• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * file.c
6  *
7  * File open, close, extend, truncate
8  *
9  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
10  */
11 
12 #include <linux/capability.h>
13 #include <linux/fs.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/highmem.h>
17 #include <linux/pagemap.h>
18 #include <linux/uio.h>
19 #include <linux/sched.h>
20 #include <linux/splice.h>
21 #include <linux/mount.h>
22 #include <linux/writeback.h>
23 #include <linux/falloc.h>
24 #include <linux/quotaops.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 
28 #include <cluster/masklog.h>
29 
30 #include "ocfs2.h"
31 
32 #include "alloc.h"
33 #include "aops.h"
34 #include "dir.h"
35 #include "dlmglue.h"
36 #include "extent_map.h"
37 #include "file.h"
38 #include "sysfile.h"
39 #include "inode.h"
40 #include "ioctl.h"
41 #include "journal.h"
42 #include "locks.h"
43 #include "mmap.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "quota.h"
49 #include "refcounttree.h"
50 #include "ocfs2_trace.h"
51 
52 #include "buffer_head_io.h"
53 
ocfs2_init_file_private(struct inode * inode,struct file * file)54 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
55 {
56 	struct ocfs2_file_private *fp;
57 
58 	fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
59 	if (!fp)
60 		return -ENOMEM;
61 
62 	fp->fp_file = file;
63 	mutex_init(&fp->fp_mutex);
64 	ocfs2_file_lock_res_init(&fp->fp_flock, fp);
65 	file->private_data = fp;
66 
67 	return 0;
68 }
69 
ocfs2_free_file_private(struct inode * inode,struct file * file)70 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
71 {
72 	struct ocfs2_file_private *fp = file->private_data;
73 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
74 
75 	if (fp) {
76 		ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
77 		ocfs2_lock_res_free(&fp->fp_flock);
78 		kfree(fp);
79 		file->private_data = NULL;
80 	}
81 }
82 
ocfs2_file_open(struct inode * inode,struct file * file)83 static int ocfs2_file_open(struct inode *inode, struct file *file)
84 {
85 	int status;
86 	int mode = file->f_flags;
87 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
88 
89 	trace_ocfs2_file_open(inode, file, file->f_path.dentry,
90 			      (unsigned long long)oi->ip_blkno,
91 			      file->f_path.dentry->d_name.len,
92 			      file->f_path.dentry->d_name.name, mode);
93 
94 	if (file->f_mode & FMODE_WRITE) {
95 		status = dquot_initialize(inode);
96 		if (status)
97 			goto leave;
98 	}
99 
100 	spin_lock(&oi->ip_lock);
101 
102 	/* Check that the inode hasn't been wiped from disk by another
103 	 * node. If it hasn't then we're safe as long as we hold the
104 	 * spin lock until our increment of open count. */
105 	if (oi->ip_flags & OCFS2_INODE_DELETED) {
106 		spin_unlock(&oi->ip_lock);
107 
108 		status = -ENOENT;
109 		goto leave;
110 	}
111 
112 	if (mode & O_DIRECT)
113 		oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
114 
115 	oi->ip_open_count++;
116 	spin_unlock(&oi->ip_lock);
117 
118 	status = ocfs2_init_file_private(inode, file);
119 	if (status) {
120 		/*
121 		 * We want to set open count back if we're failing the
122 		 * open.
123 		 */
124 		spin_lock(&oi->ip_lock);
125 		oi->ip_open_count--;
126 		spin_unlock(&oi->ip_lock);
127 	}
128 
129 	file->f_mode |= FMODE_NOWAIT;
130 
131 leave:
132 	return status;
133 }
134 
ocfs2_file_release(struct inode * inode,struct file * file)135 static int ocfs2_file_release(struct inode *inode, struct file *file)
136 {
137 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
138 
139 	spin_lock(&oi->ip_lock);
140 	if (!--oi->ip_open_count)
141 		oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
142 
143 	trace_ocfs2_file_release(inode, file, file->f_path.dentry,
144 				 oi->ip_blkno,
145 				 file->f_path.dentry->d_name.len,
146 				 file->f_path.dentry->d_name.name,
147 				 oi->ip_open_count);
148 	spin_unlock(&oi->ip_lock);
149 
150 	ocfs2_free_file_private(inode, file);
151 
152 	return 0;
153 }
154 
ocfs2_dir_open(struct inode * inode,struct file * file)155 static int ocfs2_dir_open(struct inode *inode, struct file *file)
156 {
157 	return ocfs2_init_file_private(inode, file);
158 }
159 
ocfs2_dir_release(struct inode * inode,struct file * file)160 static int ocfs2_dir_release(struct inode *inode, struct file *file)
161 {
162 	ocfs2_free_file_private(inode, file);
163 	return 0;
164 }
165 
ocfs2_sync_file(struct file * file,loff_t start,loff_t end,int datasync)166 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
167 			   int datasync)
168 {
169 	int err = 0;
170 	struct inode *inode = file->f_mapping->host;
171 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
172 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
173 	journal_t *journal = osb->journal->j_journal;
174 	int ret;
175 	tid_t commit_tid;
176 	bool needs_barrier = false;
177 
178 	trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
179 			      oi->ip_blkno,
180 			      file->f_path.dentry->d_name.len,
181 			      file->f_path.dentry->d_name.name,
182 			      (unsigned long long)datasync);
183 
184 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
185 		return -EROFS;
186 
187 	err = file_write_and_wait_range(file, start, end);
188 	if (err)
189 		return err;
190 
191 	commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
192 	if (journal->j_flags & JBD2_BARRIER &&
193 	    !jbd2_trans_will_send_data_barrier(journal, commit_tid))
194 		needs_barrier = true;
195 	err = jbd2_complete_transaction(journal, commit_tid);
196 	if (needs_barrier) {
197 		ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
198 		if (!err)
199 			err = ret;
200 	}
201 
202 	if (err)
203 		mlog_errno(err);
204 
205 	return (err < 0) ? -EIO : 0;
206 }
207 
ocfs2_should_update_atime(struct inode * inode,struct vfsmount * vfsmnt)208 int ocfs2_should_update_atime(struct inode *inode,
209 			      struct vfsmount *vfsmnt)
210 {
211 	struct timespec64 now;
212 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
213 
214 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
215 		return 0;
216 
217 	if ((inode->i_flags & S_NOATIME) ||
218 	    ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
219 		return 0;
220 
221 	/*
222 	 * We can be called with no vfsmnt structure - NFSD will
223 	 * sometimes do this.
224 	 *
225 	 * Note that our action here is different than touch_atime() -
226 	 * if we can't tell whether this is a noatime mount, then we
227 	 * don't know whether to trust the value of s_atime_quantum.
228 	 */
229 	if (vfsmnt == NULL)
230 		return 0;
231 
232 	if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
233 	    ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
234 		return 0;
235 
236 	if (vfsmnt->mnt_flags & MNT_RELATIME) {
237 		if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
238 		    (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
239 			return 1;
240 
241 		return 0;
242 	}
243 
244 	now = current_time(inode);
245 	if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
246 		return 0;
247 	else
248 		return 1;
249 }
250 
ocfs2_update_inode_atime(struct inode * inode,struct buffer_head * bh)251 int ocfs2_update_inode_atime(struct inode *inode,
252 			     struct buffer_head *bh)
253 {
254 	int ret;
255 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
256 	handle_t *handle;
257 	struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
258 
259 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
260 	if (IS_ERR(handle)) {
261 		ret = PTR_ERR(handle);
262 		mlog_errno(ret);
263 		goto out;
264 	}
265 
266 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
267 				      OCFS2_JOURNAL_ACCESS_WRITE);
268 	if (ret) {
269 		mlog_errno(ret);
270 		goto out_commit;
271 	}
272 
273 	/*
274 	 * Don't use ocfs2_mark_inode_dirty() here as we don't always
275 	 * have i_mutex to guard against concurrent changes to other
276 	 * inode fields.
277 	 */
278 	inode->i_atime = current_time(inode);
279 	di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
280 	di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
281 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
282 	ocfs2_journal_dirty(handle, bh);
283 
284 out_commit:
285 	ocfs2_commit_trans(osb, handle);
286 out:
287 	return ret;
288 }
289 
ocfs2_set_inode_size(handle_t * handle,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)290 int ocfs2_set_inode_size(handle_t *handle,
291 				struct inode *inode,
292 				struct buffer_head *fe_bh,
293 				u64 new_i_size)
294 {
295 	int status;
296 
297 	i_size_write(inode, new_i_size);
298 	inode->i_blocks = ocfs2_inode_sector_count(inode);
299 	inode->i_ctime = inode->i_mtime = current_time(inode);
300 
301 	status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
302 	if (status < 0) {
303 		mlog_errno(status);
304 		goto bail;
305 	}
306 
307 bail:
308 	return status;
309 }
310 
ocfs2_simple_size_update(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)311 int ocfs2_simple_size_update(struct inode *inode,
312 			     struct buffer_head *di_bh,
313 			     u64 new_i_size)
314 {
315 	int ret;
316 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
317 	handle_t *handle = NULL;
318 
319 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
320 	if (IS_ERR(handle)) {
321 		ret = PTR_ERR(handle);
322 		mlog_errno(ret);
323 		goto out;
324 	}
325 
326 	ret = ocfs2_set_inode_size(handle, inode, di_bh,
327 				   new_i_size);
328 	if (ret < 0)
329 		mlog_errno(ret);
330 
331 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
332 	ocfs2_commit_trans(osb, handle);
333 out:
334 	return ret;
335 }
336 
ocfs2_cow_file_pos(struct inode * inode,struct buffer_head * fe_bh,u64 offset)337 static int ocfs2_cow_file_pos(struct inode *inode,
338 			      struct buffer_head *fe_bh,
339 			      u64 offset)
340 {
341 	int status;
342 	u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
343 	unsigned int num_clusters = 0;
344 	unsigned int ext_flags = 0;
345 
346 	/*
347 	 * If the new offset is aligned to the range of the cluster, there is
348 	 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
349 	 * CoW either.
350 	 */
351 	if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
352 		return 0;
353 
354 	status = ocfs2_get_clusters(inode, cpos, &phys,
355 				    &num_clusters, &ext_flags);
356 	if (status) {
357 		mlog_errno(status);
358 		goto out;
359 	}
360 
361 	if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
362 		goto out;
363 
364 	return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
365 
366 out:
367 	return status;
368 }
369 
ocfs2_orphan_for_truncate(struct ocfs2_super * osb,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)370 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
371 				     struct inode *inode,
372 				     struct buffer_head *fe_bh,
373 				     u64 new_i_size)
374 {
375 	int status;
376 	handle_t *handle;
377 	struct ocfs2_dinode *di;
378 	u64 cluster_bytes;
379 
380 	/*
381 	 * We need to CoW the cluster contains the offset if it is reflinked
382 	 * since we will call ocfs2_zero_range_for_truncate later which will
383 	 * write "0" from offset to the end of the cluster.
384 	 */
385 	status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
386 	if (status) {
387 		mlog_errno(status);
388 		return status;
389 	}
390 
391 	/* TODO: This needs to actually orphan the inode in this
392 	 * transaction. */
393 
394 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
395 	if (IS_ERR(handle)) {
396 		status = PTR_ERR(handle);
397 		mlog_errno(status);
398 		goto out;
399 	}
400 
401 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
402 					 OCFS2_JOURNAL_ACCESS_WRITE);
403 	if (status < 0) {
404 		mlog_errno(status);
405 		goto out_commit;
406 	}
407 
408 	/*
409 	 * Do this before setting i_size.
