1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * x_tables core - Backend for {ip,ip6,arp}_tables
4 *
5 * Copyright (C) 2006-2006 Harald Welte <laforge@netfilter.org>
6 * Copyright (C) 2006-2012 Patrick McHardy <kaber@trash.net>
7 *
8 * Based on existing ip_tables code which is
9 * Copyright (C) 1999 Paul `Rusty' Russell & Michael J. Neuling
10 * Copyright (C) 2000-2005 Netfilter Core Team <coreteam@netfilter.org>
11 */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/socket.h>
16 #include <linux/net.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/string.h>
20 #include <linux/vmalloc.h>
21 #include <linux/mutex.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/audit.h>
25 #include <linux/user_namespace.h>
26 #include <net/net_namespace.h>
27
28 #include <linux/netfilter/x_tables.h>
29 #include <linux/netfilter_arp.h>
30 #include <linux/netfilter_ipv4/ip_tables.h>
31 #include <linux/netfilter_ipv6/ip6_tables.h>
32 #include <linux/netfilter_arp/arp_tables.h>
33
34 MODULE_LICENSE("GPL");
35 MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>");
36 MODULE_DESCRIPTION("{ip,ip6,arp,eb}_tables backend module");
37
38 #define XT_PCPU_BLOCK_SIZE 4096
39 #define XT_MAX_TABLE_SIZE (512 * 1024 * 1024)
40
41 struct compat_delta {
42 unsigned int offset; /* offset in kernel */
43 int delta; /* delta in 32bit user land */
44 };
45
46 struct xt_af {
47 struct mutex mutex;
48 struct list_head match;
49 struct list_head target;
50 #ifdef CONFIG_COMPAT
51 struct mutex compat_mutex;
52 struct compat_delta *compat_tab;
53 unsigned int number; /* number of slots in compat_tab[] */
54 unsigned int cur; /* number of used slots in compat_tab[] */
55 #endif
56 };
57
58 static struct xt_af *xt;
59
60 static const char *const xt_prefix[NFPROTO_NUMPROTO] = {
61 [NFPROTO_UNSPEC] = "x",
62 [NFPROTO_IPV4] = "ip",
63 [NFPROTO_ARP] = "arp",
64 [NFPROTO_BRIDGE] = "eb",
65 [NFPROTO_IPV6] = "ip6",
66 };
67
68 /* Registration hooks for targets. */
xt_register_target(struct xt_target * target)69 int xt_register_target(struct xt_target *target)
70 {
71 u_int8_t af = target->family;
72
73 mutex_lock(&xt[af].mutex);
74 list_add(&target->list, &xt[af].target);
75 mutex_unlock(&xt[af].mutex);
76 return 0;
77 }
78 EXPORT_SYMBOL(xt_register_target);
79
80 void
xt_unregister_target(struct xt_target * target)81 xt_unregister_target(struct xt_target *target)
82 {
83 u_int8_t af = target->family;
84
85 mutex_lock(&xt[af].mutex);
86 list_del(&target->list);
87 mutex_unlock(&xt[af].mutex);
88 }
89 EXPORT_SYMBOL(xt_unregister_target);
90
91 int
xt_register_targets(struct xt_target * target,unsigned int n)92 xt_register_targets(struct xt_target *target, unsigned int n)
93 {
94 unsigned int i;
95 int err = 0;
96
97 for (i = 0; i < n; i++) {
98 err = xt_register_target(&target[i]);
99 if (err)
100 goto err;
101 }
102 return err;
103
104 err:
105 if (i > 0)
106 xt_unregister_targets(target, i);
107 return err;
108 }
109 EXPORT_SYMBOL(xt_register_targets);
110
111 void
xt_unregister_targets(struct xt_target * target,unsigned int n)112 xt_unregister_targets(struct xt_target *target, unsigned int n)
113 {
114 while (n-- > 0)
115 xt_unregister_target(&target[n]);
116 }
117 EXPORT_SYMBOL(xt_unregister_targets);
118
xt_register_match(struct xt_match * match)119 int xt_register_match(struct xt_match *match)
120 {
121 u_int8_t af = match->family;
122
123 mutex_lock(&xt[af].mutex);
124 list_add(&match->list, &xt[af].match);
125 mutex_unlock(&xt[af].mutex);
126 return 0;
127 }
128 EXPORT_SYMBOL(xt_register_match);
129
130 void
xt_unregister_match(struct xt_match * match)131 xt_unregister_match(struct xt_match *match)
132 {
133 u_int8_t af = match->family;
134
135 mutex_lock(&xt[af].mutex);
136 list_del(&match->list);
137 mutex_unlock(&xt[af].mutex);
138 }
139 EXPORT_SYMBOL(xt_unregister_match);
140
141 int
xt_register_matches(struct xt_match * match,unsigned int n)142 xt_register_matches(struct xt_match *match, unsigned int n)
143 {
144 unsigned int i;
145 int err = 0;
146
147 for (i = 0; i < n; i++) {
148 err = xt_register_match(&match[i]);
149 if (err)
150 goto err;
151 }
152 return err;
153
154 err:
155 if (i > 0)
156 xt_unregister_matches(match, i);
157 return err;
158 }
159 EXPORT_SYMBOL(xt_register_matches);
160
161 void
xt_unregister_matches(struct xt_match * match,unsigned int n)162 xt_unregister_matches(struct xt_match *match, unsigned int n)
163 {
164 while (n-- > 0)
165 xt_unregister_match(&match[n]);
166 }
167 EXPORT_SYMBOL(xt_unregister_matches);
168
169
170 /*
171 * These are weird, but module loading must not be done with mutex
172 * held (since they will register), and we have to have a single
173 * function to use.
174 */
175
176 /* Find match, grabs ref. Returns ERR_PTR() on error. */
xt_find_match(u8 af,const char * name,u8 revision)177 struct xt_match *xt_find_match(u8 af, const char *name, u8 revision)
178 {
179 struct xt_match *m;
180 int err = -ENOENT;
181
182 if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
183 return ERR_PTR(-EINVAL);
184
185 mutex_lock(&xt[af].mutex);
186 list_for_each_entry(m, &xt[af].match, list) {
187 if (strcmp(m->name, name) == 0) {
188 if (m->revision == revision) {
189 if (try_module_get(m->me)) {
190 mutex_unlock(&xt[af].mutex);
191 return m;
192 }
193 } else
194 err = -EPROTOTYPE; /* Found something. */
195 }
196 }
197 mutex_unlock(&xt[af].mutex);
198
199 if (af != NFPROTO_UNSPEC)
200 /* Try searching again in the family-independent list */
201 return xt_find_match(NFPROTO_UNSPEC, name, revision);
202
203 return ERR_PTR(err);
204 }
205 EXPORT_SYMBOL(xt_find_match);
206
207 struct xt_match *
xt_request_find_match(uint8_t nfproto,const char * name,uint8_t revision)208 xt_request_find_match(uint8_t nfproto, const char *name, uint8_t revision)
209 {
210 struct xt_match *match;
211
212 if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
213 return ERR_PTR(-EINVAL);
214
215 match = xt_find_match(nfproto, name, revision);
216 if (IS_ERR(match)) {
217 request_module("%st_%s", xt_prefix[nfproto], name);
218 match = xt_find_match(nfproto, name, revision);
219 }
220
221 return match;
222 }
223 EXPORT_SYMBOL_GPL(xt_request_find_match);
224
225 /* Find target, grabs ref. Returns ERR_PTR() on error. */
xt_find_target(u8 af,const char * name,u8 revision)226 static struct xt_target *xt_find_target(u8 af, const char *name, u8 revision)
227 {
228 struct xt_target *t;
229 int err = -ENOENT;
230
231 if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
232 return ERR_PTR(-EINVAL);
233
234 mutex_lock(&xt[af].mutex);
235 list_for_each_entry(t, &xt[af].target, list) {
236 if (strcmp(t->name, name) == 0) {
237 if (t->revision == revision) {
238 if (try_module_get(t->me)) {
239 mutex_unlock(&xt[af].mutex);
240 return t;
241 }
242 } else
243 err = -EPROTOTYPE; /* Found something. */
244 }
245 }
246 mutex_unlock(&xt[af].mutex);
247
248 if (af != NFPROTO_UNSPEC)
249 /* Try searching again in the family-independent list */
250 return xt_find_target(NFPROTO_UNSPEC, name, revision);
251
252 return ERR_PTR(err);
253 }
254
xt_request_find_target(u8 af,const char * name,u8 revision)255 struct xt_target *xt_request_find_target(u8 af, const char *name, u8 revision)
256 {
257 struct xt_target *target;
258
259 if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
260 return ERR_PTR(-EINVAL);
261
262 target = xt_find_target(af, name, revision);
263 if (IS_ERR(target)) {
264 request_module("%st_%s", xt_prefix[af], name);
265 target = xt_find_target(af, name, revision);
266 }
267
268 return target;
269 }
270 EXPORT_SYMBOL_GPL(xt_request_find_target);
271
272
xt_obj_to_user(u16 __user * psize,u16 size,void __user * pname,const char * name,u8 __user * prev,u8 rev)273 static int xt_obj_to_user(u16 __user *psize, u16 size,
