1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
4 */
5
6 #define pr_fmt(fmt) "xive-kvm: " fmt
7
8 #include <linux/kernel.h>
9 #include <linux/kvm_host.h>
10 #include <linux/err.h>
11 #include <linux/gfp.h>
12 #include <linux/spinlock.h>
13 #include <linux/delay.h>
14 #include <linux/percpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/uaccess.h>
17 #include <asm/kvm_book3s.h>
18 #include <asm/kvm_ppc.h>
19 #include <asm/hvcall.h>
20 #include <asm/xics.h>
21 #include <asm/xive.h>
22 #include <asm/xive-regs.h>
23 #include <asm/debug.h>
24 #include <asm/debugfs.h>
25 #include <asm/time.h>
26 #include <asm/opal.h>
27
28 #include <linux/debugfs.h>
29 #include <linux/seq_file.h>
30
31 #include "book3s_xive.h"
32
33
34 /*
35 * Virtual mode variants of the hcalls for use on radix/radix
36 * with AIL. They require the VCPU's VP to be "pushed"
37 *
38 * We still instantiate them here because we use some of the
39 * generated utility functions as well in this file.
40 */
41 #define XIVE_RUNTIME_CHECKS
42 #define X_PFX xive_vm_
43 #define X_STATIC static
44 #define X_STAT_PFX stat_vm_
45 #define __x_tima xive_tima
46 #define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio))
47 #define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio))
48 #define __x_writeb __raw_writeb
49 #define __x_readw __raw_readw
50 #define __x_readq __raw_readq
51 #define __x_writeq __raw_writeq
52
53 #include "book3s_xive_template.c"
54
55 /*
56 * We leave a gap of a couple of interrupts in the queue to
57 * account for the IPI and additional safety guard.
58 */
59 #define XIVE_Q_GAP 2
60
61 /*
62 * Push a vcpu's context to the XIVE on guest entry.
63 * This assumes we are in virtual mode (MMU on)
64 */
kvmppc_xive_push_vcpu(struct kvm_vcpu * vcpu)65 void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
66 {
67 void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
68 u64 pq;
69
70 /*
71 * Nothing to do if the platform doesn't have a XIVE
72 * or this vCPU doesn't have its own XIVE context
73 * (e.g. because it's not using an in-kernel interrupt controller).
74 */
75 if (!tima || !vcpu->arch.xive_cam_word)
76 return;
77
78 eieio();
79 __raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
80 __raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
81 vcpu->arch.xive_pushed = 1;
82 eieio();
83
84 /*
85 * We clear the irq_pending flag. There is a small chance of a
86 * race vs. the escalation interrupt happening on another
87 * processor setting it again, but the only consequence is to
88 * cause a spurious wakeup on the next H_CEDE, which is not an
89 * issue.
90 */
91 vcpu->arch.irq_pending = 0;
92
93 /*
94 * In single escalation mode, if the escalation interrupt is
95 * on, we mask it.
96 */
97 if (vcpu->arch.xive_esc_on) {
98 pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
99 XIVE_ESB_SET_PQ_01));
100 mb();
101
102 /*
103 * We have a possible subtle race here: The escalation
104 * interrupt might have fired and be on its way to the
105 * host queue while we mask it, and if we unmask it
106 * early enough (re-cede right away), there is a
107 * theorical possibility that it fires again, thus
108 * landing in the target queue more than once which is
109 * a big no-no.
110 *
111 * Fortunately, solving this is rather easy. If the
112 * above load setting PQ to 01 returns a previous
113 * value where P is set, then we know the escalation
114 * interrupt is somewhere on its way to the host. In
115 * that case we simply don't clear the xive_esc_on
116 * flag below. It will be eventually cleared by the
117 * handler for the escalation interrupt.
118 *
119 * Then, when doing a cede, we check that flag again
120 * before re-enabling the escalation interrupt, and if
121 * set, we abort the cede.
122 */
123 if (!(pq & XIVE_ESB_VAL_P))
124 /* Now P is 0, we can clear the flag */
125 vcpu->arch.xive_esc_on = 0;
126 }
127 }
128 EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);
129
130 /*
131 * This is a simple trigger for a generic XIVE IRQ. This must
132 * only be called for interrupts that support a trigger page
133 */
xive_irq_trigger(struct xive_irq_data * xd)134 static bool xive_irq_trigger(struct xive_irq_data *xd)
135 {
136 /* This should be only for MSIs */
137 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
138 return false;
139
140 /* Those interrupts should always have a trigger page */
141 if (WARN_ON(!xd->trig_mmio))
142 return false;
143
144 out_be64(xd->trig_mmio, 0);
145
146 return true;
147 }
148
xive_esc_irq(int irq,void * data)149 static irqreturn_t xive_esc_irq(int irq, void *data)
150 {
151 struct kvm_vcpu *vcpu = data;
152
153 vcpu->arch.irq_pending = 1;
154 smp_mb();
155 if (vcpu->arch.ceded)
156 kvmppc_fast_vcpu_kick(vcpu);
157
158 /* Since we have the no-EOI flag, the interrupt is effectively
159 * disabled now. Clearing xive_esc_on means we won't bother
160 * doing so on the next entry.
