp->m_ddev_targp)
568 		return 0;
569 
570 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
571 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
572 		xfs_warn(mp, "log size mismatch detected");
573 		return -EFBIG;
574 	}
575 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
576 					d - XFS_FSB_TO_BB(mp, 1),
577 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
578 	if (error) {
579 		xfs_warn(mp, "log device read failed");
580 		return error;
581 	}
582 	xfs_buf_relse(bp);
583 	return 0;
584 }
585 
586 /*
587  * Clear the quotaflags in memory and in the superblock.
588  */
589 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)590 xfs_mount_reset_sbqflags(
591 	struct xfs_mount	*mp)
592 {
593 	mp->m_qflags = 0;
594 
595 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
596 	if (mp->m_sb.sb_qflags == 0)
597 		return 0;
598 	spin_lock(&mp->m_sb_lock);
599 	mp->m_sb.sb_qflags = 0;
600 	spin_unlock(&mp->m_sb_lock);
601 
602 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
603 		return 0;
604 
605 	return xfs_sync_sb(mp, false);
606 }
607 
608 uint64_t
xfs_default_resblks(xfs_mount_t * mp)609 xfs_default_resblks(xfs_mount_t *mp)
610 {
611 	uint64_t resblks;
612 
613 	/*
614 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
615 	 * smaller.  This is intended to cover concurrent allocation
616 	 * transactions when we initially hit enospc. These each require a 4
617 	 * block reservation. Hence by default we cover roughly 2000 concurrent
618 	 * allocation reservations.
619 	 */
620 	resblks = mp->m_sb.sb_dblocks;
621 	do_div(resblks, 20);
622 	resblks = min_t(uint64_t, resblks, 8192);
623 	return resblks;
624 }
625 
626 /* Ensure the summary counts are correct. */
627 STATIC int
xfs_check_summary_counts(struct xfs_mount * mp)628 xfs_check_summary_counts(
629 	struct xfs_mount	*mp)
630 {
631 	/*
632 	 * The AG0 superblock verifier rejects in-progress filesystems,
633 	 * so we should never see the flag set this far into mounting.
634 	 */
635 	if (mp->m_sb.sb_inprogress) {
636 		xfs_err(mp, "sb_inprogress set after log recovery??");
637 		WARN_ON(1);
638 		return -EFSCORRUPTED;
639 	}
640 
641 	/*
642 	 * Now the log is mounted, we know if it was an unclean shutdown or
643 	 * not. If it was, with the first phase of recovery has completed, we
644 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
645 	 * but they are recovered transactionally in the second recovery phase
646 	 * later.
647 	 *
648 	 * If the log was clean when we mounted, we can check the summary
649 	 * counters.  If any of them are obviously incorrect, we can recompute
650 	 * them from the AGF headers in the next step.
651 	 */
652 	if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
653 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
654 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
655 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
656 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
657 
658 	/*
659 	 * We can safely re-initialise incore superblock counters from the
660 	 * per-ag data. These may not be correct if the filesystem was not
661 	 * cleanly unmounted, so we waited for recovery to finish before doing
662 	 * this.
663 	 *
664 	 * If the filesystem was cleanly unmounted or the previous check did
665 	 * not flag anything weird, then we can trust the values in the
666 	 * superblock to be correct and we don't need to do anything here.
667 	 * Otherwise, recalculate the summary counters.
668 	 */
669 	if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
670 	     XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
671 	    !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
672 		return 0;
673 
674 	return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
675 }
676 
677 /*
678  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
679  * internal inode structures can be sitting in the CIL and AIL at this point,
680  * so we need to unpin them, write them back and/or reclaim them before unmount
681  * can proceed.
682  *
683  * An inode cluster that has been freed can have its buffer still pinned in
684  * memory because the transaction is still sitting in a iclog. The stale inodes
685  * on that buffer will be pinned to the buffer until the transaction hits the
686  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
687  * may never see the pinned buffer, so nothing will push out the iclog and
688  * unpin the buffer.
689  *
690  * Hence we need to force the log to unpin everything first. However, log
691  * forces don't wait for the discards they issue to complete, so we have to
692  * explicitly wait for them to complete here as well.
693  *
694  * Then we can tell the world we are unmounting so that error handling knows
695  * that the filesystem is going away and we should error out anything that we
696  * have been retrying in the background.  This will prevent never-ending
697  * retries in AIL pushing from hanging the unmount.