274 void __user *pname, const char *name,
275 u8 __user *prev, u8 rev)
276 {
277 if (put_user(size, psize))
278 return -EFAULT;
279 if (copy_to_user(pname, name, strlen(name) + 1))
280 return -EFAULT;
281 if (put_user(rev, prev))
282 return -EFAULT;
283
284 return 0;
285 }
286
287 #define XT_OBJ_TO_USER(U, K, TYPE, C_SIZE) \
288 xt_obj_to_user(&U->u.TYPE##_size, C_SIZE ? : K->u.TYPE##_size, \
289 U->u.user.name, K->u.kernel.TYPE->name, \
290 &U->u.user.revision, K->u.kernel.TYPE->revision)
291
xt_data_to_user(void __user * dst,const void * src,int usersize,int size,int aligned_size)292 int xt_data_to_user(void __user *dst, const void *src,
293 int usersize, int size, int aligned_size)
294 {
295 usersize = usersize ? : size;
296 if (copy_to_user(dst, src, usersize))
297 return -EFAULT;
298 if (usersize != aligned_size &&
299 clear_user(dst + usersize, aligned_size - usersize))
300 return -EFAULT;
301
302 return 0;
303 }
304 EXPORT_SYMBOL_GPL(xt_data_to_user);
305
306 #define XT_DATA_TO_USER(U, K, TYPE) \
307 xt_data_to_user(U->data, K->data, \
308 K->u.kernel.TYPE->usersize, \
309 K->u.kernel.TYPE->TYPE##size, \
310 XT_ALIGN(K->u.kernel.TYPE->TYPE##size))
311
xt_match_to_user(const struct xt_entry_match * m,struct xt_entry_match __user * u)312 int xt_match_to_user(const struct xt_entry_match *m,
313 struct xt_entry_match __user *u)
314 {
315 return XT_OBJ_TO_USER(u, m, match, 0) ||
316 XT_DATA_TO_USER(u, m, match);
317 }
318 EXPORT_SYMBOL_GPL(xt_match_to_user);
319
xt_target_to_user(const struct xt_entry_target * t,struct xt_entry_target __user * u)320 int xt_target_to_user(const struct xt_entry_target *t,
321 struct xt_entry_target __user *u)
322 {
323 return XT_OBJ_TO_USER(u, t, target, 0) ||
324 XT_DATA_TO_USER(u, t, target);
325 }
326 EXPORT_SYMBOL_GPL(xt_target_to_user);
327
match_revfn(u8 af,const char * name,u8 revision,int * bestp)328 static int match_revfn(u8 af, const char *name, u8 revision, int *bestp)
329 {
330 const struct xt_match *m;
331 int have_rev = 0;
332
333 mutex_lock(&xt[af].mutex);
334 list_for_each_entry(m, &xt[af].match, list) {
335 if (strcmp(m->name, name) == 0) {
336 if (m->revision > *bestp)
337 *bestp = m->revision;
338 if (m->revision == revision)
339 have_rev = 1;
340 }
341 }
342 mutex_unlock(&xt[af].mutex);
343
344 if (af != NFPROTO_UNSPEC && !have_rev)
345 return match_revfn(NFPROTO_UNSPEC, name, revision, bestp);
346
347 return have_rev;
348 }
349
target_revfn(u8 af,const char * name,u8 revision,int * bestp)350 static int target_revfn(u8 af, const char *name, u8 revision, int *bestp)
351 {
352 const struct xt_target *t;
353 int have_rev = 0;
354
355 mutex_lock(&xt[af].mutex);
356 list_for_each_entry(t, &xt[af].target, list) {
357 if (strcmp(t->name, name) == 0) {
358 if (t->revision > *bestp)
359 *bestp = t->revision;
360 if (t->revision == revision)
361 have_rev = 1;
362 }
363 }
364 mutex_unlock(&xt[af].mutex);
365
366 if (af != NFPROTO_UNSPEC && !have_rev)
367 return target_revfn(NFPROTO_UNSPEC, name, revision, bestp);
368
369 return have_rev;
370 }
371
372 /* Returns true or false (if no such extension at all) */
xt_find_revision(u8 af,const char * name,u8 revision,int target,int * err)373 int xt_find_revision(u8 af, const char *name, u8 revision, int target,
374 int *err)
375 {
376 int have_rev, best = -1;
377
378 if (target == 1)
379 have_rev = target_revfn(af, name, revision, &best);
380 else
381 have_rev = match_revfn(af, name, revision, &best);
382
383 /* Nothing at all? Return 0 to try loading module. */
384 if (best == -1) {
385 *err = -ENOENT;
386 return 0;
387 }
388
389 *err = best;
390 if (!have_rev)
391 *err = -EPROTONOSUPPORT;
392 return 1;
393 }
394 EXPORT_SYMBOL_GPL(xt_find_revision);
395
396 static char *
textify_hooks(char * buf,size_t size,unsigned int mask,uint8_t nfproto)397 textify_hooks(char *buf, size_t size, unsigned int mask, uint8_t nfproto)
398 {
399 static const char *const inetbr_names[] = {
400 "PREROUTING", "INPUT", "FORWARD",
401 "OUTPUT", "POSTROUTING", "BROUTING",
402 };
403 static const char *const arp_names[] = {
404 "INPUT", "FORWARD", "OUTPUT",
405 };
406 const char *const *names;
407 unsigned int i, max;
408 char *p = buf;
409 bool np = false;
410 int res;
411
412 names = (nfproto == NFPROTO_ARP) ? arp_names : inetbr_names;
413 max = (nfproto == NFPROTO_ARP) ? ARRAY_SIZE(arp_names) :
414 ARRAY_SIZE(inetbr_names);
415 *p = '\0';
416 for (i = 0; i < max; ++i) {
417 if (!(mask & (1 << i)))
418 continue;
419 res = snprintf(p, size, "%s%s", np ? "/" : "", names[i]);
420 if (res > 0) {
421 size -= res;
422 p += res;
423 }
424 np = true;
425 }
426
427 return buf;
428 }
429
430 /**
431 * xt_check_proc_name - check that name is suitable for /proc file creation
432 *
433 * @name: file name candidate
434 * @size: length of buffer
435 *
436 * some x_tables modules wish to create a file in /proc.
437 * This function makes sure that the name is suitable for this
438 * purpose, it checks that name is NUL terminated and isn't a 'special'
439 * name, like "..".
440 *
441 * returns negative number on error or 0 if name is useable.
442 */
xt_check_proc_name(const char * name,unsigned int size)443 int xt_check_proc_name(const char *name, unsigned int size)
444 {
445 if (name[0] == '\0')
446 return -EINVAL;
447
448 if (strnlen(name, size) == size)
449 return -ENAMETOOLONG;
450
451 if (strcmp(name, ".") == 0 ||
452 strcmp(name, "..") == 0 ||
453 strchr(name, '/'))
454 return -EINVAL;
455
456 return 0;
457 }
458 EXPORT_SYMBOL(xt_check_proc_name);
459
xt_check_match(struct xt_mtchk_param * par,unsigned int size,u16 proto,bool inv_proto)460 int xt_check_match(struct xt_mtchk_param *par,
461 unsigned int size, u16 proto, bool inv_proto)
462 {
463 int ret;
464
465 if (XT_ALIGN(par->match->matchsize) != size &&
466 par->match->matchsize != -1) {
467 /*
468 * ebt_among is exempt from centralized matchsize checking
469 * because it uses a dynamic-size data set.
470 */
471 pr_err_ratelimited("%s_tables: %s.%u match: invalid size %u (kernel) != (user) %u\n",
472 xt_prefix[par->family], par->match->name,
473 par->match->revision,
474 XT_ALIGN(par->match->matchsize), size);
475 return -EINVAL;
476 }
477 if (par->match->table != NULL &&
478 strcmp(par->match->table, par->table) != 0) {
479 pr_info_ratelimited("%s_tables: %s match: only valid in %s table, not %s\n",
480 xt_prefix[par->family], par->match->name,
481 par->match->table, par->table);
482 return -EINVAL;
483 }
484 if (par->match->hooks && (par->hook_mask & ~par->match->hooks) != 0) {
485 char used[64], allow[64];
486
487 pr_info_ratelimited("%s_tables: %s match: used from hooks %s, but only valid from %s\n",
488 xt_prefix[par->family], par->match->name,
489 textify_hooks(used, sizeof(used),
490 par->hook_mask, par->family),
491 textify_hooks(allow, sizeof(allow),
492 par->match->hooks,
493 par->family));
494 return -EINVAL;
495 }
496 if (par->match->proto && (par->match->proto != proto || inv_proto)) {
497 pr_info_ratelimited("%s_tables: %s match: only valid for protocol %u\n",
498 xt_prefix[par->family], par->match->name,
499 par->match->proto);
500 return -EINVAL;
501 }
502 if (par->match->checkentry != NULL) {
503 ret = par->match->checkentry(par);
504 if (ret < 0)
505 return ret;
506 else if (ret > 0)
507 /* Flag up potential errors. */
508 return -EIO;
509 }
510 return 0;
511 }
512 EXPORT_SYMBOL_GPL(xt_check_match);
513
514 /** xt_check_entry_match - check that matches end before start of target
515 *
516 * @match: beginning of xt_entry_match
517 * @target: beginning of this rules target (alleged end of matches)
518 * @alignment: alignment requirement of match structures
519 *
520 * Validates that all matches add up to the beginning of the target,
521 * and that each match covers at least the base structure size.