161 *
162 * This also allows the entry code to know that if a PQ combination
163 * of 10 is observed while xive_esc_on is true, it means the queue
164 * contains an unprocessed escalation interrupt. We don't make use of
165 * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
166 */
167 vcpu->arch.xive_esc_on = false;
168
169 /* This orders xive_esc_on = false vs. subsequent stale_p = true */
170 smp_wmb(); /* goes with smp_mb() in cleanup_single_escalation */
171
172 return IRQ_HANDLED;
173 }
174
kvmppc_xive_attach_escalation(struct kvm_vcpu * vcpu,u8 prio,bool single_escalation)175 int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio,
176 bool single_escalation)
177 {
178 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
179 struct xive_q *q = &xc->queues[prio];
180 char *name = NULL;
181 int rc;
182
183 /* Already there ? */
184 if (xc->esc_virq[prio])
185 return 0;
186
187 /* Hook up the escalation interrupt */
188 xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
189 if (!xc->esc_virq[prio]) {
190 pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
191 prio, xc->server_num);
192 return -EIO;
193 }
194
195 if (single_escalation)
196 name = kasprintf(GFP_KERNEL, "kvm-%d-%d",
197 vcpu->kvm->arch.lpid, xc->server_num);
198 else
199 name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
200 vcpu->kvm->arch.lpid, xc->server_num, prio);
201 if (!name) {
202 pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
203 prio, xc->server_num);
204 rc = -ENOMEM;
205 goto error;
206 }
207
208 pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
209
210 rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
211 IRQF_NO_THREAD, name, vcpu);
212 if (rc) {
213 pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
214 prio, xc->server_num);
215 goto error;
216 }
217 xc->esc_virq_names[prio] = name;
218
219 /* In single escalation mode, we grab the ESB MMIO of the
220 * interrupt and mask it. Also populate the VCPU v/raddr
221 * of the ESB page for use by asm entry/exit code. Finally
222 * set the XIVE_IRQ_NO_EOI flag which will prevent the
223 * core code from performing an EOI on the escalation
224 * interrupt, thus leaving it effectively masked after
225 * it fires once.
226 */
227 if (single_escalation) {
228 struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
229 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
230
231 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
232 vcpu->arch.xive_esc_raddr = xd->eoi_page;
233 vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
234 xd->flags |= XIVE_IRQ_NO_EOI;
235 }
236
237 return 0;
238 error:
239 irq_dispose_mapping(xc->esc_virq[prio]);
240 xc->esc_virq[prio] = 0;
241 kfree(name);
242 return rc;
243 }
244
xive_provision_queue(struct kvm_vcpu * vcpu,u8 prio)245 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
246 {
247 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
248 struct kvmppc_xive *xive = xc->xive;
249 struct xive_q *q = &xc->queues[prio];
250 void *qpage;
251 int rc;
252
253 if (WARN_ON(q->qpage))
254 return 0;
255
256 /* Allocate the queue and retrieve infos on current node for now */
257 qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
258 if (!qpage) {
259 pr_err("Failed to allocate queue %d for VCPU %d\n",
260 prio, xc->server_num);
261 return -ENOMEM;
262 }
263 memset(qpage, 0, 1 << xive->q_order);
264
265 /*
266 * Reconfigure the queue. This will set q->qpage only once the
267 * queue is fully configured. This is a requirement for prio 0
268 * as we will stop doing EOIs for every IPI as soon as we observe
269 * qpage being non-NULL, and instead will only EOI when we receive
270 * corresponding queue 0 entries
271 */
272 rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
273 xive->q_order, true);
274 if (rc)
275 pr_err("Failed to configure queue %d for VCPU %d\n",
276 prio, xc->server_num);
277 return rc;
278 }
279
280 /* Called with xive->lock held */
xive_check_provisioning(struct kvm * kvm,u8 prio)281 static int xive_check_provisioning(struct kvm *kvm, u8 prio)
282 {