698  *
699  * Finally, we can push the AIL to clean all the remaining dirty objects, then
700  * reclaim the remaining inodes that are still in memory at this point in time.
701  */
702 static void
xfs_unmount_flush_inodes(struct xfs_mount * mp)703 xfs_unmount_flush_inodes(
704 	struct xfs_mount	*mp)
705 {
706 	xfs_log_force(mp, XFS_LOG_SYNC);
707 	xfs_extent_busy_wait_all(mp);
708 	flush_workqueue(xfs_discard_wq);
709 
710 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
711 
712 	xfs_ail_push_all_sync(mp->m_ail);
713 	cancel_delayed_work_sync(&mp->m_reclaim_work);
714 	xfs_reclaim_inodes(mp, SYNC_WAIT);
715 	xfs_health_unmount(mp);
716 }
717 
718 /*
719  * This function does the following on an initial mount of a file system:
720  *	- reads the superblock from disk and init the mount struct
721  *	- if we're a 32-bit kernel, do a size check on the superblock
722  *		so we don't mount terabyte filesystems
723  *	- init mount struct realtime fields
724  *	- allocate inode hash table for fs
725  *	- init directory manager
726  *	- perform recovery and init the log manager
727  */
728 int
xfs_mountfs(struct xfs_mount * mp)729 xfs_mountfs(
730 	struct xfs_mount	*mp)
731 {
732 	struct xfs_sb		*sbp = &(mp->m_sb);
733 	struct xfs_inode	*rip;
734 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
735 	uint64_t		resblks;
736 	uint			quotamount = 0;
737 	uint			quotaflags = 0;
738 	int			error = 0;
739 
740 	xfs_sb_mount_common(mp, sbp);
741 
742 	/*
743 	 * Check for a mismatched features2 values.  Older kernels read & wrote
744 	 * into the wrong sb offset for sb_features2 on some platforms due to
745 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
746 	 * which made older superblock reading/writing routines swap it as a
747 	 * 64-bit value.
748 	 *
749 	 * For backwards compatibility, we make both slots equal.
750 	 *
751 	 * If we detect a mismatched field, we OR the set bits into the existing
752 	 * features2 field in case it has already been modified; we don't want
753 	 * to lose any features.  We then update the bad location with the ORed
754 	 * value so that older kernels will see any features2 flags. The
755 	 * superblock writeback code ensures the new sb_features2 is copied to
756 	 * sb_bad_features2 before it is logged or written to disk.
757 	 */
758 	if (xfs_sb_has_mismatched_features2(sbp)) {
759 		xfs_warn(mp, "correcting sb_features alignment problem");
760 		sbp->sb_features2 |= sbp->sb_bad_features2;
761 		mp->m_update_sb = true;
762 
763 		/*
764 		 * Re-check for ATTR2 in case it was found in bad_features2
765 		 * slot.
766 		 */
767 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
768 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
769 			mp->m_flags |= XFS_MOUNT_ATTR2;
770 	}
771 
772 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
773 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
774 		xfs_sb_version_removeattr2(&mp->m_sb);
775 		mp->m_update_sb = true;
776 
777 		/* update sb_versionnum for the clearing of the morebits */
778 		if (!sbp->sb_features2)
779 			mp->m_update_sb = true;
780 	}
781 
782 	/* always use v2 inodes by default now */
783 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
784 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
785 		mp->m_update_sb = true;
786 	}
787 
788 	/*
789 	 * If we were given new sunit/swidth options, do some basic validation
790 	 * checks and convert the incore dalign and swidth values to the
791 	 * same units (FSB) that everything else uses.  This /must/ happen
792 	 * before computing the inode geometry.
793 	 */
794 	error = xfs_validate_new_dalign(mp);
795 	if (error)
796 		goto out;
797 
798 	xfs_alloc_compute_maxlevels(mp);
799 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
800 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
801 	xfs_ialloc_setup_geometry(mp);
802 	xfs_rmapbt_compute_maxlevels(mp);
803 	xfs_refcountbt_compute_maxlevels(mp);
804 
805 	/*
806 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
807 	 * is NOT aligned turn off m_dalign since allocator alignment is within
808 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
809 	 * we must compute the free space and rmap btree geometry before doing
810 	 * this.