522 *
523 * Return: 0 on success, negative errno on failure.
524 */
xt_check_entry_match(const char * match,const char * target,const size_t alignment)525 static int xt_check_entry_match(const char *match, const char *target,
526 const size_t alignment)
527 {
528 const struct xt_entry_match *pos;
529 int length = target - match;
530
531 if (length == 0) /* no matches */
532 return 0;
533
534 pos = (struct xt_entry_match *)match;
535 do {
536 if ((unsigned long)pos % alignment)
537 return -EINVAL;
538
539 if (length < (int)sizeof(struct xt_entry_match))
540 return -EINVAL;
541
542 if (pos->u.match_size < sizeof(struct xt_entry_match))
543 return -EINVAL;
544
545 if (pos->u.match_size > length)
546 return -EINVAL;
547
548 length -= pos->u.match_size;
549 pos = ((void *)((char *)(pos) + (pos)->u.match_size));
550 } while (length > 0);
551
552 return 0;
553 }
554
555 /** xt_check_table_hooks - check hook entry points are sane
556 *
557 * @info xt_table_info to check
558 * @valid_hooks - hook entry points that we can enter from
559 *
560 * Validates that the hook entry and underflows points are set up.
561 *
562 * Return: 0 on success, negative errno on failure.
563 */
xt_check_table_hooks(const struct xt_table_info * info,unsigned int valid_hooks)564 int xt_check_table_hooks(const struct xt_table_info *info, unsigned int valid_hooks)
565 {
566 const char *err = "unsorted underflow";
567 unsigned int i, max_uflow, max_entry;
568 bool check_hooks = false;
569
570 BUILD_BUG_ON(ARRAY_SIZE(info->hook_entry) != ARRAY_SIZE(info->underflow));
571
572 max_entry = 0;
573 max_uflow = 0;
574
575 for (i = 0; i < ARRAY_SIZE(info->hook_entry); i++) {
576 if (!(valid_hooks & (1 << i)))
577 continue;
578
579 if (info->hook_entry[i] == 0xFFFFFFFF)
580 return -EINVAL;
581 if (info->underflow[i] == 0xFFFFFFFF)
582 return -EINVAL;
583
584 if (check_hooks) {
585 if (max_uflow > info->underflow[i])
586 goto error;
587
588 if (max_uflow == info->underflow[i]) {
589 err = "duplicate underflow";
590 goto error;
591 }
592 if (max_entry > info->hook_entry[i]) {
593 err = "unsorted entry";
594 goto error;
595 }
596 if (max_entry == info->hook_entry[i]) {
597 err = "duplicate entry";
598 goto error;
599 }
600 }
601 max_entry = info->hook_entry[i];
602 max_uflow = info->underflow[i];
603 check_hooks = true;
604 }
605
606 return 0;
607 error:
608 pr_err_ratelimited("%s at hook %d\n", err, i);
609 return -EINVAL;
610 }
611 EXPORT_SYMBOL(xt_check_table_hooks);
612
verdict_ok(int verdict)613 static bool verdict_ok(int verdict)
614 {
615 if (verdict > 0)
616 return true;
617
618 if (verdict < 0) {
619 int v = -verdict - 1;
620
621 if (verdict == XT_RETURN)
622 return true;
623
624 switch (v) {
625 case NF_ACCEPT: return true;
626 case NF_DROP: return true;
627 case NF_QUEUE: return true;
628 default:
629 break;
630 }
631
632 return false;
633 }
634
635 return false;
636 }
637
error_tg_ok(unsigned int usersize,unsigned int kernsize,const char * msg,unsigned int msglen)638 static bool error_tg_ok(unsigned int usersize, unsigned int kernsize,
639 const char *msg, unsigned int msglen)
640 {
641 return usersize == kernsize && strnlen(msg, msglen) < msglen;
642 }
643
644 #ifdef CONFIG_COMPAT
xt_compat_add_offset(u_int8_t af,unsigned int offset,int delta)645 int xt_compat_add_offset(u_int8_t af, unsigned int offset, int delta)
646 {
647 struct xt_af *xp = &xt[af];
648
649 WARN_ON(!mutex_is_locked(&xt[af].compat_mutex));
650
651 if (WARN_ON(!xp->compat_tab))
652 return -ENOMEM;
653
654 if (xp->cur >= xp->number)
655 return -EINVAL;
656
657 if (xp->cur)
658 delta += xp->compat_tab[xp->cur - 1].delta;
659 xp->compat_tab[xp->cur].offset = offset;
660 xp->compat_tab[xp->cur].delta = delta;
661 xp->cur++;
662 return 0;
663 }
664 EXPORT_SYMBOL_GPL(xt_compat_add_offset);
665
xt_compat_flush_offsets(u_int8_t af)666 void xt_compat_flush_offsets(u_int8_t af)
667 {
668 WARN_ON(!mutex_is_locked(&xt[af].compat_mutex));
669
670 if (xt[af].compat_tab) {
671 vfree(xt[af].compat_tab);
672 xt[af].compat_tab = NULL;
673 xt[af].number = 0;
674 xt[af].cur = 0;
675 }
676 }
677 EXPORT_SYMBOL_GPL(xt_compat_flush_offsets);
678
xt_compat_calc_jump(u_int8_t af,unsigned int offset)679 int xt_compat_calc_jump(u_int8_t af, unsigned int offset)
680 {
681 struct compat_delta *tmp = xt[af].compat_tab;
682 int mid, left = 0, right = xt[af].cur - 1;
683
684 while (left <= right) {
685 mid = (left + right) >> 1;
686 if (offset > tmp[mid].offset)
687 left = mid + 1;
688 else if (offset < tmp[mid].offset)
689 right = mid - 1;
690 else
691 return mid ? tmp[mid - 1].delta : 0;
692 }
693 return left ? tmp[left - 1].delta : 0;
694 }
695 EXPORT_SYMBOL_GPL(xt_compat_calc_jump);
696
xt_compat_init_offsets(u8 af,unsigned int number)697 int xt_compat_init_offsets(u8 af, unsigned int number)
698 {
699 size_t mem;
700
701 WARN_ON(!mutex_is_locked(&xt[af].compat_mutex));
702
703 if (!number || number > (INT_MAX / sizeof(struct compat_delta)))
704 return -EINVAL;
705
706 if (WARN_ON(xt[af].compat_tab))
707 return -EINVAL;
708
709 mem = sizeof(struct compat_delta) * number;
710 if (mem > XT_MAX_TABLE_SIZE)
711 return -ENOMEM;
712
713 xt[af].compat_tab = vmalloc(mem);
714 if (!xt[af].compat_tab)
715 return -ENOMEM;
716
717 xt[af].number = number;
718 xt[af].cur = 0;
719
720 return 0;
721 }
722 EXPORT_SYMBOL(xt_compat_init_offsets);
723
xt_compat_match_offset(const struct xt_match * match)724 int xt_compat_match_offset(const struct xt_match *match)
725 {
726 u_int16_t csize = match->compatsize ? : match->matchsize;
727 return XT_ALIGN(match->matchsize) - COMPAT_XT_ALIGN(csize);
728 }
729 EXPORT_SYMBOL_GPL(xt_compat_match_offset);
730
xt_compat_match_from_user(struct xt_entry_match * m,void ** dstptr,unsigned int * size)731 void xt_compat_match_from_user(struct xt_entry_match *m, void **dstptr,
732 unsigned int *size)
733 {
734 const struct xt_match *match = m->u.kernel.match;
735 struct compat_xt_entry_match *cm = (struct compat_xt_entry_match *)m;
736 int off = xt_compat_match_offset(match);
737 u_int16_t msize = cm->u.user.match_size;
738 char name[sizeof(m->u.user.name)];
739
740 m = *dstptr;
741 memcpy(m, cm, sizeof(*cm));
742 if (match->compat_from_user)
743 match->compat_from_user(m->data, cm->data);
744 else
745 memcpy(m->data, cm->data, msize - sizeof(*cm));
746
747 msize += off;
748 m->u.user.match_size = msize;
749 strlcpy(name, match->name, sizeof(name));
750 module_put(match->me);
751 strncpy(m->u.user.name, name, sizeof(m->u.user.name));
752
753 *size += off;
754 *dstptr += msize;
755 }
756 EXPORT_SYMBOL_GPL(xt_compat_match_from_user);
757
758 #define COMPAT_XT_DATA_TO_USER(U, K, TYPE, C_SIZE) \
759 xt_data_to_user(U->data, K->data, \
760 K->u.kernel.TYPE->usersize, \
761 C_SIZE, \
762 COMPAT_XT_ALIGN(C_SIZE))
763
xt_compat_match_to_user(const struct xt_entry_match * m,void __user ** dstptr,unsigned int * size)764 int xt_compat_match_to_user(const struct xt_entry_match *m,
765 void __user **dstptr, unsigned int *size)
766 {
767 const struct xt_match *match = m->u.kernel.match;
768 struct compat_xt_entry_match __user *cm = *dstptr;
769 int off = xt_compat_match_offset(match);
770 u_int16_t msize = m->u.user.match_size - off;
771
772 if (XT_OBJ_TO_USER(cm, m, match, msize))
773 return -EFAULT;
774
775 if (match->compat_to_user) {
776 if (match->compat_to_user((void __user *)cm->data, m->data))
777 return -EFAULT;
778 } else {
779 if (COMPAT_XT_DATA_TO_USER(cm, m, match, msize - sizeof(*cm)))
780 return -EFAULT;
781 }
782
783 *size -= off;
784 *dstptr += msize;
785 return 0;
786 }
787 EXPORT_SYMBOL_GPL(xt_compat_match_to_user);
788
789 /* non-compat version may have padding after verdict */
790 struct compat_xt_standard_target {
791 struct compat_xt_entry_target t;
792 compat_uint_t verdict;
793 };
794
795 struct compat_xt_error_target {
796 struct compat_xt_entry_target t;
797 char errorname[XT_FUNCTION_MAXNAMELEN];
798 };
799
xt_compat_check_entry_offsets(const void * base,const char * elems,unsigned int target_offset,unsigned int next_offset)800 int xt_compat_check_entry_offsets(const void *base, const char *elems,
801 unsigned int target_offset,
802 unsigned int next_offset)