283 struct kvmppc_xive *xive = kvm->arch.xive;
284 struct kvm_vcpu *vcpu;
285 int i, rc;
286
287 lockdep_assert_held(&xive->lock);
288
289 /* Already provisioned ? */
290 if (xive->qmap & (1 << prio))
291 return 0;
292
293 pr_devel("Provisioning prio... %d\n", prio);
294
295 /* Provision each VCPU and enable escalations if needed */
296 kvm_for_each_vcpu(i, vcpu, kvm) {
297 if (!vcpu->arch.xive_vcpu)
298 continue;
299 rc = xive_provision_queue(vcpu, prio);
300 if (rc == 0 && !xive->single_escalation)
301 kvmppc_xive_attach_escalation(vcpu, prio,
302 xive->single_escalation);
303 if (rc)
304 return rc;
305 }
306
307 /* Order previous stores and mark it as provisioned */
308 mb();
309 xive->qmap |= (1 << prio);
310 return 0;
311 }
312
xive_inc_q_pending(struct kvm * kvm,u32 server,u8 prio)313 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
314 {
315 struct kvm_vcpu *vcpu;
316 struct kvmppc_xive_vcpu *xc;
317 struct xive_q *q;
318
319 /* Locate target server */
320 vcpu = kvmppc_xive_find_server(kvm, server);
321 if (!vcpu) {
322 pr_warn("%s: Can't find server %d\n", __func__, server);
323 return;
324 }
325 xc = vcpu->arch.xive_vcpu;
326 if (WARN_ON(!xc))
327 return;
328
329 q = &xc->queues[prio];
330 atomic_inc(&q->pending_count);
331 }
332
xive_try_pick_queue(struct kvm_vcpu * vcpu,u8 prio)333 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
334 {
335 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
336 struct xive_q *q;
337 u32 max;
338
339 if (WARN_ON(!xc))
340 return -ENXIO;
341 if (!xc->valid)
342 return -ENXIO;
343
344 q = &xc->queues[prio];
345 if (WARN_ON(!q->qpage))
346 return -ENXIO;
347
348 /* Calculate max number of interrupts in that queue. */
349 max = (q->msk + 1) - XIVE_Q_GAP;
350 return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
351 }
352
kvmppc_xive_select_target(struct kvm * kvm,u32 * server,u8 prio)353 int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
354 {
355 struct kvm_vcpu *vcpu;
356 int i, rc;
357
358 /* Locate target server */
359 vcpu = kvmppc_xive_find_server(kvm, *server);
360 if (!vcpu) {
361 pr_devel("Can't find server %d\n", *server);
362 return -EINVAL;
363 }
364
365 pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
366
367 /* Try pick it */
368 rc = xive_try_pick_queue(vcpu, prio);
369 if (rc == 0)
370 return rc;
371
372 pr_devel(" .. failed, looking up candidate...\n");
373
374 /* Failed, pick another VCPU */
375 kvm_for_each_vcpu(i, vcpu, kvm) {
376 if (!vcpu->arch.xive_vcpu)
377 continue;
378 rc = xive_try_pick_queue(vcpu, prio);
379 if (rc == 0) {
380 *server = vcpu->arch.xive_vcpu->server_num;
381 pr_devel(" found on 0x%x/%d\n", *server, prio);
382 return rc;
383 }
384 }
385 pr_devel(" no available target !\n");
386
387 /* No available target ! */
388 return -EBUSY;
389 }
390
xive_lock_and_mask(struct kvmppc_xive * xive,struct kvmppc_xive_src_block * sb,struct kvmppc_xive_irq_state * state)391 static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
392 struct kvmppc_xive_src_block *sb,
393 struct kvmppc_xive_irq_state *state)
394 {
395 struct xive_irq_data *xd;
396 u32 hw_num;
397 u8 old_prio;
398 u64 val;
399
400 /*
401 * Take the lock, set masked, try again if racing
402 * with H_EOI
403 */
404 for (;;) {
405 arch_spin_lock(&sb->lock);
406 old_prio = state->guest_priority;
407 state->guest_priority = MASKED;
408 mb();
409 if (!state->in_eoi)
410 break;
411 state->guest_priority = old_prio;
412 arch_spin_unlock(&sb->lock);
413 }
414
415 /* No change ? Bail */
416 if (old_prio == MASKED)
417 return old_prio;
418
419 /* Get the right irq */
420 kvmppc_xive_select_irq(state, &hw_num, &xd);
421
422 /*
423 * If the interrupt is marked as needing masking via
424 * firmware, we do it here. Firmware masking however
425 * is "lossy", it won't return the old p and q bits
426 * and won't set the interrupt to a state where it will
427 * record queued ones. If this is an issue we should do
428 * lazy masking instead.
429 *
430 * For now, we work around this in unmask by forcing
431 * an interrupt whenever we unmask a non-LSI via FW
432 * (if ever).