410 	 */
411 	cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
412 	status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
413 					       cluster_bytes);
414 	if (status) {
415 		mlog_errno(status);
416 		goto out_commit;
417 	}
418 
419 	i_size_write(inode, new_i_size);
420 	inode->i_ctime = inode->i_mtime = current_time(inode);
421 
422 	di = (struct ocfs2_dinode *) fe_bh->b_data;
423 	di->i_size = cpu_to_le64(new_i_size);
424 	di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
425 	di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
426 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
427 
428 	ocfs2_journal_dirty(handle, fe_bh);
429 
430 out_commit:
431 	ocfs2_commit_trans(osb, handle);
432 out:
433 	return status;
434 }
435 
ocfs2_truncate_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)436 int ocfs2_truncate_file(struct inode *inode,
437 			       struct buffer_head *di_bh,
438 			       u64 new_i_size)
439 {
440 	int status = 0;
441 	struct ocfs2_dinode *fe = NULL;
442 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
443 
444 	/* We trust di_bh because it comes from ocfs2_inode_lock(), which
445 	 * already validated it */
446 	fe = (struct ocfs2_dinode *) di_bh->b_data;
447 
448 	trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
449 				  (unsigned long long)le64_to_cpu(fe->i_size),
450 				  (unsigned long long)new_i_size);
451 
452 	mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
453 			"Inode %llu, inode i_size = %lld != di "
454 			"i_size = %llu, i_flags = 0x%x\n",
455 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
456 			i_size_read(inode),
457 			(unsigned long long)le64_to_cpu(fe->i_size),
458 			le32_to_cpu(fe->i_flags));
459 
460 	if (new_i_size > le64_to_cpu(fe->i_size)) {
461 		trace_ocfs2_truncate_file_error(
462 			(unsigned long long)le64_to_cpu(fe->i_size),
463 			(unsigned long long)new_i_size);
464 		status = -EINVAL;
465 		mlog_errno(status);
466 		goto bail;
467 	}
468 
469 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
470 
471 	ocfs2_resv_discard(&osb->osb_la_resmap,
472 			   &OCFS2_I(inode)->ip_la_data_resv);
473 
474 	/*
475 	 * The inode lock forced other nodes to sync and drop their
476 	 * pages, which (correctly) happens even if we have a truncate
477 	 * without allocation change - ocfs2 cluster sizes can be much
478 	 * greater than page size, so we have to truncate them
479 	 * anyway.
480 	 */
481 
482 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
483 		unmap_mapping_range(inode->i_mapping,
484 				    new_i_size + PAGE_SIZE - 1, 0, 1);
485 		truncate_inode_pages(inode->i_mapping, new_i_size);
486 		status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
487 					       i_size_read(inode), 1);
488 		if (status)
489 			mlog_errno(status);
490 
491 		goto bail_unlock_sem;
492 	}
493 
494 	/* alright, we're going to need to do a full blown alloc size
495 	 * change. Orphan the inode so that recovery can complete the
496 	 * truncate if necessary. This does the task of marking
497 	 * i_size. */
498 	status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
499 	if (status < 0) {
500 		mlog_errno(status);
501 		goto bail_unlock_sem;
502 	}
503 
504 	unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
505 	truncate_inode_pages(inode->i_mapping, new_i_size);
506 
507 	status = ocfs2_commit_truncate(osb, inode, di_bh);
508 	if (status < 0) {
509 		mlog_errno(status);
510 		goto bail_unlock_sem;
511 	}
512 
513 	/* TODO: orphan dir cleanup here. */
514 bail_unlock_sem:
515 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
516 
517 bail:
518 	if (!status && OCFS2_I(inode)->ip_clusters == 0)
519 		status = ocfs2_try_remove_refcount_tree(inode, di_bh);
520 
521 	return status;
522 }
523 
524 /*
525  * extend file allocation only here.
526  * we'll update all the disk stuff, and oip->alloc_size
527  *
528  * expect stuff to be locked, a transaction started and enough data /
529  * metadata reservations in the contexts.
530  *
531  * Will return -EAGAIN, and a reason if a restart is needed.
532  * If passed in, *reason will always be set, even in error.
533  */
ocfs2_add_inode_data(struct ocfs2_super * osb,struct inode * inode,u32 * logical_offset,u32 clusters_to_add,int mark_unwritten,struct buffer_head * fe_bh,handle_t * handle,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,enum ocfs2_alloc_restarted * reason_ret)534 int ocfs2_add_inode_data(struct ocfs2_super *osb,
535 			 struct inode *inode,
536 			 u32 *logical_offset,
537 			 u32 clusters_to_add,
538 			 int mark_unwritten,
539 			 struct buffer_head *fe_bh,
540 			 handle_t *handle,
541 			 struct ocfs2_alloc_context *data_ac,
542 			 struct ocfs2_alloc_context *meta_ac,
543 			 enum ocfs2_alloc_restarted *reason_ret)
544 {
545 	int ret;
546 	struct ocfs2_extent_tree et;
547 
548 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
549 	ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
550 					  clusters_to_add, mark_unwritten,
551 					  data_ac, meta_ac, reason_ret);
552 
553 	return ret;
554 }
555 
ocfs2_extend_allocation(struct inode * inode,u32 logical_start,u32 clusters_to_add,int mark_unwritten)556 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
557 				   u32 clusters_to_add, int mark_unwritten)
558 {
559 	int status = 0;
560 	int restart_func = 0;
561 	int credits;
562 	u32 prev_clusters;
563 	struct buffer_head *bh = NULL;
564 	struct ocfs2_dinode *fe = NULL;
565 	handle_t *handle = NULL;
566 	struct ocfs2_alloc_context *data_ac = NULL;
567 	struct ocfs2_alloc_context *meta_ac = NULL;
568 	enum ocfs2_alloc_restarted why = RESTART_NONE;
569 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
570 	struct ocfs2_extent_tree et;
571 	int did_quota = 0;
572 
573 	/*
574 	 * Unwritten extent only exists for file systems which
575 	 * support holes.
576 	 */
577 	BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
578 
579 	status = ocfs2_read_inode_block(inode, &bh);
580 	if (status < 0) {
581 		mlog_errno(status);
582 		goto leave;
583 	}
584 	fe = (struct ocfs2_dinode *) bh->b_data;
585 
586 restart_all:
587 	BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
588 
589 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
590 	status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
591 				       &data_ac, &meta_ac);
592 	if (status) {
593 		mlog_errno(status);
594 		goto leave;
595 	}
596 
597 	credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
598 	handle = ocfs2_start_trans(osb, credits);
599 	if (IS_ERR(handle)) {
600 		status = PTR_ERR(handle);
601 		handle = NULL;
602 		mlog_errno(status);
603 		goto leave;
604 	}
605 
606 restarted_transaction:
607 	trace_ocfs2_extend_allocation(
608 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
609 		(unsigned long long)i_size_read(inode),
610 		le32_to_cpu(fe->i_clusters), clusters_to_add,
611 		why, restart_func);
612 
613 	status = dquot_alloc_space_nodirty(inode,
614 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
615 	if (status)
616 		goto leave;
617 	did_quota = 1;
618 
619 	/* reserve a write to the file entry early on - that we if we
620 	 * run out of credits in the allocation path, we can still
621 	 * update i_size. */
622 	status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
623 					 OCFS2_JOURNAL_ACCESS_WRITE);
624 	if (status < 0) {
625 		mlog_errno(status);
626 		goto leave;
627 	}
628 
629 	prev_clusters = OCFS2_I(inode)->ip_clusters;
630 
631 	status = ocfs2_add_inode_data(osb,
632 				      inode,
633 				      &logical_start,
634 				      clusters_to_add,
635 				      mark_unwritten,
636 				      bh,
637 				      handle,
638 				      data_ac,
639 				      meta_ac,
640 				      &why);
641 	if ((status < 0) && (status != -EAGAIN)) {
642 		if (status != -ENOSPC)
643 			mlog_errno(status);
644 		goto leave;
645 	}
646 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
647 	ocfs2_journal_dirty(handle, bh);
648 
649 	spin_lock(&OCFS2_I(inode)->ip_lock);
650 	clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
651 	spin_unlock(&OCFS2_I(inode)->ip_lock);
652 	/* Release unused quota reservation */
653 	dquot_free_space(inode,
654 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
655 	did_quota = 0;
656 
657 	if (why != RESTART_NONE && clusters_to_add) {
658 		if (why == RESTART_META) {
659 			restart_func = 1;
660 			status = 0;
661 		} else {
662 			BUG_ON(why != RESTART_TRANS);
663 
664 			status = ocfs2_allocate_extend_trans(handle, 1);
665 			if (status < 0) {
666 				/* handle still has to be committed at
667 				 * this point. */
668 				status = -ENOMEM;
669 				mlog_errno(status);
670 				goto leave;
671 			}
672 			goto restarted_transaction;
673 		}
674 	}
675 
676 	trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
677 	     le32_to_cpu(fe->i_clusters),
678 	     (unsigned long long)le64_to_cpu(fe->i_size),
679 	     OCFS2_I(inode)->ip_clusters,
680 	     (unsigned long long)i_size_read(inode));
681 
682 leave:
683 	if (status < 0 && did_quota)
684 		dquot_free_space(inode,
685 			ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
686 	if (handle) {
687 		ocfs2_commit_trans(osb, handle);
688 		handle = NULL;
689 	}
690 	if (data_ac) {
691 		ocfs2_free_alloc_context(data_ac);
692 		data_ac = NULL;
693 	}
694 	if (meta_ac) {
695 		ocfs2_free_alloc_context(meta_ac);
696 		meta_ac = NULL;
697 	}
698 	if ((!status) && restart_func) {
699 		restart_func = 0;
700 		goto restart_all;
701 	}
702 	brelse(bh);
703 	bh = NULL;
704 
705 	return status;
706 }
707 
708 /*
709  * While a write will already be ordering the data, a truncate will not.
710  * Thus, we need to explicitly order the zeroed pages.