811 	 */
812 	error = xfs_update_alignment(mp);
813 	if (error)
814 		goto out;
815 
816 	/* enable fail_at_unmount as default */
817 	mp->m_fail_unmount = true;
818 
819 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
820 	if (error)
821 		goto out;
822 
823 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
824 			       &mp->m_kobj, "stats");
825 	if (error)
826 		goto out_remove_sysfs;
827 
828 	error = xfs_error_sysfs_init(mp);
829 	if (error)
830 		goto out_del_stats;
831 
832 	error = xfs_errortag_init(mp);
833 	if (error)
834 		goto out_remove_error_sysfs;
835 
836 	error = xfs_uuid_mount(mp);
837 	if (error)
838 		goto out_remove_errortag;
839 
840 	/*
841 	 * Set the minimum read and write sizes
842 	 */
843 	xfs_set_rw_sizes(mp);
844 
845 	/* set the low space thresholds for dynamic preallocation */
846 	xfs_set_low_space_thresholds(mp);
847 
848 	/*
849 	 * If enabled, sparse inode chunk alignment is expected to match the
850 	 * cluster size. Full inode chunk alignment must match the chunk size,
851 	 * but that is checked on sb read verification...
852 	 */
853 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
854 	    mp->m_sb.sb_spino_align !=
855 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
856 		xfs_warn(mp,
857 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
858 			 mp->m_sb.sb_spino_align,
859 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
860 		error = -EINVAL;
861 		goto out_remove_uuid;
862 	}
863 
864 	/*
865 	 * Check that the data (and log if separate) is an ok size.
866 	 */
867 	error = xfs_check_sizes(mp);
868 	if (error)
869 		goto out_remove_uuid;
870 
871 	/*
872 	 * Initialize realtime fields in the mount structure
873 	 */
874 	error = xfs_rtmount_init(mp);
875 	if (error) {
876 		xfs_warn(mp, "RT mount failed");
877 		goto out_remove_uuid;
878 	}
879 
880 	/*
881 	 *  Copies the low order bits of the timestamp and the randomly
882 	 *  set "sequence" number out of a UUID.
883 	 */
884 	mp->m_fixedfsid[0] =
885 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
886 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
887 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
888 
889 	error = xfs_da_mount(mp);
890 	if (error) {
891 		xfs_warn(mp, "Failed dir/attr init: %d", error);
892 		goto out_remove_uuid;
893 	}
894 
895 	/*
896 	 * Initialize the precomputed transaction reservations values.
897 	 */
898 	xfs_trans_init(mp);
899 
900 	/*
901 	 * Allocate and initialize the per-ag data.
902 	 */
903 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
904 	if (error) {
905 		xfs_warn(mp, "Failed per-ag init: %d", error);
906 		goto out_free_dir;
907 	}
908 
909 	if (!sbp->sb_logblocks) {
910 		xfs_warn(mp, "no log defined");
911 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
912 		error = -EFSCORRUPTED;
913 		goto out_free_perag;
914 	}
915 
916 	/*
917 	 * Log's mount-time initialization. The first part of recovery can place
918 	 * some items on the AIL, to be handled when recovery is finished or
919 	 * cancelled.
920 	 */
921 	error = xfs_log_mount(mp, mp->m_logdev_targp,
922 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
923 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
924 	if (error) {
925 		xfs_warn(mp, "log mount failed");
926 		goto out_fail_wait;
927 	}
928 
929 	/* Make sure the summary counts are ok. */
930 	error = xfs_check_summary_counts(mp);
931 	if (error)
932 		goto out_log_dealloc;
933 
934 	/*
935 	 * Get and sanity-check the root inode.
936 	 * Save the pointer to it in the mount structure.
937 	 */
938 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
939 			 XFS_ILOCK_EXCL, &rip);
940 	if (error) {
941 		xfs_warn(mp,
942 			"Failed to read root inode 0x%llx, error %d",
943 			sbp->sb_rootino, -error);
944 		goto out_log_dealloc;
945 	}
946 
947 	ASSERT(rip != NULL);
948 
949 	if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
950 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
951 			(unsigned long long)rip->i_ino);
952 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
953 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
954 				 mp);
955 		error = -EFSCORRUPTED;
956 		goto out_rele_rip;
957 	}
958 	mp->m_rootip = rip;	/* save it */
959 
960 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
961 
962 	/*
963 	 * Initialize realtime inode pointers in the mount structure
964 	 */
965 	error = xfs_rtmount_inodes(mp);
966 	if (error) {
967 		/*
968 		 * Free up the root inode.