433 */
434 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
435 xive_native_configure_irq(hw_num,
436 kvmppc_xive_vp(xive, state->act_server),
437 MASKED, state->number);
438 /* set old_p so we can track if an H_EOI was done */
439 state->old_p = true;
440 state->old_q = false;
441 } else {
442 /* Set PQ to 10, return old P and old Q and remember them */
443 val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
444 state->old_p = !!(val & 2);
445 state->old_q = !!(val & 1);
446
447 /*
448 * Synchronize hardware to sensure the queues are updated
449 * when masking
450 */
451 xive_native_sync_source(hw_num);
452 }
453
454 return old_prio;
455 }
456
xive_lock_for_unmask(struct kvmppc_xive_src_block * sb,struct kvmppc_xive_irq_state * state)457 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
458 struct kvmppc_xive_irq_state *state)
459 {
460 /*
461 * Take the lock try again if racing with H_EOI
462 */
463 for (;;) {
464 arch_spin_lock(&sb->lock);
465 if (!state->in_eoi)
466 break;
467 arch_spin_unlock(&sb->lock);
468 }
469 }
470
xive_finish_unmask(struct kvmppc_xive * xive,struct kvmppc_xive_src_block * sb,struct kvmppc_xive_irq_state * state,u8 prio)471 static void xive_finish_unmask(struct kvmppc_xive *xive,
472 struct kvmppc_xive_src_block *sb,
473 struct kvmppc_xive_irq_state *state,
474 u8 prio)
475 {
476 struct xive_irq_data *xd;
477 u32 hw_num;
478
479 /* If we aren't changing a thing, move on */
480 if (state->guest_priority != MASKED)
481 goto bail;
482
483 /* Get the right irq */
484 kvmppc_xive_select_irq(state, &hw_num, &xd);
485
486 /*
487 * See command in xive_lock_and_mask() concerning masking
488 * via firmware.
489 */
490 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
491 xive_native_configure_irq(hw_num,
492 kvmppc_xive_vp(xive, state->act_server),
493 state->act_priority, state->number);
494 /* If an EOI is needed, do it here */
495 if (!state->old_p)
496 xive_vm_source_eoi(hw_num, xd);
497 /* If this is not an LSI, force a trigger */
498 if (!(xd->flags & OPAL_XIVE_IRQ_LSI))
499 xive_irq_trigger(xd);
500 goto bail;
501 }
502
503 /* Old Q set, set PQ to 11 */
504 if (state->old_q)
505 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
506
507 /*
508 * If not old P, then perform an "effective" EOI,
509 * on the source. This will handle the cases where
510 * FW EOI is needed.
511 */
512 if (!state->old_p)
513 xive_vm_source_eoi(hw_num, xd);
514
515 /* Synchronize ordering and mark unmasked */
516 mb();
517 bail:
518 state->guest_priority = prio;
519 }
520
521 /*
522 * Target an interrupt to a given server/prio, this will fallback
523 * to another server if necessary and perform the HW targetting
524 * updates as needed
525 *
526 * NOTE: Must be called with the state lock held
527 */
xive_target_interrupt(struct kvm * kvm,struct kvmppc_xive_irq_state * state,u32 server,u8 prio)528 static int xive_target_interrupt(struct kvm *kvm,
529 struct kvmppc_xive_irq_state *state,
530 u32 server, u8 prio)
531 {
532 struct kvmppc_xive *xive = kvm->arch.xive;
533 u32 hw_num;
534 int rc;
535
536 /*
537 * This will return a tentative server and actual
538 * priority. The count for that new target will have
539 * already been incremented.
540 */
541 rc = kvmppc_xive_select_target(kvm, &server, prio);
542
543 /*
544 * We failed to find a target ? Not much we can do
545 * at least until we support the GIQ.
546 */
547 if (rc)
548 return rc;
549
550 /*
551 * Increment the old queue pending count if there
552 * was one so that the old queue count gets adjusted later
553 * when observed to be empty.
554 */
555 if (state->act_priority != MASKED)
556 xive_inc_q_pending(kvm,
557 state->act_server,
558 state->act_priority);
559 /*
560 * Update state and HW
561 */
562 state->act_priority = prio;
563 state->act_server = server;
564
565 /* Get the right irq */
566 kvmppc_xive_select_irq(state, &hw_num, NULL);
567
568 return xive_native_configure_irq(hw_num,
569 kvmppc_xive_vp(xive, server),
570 prio, state->number);
571 }
572
573 /*
574 * Targetting rules: In order to avoid losing track of
575 * pending interrupts accross mask and unmask, which would
576 * allow queue overflows, we implement the following rules:
577 *
578 * - Unless it was never enabled (or we run out of capacity)
579 * an interrupt is always targetted at a valid server/queue
580 * pair even when "masked" by the guest. This pair tends to
581 * be the last one used but it can be changed under some
582 * circumstances. That allows us to separate targetting
583 * from masking, we only handle accounting during (re)targetting,
584 * this also allows us to let an interrupt drain into its target
585 * queue after masking, avoiding complex schemes to remove
586 * interrupts out of remote processor queues.