711  */
ocfs2_zero_start_ordered_transaction(struct inode * inode,struct buffer_head * di_bh,loff_t start_byte,loff_t length)712 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
713 						      struct buffer_head *di_bh,
714 						      loff_t start_byte,
715 						      loff_t length)
716 {
717 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
718 	handle_t *handle = NULL;
719 	int ret = 0;
720 
721 	if (!ocfs2_should_order_data(inode))
722 		goto out;
723 
724 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
725 	if (IS_ERR(handle)) {
726 		ret = -ENOMEM;
727 		mlog_errno(ret);
728 		goto out;
729 	}
730 
731 	ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
732 	if (ret < 0) {
733 		mlog_errno(ret);
734 		goto out;
735 	}
736 
737 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
738 				      OCFS2_JOURNAL_ACCESS_WRITE);
739 	if (ret)
740 		mlog_errno(ret);
741 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
742 
743 out:
744 	if (ret) {
745 		if (!IS_ERR(handle))
746 			ocfs2_commit_trans(osb, handle);
747 		handle = ERR_PTR(ret);
748 	}
749 	return handle;
750 }
751 
752 /* Some parts of this taken from generic_cont_expand, which turned out
753  * to be too fragile to do exactly what we need without us having to
754  * worry about recursive locking in ->write_begin() and ->write_end(). */
ocfs2_write_zero_page(struct inode * inode,u64 abs_from,u64 abs_to,struct buffer_head * di_bh)755 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
756 				 u64 abs_to, struct buffer_head *di_bh)
757 {
758 	struct address_space *mapping = inode->i_mapping;
759 	struct page *page;
760 	unsigned long index = abs_from >> PAGE_SHIFT;
761 	handle_t *handle;
762 	int ret = 0;
763 	unsigned zero_from, zero_to, block_start, block_end;
764 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
765 
766 	BUG_ON(abs_from >= abs_to);
767 	BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
768 	BUG_ON(abs_from & (inode->i_blkbits - 1));
769 
770 	handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
771 						      abs_from,
772 						      abs_to - abs_from);
773 	if (IS_ERR(handle)) {
774 		ret = PTR_ERR(handle);
775 		goto out;
776 	}
777 
778 	page = find_or_create_page(mapping, index, GFP_NOFS);
779 	if (!page) {
780 		ret = -ENOMEM;
781 		mlog_errno(ret);
782 		goto out_commit_trans;
783 	}
784 
785 	/* Get the offsets within the page that we want to zero */
786 	zero_from = abs_from & (PAGE_SIZE - 1);
787 	zero_to = abs_to & (PAGE_SIZE - 1);
788 	if (!zero_to)
789 		zero_to = PAGE_SIZE;
790 
791 	trace_ocfs2_write_zero_page(
792 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
793 			(unsigned long long)abs_from,
794 			(unsigned long long)abs_to,
795 			index, zero_from, zero_to);
796 
797 	/* We know that zero_from is block aligned */
798 	for (block_start = zero_from; block_start < zero_to;
799 	     block_start = block_end) {
800 		block_end = block_start + i_blocksize(inode);
801 
802 		/*
803 		 * block_start is block-aligned.  Bump it by one to force
804 		 * __block_write_begin and block_commit_write to zero the
805 		 * whole block.
806 		 */
807 		ret = __block_write_begin(page, block_start + 1, 0,
808 					  ocfs2_get_block);
809 		if (ret < 0) {
810 			mlog_errno(ret);
811 			goto out_unlock;
812 		}
813 
814 
815 		/* must not update i_size! */
816 		ret = block_commit_write(page, block_start + 1,
817 					 block_start + 1);
818 		if (ret < 0)
819 			mlog_errno(ret);
820 		else
821 			ret = 0;
822 	}
823 
824 	/*
825 	 * fs-writeback will release the dirty pages without page lock
826 	 * whose offset are over inode size, the release happens at
827 	 * block_write_full_page().
828 	 */
829 	i_size_write(inode, abs_to);
830 	inode->i_blocks = ocfs2_inode_sector_count(inode);
831 	di->i_size = cpu_to_le64((u64)i_size_read(inode));
832 	inode->i_mtime = inode->i_ctime = current_time(inode);
833 	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
834 	di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
835 	di->i_mtime_nsec = di->i_ctime_nsec;
836 	if (handle) {
837 		ocfs2_journal_dirty(handle, di_bh);
838 		ocfs2_update_inode_fsync_trans(handle, inode, 1);
839 	}
840 
841 out_unlock:
842 	unlock_page(page);
843 	put_page(page);
844 out_commit_trans:
845 	if (handle)
846 		ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
847 out:
848 	return ret;
849 }
850 
851 /*
852  * Find the next range to zero.  We do this in terms of bytes because
853  * that's what ocfs2_zero_extend() wants, and it is dealing with the
854  * pagecache.  We may return multiple extents.
855  *
856  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
857  * needs to be zeroed.  range_start and range_end return the next zeroing
858  * range.  A subsequent call should pass the previous range_end as its
859  * zero_start.  If range_end is 0, there's nothing to do.
860  *
861  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
862  */
ocfs2_zero_extend_get_range(struct inode * inode,struct buffer_head * di_bh,u64 zero_start,u64 zero_end,u64 * range_start,u64 * range_end)863 static int ocfs2_zero_extend_get_range(struct inode *inode,
864 				       struct buffer_head *di_bh,
865 				       u64 zero_start, u64 zero_end,
866 				       u64 *range_start, u64 *range_end)
867 {
868 	int rc = 0, needs_cow = 0;
869 	u32 p_cpos, zero_clusters = 0;
870 	u32 zero_cpos =
871 		zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
872 	u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
873 	unsigned int num_clusters = 0;
874 	unsigned int ext_flags = 0;
875 
876 	while (zero_cpos < last_cpos) {
877 		rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
878 					&num_clusters, &ext_flags);
879 		if (rc) {
880 			mlog_errno(rc);
881 			goto out;
882 		}
883 
884 		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
885 			zero_clusters = num_clusters;
886 			if (ext_flags & OCFS2_EXT_REFCOUNTED)
887 				needs_cow = 1;
888 			break;
889 		}
890 
891 		zero_cpos += num_clusters;
892 	}
893 	if (!zero_clusters) {
894 		*range_end = 0;
895 		goto out;
896 	}
897 
898 	while ((zero_cpos + zero_clusters) < last_cpos) {
899 		rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
900 					&p_cpos, &num_clusters,
901 					&ext_flags);
902 		if (rc) {
903 			mlog_errno(rc);
904 			goto out;
905 		}
906 
907 		if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
908 			break;
909 		if (ext_flags & OCFS2_EXT_REFCOUNTED)
910 			needs_cow = 1;
911 		zero_clusters += num_clusters;
912 	}
913 	if ((zero_cpos + zero_clusters) > last_cpos)
914 		zero_clusters = last_cpos - zero_cpos;
915 
916 	if (needs_cow) {
917 		rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
918 					zero_clusters, UINT_MAX);
919 		if (rc) {
920 			mlog_errno(rc);
921 			goto out;
922 		}
923 	}
924 
925 	*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
926 	*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
927 					     zero_cpos + zero_clusters);
928 
929 out:
930 	return rc;
931 }
932 
933 /*
934  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
935  * has made sure that the entire range needs zeroing.
936  */
ocfs2_zero_extend_range(struct inode * inode,u64 range_start,u64 range_end,struct buffer_head * di_bh)937 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
938 				   u64 range_end, struct buffer_head *di_bh)
939 {
940 	int rc = 0;
941 	u64 next_pos;
942 	u64 zero_pos = range_start;
943 
944 	trace_ocfs2_zero_extend_range(
945 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
946 			(unsigned long long)range_start,
947 			(unsigned long long)range_end);
948 	BUG_ON(range_start >= range_end);
949 
950 	while (zero_pos < range_end) {
951 		next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
952 		if (next_pos > range_end)
953 			next_pos = range_end;
954 		rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
955 		if (rc < 0) {
956 			mlog_errno(rc);
957 			break;
958 		}
959 		zero_pos = next_pos;
960 
961 		/*
962 		 * Very large extends have the potential to lock up
963 		 * the cpu for extended periods of time.
964 		 */
965 		cond_resched();
966 	}
967 
968 	return rc;
969 }
970 
ocfs2_zero_extend(struct inode * inode,struct buffer_head * di_bh,loff_t zero_to_size)971 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
972 		      loff_t zero_to_size)
973 {
974 	int ret = 0;
975 	u64 zero_start, range_start = 0, range_end = 0;
976 	struct super_block *sb = inode->i_sb;
977 
978 	zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
979 	trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
980 				(unsigned long long)zero_start,
981 				(unsigned long long)i_size_read(inode));
982 	while (zero_start < zero_to_size) {
983 		ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
984 						  zero_to_size,
985 						  &range_start,
986 						  &range_end);
987 		if (ret) {
988 			mlog_errno(ret);
989 			break;
990 		}
991 		if (!range_end)
992 			break;
993 		/* Trim the ends */
994 		if (range_start < zero_start)
995 			range_start = zero_start;
996 		if (range_end > zero_to_size)
997 			range_end = zero_to_size;
998 
999 		ret = ocfs2_zero_extend_range(inode, range_start,
1000 					      range_end, di_bh);
1001 		if (ret) {
1002 			mlog_errno(ret);
1003 			break;
1004 		}
1005 		zero_start = range_end;
1006 	}
1007 
1008 	return ret;
1009 }
1010 
ocfs2_extend_no_holes(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size,u64 zero_to)1011 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1012 			  u64 new_i_size, u64 zero_to)
1013 {
1014 	int ret;
1015 	u32 clusters_to_add;
1016 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1017 
1018 	/*
1019 	 * Only quota files call this without a bh, and they can't be
1020 	 * refcounted.
1021 	 */
1022 	BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1023 	BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1024 
1025 	clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1026 	if (clusters_to_add < oi->ip_clusters)
1027 		clusters_to_add = 0;
1028 	else
1029 		clusters_to_add -= oi->ip_clusters;
1030 
1031 	if (clusters_to_add) {
1032 		ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1033 					      clusters_to_add, 0);
1034 		if (ret) {
1035 			mlog_errno(ret);
1036 			goto out;
1037 		}
1038 	}
1039 
1040 	/*
1041 	 * Call this even if we don't add any clusters to the tree. We
1042 	 * still need to zero the area between the old i_size and the
1043 	 * new i_size.
1044 	 */
1045 	ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1046 	if (ret < 0)
1047 		mlog_errno(ret);
1048 
1049 out:
1050 	return ret;
1051 }
1052 
ocfs2_extend_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)1053 static int ocfs2_extend_file(struct inode *inode,
1054 			     struct buffer_head *di_bh,
1055 			     u64 new_i_size)
1056 {
1057 	int ret = 0;
1058 	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1059 
1060 	BUG_ON(!di_bh);
1061 
1062 	/* setattr sometimes calls us like this. */
1063 	if (new_i_size == 0)
1064 		goto out;
1065 
1066 	if (i_size_read(inode) == new_i_size)
1067 		goto out;
1068 	BUG_ON(new_i_size < i_size_read(inode));
1069 
1070 	/*
1071 	 * The alloc sem blocks people in read/write from reading our
1072 	 * allocation until we're done changing it. We depend on
1073 	 * i_mutex to block other extend/truncate calls while we're
1074 	 * here.  We even have to hold it for sparse files because there
1075 	 * might be some tail zeroing.
1076 	 */
1077 	down_write(&oi->ip_alloc_sem);
1078 
1079 	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1080 		/*
1081 		 * We can optimize small extends by keeping the inodes
1082 		 * inline data.