803 {
804 long size_of_base_struct = elems - (const char *)base;
805 const struct compat_xt_entry_target *t;
806 const char *e = base;
807
808 if (target_offset < size_of_base_struct)
809 return -EINVAL;
810
811 if (target_offset + sizeof(*t) > next_offset)
812 return -EINVAL;
813
814 t = (void *)(e + target_offset);
815 if (t->u.target_size < sizeof(*t))
816 return -EINVAL;
817
818 if (target_offset + t->u.target_size > next_offset)
819 return -EINVAL;
820
821 if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0) {
822 const struct compat_xt_standard_target *st = (const void *)t;
823
824 if (COMPAT_XT_ALIGN(target_offset + sizeof(*st)) != next_offset)
825 return -EINVAL;
826
827 if (!verdict_ok(st->verdict))
828 return -EINVAL;
829 } else if (strcmp(t->u.user.name, XT_ERROR_TARGET) == 0) {
830 const struct compat_xt_error_target *et = (const void *)t;
831
832 if (!error_tg_ok(t->u.target_size, sizeof(*et),
833 et->errorname, sizeof(et->errorname)))
834 return -EINVAL;
835 }
836
837 /* compat_xt_entry match has less strict alignment requirements,
838 * otherwise they are identical. In case of padding differences
839 * we need to add compat version of xt_check_entry_match.
840 */
841 BUILD_BUG_ON(sizeof(struct compat_xt_entry_match) != sizeof(struct xt_entry_match));
842
843 return xt_check_entry_match(elems, base + target_offset,
844 __alignof__(struct compat_xt_entry_match));
845 }
846 EXPORT_SYMBOL(xt_compat_check_entry_offsets);
847 #endif /* CONFIG_COMPAT */
848
849 /**
850 * xt_check_entry_offsets - validate arp/ip/ip6t_entry
851 *
852 * @base: pointer to arp/ip/ip6t_entry
853 * @elems: pointer to first xt_entry_match, i.e. ip(6)t_entry->elems
854 * @target_offset: the arp/ip/ip6_t->target_offset
855 * @next_offset: the arp/ip/ip6_t->next_offset
856 *
857 * validates that target_offset and next_offset are sane and that all
858 * match sizes (if any) align with the target offset.
859 *
860 * This function does not validate the targets or matches themselves, it
861 * only tests that all the offsets and sizes are correct, that all
862 * match structures are aligned, and that the last structure ends where
863 * the target structure begins.
864 *
865 * Also see xt_compat_check_entry_offsets for CONFIG_COMPAT version.
866 *
867 * The arp/ip/ip6t_entry structure @base must have passed following tests:
868 * - it must point to a valid memory location
869 * - base to base + next_offset must be accessible, i.e. not exceed allocated
870 * length.
871 *
872 * A well-formed entry looks like this:
873 *
874 * ip(6)t_entry match [mtdata] match [mtdata] target [tgdata] ip(6)t_entry
875 * e->elems[]-----' | |
876 * matchsize | |
877 * matchsize | |
878 * | |
879 * target_offset---------------------------------' |
880 * next_offset---------------------------------------------------'
881 *
882 * elems[]: flexible array member at end of ip(6)/arpt_entry struct.
883 * This is where matches (if any) and the target reside.
884 * target_offset: beginning of target.
885 * next_offset: start of the next rule; also: size of this rule.
886 * Since targets have a minimum size, target_offset + minlen <= next_offset.
887 *
888 * Every match stores its size, sum of sizes must not exceed target_offset.
889 *
890 * Return: 0 on success, negative errno on failure.
891 */
xt_check_entry_offsets(const void * base,const char * elems,unsigned int target_offset,unsigned int next_offset)892 int xt_check_entry_offsets(const void *base,
893 const char *elems,
894 unsigned int target_offset,
895 unsigned int next_offset)
896 {
897 long size_of_base_struct = elems - (const char *)base;
898 const struct xt_entry_target *t;
899 const char *e = base;
900
901 /* target start is within the ip/ip6/arpt_entry struct */
902 if (target_offset < size_of_base_struct)
903 return -EINVAL;
904
905 if (target_offset + sizeof(*t) > next_offset)
906 return -EINVAL;
907
908 t = (void *)(e + target_offset);
909 if (t->u.target_size < sizeof(*t))
910 return -EINVAL;
911
912 if (target_offset + t->u.target_size > next_offset)
913 return -EINVAL;
914
915 if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0) {
916 const struct xt_standard_target *st = (const void *)t;
917
918 if (XT_ALIGN(target_offset + sizeof(*st)) != next_offset)
919 return -EINVAL;
920
921 if (!verdict_ok(st->verdict))
922 return -EINVAL;
923 } else if (strcmp(t->u.user.name, XT_ERROR_TARGET) == 0) {
924 const struct xt_error_target *et = (const void *)t;
925
926 if (!error_tg_ok(t->u.target_size, sizeof(*et),
927 et->errorname, sizeof(et->errorname)))
928 return -EINVAL;
929 }
930
931 return xt_check_entry_match(elems, base + target_offset,
932 __alignof__(struct xt_entry_match));
933 }
934 EXPORT_SYMBOL(xt_check_entry_offsets);
935
936 /**
937 * xt_alloc_entry_offsets - allocate array to store rule head offsets
938 *
939 * @size: number of entries
940 *
941 * Return: NULL or kmalloc'd or vmalloc'd array
942 */
xt_alloc_entry_offsets(unsigned int size)943 unsigned int *xt_alloc_entry_offsets(unsigned int size)
944 {
945 if (size > XT_MAX_TABLE_SIZE / sizeof(unsigned int))
946 return NULL;
947
948 return kvmalloc_array(size, sizeof(unsigned int), GFP_KERNEL | __GFP_ZERO);
949
950 }
951 EXPORT_SYMBOL(xt_alloc_entry_offsets);
952
953 /**
954 * xt_find_jump_offset - check if target is a valid jump offset
955 *
956 * @offsets: array containing all valid rule start offsets of a rule blob
957 * @target: the jump target to search for
958 * @size: entries in @offset
959 */
xt_find_jump_offset(const unsigned int * offsets,unsigned int target,unsigned int size)960 bool xt_find_jump_offset(const unsigned int *offsets,
961 unsigned int target, unsigned int size)
962 {
963 int m, low = 0, hi = size;
964
965 while (hi > low) {
966 m = (low + hi) / 2u;
967
968 if (offsets[m] > target)
969 hi = m;
970 else if (offsets[m] < target)
971 low = m + 1;
972 else
973 return true;
974 }
975
976 return false;
977 }
978 EXPORT_SYMBOL(xt_find_jump_offset);
979
xt_check_target(struct xt_tgchk_param * par,unsigned int size,u16 proto,bool inv_proto)980 int xt_check_target(struct xt_tgchk_param *par,
981 unsigned int size, u16 proto, bool inv_proto)
982 {
983 int ret;
984
985 if (XT_ALIGN(par->target->targetsize) != size) {
986 pr_err_ratelimited("%s_tables: %s.%u target: invalid size %u (kernel) != (user) %u\n",
987 xt_prefix[par->family], par->target->name,
988 par->target->revision,
989 XT_ALIGN(par->target->targetsize), size);
990 return -EINVAL;
991 }
992 if (par->target->table != NULL &&
993 strcmp(par->target->table, par->table) != 0) {
994 pr_info_ratelimited("%s_tables: %s target: only valid in %s table, not %s\n",
995 xt_prefix[par->family], par->target->name,
996 par->target->table, par->table);
997 return -EINVAL;
998 }
999 if (par->target->hooks && (par->hook_mask & ~par->target->hooks) != 0) {
1000 char used[64], allow[64];
1001
1002 pr_info_ratelimited("%s_tables: %s target: used from hooks %s, but only usable from %s\n",
1003 xt_prefix[par->family], par->target->name,
1004 textify_hooks(used, sizeof(used),
1005 par->hook_mask, par->family),
1006 textify_hooks(allow, sizeof(allow),
1007 par->target->hooks,
1008 par->family));
1009 return -EINVAL;
1010 }
1011 if (par->target->proto && (par->target->proto != proto || inv_proto)) {
1012 pr_info_ratelimited("%s_tables: %s target: only valid for protocol %u\n",
1013 xt_prefix[par->family], par->target->name,
1014 par->target->proto);
1015 return -EINVAL;
1016 }
1017 if (par->target->checkentry != NULL) {
1018 ret = par->target->checkentry(par);
1019 if (ret < 0)
1020 return ret;
1021 else if (ret > 0)
1022 /* Flag up potential errors. */
1023 return -EIO;
1024 }
1025 return 0;
1026 }
1027 EXPORT_SYMBOL_GPL(xt_check_target);
1028
1029 /**
1030 * xt_copy_counters_from_user - copy counters and metadata from userspace
1031 *
1032 * @user: src pointer to userspace memory
1033 * @len: alleged size of userspace memory
1034 * @info: where to store the xt_counters_info metadata
1035 * @compat: true if we setsockopt call is done by 32bit task on 64bit kernel
1036 *
1037 * Copies counter meta data from @user and stores it in @info.