587 *
588 * - When masking, we set PQ to 10 and save the previous value
589 * of P and Q.
590 *
591 * - When unmasking, if saved Q was set, we set PQ to 11
592 * otherwise we leave PQ to the HW state which will be either
593 * 10 if nothing happened or 11 if the interrupt fired while
594 * masked. Effectively we are OR'ing the previous Q into the
595 * HW Q.
596 *
597 * Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
598 * which will unmask the interrupt and shoot a new one if Q was
599 * set.
600 *
601 * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
602 * effectively meaning an H_EOI from the guest is still expected
603 * for that interrupt).
604 *
605 * - If H_EOI occurs while masked, we clear the saved P.
606 *
607 * - When changing target, we account on the new target and
608 * increment a separate "pending" counter on the old one.
609 * This pending counter will be used to decrement the old
610 * target's count when its queue has been observed empty.
611 */
612
kvmppc_xive_set_xive(struct kvm * kvm,u32 irq,u32 server,u32 priority)613 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
614 u32 priority)
615 {
616 struct kvmppc_xive *xive = kvm->arch.xive;
617 struct kvmppc_xive_src_block *sb;
618 struct kvmppc_xive_irq_state *state;
619 u8 new_act_prio;
620 int rc = 0;
621 u16 idx;
622
623 if (!xive)
624 return -ENODEV;
625
626 pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
627 irq, server, priority);
628
629 /* First, check provisioning of queues */
630 if (priority != MASKED) {
631 mutex_lock(&xive->lock);
632 rc = xive_check_provisioning(xive->kvm,
633 xive_prio_from_guest(priority));
634 mutex_unlock(&xive->lock);
635 }
636 if (rc) {
637 pr_devel(" provisioning failure %d !\n", rc);
638 return rc;
639 }
640
641 sb = kvmppc_xive_find_source(xive, irq, &idx);
642 if (!sb)
643 return -EINVAL;
644 state = &sb->irq_state[idx];
645
646 /*
647 * We first handle masking/unmasking since the locking
648 * might need to be retried due to EOIs, we'll handle
649 * targetting changes later. These functions will return
650 * with the SB lock held.
651 *
652 * xive_lock_and_mask() will also set state->guest_priority
653 * but won't otherwise change other fields of the state.
654 *
655 * xive_lock_for_unmask will not actually unmask, this will
656 * be done later by xive_finish_unmask() once the targetting
657 * has been done, so we don't try to unmask an interrupt
658 * that hasn't yet been targetted.
659 */
660 if (priority == MASKED)
661 xive_lock_and_mask(xive, sb, state);
662 else
663 xive_lock_for_unmask(sb, state);
664
665
666 /*
667 * Then we handle targetting.
668 *
669 * First calculate a new "actual priority"
670 */
671 new_act_prio = state->act_priority;
672 if (priority != MASKED)
673 new_act_prio = xive_prio_from_guest(priority);
674
675 pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
676 new_act_prio, state->act_server, state->act_priority);
677
678 /*
679 * Then check if we actually need to change anything,
680 *
681 * The condition for re-targetting the interrupt is that
682 * we have a valid new priority (new_act_prio is not 0xff)
683 * and either the server or the priority changed.
684 *
685 * Note: If act_priority was ff and the new priority is
686 * also ff, we don't do anything and leave the interrupt
687 * untargetted. An attempt of doing an int_on on an
688 * untargetted interrupt will fail. If that is a problem
689 * we could initialize interrupts with valid default
690 */
691
692 if (new_act_prio != MASKED &&
693 (state->act_server != server ||
694 state->act_priority != new_act_prio))
695 rc = xive_target_interrupt(kvm, state, server, new_act_prio);
696
697 /*
698 * Perform the final unmasking of the interrupt source
699 * if necessary
700 */
701 if (priority != MASKED)
702 xive_finish_unmask(xive, sb, state, priority);
703
704 /*
705 * Finally Update saved_priority to match. Only int_on/off
706 * set this field to a different value.