1083 		 */
1084 		if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1085 			up_write(&oi->ip_alloc_sem);
1086 			goto out_update_size;
1087 		}
1088 
1089 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1090 		if (ret) {
1091 			up_write(&oi->ip_alloc_sem);
1092 			mlog_errno(ret);
1093 			goto out;
1094 		}
1095 	}
1096 
1097 	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1098 		ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1099 	else
1100 		ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1101 					    new_i_size);
1102 
1103 	up_write(&oi->ip_alloc_sem);
1104 
1105 	if (ret < 0) {
1106 		mlog_errno(ret);
1107 		goto out;
1108 	}
1109 
1110 out_update_size:
1111 	ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1112 	if (ret < 0)
1113 		mlog_errno(ret);
1114 
1115 out:
1116 	return ret;
1117 }
1118 
ocfs2_setattr(struct dentry * dentry,struct iattr * attr)1119 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1120 {
1121 	int status = 0, size_change;
1122 	int inode_locked = 0;
1123 	struct inode *inode = d_inode(dentry);
1124 	struct super_block *sb = inode->i_sb;
1125 	struct ocfs2_super *osb = OCFS2_SB(sb);
1126 	struct buffer_head *bh = NULL;
1127 	handle_t *handle = NULL;
1128 	struct dquot *transfer_to[MAXQUOTAS] = { };
1129 	int qtype;
1130 	int had_lock;
1131 	struct ocfs2_lock_holder oh;
1132 
1133 	trace_ocfs2_setattr(inode, dentry,
1134 			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1135 			    dentry->d_name.len, dentry->d_name.name,
1136 			    attr->ia_valid, attr->ia_mode,
1137 			    from_kuid(&init_user_ns, attr->ia_uid),
1138 			    from_kgid(&init_user_ns, attr->ia_gid));
1139 
1140 	/* ensuring we don't even attempt to truncate a symlink */
1141 	if (S_ISLNK(inode->i_mode))
1142 		attr->ia_valid &= ~ATTR_SIZE;
1143 
1144 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1145 			   | ATTR_GID | ATTR_UID | ATTR_MODE)
1146 	if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1147 		return 0;
1148 
1149 	status = setattr_prepare(dentry, attr);
1150 	if (status)
1151 		return status;
1152 
1153 	if (is_quota_modification(inode, attr)) {
1154 		status = dquot_initialize(inode);
1155 		if (status)
1156 			return status;
1157 	}
1158 	size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1159 	if (size_change) {
1160 		/*
1161 		 * Here we should wait dio to finish before inode lock
1162 		 * to avoid a deadlock between ocfs2_setattr() and
1163 		 * ocfs2_dio_end_io_write()
1164 		 */
1165 		inode_dio_wait(inode);
1166 
1167 		status = ocfs2_rw_lock(inode, 1);
1168 		if (status < 0) {
1169 			mlog_errno(status);
1170 			goto bail;
1171 		}
1172 	}
1173 
1174 	had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1175 	if (had_lock < 0) {
1176 		status = had_lock;
1177 		goto bail_unlock_rw;
1178 	} else if (had_lock) {
1179 		/*
1180 		 * As far as we know, ocfs2_setattr() could only be the first
1181 		 * VFS entry point in the call chain of recursive cluster
1182 		 * locking issue.
1183 		 *
1184 		 * For instance:
1185 		 * chmod_common()
1186 		 *  notify_change()
1187 		 *   ocfs2_setattr()
1188 		 *    posix_acl_chmod()
1189 		 *     ocfs2_iop_get_acl()
1190 		 *
1191 		 * But, we're not 100% sure if it's always true, because the
1192 		 * ordering of the VFS entry points in the call chain is out
1193 		 * of our control. So, we'd better dump the stack here to
1194 		 * catch the other cases of recursive locking.
1195 		 */
1196 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1197 		dump_stack();
1198 	}
1199 	inode_locked = 1;
1200 
1201 	if (size_change) {
1202 		status = inode_newsize_ok(inode, attr->ia_size);
1203 		if (status)
1204 			goto bail_unlock;
1205 
1206 		if (i_size_read(inode) >= attr->ia_size) {
1207 			if (ocfs2_should_order_data(inode)) {
1208 				status = ocfs2_begin_ordered_truncate(inode,
1209 								      attr->ia_size);
1210 				if (status)
1211 					goto bail_unlock;
1212 			}
1213 			status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1214 		} else
1215 			status = ocfs2_extend_file(inode, bh, attr->ia_size);
1216 		if (status < 0) {
1217 			if (status != -ENOSPC)
1218 				mlog_errno(status);
1219 			status = -ENOSPC;
1220 			goto bail_unlock;
1221 		}
1222 	}
1223 
1224 	if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1225 	    (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1226 		/*
1227 		 * Gather pointers to quota structures so that allocation /
1228 		 * freeing of quota structures happens here and not inside
1229 		 * dquot_transfer() where we have problems with lock ordering
1230 		 */
1231 		if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1232 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1233 		    OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1234 			transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1235 			if (IS_ERR(transfer_to[USRQUOTA])) {
1236 				status = PTR_ERR(transfer_to[USRQUOTA]);
1237 				transfer_to[USRQUOTA] = NULL;
1238 				goto bail_unlock;
1239 			}
1240 		}
1241 		if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1242 		    && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1243 		    OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1244 			transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1245 			if (IS_ERR(transfer_to[GRPQUOTA])) {
1246 				status = PTR_ERR(transfer_to[GRPQUOTA]);
1247 				transfer_to[GRPQUOTA] = NULL;
1248 				goto bail_unlock;
1249 			}
1250 		}
1251 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
1252 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1253 					   2 * ocfs2_quota_trans_credits(sb));
1254 		if (IS_ERR(handle)) {
1255 			status = PTR_ERR(handle);
1256 			mlog_errno(status);
1257 			goto bail_unlock_alloc;
1258 		}
1259 		status = __dquot_transfer(inode, transfer_to);
1260 		if (status < 0)
1261 			goto bail_commit;
1262 	} else {
1263 		down_write(&OCFS2_I(inode)->ip_alloc_sem);
1264 		handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1265 		if (IS_ERR(handle)) {
1266 			status = PTR_ERR(handle);
1267 			mlog_errno(status);
1268 			goto bail_unlock_alloc;
1269 		}
1270 	}
1271 
1272 	setattr_copy(inode, attr);
1273 	mark_inode_dirty(inode);
1274 
1275 	status = ocfs2_mark_inode_dirty(handle, inode, bh);
1276 	if (status < 0)
1277 		mlog_errno(status);
1278 
1279 bail_commit:
1280 	ocfs2_commit_trans(osb, handle);
1281 bail_unlock_alloc:
1282 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
1283 bail_unlock:
1284 	if (status && inode_locked) {
1285 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1286 		inode_locked = 0;
1287 	}
1288 bail_unlock_rw:
1289 	if (size_change)
1290 		ocfs2_rw_unlock(inode, 1);
1291 bail:
1292 
1293 	/* Release quota pointers in case we acquired them */
1294 	for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1295 		dqput(transfer_to[qtype]);
1296 
1297 	if (!status && attr->ia_valid & ATTR_MODE) {
1298 		status = ocfs2_acl_chmod(inode, bh);
1299 		if (status < 0)
1300 			mlog_errno(status);
1301 	}
1302 	if (inode_locked)
1303 		ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1304 
1305 	brelse(bh);
1306 	return status;
1307 }
1308 
ocfs2_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)1309 int ocfs2_getattr(const struct path *path, struct kstat *stat,
1310 		  u32 request_mask, unsigned int flags)
1311 {
1312 	struct inode *inode = d_inode(path->dentry);
1313 	struct super_block *sb = path->dentry->d_sb;
1314 	struct ocfs2_super *osb = sb->s_fs_info;
1315 	int err;
1316 
1317 	err = ocfs2_inode_revalidate(path->dentry);
1318 	if (err) {
1319 		if (err != -ENOENT)
1320 			mlog_errno(err);
1321 		goto bail;
1322 	}
1323 
1324 	generic_fillattr(inode, stat);
1325 	/*
1326 	 * If there is inline data in the inode, the inode will normally not
1327 	 * have data blocks allocated (it may have an external xattr block).
1328 	 * Report at least one sector for such files, so tools like tar, rsync,
1329 	 * others don't incorrectly think the file is completely sparse.
1330 	 */
1331 	if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1332 		stat->blocks += (stat->size + 511)>>9;
1333 
1334 	/* We set the blksize from the cluster size for performance */
1335 	stat->blksize = osb->s_clustersize;
1336 
1337 bail:
1338 	return err;
1339 }
1340 
ocfs2_permission(struct inode * inode,int mask)1341 int ocfs2_permission(struct inode *inode, int mask)
1342 {
1343 	int ret, had_lock;
1344 	struct ocfs2_lock_holder oh;
1345 
1346 	if (mask & MAY_NOT_BLOCK)
1347 		return -ECHILD;
1348 
1349 	had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1350 	if (had_lock < 0) {
1351 		ret = had_lock;
1352 		goto out;
1353 	} else if (had_lock) {
1354 		/* See comments in ocfs2_setattr() for details.
1355 		 * The call chain of this case could be:
1356 		 * do_sys_open()
1357 		 *  may_open()
1358 		 *   inode_permission()
1359 		 *    ocfs2_permission()
1360 		 *     ocfs2_iop_get_acl()
1361 		 */
1362 		mlog(ML_ERROR, "Another case of recursive locking:\n");
1363 		dump_stack();
1364 	}
1365 
1366 	ret = generic_permission(inode, mask);
1367 
1368 	ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1369 out:
1370 	return ret;
1371 }
1372 
__ocfs2_write_remove_suid(struct inode * inode,struct buffer_head * bh)1373 static int __ocfs2_write_remove_suid(struct inode *inode,
1374 				     struct buffer_head *bh)
1375 {
1376 	int ret;
1377 	handle_t *handle;
1378 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1379 	struct ocfs2_dinode *di;
1380 
1381 	trace_ocfs2_write_remove_suid(
1382 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1383 			inode->i_mode);
1384 
1385 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1386 	if (IS_ERR(handle)) {
1387 		ret = PTR_ERR(handle);
1388 		mlog_errno(ret);
1389 		goto out;
1390 	}
1391 
1392 	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1393 				      OCFS2_JOURNAL_ACCESS_WRITE);
1394 	if (ret < 0) {
1395 		mlog_errno(ret);
1396 		goto out_trans;
1397 	}
1398 
1399 	inode->i_mode &= ~S_ISUID;
1400 	if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1401 		inode->i_mode &= ~S_ISGID;
1402 
1403 	di = (struct ocfs2_dinode *) bh->b_data;
1404 	di->i_mode = cpu_to_le16(inode->i_mode);
1405 	ocfs2_update_inode_fsync_trans(handle, inode, 0);
1406 
1407 	ocfs2_journal_dirty(handle, bh);
1408 
1409 out_trans:
1410 	ocfs2_commit_trans(osb, handle);
1411 out:
1412 	return ret;
1413 }
1414 
ocfs2_write_remove_suid(struct inode * inode)1415 static int ocfs2_write_remove_suid(struct inode *inode)
1416 {
1417 	int ret;
1418 	struct buffer_head *bh = NULL;
1419 
1420 	ret = ocfs2_read_inode_block(inode, &bh);
1421 	if (ret < 0) {
1422 		mlog_errno(ret);
1423 		goto out;
1424 	}
1425 
1426 	ret =  __ocfs2_write_remove_suid(inode, bh);
1427 out:
1428 	brelse(bh);
1429 	return ret;
1430 }
1431 
1432 /*
1433  * Allocate enough extents to cover the region starting at byte offset
1434  * start for len bytes. Existing extents are skipped, any extents
1435  * added are marked as "unwritten".
1436  */
ocfs2_allocate_unwritten_extents(struct inode * inode,u64 start,u64 len)1437 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1438 					    u64 start, u64 len)
1439 {
1440 	int ret;
1441 	u32 cpos, phys_cpos, clusters, alloc_size;
1442 	u64 end = start + len;
1443 	struct buffer_head *di_bh = NULL;
1444 
1445 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1446 		ret = ocfs2_read_inode_block(inode, &di_bh);
1447 		if (ret) {
1448 			mlog_errno(ret);
1449 			goto out;
1450 		}
1451 
1452 		/*
1453 		 * Nothing to do if the requested reservation range
1454 		 * fits within the inode.