1038 *
1039 * vmallocs memory to hold the counters, then copies the counter data
1040 * from @user to the new memory and returns a pointer to it.
1041 *
1042 * If @compat is true, @info gets converted automatically to the 64bit
1043 * representation.
1044 *
1045 * The metadata associated with the counters is stored in @info.
1046 *
1047 * Return: returns pointer that caller has to test via IS_ERR().
1048 * If IS_ERR is false, caller has to vfree the pointer.
1049 */
xt_copy_counters_from_user(const void __user * user,unsigned int len,struct xt_counters_info * info,bool compat)1050 void *xt_copy_counters_from_user(const void __user *user, unsigned int len,
1051 struct xt_counters_info *info, bool compat)
1052 {
1053 void *mem;
1054 u64 size;
1055
1056 #ifdef CONFIG_COMPAT
1057 if (compat) {
1058 /* structures only differ in size due to alignment */
1059 struct compat_xt_counters_info compat_tmp;
1060
1061 if (len <= sizeof(compat_tmp))
1062 return ERR_PTR(-EINVAL);
1063
1064 len -= sizeof(compat_tmp);
1065 if (copy_from_user(&compat_tmp, user, sizeof(compat_tmp)) != 0)
1066 return ERR_PTR(-EFAULT);
1067
1068 memcpy(info->name, compat_tmp.name, sizeof(info->name) - 1);
1069 info->num_counters = compat_tmp.num_counters;
1070 user += sizeof(compat_tmp);
1071 } else
1072 #endif
1073 {
1074 if (len <= sizeof(*info))
1075 return ERR_PTR(-EINVAL);
1076
1077 len -= sizeof(*info);
1078 if (copy_from_user(info, user, sizeof(*info)) != 0)
1079 return ERR_PTR(-EFAULT);
1080
1081 user += sizeof(*info);
1082 }
1083 info->name[sizeof(info->name) - 1] = '\0';
1084
1085 size = sizeof(struct xt_counters);
1086 size *= info->num_counters;
1087
1088 if (size != (u64)len)
1089 return ERR_PTR(-EINVAL);
1090
1091 mem = vmalloc(len);
1092 if (!mem)
1093 return ERR_PTR(-ENOMEM);
1094
1095 if (copy_from_user(mem, user, len) == 0)
1096 return mem;
1097
1098 vfree(mem);
1099 return ERR_PTR(-EFAULT);
1100 }
1101 EXPORT_SYMBOL_GPL(xt_copy_counters_from_user);
1102
1103 #ifdef CONFIG_COMPAT
xt_compat_target_offset(const struct xt_target * target)1104 int xt_compat_target_offset(const struct xt_target *target)
1105 {
1106 u_int16_t csize = target->compatsize ? : target->targetsize;
1107 return XT_ALIGN(target->targetsize) - COMPAT_XT_ALIGN(csize);
1108 }
1109 EXPORT_SYMBOL_GPL(xt_compat_target_offset);
1110
xt_compat_target_from_user(struct xt_entry_target * t,void ** dstptr,unsigned int * size)1111 void xt_compat_target_from_user(struct xt_entry_target *t, void **dstptr,
1112 unsigned int *size)
1113 {
1114 const struct xt_target *target = t->u.kernel.target;
1115 struct compat_xt_entry_target *ct = (struct compat_xt_entry_target *)t;
1116 int off = xt_compat_target_offset(target);
1117 u_int16_t tsize = ct->u.user.target_size;
1118 char name[sizeof(t->u.user.name)];
1119
1120 t = *dstptr;
1121 memcpy(t, ct, sizeof(*ct));
1122 if (target->compat_from_user)
1123 target->compat_from_user(t->data, ct->data);
1124 else
1125 memcpy(t->data, ct->data, tsize - sizeof(*ct));
1126
1127 tsize += off;
1128 t->u.user.target_size = tsize;
1129 strlcpy(name, target->name, sizeof(name));
1130 module_put(target->me);
1131 strncpy(t->u.user.name, name, sizeof(t->u.user.name));
1132
1133 *size += off;
1134 *dstptr += tsize;
1135 }
1136 EXPORT_SYMBOL_GPL(xt_compat_target_from_user);
1137
xt_compat_target_to_user(const struct xt_entry_target * t,void __user ** dstptr,unsigned int * size)1138 int xt_compat_target_to_user(const struct xt_entry_target *t,
1139 void __user **dstptr, unsigned int *size)
1140 {
1141 const struct xt_target *target = t->u.kernel.target;
1142 struct compat_xt_entry_target __user *ct = *dstptr;
1143 int off = xt_compat_target_offset(target);
1144 u_int16_t tsize = t->u.user.target_size - off;
1145
1146 if (XT_OBJ_TO_USER(ct, t, target, tsize))
1147 return -EFAULT;
1148
1149 if (target->compat_to_user) {
1150 if (target->compat_to_user((void __user *)ct->data, t->data))
1151 return -EFAULT;
1152 } else {
1153 if (COMPAT_XT_DATA_TO_USER(ct, t, target, tsize - sizeof(*ct)))
1154 return -EFAULT;
1155 }
1156
1157 *size -= off;
1158 *dstptr += tsize;
1159 return 0;
1160 }
1161 EXPORT_SYMBOL_GPL(xt_compat_target_to_user);
1162 #endif
1163
xt_alloc_table_info(unsigned int size)1164 struct xt_table_info *xt_alloc_table_info(unsigned int size)
1165 {
1166 struct xt_table_info *info = NULL;
1167 size_t sz = sizeof(*info) + size;
1168
1169 if (sz < sizeof(*info) || sz >= XT_MAX_TABLE_SIZE)
1170 return NULL;
1171
1172 info = kvmalloc(sz, GFP_KERNEL_ACCOUNT);
1173 if (!info)
1174 return NULL;
1175
1176 memset(info, 0, sizeof(*info));
1177 info->size = size;
1178 return info;
1179 }
1180 EXPORT_SYMBOL(xt_alloc_table_info);
1181
xt_free_table_info(struct xt_table_info * info)1182 void xt_free_table_info(struct xt_table_info *info)
1183 {
1184 int cpu;
1185
1186 if (info->jumpstack != NULL) {
1187 for_each_possible_cpu(cpu)
1188 kvfree(info->jumpstack[cpu]);
1189 kvfree(info->jumpstack);
1190 }
1191
1192 kvfree(info);
1193 }
1194 EXPORT_SYMBOL(xt_free_table_info);
1195
1196 /* Find table by name, grabs mutex & ref. Returns ERR_PTR on error. */
xt_find_table_lock(struct net * net,u_int8_t af,const char * name)1197 struct xt_table *xt_find_table_lock(struct net *net, u_int8_t af,
1198 const char *name)
1199 {
1200 struct xt_table *t, *found = NULL;
1201
1202 mutex_lock(&xt[af].mutex);
1203 list_for_each_entry(t, &net->xt.tables[af], list)
1204 if (strcmp(t->name, name) == 0 && try_module_get(t->me))
1205 return t;
1206
1207 if (net == &init_net)
1208 goto out;
1209
1210 /* Table doesn't exist in this netns, re-try init */
1211 list_for_each_entry(t, &init_net.xt.tables[af], list) {
1212 int err;
1213
1214 if (strcmp(t->name, name))
1215 continue;
1216 if (!try_module_get(t->me))
1217 goto out;
1218 mutex_unlock(&xt[af].mutex);
1219 err = t->table_init(net);
1220 if (err < 0) {
1221 module_put(t->me);
1222 return ERR_PTR(err);
1223 }
1224
1225 found = t;
1226
1227 mutex_lock(&xt[af].mutex);
1228 break;
1229 }
1230
1231 if (!found)
1232 goto out;
1233
1234 /* and once again: */
1235 list_for_each_entry(t, &net->xt.tables[af], list)
1236 if (strcmp(t->name, name) == 0)
1237 return t;
1238
1239 module_put(found->me);
1240 out:
1241 mutex_unlock(&xt[af].mutex);
1242 return ERR_PTR(-ENOENT);
1243 }
1244 EXPORT_SYMBOL_GPL(xt_find_table_lock);
1245
xt_request_find_table_lock(struct net * net,u_int8_t af,const char * name)1246 struct xt_table *xt_request_find_table_lock(struct net *net, u_int8_t af,
1247 const char *name)
1248 {
1249 struct xt_table *t = xt_find_table_lock(net, af, name);
1250
1251 #ifdef CONFIG_MODULES
1252 if (IS_ERR(t)) {
1253 int err = request_module("%stable_%s", xt_prefix[af], name);
1254 if (err < 0)
1255 return ERR_PTR(err);
1256 t = xt_find_table_lock(net, af, name);
1257 }
1258 #endif
1259
1260 return t;
1261 }
1262 EXPORT_SYMBOL_GPL(xt_request_find_table_lock);
1263
xt_table_unlock(struct xt_table * table)1264 void xt_table_unlock(struct xt_table *table)
1265 {
1266 mutex_unlock(&xt[table->af].mutex);
1267 }
1268 EXPORT_SYMBOL_GPL(xt_table_unlock);
1269
1270 #ifdef CONFIG_COMPAT
xt_compat_lock(u_int8_t af)1271 void xt_compat_lock(u_int8_t af)
1272 {
1273 mutex_lock(&xt[af].compat_mutex);
1274 }
1275 EXPORT_SYMBOL_GPL(xt_compat_lock);
1276
xt_compat_unlock(u_int8_t af)1277 void xt_compat_unlock(u_int8_t af)
1278 {