707 */
708 state->saved_priority = priority;
709
710 arch_spin_unlock(&sb->lock);
711 return rc;
712 }
713
kvmppc_xive_get_xive(struct kvm * kvm,u32 irq,u32 * server,u32 * priority)714 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
715 u32 *priority)
716 {
717 struct kvmppc_xive *xive = kvm->arch.xive;
718 struct kvmppc_xive_src_block *sb;
719 struct kvmppc_xive_irq_state *state;
720 u16 idx;
721
722 if (!xive)
723 return -ENODEV;
724
725 sb = kvmppc_xive_find_source(xive, irq, &idx);
726 if (!sb)
727 return -EINVAL;
728 state = &sb->irq_state[idx];
729 arch_spin_lock(&sb->lock);
730 *server = state->act_server;
731 *priority = state->guest_priority;
732 arch_spin_unlock(&sb->lock);
733
734 return 0;
735 }
736
kvmppc_xive_int_on(struct kvm * kvm,u32 irq)737 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
738 {
739 struct kvmppc_xive *xive = kvm->arch.xive;
740 struct kvmppc_xive_src_block *sb;
741 struct kvmppc_xive_irq_state *state;
742 u16 idx;
743
744 if (!xive)
745 return -ENODEV;
746
747 sb = kvmppc_xive_find_source(xive, irq, &idx);
748 if (!sb)
749 return -EINVAL;
750 state = &sb->irq_state[idx];
751
752 pr_devel("int_on(irq=0x%x)\n", irq);
753
754 /*
755 * Check if interrupt was not targetted
756 */
757 if (state->act_priority == MASKED) {
758 pr_devel("int_on on untargetted interrupt\n");
759 return -EINVAL;
760 }
761
762 /* If saved_priority is 0xff, do nothing */
763 if (state->saved_priority == MASKED)
764 return 0;
765
766 /*
767 * Lock and unmask it.
768 */
769 xive_lock_for_unmask(sb, state);
770 xive_finish_unmask(xive, sb, state, state->saved_priority);
771 arch_spin_unlock(&sb->lock);
772
773 return 0;
774 }
775
kvmppc_xive_int_off(struct kvm * kvm,u32 irq)776 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
777 {
778 struct kvmppc_xive *xive = kvm->arch.xive;
779 struct kvmppc_xive_src_block *sb;
780 struct kvmppc_xive_irq_state *state;
781 u16 idx;
782
783 if (!xive)
784 return -ENODEV;
785
786 sb = kvmppc_xive_find_source(xive, irq, &idx);
787 if (!sb)
788 return -EINVAL;
789 state = &sb->irq_state[idx];
790
791 pr_devel("int_off(irq=0x%x)\n", irq);
792
793 /*
794 * Lock and mask
795 */
796 state->saved_priority = xive_lock_and_mask(xive, sb, state);
797 arch_spin_unlock(&sb->lock);
798
799 return 0;
800 }
801
xive_restore_pending_irq(struct kvmppc_xive * xive,u32 irq)802 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
803 {
804 struct kvmppc_xive_src_block *sb;
805 struct kvmppc_xive_irq_state *state;
806 u16 idx;
807
808 sb = kvmppc_xive_find_source(xive, irq, &idx);
809 if (!sb)
810 return false;
811 state = &sb->irq_state[idx];
812 if (!state->valid)
813 return false;
814
815 /*
816 * Trigger the IPI. This assumes we never restore a pass-through
817 * interrupt which should be safe enough
818 */
819 xive_irq_trigger(&state->ipi_data);
820
821 return true;
822 }
823
kvmppc_xive_get_icp(struct kvm_vcpu * vcpu)824 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
825 {
826 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
827
828 if (!xc)
829 return 0;
830
831 /* Return the per-cpu state for state saving/migration */
832 return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
833 (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
834 (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
835 }
836
kvmppc_xive_set_icp(struct kvm_vcpu * vcpu,u64 icpval)837 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
838 {
839 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
840 struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
841 u8 cppr, mfrr;
842 u32 xisr;
843
844 if (!xc || !xive)
845 return -ENOENT;
846
847 /* Grab individual state fields. We don't use pending_pri */
848 cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
849 xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
850 KVM_REG_PPC_ICP_XISR_MASK;
851 mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
852
853 pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
854 xc->server_num, cppr, mfrr, xisr);
855
856 /*
857 * We can't update the state of a "pushed" VCPU, but that
858 * shouldn't happen because the vcpu->mutex makes running a
859 * vcpu mutually exclusive with doing one_reg get/set on it.
860 */
861 if (WARN_ON(vcpu->arch.xive_pushed))
862 return -EIO;
863
864 /* Update VCPU HW saved state */
865 vcpu->arch.xive_saved_state.cppr = cppr;
866 xc->hw_cppr = xc->cppr = cppr;
867
868 /*
869 * Update MFRR state. If it's not 0xff, we mark the VCPU as
870 * having a pending MFRR change, which will re-evaluate the
871 * target. The VCPU will thus potentially get a spurious
872 * interrupt but that's not a big deal.