1455 		 */
1456 		if (ocfs2_size_fits_inline_data(di_bh, end))
1457 			goto out;
1458 
1459 		ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1460 		if (ret) {
1461 			mlog_errno(ret);
1462 			goto out;
1463 		}
1464 	}
1465 
1466 	/*
1467 	 * We consider both start and len to be inclusive.
1468 	 */
1469 	cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1470 	clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1471 	clusters -= cpos;
1472 
1473 	while (clusters) {
1474 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1475 					 &alloc_size, NULL);
1476 		if (ret) {
1477 			mlog_errno(ret);
1478 			goto out;
1479 		}
1480 
1481 		/*
1482 		 * Hole or existing extent len can be arbitrary, so
1483 		 * cap it to our own allocation request.
1484 		 */
1485 		if (alloc_size > clusters)
1486 			alloc_size = clusters;
1487 
1488 		if (phys_cpos) {
1489 			/*
1490 			 * We already have an allocation at this
1491 			 * region so we can safely skip it.
1492 			 */
1493 			goto next;
1494 		}
1495 
1496 		ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1497 		if (ret) {
1498 			if (ret != -ENOSPC)
1499 				mlog_errno(ret);
1500 			goto out;
1501 		}
1502 
1503 next:
1504 		cpos += alloc_size;
1505 		clusters -= alloc_size;
1506 	}
1507 
1508 	ret = 0;
1509 out:
1510 
1511 	brelse(di_bh);
1512 	return ret;
1513 }
1514 
1515 /*
1516  * Truncate a byte range, avoiding pages within partial clusters. This
1517  * preserves those pages for the zeroing code to write to.
1518  */
ocfs2_truncate_cluster_pages(struct inode * inode,u64 byte_start,u64 byte_len)1519 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1520 					 u64 byte_len)
1521 {
1522 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1523 	loff_t start, end;
1524 	struct address_space *mapping = inode->i_mapping;
1525 
1526 	start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1527 	end = byte_start + byte_len;
1528 	end = end & ~(osb->s_clustersize - 1);
1529 
1530 	if (start < end) {
1531 		unmap_mapping_range(mapping, start, end - start, 0);
1532 		truncate_inode_pages_range(mapping, start, end - 1);
1533 	}
1534 }
1535 
1536 /*
1537  * zero out partial blocks of one cluster.
1538  *
1539  * start: file offset where zero starts, will be made upper block aligned.
1540  * len: it will be trimmed to the end of current cluster if "start + len"
1541  *      is bigger than it.
1542  */
ocfs2_zeroout_partial_cluster(struct inode * inode,u64 start,u64 len)1543 static int ocfs2_zeroout_partial_cluster(struct inode *inode,
1544 					u64 start, u64 len)
1545 {
1546 	int ret;
1547 	u64 start_block, end_block, nr_blocks;
1548 	u64 p_block, offset;
1549 	u32 cluster, p_cluster, nr_clusters;
1550 	struct super_block *sb = inode->i_sb;
1551 	u64 end = ocfs2_align_bytes_to_clusters(sb, start);
1552 
1553 	if (start + len < end)
1554 		end = start + len;
1555 
1556 	start_block = ocfs2_blocks_for_bytes(sb, start);
1557 	end_block = ocfs2_blocks_for_bytes(sb, end);
1558 	nr_blocks = end_block - start_block;
1559 	if (!nr_blocks)
1560 		return 0;
1561 
1562 	cluster = ocfs2_bytes_to_clusters(sb, start);
1563 	ret = ocfs2_get_clusters(inode, cluster, &p_cluster,
1564 				&nr_clusters, NULL);
1565 	if (ret)
1566 		return ret;
1567 	if (!p_cluster)
1568 		return 0;
1569 
1570 	offset = start_block - ocfs2_clusters_to_blocks(sb, cluster);
1571 	p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset;
1572 	return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS);
1573 }
1574 
ocfs2_zero_partial_clusters(struct inode * inode,u64 start,u64 len)1575 static int ocfs2_zero_partial_clusters(struct inode *inode,
1576 				       u64 start, u64 len)
1577 {
1578 	int ret = 0;
1579 	u64 tmpend = 0;
1580 	u64 end = start + len;
1581 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1582 	unsigned int csize = osb->s_clustersize;
1583 	handle_t *handle;
1584 	loff_t isize = i_size_read(inode);
1585 
1586 	/*
1587 	 * The "start" and "end" values are NOT necessarily part of
1588 	 * the range whose allocation is being deleted. Rather, this
1589 	 * is what the user passed in with the request. We must zero
1590 	 * partial clusters here. There's no need to worry about
1591 	 * physical allocation - the zeroing code knows to skip holes.
1592 	 */
1593 	trace_ocfs2_zero_partial_clusters(
1594 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
1595 		(unsigned long long)start, (unsigned long long)end);
1596 
1597 	/*
1598 	 * If both edges are on a cluster boundary then there's no
1599 	 * zeroing required as the region is part of the allocation to
1600 	 * be truncated.
1601 	 */
1602 	if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1603 		goto out;
1604 
1605 	/* No page cache for EOF blocks, issue zero out to disk. */
1606 	if (end > isize) {
1607 		/*
1608 		 * zeroout eof blocks in last cluster starting from
1609 		 * "isize" even "start" > "isize" because it is
1610 		 * complicated to zeroout just at "start" as "start"
1611 		 * may be not aligned with block size, buffer write
1612 		 * would be required to do that, but out of eof buffer
1613 		 * write is not supported.
1614 		 */
1615 		ret = ocfs2_zeroout_partial_cluster(inode, isize,
1616 					end - isize);
1617 		if (ret) {
1618 			mlog_errno(ret);
1619 			goto out;
1620 		}
1621 		if (start >= isize)
1622 			goto out;
1623 		end = isize;
1624 	}
1625 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1626 	if (IS_ERR(handle)) {
1627 		ret = PTR_ERR(handle);
1628 		mlog_errno(ret);
1629 		goto out;
1630 	}
1631 
1632 	/*
1633 	 * If start is on a cluster boundary and end is somewhere in another
1634 	 * cluster, we have not COWed the cluster starting at start, unless
1635 	 * end is also within the same cluster. So, in this case, we skip this
1636 	 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1637 	 * to the next one.
1638 	 */
1639 	if ((start & (csize - 1)) != 0) {
1640 		/*
1641 		 * We want to get the byte offset of the end of the 1st
1642 		 * cluster.
1643 		 */
1644 		tmpend = (u64)osb->s_clustersize +
1645 			(start & ~(osb->s_clustersize - 1));
1646 		if (tmpend > end)
1647 			tmpend = end;
1648 
1649 		trace_ocfs2_zero_partial_clusters_range1(
1650 			(unsigned long long)start,
1651 			(unsigned long long)tmpend);
1652 
1653 		ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1654 						    tmpend);
1655 		if (ret)
1656 			mlog_errno(ret);
1657 	}
1658 
1659 	if (tmpend < end) {
1660 		/*
1661 		 * This may make start and end equal, but the zeroing
1662 		 * code will skip any work in that case so there's no
1663 		 * need to catch it up here.
1664 		 */
1665 		start = end & ~(osb->s_clustersize - 1);
1666 
1667 		trace_ocfs2_zero_partial_clusters_range2(
1668 			(unsigned long long)start, (unsigned long long)end);
1669 
1670 		ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1671 		if (ret)
1672 			mlog_errno(ret);
1673 	}
1674 	ocfs2_update_inode_fsync_trans(handle, inode, 1);
1675 
1676 	ocfs2_commit_trans(osb, handle);
1677 out:
1678 	return ret;
1679 }
1680 
ocfs2_find_rec(struct ocfs2_extent_list * el,u32 pos)1681 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1682 {
1683 	int i;
1684 	struct ocfs2_extent_rec *rec = NULL;
1685 
1686 	for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1687 
1688 		rec = &el->l_recs[i];
1689 
1690 		if (le32_to_cpu(rec->e_cpos) < pos)
1691 			break;
1692 	}
1693 
1694 	return i;
1695 }
1696 
1697 /*
1698  * Helper to calculate the punching pos and length in one run, we handle the
1699  * following three cases in order:
1700  *
1701  * - remove the entire record
1702  * - remove a partial record
1703  * - no record needs to be removed (hole-punching completed)
1704 */
ocfs2_calc_trunc_pos(struct inode * inode,struct ocfs2_extent_list * el,struct ocfs2_extent_rec * rec,u32 trunc_start,u32 * trunc_cpos,u32 * trunc_len,u32 * trunc_end,u64 * blkno,int * done)1705 static void ocfs2_calc_trunc_pos(struct inode *inode,
1706 				 struct ocfs2_extent_list *el,
1707 				 struct ocfs2_extent_rec *rec,
1708 				 u32 trunc_start, u32 *trunc_cpos,
1709 				 u32 *trunc_len, u32 *trunc_end,
1710 				 u64 *blkno, int *done)
1711 {
1712 	int ret = 0;
1713 	u32 coff, range;
1714 
1715 	range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1716 
1717 	if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1718 		/*
1719 		 * remove an entire extent record.
1720 		 */
1721 		*trunc_cpos = le32_to_cpu(rec->e_cpos);
1722 		/*
1723 		 * Skip holes if any.
1724 		 */
1725 		if (range < *trunc_end)
1726 			*trunc_end = range;
1727 		*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1728 		*blkno = le64_to_cpu(rec->e_blkno);
1729 		*trunc_end = le32_to_cpu(rec->e_cpos);
1730 	} else if (range > trunc_start) {
1731 		/*
1732 		 * remove a partial extent record, which means we're
1733 		 * removing the last extent record.
1734 		 */
1735 		*trunc_cpos = trunc_start;
1736 		/*
1737 		 * skip hole if any.
1738 		 */
1739 		if (range < *trunc_end)
1740 			*trunc_end = range;
1741 		*trunc_len = *trunc_end - trunc_start;
1742 		coff = trunc_start - le32_to_cpu(rec->e_cpos);
1743 		*blkno = le64_to_cpu(rec->e_blkno) +
1744 				ocfs2_clusters_to_blocks(inode->i_sb, coff);
1745 		*trunc_end = trunc_start;
1746 	} else {
1747 		/*
1748 		 * It may have two following possibilities:
1749 		 *
1750 		 * - last record has been removed
1751 		 * - trunc_start was within a hole
1752 		 *
1753 		 * both two cases mean the completion of hole punching.
1754 		 */
1755 		ret = 1;
1756 	}
1757 
1758 	*done = ret;
1759 }
1760 
ocfs2_remove_inode_range(struct inode * inode,struct buffer_head * di_bh,u64 byte_start,u64 byte_len)1761 int ocfs2_remove_inode_range(struct inode *inode,
1762 			     struct buffer_head *di_bh, u64 byte_start,
1763 			     u64 byte_len)
1764 {
1765 	int ret = 0, flags = 0, done = 0, i;
1766 	u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1767 	u32 cluster_in_el;
1768 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1769 	struct ocfs2_cached_dealloc_ctxt dealloc;
1770 	struct address_space *mapping = inode->i_mapping;
1771 	struct ocfs2_extent_tree et;
1772 	struct ocfs2_path *path = NULL;
1773 	struct ocfs2_extent_list *el = NULL;
1774 	struct ocfs2_extent_rec *rec = NULL;
1775 	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1776 	u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1777 
1778 	ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1779 	ocfs2_init_dealloc_ctxt(&dealloc);
1780 
1781 	trace_ocfs2_remove_inode_range(
1782 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
1783 			(unsigned long long)byte_start,
1784 			(unsigned long long)byte_len);
1785 
1786 	if (byte_len == 0)
1787 		return 0;
1788 
1789 	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1790 		ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1791 					    byte_start + byte_len, 0);
1792 		if (ret) {
1793 			mlog_errno(ret);
1794 			goto out;
1795 		}
1796 		/*
1797 		 * There's no need to get fancy with the page cache
1798 		 * truncate of an inline-data inode. We're talking
1799 		 * about less than a page here, which will be cached
1800 		 * in the dinode buffer anyway.