1279 mutex_unlock(&xt[af].compat_mutex);
1280 }
1281 EXPORT_SYMBOL_GPL(xt_compat_unlock);
1282 #endif
1283
1284 DEFINE_PER_CPU(seqcount_t, xt_recseq);
1285 EXPORT_PER_CPU_SYMBOL_GPL(xt_recseq);
1286
1287 struct static_key xt_tee_enabled __read_mostly;
1288 EXPORT_SYMBOL_GPL(xt_tee_enabled);
1289
xt_jumpstack_alloc(struct xt_table_info * i)1290 static int xt_jumpstack_alloc(struct xt_table_info *i)
1291 {
1292 unsigned int size;
1293 int cpu;
1294
1295 size = sizeof(void **) * nr_cpu_ids;
1296 if (size > PAGE_SIZE)
1297 i->jumpstack = kvzalloc(size, GFP_KERNEL);
1298 else
1299 i->jumpstack = kzalloc(size, GFP_KERNEL);
1300 if (i->jumpstack == NULL)
1301 return -ENOMEM;
1302
1303 /* ruleset without jumps -- no stack needed */
1304 if (i->stacksize == 0)
1305 return 0;
1306
1307 /* Jumpstack needs to be able to record two full callchains, one
1308 * from the first rule set traversal, plus one table reentrancy
1309 * via -j TEE without clobbering the callchain that brought us to
1310 * TEE target.
1311 *
1312 * This is done by allocating two jumpstacks per cpu, on reentry
1313 * the upper half of the stack is used.
1314 *
1315 * see the jumpstack setup in ipt_do_table() for more details.
1316 */
1317 size = sizeof(void *) * i->stacksize * 2u;
1318 for_each_possible_cpu(cpu) {
1319 i->jumpstack[cpu] = kvmalloc_node(size, GFP_KERNEL,
1320 cpu_to_node(cpu));
1321 if (i->jumpstack[cpu] == NULL)
1322 /*
1323 * Freeing will be done later on by the callers. The
1324 * chain is: xt_replace_table -> __do_replace ->
1325 * do_replace -> xt_free_table_info.
1326 */
1327 return -ENOMEM;
1328 }
1329
1330 return 0;
1331 }
1332
xt_counters_alloc(unsigned int counters)1333 struct xt_counters *xt_counters_alloc(unsigned int counters)
1334 {
1335 struct xt_counters *mem;
1336
1337 if (counters == 0 || counters > INT_MAX / sizeof(*mem))
1338 return NULL;
1339
1340 counters *= sizeof(*mem);
1341 if (counters > XT_MAX_TABLE_SIZE)
1342 return NULL;
1343
1344 return vzalloc(counters);
1345 }
1346 EXPORT_SYMBOL(xt_counters_alloc);
1347
1348 struct xt_table_info *
xt_replace_table(struct xt_table * table,unsigned int num_counters,struct xt_table_info * newinfo,int * error)1349 xt_replace_table(struct xt_table *table,
1350 unsigned int num_counters,
1351 struct xt_table_info *newinfo,
1352 int *error)
1353 {
1354 struct xt_table_info *private;
1355 unsigned int cpu;
1356 int ret;
1357
1358 ret = xt_jumpstack_alloc(newinfo);
1359 if (ret < 0) {
1360 *error = ret;
1361 return NULL;
1362 }
1363
1364 /* Do the substitution. */
1365 local_bh_disable();
1366 private = table->private;
1367
1368 /* Check inside lock: is the old number correct? */
1369 if (num_counters != private->number) {
1370 pr_debug("num_counters != table->private->number (%u/%u)\n",
1371 num_counters, private->number);
1372 local_bh_enable();
1373 *error = -EAGAIN;
1374 return NULL;
1375 }
1376
1377 newinfo->initial_entries = private->initial_entries;
1378 /*
1379 * Ensure contents of newinfo are visible before assigning to
1380 * private.
1381 */
1382 smp_wmb();
1383 table->private = newinfo;
1384
1385 /* make sure all cpus see new ->private value */
1386 smp_mb();
1387
1388 /*
1389 * Even though table entries have now been swapped, other CPU's
1390 * may still be using the old entries...
1391 */
1392 local_bh_enable();
1393
1394 /* ... so wait for even xt_recseq on all cpus */
1395 for_each_possible_cpu(cpu) {
1396 seqcount_t *s = &per_cpu(xt_recseq, cpu);
1397 u32 seq = raw_read_seqcount(s);
1398
1399 if (seq & 1) {
1400 do {
1401 cond_resched();
1402 cpu_relax();
1403 } while (seq == raw_read_seqcount(s));
1404 }
1405 }
1406
1407 #ifdef CONFIG_AUDIT
1408 if (audit_enabled) {
1409 audit_log(audit_context(), GFP_KERNEL,
1410 AUDIT_NETFILTER_CFG,
1411 "table=%s family=%u entries=%u",
1412 table->name, table->af, private->number);
1413 }
1414 #endif
1415
1416 return private;
1417 }
1418 EXPORT_SYMBOL_GPL(xt_replace_table);
1419
xt_register_table(struct net * net,const struct xt_table * input_table,struct xt_table_info * bootstrap,struct xt_table_info * newinfo)1420 struct xt_table *xt_register_table(struct net *net,
1421 const struct xt_table *input_table,
1422 struct xt_table_info *bootstrap,
1423 struct xt_table_info *newinfo)
1424 {
1425 int ret;
1426 struct xt_table_info *private;
1427 struct xt_table *t, *table;
1428
1429 /* Don't add one object to multiple lists. */
1430 table = kmemdup(input_table, sizeof(struct xt_table), GFP_KERNEL);
1431 if (!table) {
1432 ret = -ENOMEM;
1433 goto out;
1434 }
1435
1436 mutex_lock(&xt[table->af].mutex);
1437 /* Don't autoload: we'd eat our tail... */
1438 list_for_each_entry(t, &net->xt.tables[table->af], list) {
1439 if (strcmp(t->name, table->name) == 0) {
1440 ret = -EEXIST;
1441 goto unlock;
1442 }
1443 }
1444
1445 /* Simplifies replace_table code. */
1446 table->private = bootstrap;
1447
1448 if (!xt_replace_table(table, 0, newinfo, &ret))
1449 goto unlock;
1450
1451 private = table->private;
1452 pr_debug("table->private->number = %u\n", private->number);
1453
1454 /* save number of initial entries */
1455 private->initial_entries = private->number;
1456
1457 list_add(&table->list, &net->xt.tables[table->af]);
1458 mutex_unlock(&xt[table->af].mutex);
1459 return table;
1460
1461 unlock:
1462 mutex_unlock(&xt[table->af].mutex);
1463 kfree(table);
1464 out:
1465 return ERR_PTR(ret);
1466 }
1467 EXPORT_SYMBOL_GPL(xt_register_table);
1468
xt_unregister_table(struct xt_table * table)1469 void *xt_unregister_table(struct xt_table *table)
1470 {
1471 struct xt_table_info *private;
1472
1473 mutex_lock(&xt[table->af].mutex);
1474 private = table->private;
1475 list_del(&table->list);
1476 mutex_unlock(&xt[table->af].mutex);
1477 kfree(table);
1478
1479 return private;
1480 }
1481 EXPORT_SYMBOL_GPL(xt_unregister_table);
1482
1483 #ifdef CONFIG_PROC_FS
xt_table_seq_start(struct seq_file * seq,loff_t * pos)1484 static void *xt_table_seq_start(struct seq_file *seq, loff_t *pos)
1485 {
1486 struct net *net = seq_file_net(seq);
1487 u_int8_t af = (unsigned long)PDE_DATA(file_inode(seq->file));
1488
1489 mutex_lock(&xt[af].mutex);
1490 return seq_list_start(&net->xt.tables[af], *pos);
1491 }
1492
xt_table_seq_next(struct seq_file * seq,void * v,loff_t * pos)1493 static void *xt_table_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1494 {
1495 struct net *net = seq_file_net(seq);
1496 u_int8_t af = (unsigned long)PDE_DATA(file_inode(seq->file));
1497
1498 return seq_list_next(v, &net->xt.tables[af], pos);
1499 }
1500
xt_table_seq_stop(struct seq_file * seq,void * v)1501 static void xt_table_seq_stop(struct seq_file *seq, void *v)
1502 {
1503 u_int8_t af = (unsigned long)PDE_DATA(file_inode(seq->file));
1504
1505 mutex_unlock(&xt[af].mutex);
1506 }
1507
xt_table_seq_show(struct seq_file * seq,void * v)1508 static int xt_table_seq_show(struct seq_file *seq, void *v)
1509 {
1510 struct xt_table *table = list_entry(v, struct xt_table, list);
1511
1512 if (*table->name)
1513 seq_printf(seq, "%s\n", table->name);
1514 return 0;
1515 }
1516
1517 static const struct seq_operations xt_table_seq_ops = {
1518 .start = xt_table_seq_start,
1519 .next = xt_table_seq_next,
1520 .stop = xt_table_seq_stop,
1521 .show = xt_table_seq_show,
1522 };
1523
1524 /*
1525 * Traverse state for ip{,6}_{tables,matches} for helping crossing
1526 * the multi-AF mutexes.