969 		 */
970 		xfs_warn(mp, "failed to read RT inodes");
971 		goto out_rele_rip;
972 	}
973 
974 	/*
975 	 * If this is a read-only mount defer the superblock updates until
976 	 * the next remount into writeable mode.  Otherwise we would never
977 	 * perform the update e.g. for the root filesystem.
978 	 */
979 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
980 		error = xfs_sync_sb(mp, false);
981 		if (error) {
982 			xfs_warn(mp, "failed to write sb changes");
983 			goto out_rtunmount;
984 		}
985 	}
986 
987 	/*
988 	 * Initialise the XFS quota management subsystem for this mount
989 	 */
990 	if (XFS_IS_QUOTA_RUNNING(mp)) {
991 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
992 		if (error)
993 			goto out_rtunmount;
994 	} else {
995 		ASSERT(!XFS_IS_QUOTA_ON(mp));
996 
997 		/*
998 		 * If a file system had quotas running earlier, but decided to
999 		 * mount without -o uquota/pquota/gquota options, revoke the
1000 		 * quotachecked license.
1001 		 */
1002 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1003 			xfs_notice(mp, "resetting quota flags");
1004 			error = xfs_mount_reset_sbqflags(mp);
1005 			if (error)
1006 				goto out_rtunmount;
1007 		}
1008 	}
1009 
1010 	/*
1011 	 * Finish recovering the file system.  This part needed to be delayed
1012 	 * until after the root and real-time bitmap inodes were consistently
1013 	 * read in.
1014 	 */
1015 	error = xfs_log_mount_finish(mp);
1016 	if (error) {
1017 		xfs_warn(mp, "log mount finish failed");
1018 		goto out_rtunmount;
1019 	}
1020 
1021 	/*
1022 	 * Now the log is fully replayed, we can transition to full read-only
1023 	 * mode for read-only mounts. This will sync all the metadata and clean
1024 	 * the log so that the recovery we just performed does not have to be
1025 	 * replayed again on the next mount.
1026 	 *
1027 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
1028 	 * semantically identical operations.
1029 	 */
1030 	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
1031 							XFS_MOUNT_RDONLY) {
1032 		xfs_quiesce_attr(mp);
1033 	}
1034 
1035 	/*
1036 	 * Complete the quota initialisation, post-log-replay component.
1037 	 */
1038 	if (quotamount) {
1039 		ASSERT(mp->m_qflags == 0);
1040 		mp->m_qflags = quotaflags;
1041 
1042 		xfs_qm_mount_quotas(mp);
1043 	}
1044 
1045 	/*
1046 	 * Now we are mounted, reserve a small amount of unused space for
1047 	 * privileged transactions. This is needed so that transaction
1048 	 * space required for critical operations can dip into this pool
1049 	 * when at ENOSPC. This is needed for operations like create with
1050 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1051 	 * are not allowed to use this reserved space.
1052 	 *
1053 	 * This may drive us straight to ENOSPC on mount, but that implies
1054 	 * we were already there on the last unmount. Warn if this occurs.
1055 	 */
1056 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1057 		resblks = xfs_default_resblks(mp);
1058 		error = xfs_reserve_blocks(mp, &resblks, NULL);
1059 		if (error)
1060 			xfs_warn(mp,
1061 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1062 
1063 		/* Recover any CoW blocks that never got remapped. */
1064 		error = xfs_reflink_recover_cow(mp);
1065 		if (error) {
1066 			xfs_err(mp,
1067 	"Error %d recovering leftover CoW allocations.", error);
1068 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1069 			goto out_quota;
1070 		}
1071 
1072 		/* Reserve AG blocks for future btree expansion. */
1073 		error = xfs_fs_reserve_ag_blocks(mp);
1074 		if (error && error != -ENOSPC)
1075 			goto out_agresv;
1076 	}
1077 
1078 	return 0;
1079 
1080  out_agresv:
1081 	xfs_fs_unreserve_ag_blocks(mp);
1082  out_quota:
1083 	xfs_qm_unmount_quotas(mp);
1084  out_rtunmount:
1085 	xfs_rtunmount_inodes(mp);
1086  out_rele_rip:
1087 	xfs_irele(rip);
1088 	/* Clean out dquots that might be in memory after quotacheck. */
1089 	xfs_qm_unmount(mp);
1090 	/*
1091 	 * Flush all inode reclamation work and flush the log.