1801 		 */
1802 		unmap_mapping_range(mapping, 0, 0, 0);
1803 		truncate_inode_pages(mapping, 0);
1804 		goto out;
1805 	}
1806 
1807 	/*
1808 	 * For reflinks, we may need to CoW 2 clusters which might be
1809 	 * partially zero'd later, if hole's start and end offset were
1810 	 * within one cluster(means is not exactly aligned to clustersize).
1811 	 */
1812 
1813 	if (ocfs2_is_refcount_inode(inode)) {
1814 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1815 		if (ret) {
1816 			mlog_errno(ret);
1817 			goto out;
1818 		}
1819 
1820 		ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1821 		if (ret) {
1822 			mlog_errno(ret);
1823 			goto out;
1824 		}
1825 	}
1826 
1827 	trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1828 	trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1829 	cluster_in_el = trunc_end;
1830 
1831 	ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1832 	if (ret) {
1833 		mlog_errno(ret);
1834 		goto out;
1835 	}
1836 
1837 	path = ocfs2_new_path_from_et(&et);
1838 	if (!path) {
1839 		ret = -ENOMEM;
1840 		mlog_errno(ret);
1841 		goto out;
1842 	}
1843 
1844 	while (trunc_end > trunc_start) {
1845 
1846 		ret = ocfs2_find_path(INODE_CACHE(inode), path,
1847 				      cluster_in_el);
1848 		if (ret) {
1849 			mlog_errno(ret);
1850 			goto out;
1851 		}
1852 
1853 		el = path_leaf_el(path);
1854 
1855 		i = ocfs2_find_rec(el, trunc_end);
1856 		/*
1857 		 * Need to go to previous extent block.
1858 		 */
1859 		if (i < 0) {
1860 			if (path->p_tree_depth == 0)
1861 				break;
1862 
1863 			ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1864 							    path,
1865 							    &cluster_in_el);
1866 			if (ret) {
1867 				mlog_errno(ret);
1868 				goto out;
1869 			}
1870 
1871 			/*
1872 			 * We've reached the leftmost extent block,
1873 			 * it's safe to leave.
1874 			 */
1875 			if (cluster_in_el == 0)
1876 				break;
1877 
1878 			/*
1879 			 * The 'pos' searched for previous extent block is
1880 			 * always one cluster less than actual trunc_end.
1881 			 */
1882 			trunc_end = cluster_in_el + 1;
1883 
1884 			ocfs2_reinit_path(path, 1);
1885 
1886 			continue;
1887 
1888 		} else
1889 			rec = &el->l_recs[i];
1890 
1891 		ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1892 				     &trunc_len, &trunc_end, &blkno, &done);
1893 		if (done)
1894 			break;
1895 
1896 		flags = rec->e_flags;
1897 		phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1898 
1899 		ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1900 					       phys_cpos, trunc_len, flags,
1901 					       &dealloc, refcount_loc, false);
1902 		if (ret < 0) {
1903 			mlog_errno(ret);
1904 			goto out;
1905 		}
1906 
1907 		cluster_in_el = trunc_end;
1908 
1909 		ocfs2_reinit_path(path, 1);
1910 	}
1911 
1912 	ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1913 
1914 out:
1915 	ocfs2_free_path(path);
1916 	ocfs2_schedule_truncate_log_flush(osb, 1);
1917 	ocfs2_run_deallocs(osb, &dealloc);
1918 
1919 	return ret;
1920 }
1921 
1922 /*
1923  * Parts of this function taken from xfs_change_file_space()
1924  */
__ocfs2_change_file_space(struct file * file,struct inode * inode,loff_t f_pos,unsigned int cmd,struct ocfs2_space_resv * sr,int change_size)1925 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1926 				     loff_t f_pos, unsigned int cmd,
1927 				     struct ocfs2_space_resv *sr,
1928 				     int change_size)
1929 {
1930 	int ret;
1931 	s64 llen;
1932 	loff_t size, orig_isize;
1933 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1934 	struct buffer_head *di_bh = NULL;
1935 	handle_t *handle;
1936 	unsigned long long max_off = inode->i_sb->s_maxbytes;
1937 
1938 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1939 		return -EROFS;
1940 
1941 	inode_lock(inode);
1942 
1943 	/*
1944 	 * This prevents concurrent writes on other nodes
1945 	 */
1946 	ret = ocfs2_rw_lock(inode, 1);
1947 	if (ret) {
1948 		mlog_errno(ret);
1949 		goto out;
1950 	}
1951 
1952 	ret = ocfs2_inode_lock(inode, &di_bh, 1);
1953 	if (ret) {
1954 		mlog_errno(ret);
1955 		goto out_rw_unlock;
1956 	}
1957 
1958 	if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1959 		ret = -EPERM;
1960 		goto out_inode_unlock;
1961 	}
1962 
1963 	switch (sr->l_whence) {
1964 	case 0: /*SEEK_SET*/
1965 		break;
1966 	case 1: /*SEEK_CUR*/
1967 		sr->l_start += f_pos;
1968 		break;
1969 	case 2: /*SEEK_END*/
1970 		sr->l_start += i_size_read(inode);
1971 		break;
1972 	default:
1973 		ret = -EINVAL;
1974 		goto out_inode_unlock;
1975 	}
1976 	sr->l_whence = 0;
1977 
1978 	llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1979 
1980 	if (sr->l_start < 0
1981 	    || sr->l_start > max_off
1982 	    || (sr->l_start + llen) < 0
1983 	    || (sr->l_start + llen) > max_off) {
1984 		ret = -EINVAL;
1985 		goto out_inode_unlock;
1986 	}
1987 	size = sr->l_start + sr->l_len;
1988 
1989 	if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1990 	    cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1991 		if (sr->l_len <= 0) {
1992 			ret = -EINVAL;
1993 			goto out_inode_unlock;
1994 		}
1995 	}
1996 
1997 	if (file && should_remove_suid(file->f_path.dentry)) {
1998 		ret = __ocfs2_write_remove_suid(inode, di_bh);
1999 		if (ret) {
2000 			mlog_errno(ret);
2001 			goto out_inode_unlock;
2002 		}
2003 	}
2004 
2005 	down_write(&OCFS2_I(inode)->ip_alloc_sem);
2006 	switch (cmd) {
2007 	case OCFS2_IOC_RESVSP:
2008 	case OCFS2_IOC_RESVSP64:
2009 		/*
2010 		 * This takes unsigned offsets, but the signed ones we
2011 		 * pass have been checked against overflow above.
2012 		 */
2013 		ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
2014 						       sr->l_len);
2015 		break;
2016 	case OCFS2_IOC_UNRESVSP:
2017 	case OCFS2_IOC_UNRESVSP64:
2018 		ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
2019 					       sr->l_len);
2020 		break;
2021 	default:
2022 		ret = -EINVAL;
2023 	}
2024 
2025 	orig_isize = i_size_read(inode);
2026 	/* zeroout eof blocks in the cluster. */
2027 	if (!ret && change_size && orig_isize < size) {
2028 		ret = ocfs2_zeroout_partial_cluster(inode, orig_isize,
2029 					size - orig_isize);
2030 		if (!ret)
2031 			i_size_write(inode, size);
2032 	}
2033 	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2034 	if (ret) {
2035 		mlog_errno(ret);
2036 		goto out_inode_unlock;
2037 	}
2038 
2039 	/*
2040 	 * We update c/mtime for these changes
2041 	 */
2042 	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
2043 	if (IS_ERR(handle)) {
2044 		ret = PTR_ERR(handle);
2045 		mlog_errno(ret);
2046 		goto out_inode_unlock;
2047 	}
2048 
2049 	inode->i_ctime = inode->i_mtime = current_time(inode);
2050 	ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
2051 	if (ret < 0)
2052 		mlog_errno(ret);
2053 
2054 	if (file && (file->f_flags & O_SYNC))
2055 		handle->h_sync = 1;
2056 
2057 	ocfs2_commit_trans(osb, handle);
2058 
2059 out_inode_unlock:
2060 	brelse(di_bh);
2061 	ocfs2_inode_unlock(inode, 1);
2062 out_rw_unlock:
2063 	ocfs2_rw_unlock(inode, 1);
2064 
2065 out:
2066 	inode_unlock(inode);
2067 	return ret;
2068 }
2069 
ocfs2_change_file_space(struct file * file,unsigned int cmd,struct ocfs2_space_resv * sr)2070 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2071 			    struct ocfs2_space_resv *sr)
2072 {
2073 	struct inode *inode = file_inode(file);
2074 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2075 	int ret;
2076 
2077 	if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2078 	    !ocfs2_writes_unwritten_extents(osb))
2079 		return -ENOTTY;
2080 	else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2081 		 !ocfs2_sparse_alloc(osb))
2082 		return -ENOTTY;
2083 
2084 	if (!S_ISREG(inode->i_mode))
2085 		return -EINVAL;
2086 
2087 	if (!(file->f_mode & FMODE_WRITE))
2088 		return -EBADF;
2089 
2090 	ret = mnt_want_write_file(file);
2091 	if (ret)
2092 		return ret;
2093 	ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2094 	mnt_drop_write_file(file);
2095 	return ret;
2096 }
2097 
ocfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2098 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2099 			    loff_t len)
2100 {
2101 	struct inode *inode = file_inode(file);
2102 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2103 	struct ocfs2_space_resv sr;
2104 	int change_size = 1;
2105 	int cmd = OCFS2_IOC_RESVSP64;
2106 	int ret = 0;
2107 
2108 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2109 		return -EOPNOTSUPP;
2110 	if (!ocfs2_writes_unwritten_extents(osb))
2111 		return -EOPNOTSUPP;
2112 
2113 	if (mode & FALLOC_FL_KEEP_SIZE) {
2114 		change_size = 0;
2115 	} else {
2116 		ret = inode_newsize_ok(inode, offset + len);
2117 		if (ret)
2118 			return ret;
2119 	}
2120 
2121 	if (mode & FALLOC_FL_PUNCH_HOLE)
2122 		cmd = OCFS2_IOC_UNRESVSP64;
2123 
2124 	sr.l_whence = 0;
2125 	sr.l_start = (s64)offset;
2126 	sr.l_len = (s64)len;
2127 
2128 	return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2129 					 change_size);
2130 }
2131 
ocfs2_check_range_for_refcount(struct inode * inode,loff_t pos,size_t count)2132 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2133 				   size_t count)
2134 {
2135 	int ret = 0;
2136 	unsigned int extent_flags;
2137 	u32 cpos, clusters, extent_len, phys_cpos;
2138 	struct super_block *sb = inode->i_sb;
2139 
2140 	if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2141 	    !ocfs2_is_refcount_inode(inode) ||
2142 	    OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2143 		return 0;
2144 
2145 	cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2146 	clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2147 
2148 	while (clusters) {
2149 		ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2150 					 &extent_flags);
2151 		if (ret < 0) {
2152 			mlog_errno(ret);
2153 			goto out;
2154 		}
2155 
2156 		if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2157 			ret = 1;
2158 			break;
2159 		}
2160 
2161 		if (extent_len > clusters)
2162 			extent_len = clusters;
2163 
2164 		clusters -= extent_len;
2165 		cpos += extent_len;
2166 	}
2167 out:
2168 	return ret;
2169 }
2170 
ocfs2_is_io_unaligned(struct inode * inode,size_t count,loff_t pos)2171 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2172 {
2173 	int blockmask = inode->i_sb->s_blocksize - 1;
2174 	loff_t final_size = pos + count;
2175 
2176 	if ((pos & blockmask) || (final_size & blockmask))
2177 		return 1;
2178 	return 0;
2179 }
2180 
ocfs2_inode_lock_for_extent_tree(struct inode * inode,struct buffer_head ** di_bh,int meta_level,int write_sem,int wait)2181 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2182 					    struct buffer_head **di_bh,
2183 					    int meta_level,
2184 					    int write_sem,
2185 					    int wait)
2186 {
2187 	int ret = 0;
2188 
2189 	if (wait)
2190 		ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2191 	else
2192 		ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2193 	if (ret < 0)
2194 		goto out;
2195 
2196 	if (wait) {
2197 		if (write_sem)
2198 			down_write(&OCFS2_I(inode)->ip_alloc_sem);
2199 		else
2200 			down_read(&OCFS2_I(inode)->ip_alloc_sem);
2201 	} else {
2202 		if (write_sem)
2203 			ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2204 		else
2205 			ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2206 
2207 		if (!ret) {
2208 			ret = -EAGAIN;
2209 			goto out_unlock;
2210 		}
2211 	}
2212 
2213 	return ret;
2214 
2215 out_unlock:
2216 	brelse(*di_bh);
2217 	*di_bh = NULL;
2218 	ocfs2_inode_unlock(inode, meta_level);
2219 out:
2220 	return ret;
2221 }
2222 
ocfs2_inode_unlock_for_extent_tree(struct inode * inode,struct buffer_head ** di_bh,int meta_level,int write_sem)2223 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2224 					       struct buffer_head **di_bh,
2225 					       int meta_level,
2226 					       int write_sem)
2227 {
2228 	if (write_sem)
2229 		up_write(&OCFS2_I(inode)->ip_alloc_sem);
2230 	else
2231 		up_read(&OCFS2_I(inode)->ip_alloc_sem);
2232 
2233 	brelse(*di_bh);
2234 	*di_bh = NULL;
2235 
2236 	if (meta_level >= 0)
2237 		ocfs2_inode_unlock(inode, meta_level);
2238 }
2239 
ocfs2_prepare_inode_for_write(struct file * file,loff_t pos,size_t count,int wait)2240 static int ocfs2_prepare_inode_for_write(struct file *file,
2241 					 loff_t pos, size_t count, int wait)
2242 {
2243 	int ret = 0, meta_level = 0, overwrite_io = 0;
2244 	int write_sem = 0;
2245 	struct dentry *dentry = file->f_path.dentry;
2246 	struct inode *inode = d_inode(dentry);
2247 	struct buffer_head *di_bh = NULL;
2248 	u32 cpos;
2249 	u32 clusters;
2250 
2251 	/*
2252 	 * We start with a read level meta lock and only jump to an ex
2253 	 * if we need to make modifications here.