873 */
874 xc->mfrr = mfrr;
875 if (mfrr < cppr)
876 xive_irq_trigger(&xc->vp_ipi_data);
877
878 /*
879 * Now saved XIRR is "interesting". It means there's something in
880 * the legacy "1 element" queue... for an IPI we simply ignore it,
881 * as the MFRR restore will handle that. For anything else we need
882 * to force a resend of the source.
883 * However the source may not have been setup yet. If that's the
884 * case, we keep that info and increment a counter in the xive to
885 * tell subsequent xive_set_source() to go look.
886 */
887 if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
888 xc->delayed_irq = xisr;
889 xive->delayed_irqs++;
890 pr_devel(" xisr restore delayed\n");
891 }
892
893 return 0;
894 }
895
kvmppc_xive_set_mapped(struct kvm * kvm,unsigned long guest_irq,struct irq_desc * host_desc)896 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
897 struct irq_desc *host_desc)
898 {
899 struct kvmppc_xive *xive = kvm->arch.xive;
900 struct kvmppc_xive_src_block *sb;
901 struct kvmppc_xive_irq_state *state;
902 struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
903 unsigned int host_irq = irq_desc_get_irq(host_desc);
904 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
905 u16 idx;
906 u8 prio;
907 int rc;
908
909 if (!xive)
910 return -ENODEV;
911
912 pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);
913
914 sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
915 if (!sb)
916 return -EINVAL;
917 state = &sb->irq_state[idx];
918
919 /*
920 * Mark the passed-through interrupt as going to a VCPU,
921 * this will prevent further EOIs and similar operations
922 * from the XIVE code. It will also mask the interrupt
923 * to either PQ=10 or 11 state, the latter if the interrupt
924 * is pending. This will allow us to unmask or retrigger it
925 * after routing it to the guest with a simple EOI.
926 *
927 * The "state" argument is a "token", all it needs is to be
928 * non-NULL to switch to passed-through or NULL for the
929 * other way around. We may not yet have an actual VCPU
930 * target here and we don't really care.
931 */
932 rc = irq_set_vcpu_affinity(host_irq, state);
933 if (rc) {
934 pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
935 return rc;
936 }
937
938 /*
939 * Mask and read state of IPI. We need to know if its P bit
940 * is set as that means it's potentially already using a
941 * queue entry in the target
942 */
943 prio = xive_lock_and_mask(xive, sb, state);
944 pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
945 state->old_p, state->old_q);
946
947 /* Turn the IPI hard off */
948 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
949
950 /*
951 * Reset ESB guest mapping. Needed when ESB pages are exposed
952 * to the guest in XIVE native mode
953 */
954 if (xive->ops && xive->ops->reset_mapped)
955 xive->ops->reset_mapped(kvm, guest_irq);
956
957 /* Grab info about irq */
958 state->pt_number = hw_irq;
959 state->pt_data = irq_data_get_irq_handler_data(host_data);
960
961 /*
962 * Configure the IRQ to match the existing configuration of
963 * the IPI if it was already targetted. Otherwise this will
964 * mask the interrupt in a lossy way (act_priority is 0xff)
965 * which is fine for a never started interrupt.