1092 	 * We have to do this /after/ rtunmount and qm_unmount because those
1093 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1094 	 *
1095 	 * This is slightly different from the unmountfs call sequence
1096 	 * because we could be tearing down a partially set up mount.  In
1097 	 * particular, if log_mount_finish fails we bail out without calling
1098 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1099 	 * quota inodes.
1100 	 */
1101 	xfs_unmount_flush_inodes(mp);
1102  out_log_dealloc:
1103 	xfs_log_mount_cancel(mp);
1104  out_fail_wait:
1105 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1106 		xfs_wait_buftarg(mp->m_logdev_targp);
1107 	xfs_wait_buftarg(mp->m_ddev_targp);
1108  out_free_perag:
1109 	xfs_free_perag(mp);
1110  out_free_dir:
1111 	xfs_da_unmount(mp);
1112  out_remove_uuid:
1113 	xfs_uuid_unmount(mp);
1114  out_remove_errortag:
1115 	xfs_errortag_del(mp);
1116  out_remove_error_sysfs:
1117 	xfs_error_sysfs_del(mp);
1118  out_del_stats:
1119 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1120  out_remove_sysfs:
1121 	xfs_sysfs_del(&mp->m_kobj);
1122  out:
1123 	return error;
1124 }
1125 
1126 /*
1127  * This flushes out the inodes,dquots and the superblock, unmounts the
1128  * log and makes sure that incore structures are freed.
1129  */
1130 void
xfs_unmountfs(struct xfs_mount * mp)1131 xfs_unmountfs(
1132 	struct xfs_mount	*mp)
1133 {
1134 	uint64_t		resblks;
1135 	int			error;
1136 
1137 	xfs_stop_block_reaping(mp);
1138 	xfs_fs_unreserve_ag_blocks(mp);
1139 	xfs_qm_unmount_quotas(mp);
1140 	xfs_rtunmount_inodes(mp);
1141 	xfs_irele(mp->m_rootip);
1142 
1143 	xfs_unmount_flush_inodes(mp);
1144 
1145 	xfs_qm_unmount(mp);
1146 
1147 	/*
1148 	 * Unreserve any blocks we have so that when we unmount we don't account
1149 	 * the reserved free space as used. This is really only necessary for
1150 	 * lazy superblock counting because it trusts the incore superblock
1151 	 * counters to be absolutely correct on clean unmount.
1152 	 *
1153 	 * We don't bother correcting this elsewhere for lazy superblock
1154 	 * counting because on mount of an unclean filesystem we reconstruct the
1155 	 * correct counter value and this is irrelevant.
1156 	 *
1157 	 * For non-lazy counter filesystems, this doesn't matter at all because
1158 	 * we only every apply deltas to the superblock and hence the incore
1159 	 * value does not matter....
1160 	 */
1161 	resblks = 0;
1162 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1163 	if (error)
1164 		xfs_warn(mp, "Unable to free reserved block pool. "
1165 				"Freespace may not be correct on next mount.");
1166 
1167 	error = xfs_log_sbcount(mp);
1168 	if (error)
1169 		xfs_warn(mp, "Unable to update superblock counters. "
1170 				"Freespace may not be correct on next mount.");
1171 
1172 
1173 	xfs_log_unmount(mp);
1174 	xfs_da_unmount(mp);
1175 	xfs_uuid_unmount(mp);
1176 
1177 #if defined(DEBUG)
1178 	xfs_errortag_clearall(mp);
1179 #endif
1180 	xfs_free_perag(mp);
1181 
1182 	xfs_errortag_del(mp);
1183 	xfs_error_sysfs_del(mp);
1184 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1185 	xfs_sysfs_del(&mp->m_kobj);
1186 }
1187 
1188 /*
1189  * Determine whether modifications can proceed. The caller specifies the minimum
1190  * freeze level for which modifications should not be allowed. This allows
1191  * certain operations to proceed while the freeze sequence is in progress, if
1192  * necessary.
1193  */
1194 bool
xfs_fs_writable(struct xfs_mount * mp,int level)1195 xfs_fs_writable(
1196 	struct xfs_mount	*mp,
1197 	int			level)
1198 {
1199 	ASSERT(level > SB_UNFROZEN);
1200 	if ((mp->m_super->s_writers.frozen >= level) ||
1201 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1202 		return false;
1203 
1204 	return true;
1205 }
1206 
1207 /*
1208  * xfs_log_sbcount
1209  *
1210  * Sync the superblock counters to disk.