2254 	 */
2255 	for(;;) {
2256 		ret = ocfs2_inode_lock_for_extent_tree(inode,
2257 						       &di_bh,
2258 						       meta_level,
2259 						       write_sem,
2260 						       wait);
2261 		if (ret < 0) {
2262 			if (ret != -EAGAIN)
2263 				mlog_errno(ret);
2264 			goto out;
2265 		}
2266 
2267 		/*
2268 		 * Check if IO will overwrite allocated blocks in case
2269 		 * IOCB_NOWAIT flag is set.
2270 		 */
2271 		if (!wait && !overwrite_io) {
2272 			overwrite_io = 1;
2273 
2274 			ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2275 			if (ret < 0) {
2276 				if (ret != -EAGAIN)
2277 					mlog_errno(ret);
2278 				goto out_unlock;
2279 			}
2280 		}
2281 
2282 		/* Clear suid / sgid if necessary. We do this here
2283 		 * instead of later in the write path because
2284 		 * remove_suid() calls ->setattr without any hint that
2285 		 * we may have already done our cluster locking. Since
2286 		 * ocfs2_setattr() *must* take cluster locks to
2287 		 * proceed, this will lead us to recursively lock the
2288 		 * inode. There's also the dinode i_size state which
2289 		 * can be lost via setattr during extending writes (we
2290 		 * set inode->i_size at the end of a write. */
2291 		if (should_remove_suid(dentry)) {
2292 			if (meta_level == 0) {
2293 				ocfs2_inode_unlock_for_extent_tree(inode,
2294 								   &di_bh,
2295 								   meta_level,
2296 								   write_sem);
2297 				meta_level = 1;
2298 				continue;
2299 			}
2300 
2301 			ret = ocfs2_write_remove_suid(inode);
2302 			if (ret < 0) {
2303 				mlog_errno(ret);
2304 				goto out_unlock;
2305 			}
2306 		}
2307 
2308 		ret = ocfs2_check_range_for_refcount(inode, pos, count);
2309 		if (ret == 1) {
2310 			ocfs2_inode_unlock_for_extent_tree(inode,
2311 							   &di_bh,
2312 							   meta_level,
2313 							   write_sem);
2314 			meta_level = 1;
2315 			write_sem = 1;
2316 			ret = ocfs2_inode_lock_for_extent_tree(inode,
2317 							       &di_bh,
2318 							       meta_level,
2319 							       write_sem,
2320 							       wait);
2321 			if (ret < 0) {
2322 				if (ret != -EAGAIN)
2323 					mlog_errno(ret);
2324 				goto out;
2325 			}
2326 
2327 			cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2328 			clusters =
2329 				ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2330 			ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2331 		}
2332 
2333 		if (ret < 0) {
2334 			if (ret != -EAGAIN)
2335 				mlog_errno(ret);
2336 			goto out_unlock;
2337 		}
2338 
2339 		break;
2340 	}
2341 
2342 out_unlock:
2343 	trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2344 					    pos, count, wait);
2345 
2346 	ocfs2_inode_unlock_for_extent_tree(inode,
2347 					   &di_bh,
2348 					   meta_level,
2349 					   write_sem);
2350 
2351 out:
2352 	return ret;
2353 }
2354 
ocfs2_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2355 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2356 				    struct iov_iter *from)
2357 {
2358 	int rw_level;
2359 	ssize_t written = 0;
2360 	ssize_t ret;
2361 	size_t count = iov_iter_count(from);
2362 	struct file *file = iocb->ki_filp;
2363 	struct inode *inode = file_inode(file);
2364 	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2365 	int full_coherency = !(osb->s_mount_opt &
2366 			       OCFS2_MOUNT_COHERENCY_BUFFERED);
2367 	void *saved_ki_complete = NULL;
2368 	int append_write = ((iocb->ki_pos + count) >=
2369 			i_size_read(inode) ? 1 : 0);
2370 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2371 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2372 
2373 	trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2374 		(unsigned long long)OCFS2_I(inode)->ip_blkno,
2375 		file->f_path.dentry->d_name.len,
2376 		file->f_path.dentry->d_name.name,
2377 		(unsigned int)from->nr_segs);	/* GRRRRR */
2378 
2379 	if (!direct_io && nowait)
2380 		return -EOPNOTSUPP;
2381 
2382 	if (count == 0)
2383 		return 0;
2384 
2385 	if (nowait) {
2386 		if (!inode_trylock(inode))
2387 			return -EAGAIN;
2388 	} else
2389 		inode_lock(inode);
2390 
2391 	/*
2392 	 * Concurrent O_DIRECT writes are allowed with
2393 	 * mount_option "coherency=buffered".
2394 	 * For append write, we must take rw EX.
2395 	 */
2396 	rw_level = (!direct_io || full_coherency || append_write);
2397 
2398 	if (nowait)
2399 		ret = ocfs2_try_rw_lock(inode, rw_level);
2400 	else
2401 		ret = ocfs2_rw_lock(inode, rw_level);
2402 	if (ret < 0) {
2403 		if (ret != -EAGAIN)
2404 			mlog_errno(ret);
2405 		goto out_mutex;
2406 	}
2407 
2408 	/*
2409 	 * O_DIRECT writes with "coherency=full" need to take EX cluster
2410 	 * inode_lock to guarantee coherency.
2411 	 */
2412 	if (direct_io && full_coherency) {
2413 		/*
2414 		 * We need to take and drop the inode lock to force
2415 		 * other nodes to drop their caches.  Buffered I/O
2416 		 * already does this in write_begin().
2417 		 */
2418 		if (nowait)
2419 			ret = ocfs2_try_inode_lock(inode, NULL, 1);
2420 		else
2421 			ret = ocfs2_inode_lock(inode, NULL, 1);
2422 		if (ret < 0) {
2423 			if (ret != -EAGAIN)
2424 				mlog_errno(ret);
2425 			goto out;
2426 		}
2427 
2428 		ocfs2_inode_unlock(inode, 1);
2429 	}
2430 
2431 	ret = generic_write_checks(iocb, from);
2432 	if (ret <= 0) {
2433 		if (ret)
2434 			mlog_errno(ret);
2435 		goto out;
2436 	}
2437 	count = ret;
2438 
2439 	ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2440 	if (ret < 0) {
2441 		if (ret != -EAGAIN)
2442 			mlog_errno(ret);
2443 		goto out;
2444 	}
2445 
2446 	if (direct_io && !is_sync_kiocb(iocb) &&
2447 	    ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2448 		/*
2449 		 * Make it a sync io if it's an unaligned aio.
2450 		 */
2451 		saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2452 	}
2453 
2454 	/* communicate with ocfs2_dio_end_io */
2455 	ocfs2_iocb_set_rw_locked(iocb, rw_level);
2456 
2457 	written = __generic_file_write_iter(iocb, from);
2458 	/* buffered aio wouldn't have proper lock coverage today */
2459 	BUG_ON(written == -EIOCBQUEUED && !direct_io);
2460 
2461 	/*
2462 	 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2463 	 * function pointer which is called when o_direct io completes so that
2464 	 * it can unlock our rw lock.
2465 	 * Unfortunately there are error cases which call end_io and others
2466 	 * that don't.  so we don't have to unlock the rw_lock if either an
2467 	 * async dio is going to do it in the future or an end_io after an
2468 	 * error has already done it.