1527 */
1528 struct nf_mttg_trav {
1529 struct list_head *head, *curr;
1530 uint8_t class;
1531 };
1532
1533 enum {
1534 MTTG_TRAV_INIT,
1535 MTTG_TRAV_NFP_UNSPEC,
1536 MTTG_TRAV_NFP_SPEC,
1537 MTTG_TRAV_DONE,
1538 };
1539
xt_mttg_seq_next(struct seq_file * seq,void * v,loff_t * ppos,bool is_target)1540 static void *xt_mttg_seq_next(struct seq_file *seq, void *v, loff_t *ppos,
1541 bool is_target)
1542 {
1543 static const uint8_t next_class[] = {
1544 [MTTG_TRAV_NFP_UNSPEC] = MTTG_TRAV_NFP_SPEC,
1545 [MTTG_TRAV_NFP_SPEC] = MTTG_TRAV_DONE,
1546 };
1547 uint8_t nfproto = (unsigned long)PDE_DATA(file_inode(seq->file));
1548 struct nf_mttg_trav *trav = seq->private;
1549
1550 if (ppos != NULL)
1551 ++(*ppos);
1552
1553 switch (trav->class) {
1554 case MTTG_TRAV_INIT:
1555 trav->class = MTTG_TRAV_NFP_UNSPEC;
1556 mutex_lock(&xt[NFPROTO_UNSPEC].mutex);
1557 trav->head = trav->curr = is_target ?
1558 &xt[NFPROTO_UNSPEC].target : &xt[NFPROTO_UNSPEC].match;
1559 break;
1560 case MTTG_TRAV_NFP_UNSPEC:
1561 trav->curr = trav->curr->next;
1562 if (trav->curr != trav->head)
1563 break;
1564 mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1565 mutex_lock(&xt[nfproto].mutex);
1566 trav->head = trav->curr = is_target ?
1567 &xt[nfproto].target : &xt[nfproto].match;
1568 trav->class = next_class[trav->class];
1569 break;
1570 case MTTG_TRAV_NFP_SPEC:
1571 trav->curr = trav->curr->next;
1572 if (trav->curr != trav->head)
1573 break;
1574 /* fall through */
1575 default:
1576 return NULL;
1577 }
1578 return trav;
1579 }
1580
xt_mttg_seq_start(struct seq_file * seq,loff_t * pos,bool is_target)1581 static void *xt_mttg_seq_start(struct seq_file *seq, loff_t *pos,
1582 bool is_target)
1583 {
1584 struct nf_mttg_trav *trav = seq->private;
1585 unsigned int j;
1586
1587 trav->class = MTTG_TRAV_INIT;
1588 for (j = 0; j < *pos; ++j)
1589 if (xt_mttg_seq_next(seq, NULL, NULL, is_target) == NULL)
1590 return NULL;
1591 return trav;
1592 }
1593
xt_mttg_seq_stop(struct seq_file * seq,void * v)1594 static void xt_mttg_seq_stop(struct seq_file *seq, void *v)
1595 {
1596 uint8_t nfproto = (unsigned long)PDE_DATA(file_inode(seq->file));
1597 struct nf_mttg_trav *trav = seq->private;
1598
1599 switch (trav->class) {
1600 case MTTG_TRAV_NFP_UNSPEC:
1601 mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1602 break;
1603 case MTTG_TRAV_NFP_SPEC:
1604 mutex_unlock(&xt[nfproto].mutex);
1605 break;
1606 }
1607 }
1608
xt_match_seq_start(struct seq_file * seq,loff_t * pos)1609 static void *xt_match_seq_start(struct seq_file *seq, loff_t *pos)
1610 {
1611 return xt_mttg_seq_start(seq, pos, false);
1612 }
1613
xt_match_seq_next(struct seq_file * seq,void * v,loff_t * ppos)1614 static void *xt_match_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1615 {
1616 return xt_mttg_seq_next(seq, v, ppos, false);
1617 }
1618
xt_match_seq_show(struct seq_file * seq,void * v)1619 static int xt_match_seq_show(struct seq_file *seq, void *v)
1620 {
1621 const struct nf_mttg_trav *trav = seq->private;
1622 const struct xt_match *match;
1623
1624 switch (trav->class) {
1625 case MTTG_TRAV_NFP_UNSPEC:
1626 case MTTG_TRAV_NFP_SPEC:
1627 if (trav->curr == trav->head)
1628 return 0;
1629 match = list_entry(trav->curr, struct xt_match, list);
1630 if (*match->name)
1631 seq_printf(seq, "%s\n", match->name);
1632 }
1633 return 0;
1634 }
1635
1636 static const struct seq_operations xt_match_seq_ops = {
1637 .start = xt_match_seq_start,
1638 .next = xt_match_seq_next,
1639 .stop = xt_mttg_seq_stop,
1640 .show = xt_match_seq_show,
1641 };
1642
xt_target_seq_start(struct seq_file * seq,loff_t * pos)1643 static void *xt_target_seq_start(struct seq_file *seq, loff_t *pos)
1644 {
1645 return xt_mttg_seq_start(seq, pos, true);
1646 }
1647
xt_target_seq_next(struct seq_file * seq,void * v,loff_t * ppos)1648 static void *xt_target_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1649 {
1650 return xt_mttg_seq_next(seq, v, ppos, true);
1651 }
1652
xt_target_seq_show(struct seq_file * seq,void * v)1653 static int xt_target_seq_show(struct seq_file *seq, void *v)
1654 {
1655 const struct nf_mttg_trav *trav = seq->private;
1656 const struct xt_target *target;
1657
1658 switch (trav->class) {
1659 case MTTG_TRAV_NFP_UNSPEC:
1660 case MTTG_TRAV_NFP_SPEC:
1661 if (trav->curr == trav->head)
1662 return 0;
1663 target = list_entry(trav->curr, struct xt_target, list);
1664 if (*target->name)
1665 seq_printf(seq, "%s\n", target->name);
1666 }
1667 return 0;
1668 }
1669
1670 static const struct seq_operations xt_target_seq_ops = {
1671 .start = xt_target_seq_start,
1672 .next = xt_target_seq_next,
1673 .stop = xt_mttg_seq_stop,
1674 .show = xt_target_seq_show,
1675 };
1676
1677 #define FORMAT_TABLES "_tables_names"
1678 #define FORMAT_MATCHES "_tables_matches"
1679 #define FORMAT_TARGETS "_tables_targets"
1680
1681 #endif /* CONFIG_PROC_FS */
1682
1683 /**
1684 * xt_hook_ops_alloc - set up hooks for a new table
1685 * @table: table with metadata needed to set up hooks
1686 * @fn: Hook function
1687 *
1688 * This function will create the nf_hook_ops that the x_table needs
1689 * to hand to xt_hook_link_net().