1211  *
1212  * Note this code can be called during the process of freezing, so we use the
1213  * transaction allocator that does not block when the transaction subsystem is
1214  * in its frozen state.
1215  */
1216 int
xfs_log_sbcount(xfs_mount_t * mp)1217 xfs_log_sbcount(xfs_mount_t *mp)
1218 {
1219 	if (!xfs_log_writable(mp))
1220 		return 0;
1221 
1222 	/*
1223 	 * we don't need to do this if we are updating the superblock
1224 	 * counters on every modification.
1225 	 */
1226 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1227 		return 0;
1228 
1229 	return xfs_sync_sb(mp, true);
1230 }
1231 
1232 /*
1233  * Deltas for the inode count are +/-64, hence we use a large batch size
1234  * of 128 so we don't need to take the counter lock on every update.
1235  */
1236 #define XFS_ICOUNT_BATCH	128
1237 int
xfs_mod_icount(struct xfs_mount * mp,int64_t delta)1238 xfs_mod_icount(
1239 	struct xfs_mount	*mp,
1240 	int64_t			delta)
1241 {
1242 	percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1243 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1244 		ASSERT(0);
1245 		percpu_counter_add(&mp->m_icount, -delta);
1246 		return -EINVAL;
1247 	}
1248 	return 0;
1249 }
1250 
1251 int
xfs_mod_ifree(struct xfs_mount * mp,int64_t delta)1252 xfs_mod_ifree(
1253 	struct xfs_mount	*mp,
1254 	int64_t			delta)
1255 {
1256 	percpu_counter_add(&mp->m_ifree, delta);
1257 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1258 		ASSERT(0);
1259 		percpu_counter_add(&mp->m_ifree, -delta);
1260 		return -EINVAL;
1261 	}
1262 	return 0;
1263 }
1264 
1265 /*
1266  * Deltas for the block count can vary from 1 to very large, but lock contention
1267  * only occurs on frequent small block count updates such as in the delayed
1268  * allocation path for buffered writes (page a time updates). Hence we set
1269  * a large batch count (1024) to minimise global counter updates except when
1270  * we get near to ENOSPC and we have to be very accurate with our updates.
1271  */
1272 #define XFS_FDBLOCKS_BATCH	1024
1273 int
xfs_mod_fdblocks(struct xfs_mount * mp,int64_t delta,bool rsvd)1274 xfs_mod_fdblocks(
1275 	struct xfs_mount	*mp,
1276 	int64_t			delta,
1277 	bool			rsvd)
1278 {
1279 	int64_t			lcounter;
1280 	long long		res_used;
1281 	s32			batch;
1282 
1283 	if (delta > 0) {
1284 		/*
1285 		 * If the reserve pool is depleted, put blocks back into it
1286 		 * first. Most of the time the pool is full.
1287 		 */
1288 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1289 			percpu_counter_add(&mp->m_fdblocks, delta);
1290 			return 0;
1291 		}
1292 
1293 		spin_lock(&mp->m_sb_lock);
1294 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1295 
1296 		if (res_used > delta) {
1297 			mp->m_resblks_avail += delta;
1298 		} else {
1299 			delta -= res_used;
1300 			mp->m_resblks_avail = mp->m_resblks;
1301 			percpu_counter_add(&mp->m_fdblocks, delta);
1302 		}
1303 		spin_unlock(&mp->m_sb_lock);
1304 		return 0;
1305 	}
1306 
1307 	/*
1308 	 * Taking blocks away, need to be more accurate the closer we
1309 	 * are to zero.
1310 	 *
1311 	 * If the counter has a value of less than 2 * max batch size,
1312 	 * then make everything serialise as we are real close to
1313 	 * ENOSPC.
1314 	 */
1315 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1316 				     XFS_FDBLOCKS_BATCH) < 0)
1317 		batch = 1;
1318 	else
1319 		batch = XFS_FDBLOCKS_BATCH;
1320 
1321 	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1322 	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1323 				     XFS_FDBLOCKS_BATCH) >= 0) {
1324 		/* we had space! */
1325 		return 0;
1326 	}
1327 
1328 	/*
1329 	 * lock up the sb for dipping into reserves before releasing the space
1330 	 * that took us to ENOSPC.