2469 	 */
2470 	if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2471 		rw_level = -1;
2472 	}
2473 
2474 	if (unlikely(written <= 0))
2475 		goto out;
2476 
2477 	if (((file->f_flags & O_DSYNC) && !direct_io) ||
2478 	    IS_SYNC(inode)) {
2479 		ret = filemap_fdatawrite_range(file->f_mapping,
2480 					       iocb->ki_pos - written,
2481 					       iocb->ki_pos - 1);
2482 		if (ret < 0)
2483 			written = ret;
2484 
2485 		if (!ret) {
2486 			ret = jbd2_journal_force_commit(osb->journal->j_journal);
2487 			if (ret < 0)
2488 				written = ret;
2489 		}
2490 
2491 		if (!ret)
2492 			ret = filemap_fdatawait_range(file->f_mapping,
2493 						      iocb->ki_pos - written,
2494 						      iocb->ki_pos - 1);
2495 	}
2496 
2497 out:
2498 	if (saved_ki_complete)
2499 		xchg(&iocb->ki_complete, saved_ki_complete);
2500 
2501 	if (rw_level != -1)
2502 		ocfs2_rw_unlock(inode, rw_level);
2503 
2504 out_mutex:
2505 	inode_unlock(inode);
2506 
2507 	if (written)
2508 		ret = written;
2509 	return ret;
2510 }
2511 
ocfs2_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2512 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2513 				   struct iov_iter *to)
2514 {
2515 	int ret = 0, rw_level = -1, lock_level = 0;
2516 	struct file *filp = iocb->ki_filp;
2517 	struct inode *inode = file_inode(filp);
2518 	int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2519 	int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2520 
2521 	trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2522 			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2523 			filp->f_path.dentry->d_name.len,
2524 			filp->f_path.dentry->d_name.name,
2525 			to->nr_segs);	/* GRRRRR */
2526 
2527 
2528 	if (!inode) {
2529 		ret = -EINVAL;
2530 		mlog_errno(ret);
2531 		goto bail;
2532 	}
2533 
2534 	if (!direct_io && nowait)
2535 		return -EOPNOTSUPP;
2536 
2537 	/*
2538 	 * buffered reads protect themselves in ->readpage().  O_DIRECT reads
2539 	 * need locks to protect pending reads from racing with truncate.
2540 	 */
2541 	if (direct_io) {
2542 		if (nowait)
2543 			ret = ocfs2_try_rw_lock(inode, 0);
2544 		else
2545 			ret = ocfs2_rw_lock(inode, 0);
2546 
2547 		if (ret < 0) {
2548 			if (ret != -EAGAIN)
2549 				mlog_errno(ret);
2550 			goto bail;
2551 		}
2552 		rw_level = 0;
2553 		/* communicate with ocfs2_dio_end_io */
2554 		ocfs2_iocb_set_rw_locked(iocb, rw_level);
2555 	}
2556 
2557 	/*
2558 	 * We're fine letting folks race truncates and extending
2559 	 * writes with read across the cluster, just like they can
2560 	 * locally. Hence no rw_lock during read.
2561 	 *
2562 	 * Take and drop the meta data lock to update inode fields
2563 	 * like i_size. This allows the checks down below
2564 	 * generic_file_read_iter() a chance of actually working.
2565 	 */
2566 	ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2567 				     !nowait);
2568 	if (ret < 0) {
2569 		if (ret != -EAGAIN)
2570 			mlog_errno(ret);
2571 		goto bail;
2572 	}
2573 	ocfs2_inode_unlock(inode, lock_level);
2574 
2575 	ret = generic_file_read_iter(iocb, to);
2576 	trace_generic_file_read_iter_ret(ret);
2577 
2578 	/* buffered aio wouldn't have proper lock coverage today */
2579 	BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2580 
2581 	/* see ocfs2_file_write_iter */
2582 	if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2583 		rw_level = -1;
2584 	}
2585 
2586 bail:
2587 	if (rw_level != -1)
2588 		ocfs2_rw_unlock(inode, rw_level);
2589 
2590 	return ret;
2591 }
2592 
2593 /* Refer generic_file_llseek_unlocked() */
ocfs2_file_llseek(struct file * file,loff_t offset,int whence)2594 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2595 {
2596 	struct inode *inode = file->f_mapping->host;
2597 	int ret = 0;
2598 
2599 	inode_lock(inode);
2600 
2601 	switch (whence) {
2602 	case SEEK_SET:
2603 		break;
2604 	case SEEK_END:
2605 		/* SEEK_END requires the OCFS2 inode lock for the file
2606 		 * because it references the file's size.
2607 		 */
2608 		ret = ocfs2_inode_lock(inode, NULL, 0);
2609 		if (ret < 0) {
2610 			mlog_errno(ret);
2611 			goto out;
2612 		}
2613 		offset += i_size_read(inode);
2614 		ocfs2_inode_unlock(inode, 0);
2615 		break;
2616 	case SEEK_CUR:
2617 		if (offset == 0) {
2618 			offset = file->f_pos;
2619 			goto out;
2620 		}
2621 		offset += file->f_pos;
2622 		break;
2623 	case SEEK_DATA:
2624 	case SEEK_HOLE:
2625 		ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2626 		if (ret)
2627 			goto out;
2628 		break;
2629 	default:
2630 		ret = -EINVAL;
2631 		goto out;
2632 	}
2633 
2634 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2635 
2636 out:
2637 	inode_unlock(inode);
2638 	if (ret)
2639 		return ret;
2640 	return offset;
2641 }
2642 
ocfs2_remap_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t len,unsigned int remap_flags)2643 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2644 				     struct file *file_out, loff_t pos_out,
2645 				     loff_t len, unsigned int remap_flags)
2646 {
2647 	struct inode *inode_in = file_inode(file_in);
2648 	struct inode *inode_out = file_inode(file_out);
2649 	struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2650 	struct buffer_head *in_bh = NULL, *out_bh = NULL;
2651 	bool same_inode = (inode_in == inode_out);
2652 	loff_t remapped = 0;
2653 	ssize_t ret;
2654 
2655 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2656 		return -EINVAL;
2657 	if (!ocfs2_refcount_tree(osb))
2658 		return -EOPNOTSUPP;
2659 	if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2660 		return -EROFS;
2661 
2662 	/* Lock both files against IO */
2663 	ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2664 	if (ret)
2665 		return ret;
2666 
2667 	/* Check file eligibility and prepare for block sharing. */
2668 	ret = -EINVAL;
2669 	if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2670 	    (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2671 		goto out_unlock;
2672 
2673 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2674 			&len, remap_flags);
2675 	if (ret < 0 || len == 0)
2676 		goto out_unlock;
2677 
2678 	/* Lock out changes to the allocation maps and remap. */
2679 	down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2680 	if (!same_inode)
2681 		down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2682 				  SINGLE_DEPTH_NESTING);
2683 
2684 	/* Zap any page cache for the destination file's range. */
2685 	truncate_inode_pages_range(&inode_out->i_data,
2686 				   round_down(pos_out, PAGE_SIZE),
2687 				   round_up(pos_out + len, PAGE_SIZE) - 1);
2688 
2689 	remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2690 			inode_out, out_bh, pos_out, len);
2691 	up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2692 	if (!same_inode)
2693 		up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2694 	if (remapped < 0) {
2695 		ret = remapped;
2696 		mlog_errno(ret);
2697 		goto out_unlock;
2698 	}
2699 
2700 	/*
2701 	 * Empty the extent map so that we may get the right extent
2702 	 * record from the disk.
2703 	 */
2704 	ocfs2_extent_map_trunc(inode_in, 0);
2705 	ocfs2_extent_map_trunc(inode_out, 0);
2706 
2707 	ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2708 	if (ret) {
2709 		mlog_errno(ret);
2710 		goto out_unlock;
2711 	}
2712 
2713 out_unlock:
2714 	ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2715 	return remapped > 0 ? remapped : ret;
2716 }
2717 
2718 const struct inode_operations ocfs2_file_iops = {
2719 	.setattr	= ocfs2_setattr,
2720 	.getattr	= ocfs2_getattr,
2721 	.permission	= ocfs2_permission,
2722 	.listxattr	= ocfs2_listxattr,
2723 	.fiemap		= ocfs2_fiemap,
2724 	.get_acl	= ocfs2_iop_get_acl,
2725 	.set_acl	= ocfs2_iop_set_acl,
2726 };
2727 
2728 const struct inode_operations ocfs2_special_file_iops = {
2729 	.setattr	= ocfs2_setattr,
2730 	.getattr	= ocfs2_getattr,
2731 	.permission	= ocfs2_permission,
2732 	.get_acl	= ocfs2_iop_get_acl,
2733 	.set_acl	= ocfs2_iop_set_acl,
2734 };
2735 
2736 /*
2737  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2738  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2739  */
2740 const struct file_operations ocfs2_fops = {
2741 	.llseek		= ocfs2_file_llseek,
2742 	.mmap		= ocfs2_mmap,
2743 	.fsync		= ocfs2_sync_file,
2744 	.release	= ocfs2_file_release,
2745 	.open		= ocfs2_file_open,
2746 	.read_iter	= ocfs2_file_read_iter,
2747 	.write_iter	= ocfs2_file_write_iter,
2748 	.unlocked_ioctl	= ocfs2_ioctl,
2749 #ifdef CONFIG_COMPAT
2750 	.compat_ioctl   = ocfs2_compat_ioctl,
2751 #endif
2752 	.lock		= ocfs2_lock,
2753 	.flock		= ocfs2_flock,
2754 	.splice_read	= generic_file_splice_read,
2755 	.splice_write	= iter_file_splice_write,
2756 	.fallocate	= ocfs2_fallocate,
2757 	.remap_file_range = ocfs2_remap_file_range,
2758 };
2759 
2760 const struct file_operations ocfs2_dops = {
2761 	.llseek		= generic_file_llseek,
2762 	.read		= generic_read_dir,
2763 	.iterate	= ocfs2_readdir,
2764 	.fsync		= ocfs2_sync_file,
2765 	.release	= ocfs2_dir_release,
2766 	.open		= ocfs2_dir_open,
2767 	.unlocked_ioctl	= ocfs2_ioctl,
2768 #ifdef CONFIG_COMPAT
2769 	.compat_ioctl   = ocfs2_compat_ioctl,
2770 #endif
2771 	.lock		= ocfs2_lock,
2772 	.flock		= ocfs2_flock,
2773 };
2774 
2775 /*
2776  * POSIX-lockless variants of our file_operations.
2777  *
2778  * These will be used if the underlying cluster stack does not support
2779  * posix file locking, if the user passes the "localflocks" mount
2780  * option, or if we have a local-only fs.
2781  *
2782  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2783  * so we still want it in the case of no stack support for
2784  * plocks. Internally, it will do the right thing when asked to ignore
2785  * the cluster.
2786  */
2787 const struct file_operations ocfs2_fops_no_plocks = {
2788 	.llseek		= ocfs2_file_llseek,
2789 	.mmap		= ocfs2_mmap,
2790 	.fsync		= ocfs2_sync_file,
2791 	.release	= ocfs2_file_release,
2792 	.open		= ocfs2_file_open,
2793 	.read_iter	= ocfs2_file_read_iter,
2794 	.write_iter	= ocfs2_file_write_iter,
2795 	.unlocked_ioctl	= ocfs2_ioctl,
2796 #ifdef CONFIG_COMPAT
2797 	.compat_ioctl   = ocfs2_compat_ioctl,
2798 #endif
2799 	.flock		= ocfs2_flock,
2800 	.splice_read	= generic_file_splice_read,
2801 	.splice_write	= iter_file_splice_write,
2802 	.fallocate	= ocfs2_fallocate,
2803 	.remap_file_range = ocfs2_remap_file_range,
2804 };
2805 
2806 const struct file_operations ocfs2_dops_no_plocks = {
2807 	.llseek		= generic_file_llseek,
2808 	.read		= generic_read_dir,
2809 	.iterate	= ocfs2_readdir,
2810 	.fsync		= ocfs2_sync_file,
2811 	.release	= ocfs2_dir_release,
2812 	.open		= ocfs2_dir_open,
2813 	.unlocked_ioctl	= ocfs2_ioctl,
2814 #ifdef CONFIG_COMPAT
2815 	.compat_ioctl   = ocfs2_compat_ioctl,
2816 #endif
2817 	.flock		= ocfs2_flock,
2818 };
2819