1690 */
1691 struct nf_hook_ops *
xt_hook_ops_alloc(const struct xt_table * table,nf_hookfn * fn)1692 xt_hook_ops_alloc(const struct xt_table *table, nf_hookfn *fn)
1693 {
1694 unsigned int hook_mask = table->valid_hooks;
1695 uint8_t i, num_hooks = hweight32(hook_mask);
1696 uint8_t hooknum;
1697 struct nf_hook_ops *ops;
1698
1699 if (!num_hooks)
1700 return ERR_PTR(-EINVAL);
1701
1702 ops = kcalloc(num_hooks, sizeof(*ops), GFP_KERNEL);
1703 if (ops == NULL)
1704 return ERR_PTR(-ENOMEM);
1705
1706 for (i = 0, hooknum = 0; i < num_hooks && hook_mask != 0;
1707 hook_mask >>= 1, ++hooknum) {
1708 if (!(hook_mask & 1))
1709 continue;
1710 ops[i].hook = fn;
1711 ops[i].pf = table->af;
1712 ops[i].hooknum = hooknum;
1713 ops[i].priority = table->priority;
1714 ++i;
1715 }
1716
1717 return ops;
1718 }
1719 EXPORT_SYMBOL_GPL(xt_hook_ops_alloc);
1720
xt_proto_init(struct net * net,u_int8_t af)1721 int xt_proto_init(struct net *net, u_int8_t af)
1722 {
1723 #ifdef CONFIG_PROC_FS
1724 char buf[XT_FUNCTION_MAXNAMELEN];
1725 struct proc_dir_entry *proc;
1726 kuid_t root_uid;
1727 kgid_t root_gid;
1728 #endif
1729
1730 if (af >= ARRAY_SIZE(xt_prefix))
1731 return -EINVAL;
1732
1733
1734 #ifdef CONFIG_PROC_FS
1735 root_uid = make_kuid(net->user_ns, 0);
1736 root_gid = make_kgid(net->user_ns, 0);
1737
1738 strlcpy(buf, xt_prefix[af], sizeof(buf));
1739 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1740 proc = proc_create_net_data(buf, 0440, net->proc_net, &xt_table_seq_ops,
1741 sizeof(struct seq_net_private),
1742 (void *)(unsigned long)af);
1743 if (!proc)
1744 goto out;
1745 if (uid_valid(root_uid) && gid_valid(root_gid))
1746 proc_set_user(proc, root_uid, root_gid);
1747
1748 strlcpy(buf, xt_prefix[af], sizeof(buf));
1749 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1750 proc = proc_create_seq_private(buf, 0440, net->proc_net,
1751 &xt_match_seq_ops, sizeof(struct nf_mttg_trav),
1752 (void *)(unsigned long)af);
1753 if (!proc)
1754 goto out_remove_tables;
1755 if (uid_valid(root_uid) && gid_valid(root_gid))
1756 proc_set_user(proc, root_uid, root_gid);
1757
1758 strlcpy(buf, xt_prefix[af], sizeof(buf));
1759 strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1760 proc = proc_create_seq_private(buf, 0440, net->proc_net,
1761 &xt_target_seq_ops, sizeof(struct nf_mttg_trav),
1762 (void *)(unsigned long)af);
1763 if (!proc)
1764 goto out_remove_matches;
1765 if (uid_valid(root_uid) && gid_valid(root_gid))
1766 proc_set_user(proc, root_uid, root_gid);
1767 #endif
1768
1769 return 0;
1770
1771 #ifdef CONFIG_PROC_FS
1772 out_remove_matches:
1773 strlcpy(buf, xt_prefix[af], sizeof(buf));
1774 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1775 remove_proc_entry(buf, net->proc_net);
1776
1777 out_remove_tables:
1778 strlcpy(buf, xt_prefix[af], sizeof(buf));
1779 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1780 remove_proc_entry(buf, net->proc_net);
1781 out:
1782 return -1;
1783 #endif
1784 }
1785 EXPORT_SYMBOL_GPL(xt_proto_init);
1786
xt_proto_fini(struct net * net,u_int8_t af)1787 void xt_proto_fini(struct net *net, u_int8_t af)
1788 {
1789 #ifdef CONFIG_PROC_FS
1790 char buf[XT_FUNCTION_MAXNAMELEN];
1791
1792 strlcpy(buf, xt_prefix[af], sizeof(buf));
1793 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1794 remove_proc_entry(buf, net->proc_net);
1795
1796 strlcpy(buf, xt_prefix[af], sizeof(buf));
1797 strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1798 remove_proc_entry(buf, net->proc_net);
1799
1800 strlcpy(buf, xt_prefix[af], sizeof(buf));
1801 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1802 remove_proc_entry(buf, net->proc_net);
1803 #endif /*CONFIG_PROC_FS*/
1804 }
1805 EXPORT_SYMBOL_GPL(xt_proto_fini);
1806
1807 /**
1808 * xt_percpu_counter_alloc - allocate x_tables rule counter
1809 *
1810 * @state: pointer to xt_percpu allocation state
1811 * @counter: pointer to counter struct inside the ip(6)/arpt_entry struct
1812 *
1813 * On SMP, the packet counter [ ip(6)t_entry->counters.pcnt ] will then
1814 * contain the address of the real (percpu) counter.
1815 *
1816 * Rule evaluation needs to use xt_get_this_cpu_counter() helper
1817 * to fetch the real percpu counter.
1818 *
1819 * To speed up allocation and improve data locality, a 4kb block is
1820 * allocated. Freeing any counter may free an entire block, so all
1821 * counters allocated using the same state must be freed at the same
1822 * time.
1823 *
1824 * xt_percpu_counter_alloc_state contains the base address of the
1825 * allocated page and the current sub-offset.
1826 *
1827 * returns false on error.
1828 */
xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state * state,struct xt_counters * counter)1829 bool xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state *state,
1830 struct xt_counters *counter)
1831 {
1832 BUILD_BUG_ON(XT_PCPU_BLOCK_SIZE < (sizeof(*counter) * 2));
1833
1834 if (nr_cpu_ids <= 1)
1835 return true;
1836
1837 if (!state->mem) {
1838 state->mem = __alloc_percpu(XT_PCPU_BLOCK_SIZE,
1839 XT_PCPU_BLOCK_SIZE);
1840 if (!state->mem)
1841 return false;
1842 }
1843 counter->pcnt = (__force unsigned long)(state->mem + state->off);
1844 state->off += sizeof(*counter);
1845 if (state->off > (XT_PCPU_BLOCK_SIZE - sizeof(*counter))) {
1846 state->mem = NULL;
1847 state->off = 0;
1848 }
1849 return true;
1850 }
1851 EXPORT_SYMBOL_GPL(xt_percpu_counter_alloc);
1852
xt_percpu_counter_free(struct xt_counters * counters)1853 void xt_percpu_counter_free(struct xt_counters *counters)
1854 {
1855 unsigned long pcnt = counters->pcnt;
1856
1857 if (nr_cpu_ids > 1 && (pcnt & (XT_PCPU_BLOCK_SIZE - 1)) == 0)
1858 free_percpu((void __percpu *)pcnt);
1859 }
1860 EXPORT_SYMBOL_GPL(xt_percpu_counter_free);
1861
xt_net_init(struct net * net)1862 static int __net_init xt_net_init(struct net *net)
1863 {
1864 int i;
1865
1866 for (i = 0; i < NFPROTO_NUMPROTO; i++)
1867 INIT_LIST_HEAD(&net->xt.tables[i]);
1868 return 0;
1869 }
1870
xt_net_exit(struct net * net)1871 static void __net_exit xt_net_exit(struct net *net)
1872 {
1873 int i;
1874
1875 for (i = 0; i < NFPROTO_NUMPROTO; i++)
1876 WARN_ON_ONCE(!list_empty(&net->xt.tables[i]));
1877 }
1878
1879 static struct pernet_operations xt_net_ops = {
1880 .init = xt_net_init,
1881 .exit = xt_net_exit,
1882 };
1883
xt_init(void)1884 static int __init xt_init(void)
1885 {
1886 unsigned int i;
1887 int rv;
1888
1889 for_each_possible_cpu(i) {
1890 seqcount_init(&per_cpu(xt_recseq, i));
1891 }
1892
1893 xt = kcalloc(NFPROTO_NUMPROTO, sizeof(struct xt_af), GFP_KERNEL);
1894 if (!xt)
1895 return -ENOMEM;
1896
1897 for (i = 0; i < NFPROTO_NUMPROTO; i++) {
1898 mutex_init(&xt[i].mutex);
1899 #ifdef CONFIG_COMPAT
1900 mutex_init(&xt[i].compat_mutex);
1901 xt[i].compat_tab = NULL;
1902 #endif
1903 INIT_LIST_HEAD(&xt[i].target);
1904 INIT_LIST_HEAD(&xt[i].match);
1905 }
1906 rv = register_pernet_subsys(&xt_net_ops);
1907 if (rv < 0)
1908 kfree(xt);
1909 return rv;
1910 }
1911
xt_fini(void)1912 static void __exit xt_fini(void)
1913 {
1914 unregister_pernet_subsys(&xt_net_ops);
1915 kfree(xt);
1916 }
1917
1918 module_init(xt_init);
1919 module_exit(xt_fini);
1920
1921