1331 	 */
1332 	spin_lock(&mp->m_sb_lock);
1333 	percpu_counter_add(&mp->m_fdblocks, -delta);
1334 	if (!rsvd)
1335 		goto fdblocks_enospc;
1336 
1337 	lcounter = (long long)mp->m_resblks_avail + delta;
1338 	if (lcounter >= 0) {
1339 		mp->m_resblks_avail = lcounter;
1340 		spin_unlock(&mp->m_sb_lock);
1341 		return 0;
1342 	}
1343 	printk_once(KERN_WARNING
1344 		"Filesystem \"%s\": reserve blocks depleted! "
1345 		"Consider increasing reserve pool size.",
1346 		mp->m_fsname);
1347 fdblocks_enospc:
1348 	spin_unlock(&mp->m_sb_lock);
1349 	return -ENOSPC;
1350 }
1351 
1352 int
xfs_mod_frextents(struct xfs_mount * mp,int64_t delta)1353 xfs_mod_frextents(
1354 	struct xfs_mount	*mp,
1355 	int64_t			delta)
1356 {
1357 	int64_t			lcounter;
1358 	int			ret = 0;
1359 
1360 	spin_lock(&mp->m_sb_lock);
1361 	lcounter = mp->m_sb.sb_frextents + delta;
1362 	if (lcounter < 0)
1363 		ret = -ENOSPC;
1364 	else
1365 		mp->m_sb.sb_frextents = lcounter;
1366 	spin_unlock(&mp->m_sb_lock);
1367 	return ret;
1368 }
1369 
1370 /*
1371  * xfs_getsb() is called to obtain the buffer for the superblock.
1372  * The buffer is returned locked and read in from disk.
1373  * The buffer should be released with a call to xfs_brelse().
1374  */
1375 struct xfs_buf *
xfs_getsb(struct xfs_mount * mp)1376 xfs_getsb(
1377 	struct xfs_mount	*mp)
1378 {
1379 	struct xfs_buf		*bp = mp->m_sb_bp;
1380 
1381 	xfs_buf_lock(bp);
1382 	xfs_buf_hold(bp);
1383 	ASSERT(bp->b_flags & XBF_DONE);
1384 	return bp;
1385 }
1386 
1387 /*
1388  * Used to free the superblock along various error paths.
1389  */
1390 void
xfs_freesb(struct xfs_mount * mp)1391 xfs_freesb(
1392 	struct xfs_mount	*mp)
1393 {
1394 	struct xfs_buf		*bp = mp->m_sb_bp;
1395 
1396 	xfs_buf_lock(bp);
1397 	mp->m_sb_bp = NULL;
1398 	xfs_buf_relse(bp);
1399 }
1400 
1401 /*
1402  * If the underlying (data/log/rt) device is readonly, there are some
1403  * operations that cannot proceed.
1404  */
1405 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1406 xfs_dev_is_read_only(
1407 	struct xfs_mount	*mp,
1408 	char			*message)
1409 {
1410 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1411 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1412 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1413 		xfs_notice(mp, "%s required on read-only device.", message);
1414 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1415 		return -EROFS;
1416 	}
1417 	return 0;
1418 }
1419 
1420 /* Force the summary counters to be recalculated at next mount. */
1421 void
xfs_force_summary_recalc(struct xfs_mount * mp)1422 xfs_force_summary_recalc(
1423 	struct xfs_mount	*mp)
1424 {
1425 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1426 		return;
1427 
1428 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1429 }
1430 
1431 /*
1432  * Update the in-core delayed block counter.
1433  *
1434  * We prefer to update the counter without having to take a spinlock for every
1435  * counter update (i.e. batching).  Each change to delayed allocation
1436  * reservations can change can easily exceed the default percpu counter
1437  * batching, so we use a larger batch factor here.
1438  *
1439  * Note that we don't currently have any callers requiring fast summation
1440  * (e.g. percpu_counter_read) so we can use a big batch value here.
1441  */
1442 #define XFS_DELALLOC_BATCH	(4096)
1443 void
xfs_mod_delalloc(struct xfs_mount * mp,int64_t delta)1444 xfs_mod_delalloc(
1445 	struct xfs_mount	*mp,
1446 	int64_t			delta)
1447 {
1448 	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1449 			XFS_DELALLOC_BATCH);
1450 }
1451