966 */
967 xive_native_configure_irq(hw_irq,
968 kvmppc_xive_vp(xive, state->act_server),
969 state->act_priority, state->number);
970
971 /*
972 * We do an EOI to enable the interrupt (and retrigger if needed)
973 * if the guest has the interrupt unmasked and the P bit was *not*
974 * set in the IPI. If it was set, we know a slot may still be in
975 * use in the target queue thus we have to wait for a guest
976 * originated EOI
977 */
978 if (prio != MASKED && !state->old_p)
979 xive_vm_source_eoi(hw_irq, state->pt_data);
980
981 /* Clear old_p/old_q as they are no longer relevant */
982 state->old_p = state->old_q = false;
983
984 /* Restore guest prio (unlocks EOI) */
985 mb();
986 state->guest_priority = prio;
987 arch_spin_unlock(&sb->lock);
988
989 return 0;
990 }
991 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
992
kvmppc_xive_clr_mapped(struct kvm * kvm,unsigned long guest_irq,struct irq_desc * host_desc)993 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
994 struct irq_desc *host_desc)
995 {
996 struct kvmppc_xive *xive = kvm->arch.xive;
997 struct kvmppc_xive_src_block *sb;
998 struct kvmppc_xive_irq_state *state;
999 unsigned int host_irq = irq_desc_get_irq(host_desc);
1000 u16 idx;
1001 u8 prio;
1002 int rc;
1003
1004 if (!xive)
1005 return -ENODEV;
1006
1007 pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);
1008
1009 sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
1010 if (!sb)
1011 return -EINVAL;
1012 state = &sb->irq_state[idx];
1013
1014 /*
1015 * Mask and read state of IRQ. We need to know if its P bit
1016 * is set as that means it's potentially already using a
1017 * queue entry in the target
1018 */
1019 prio = xive_lock_and_mask(xive, sb, state);
1020 pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
1021 state->old_p, state->old_q);
1022
1023 /*
1024 * If old_p is set, the interrupt is pending, we switch it to
1025 * PQ=11. This will force a resend in the host so the interrupt
1026 * isn't lost to whatver host driver may pick it up
1027 */
1028 if (state->old_p)
1029 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
1030
1031 /* Release the passed-through interrupt to the host */
1032 rc = irq_set_vcpu_affinity(host_irq, NULL);
1033 if (rc) {
1034 pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
1035 return rc;
1036 }
1037
1038 /* Forget about the IRQ */
1039 state->pt_number = 0;
1040 state->pt_data = NULL;
1041
1042 /*
1043 * Reset ESB guest mapping. Needed when ESB pages are exposed
1044 * to the guest in XIVE native mode
1045 */
1046 if (xive->ops && xive->ops->reset_mapped) {
1047 xive->ops->reset_mapped(kvm, guest_irq);
1048 }
1049
1050 /* Reconfigure the IPI */
1051 xive_native_configure_irq(state->ipi_number,
1052 kvmppc_xive_vp(xive, state->act_server),
1053 state->act_priority, state->number);
1054
1055 /*
1056 * If old_p is set (we have a queue entry potentially
1057 * occupied) or the interrupt is masked, we set the IPI
1058 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
1059 */
1060 if (prio == MASKED || state->old_p)
1061 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
1062 else
1063 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
1064
1065 /* Restore guest prio (unlocks EOI) */
1066 mb();
1067 state->guest_priority = prio;
1068 arch_spin_unlock(&sb->lock);
1069
1070 return 0;
1071 }
1072 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
1073
kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu * vcpu)1074 void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
1075 {
1076 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1077 struct kvm *kvm = vcpu->kvm;
1078 struct kvmppc_xive *xive = kvm->arch.xive;
1079 int i, j;
1080
1081 for (i = 0; i <= xive->max_sbid; i++) {
1082 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1083
1084 if (!sb)
1085 continue;
1086 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
1087 struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
1088
1089 if (!state->valid)
1090 continue;
1091 if (state->act_priority == MASKED)
1092 continue;
1093 if (state->act_server != xc->server_num)
1094 continue;
1095
1096 /* Clean it up */
1097 arch_spin_lock(&sb->lock);
1098 state->act_priority = MASKED;
1099 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1100 xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
1101 if (state->pt_number) {
1102 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
1103 xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
1104 }
1105 arch_spin_unlock(&sb->lock);
1106 }
1107 }
1108
1109 /* Disable vcpu's escalation interrupt */
1110 if (vcpu->arch.xive_esc_on) {
1111 __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
1112 XIVE_ESB_SET_PQ_01));
1113 vcpu->arch.xive_esc_on = false;
1114 }
1115
1116 /*
1117 * Clear pointers to escalation interrupt ESB.
1118 * This is safe because the vcpu->mutex is held, preventing
1119 * any other CPU from concurrently executing a KVM_RUN ioctl.
1120 */
1121 vcpu->arch.xive_esc_vaddr = 0;
1122 vcpu->arch.xive_esc_raddr = 0;
1123 }
1124
1125 /*
1126 * In single escalation mode, the escalation interrupt is marked so
1127 * that EOI doesn't re-enable it, but just sets the stale_p flag to
1128 * indicate that the P bit has already been dealt with. However, the
1129 * assembly code that enters the guest sets PQ to 00 without clearing
1130 * stale_p (because it has no easy way to address it). Hence we have
1131 * to adjust stale_p before shutting down the interrupt.
1132 */
xive_cleanup_single_escalation(struct kvm_vcpu * vcpu,struct kvmppc_xive_vcpu * xc,int irq)1133 void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu,
1134 struct kvmppc_xive_vcpu *xc, int irq)
1135 {
1136 struct irq_data *d = irq_get_irq_data(irq);
1137 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1138
1139 /*
1140 * This slightly odd sequence gives the right result
1141 * (i.e. stale_p set if xive_esc_on is false) even if
1142 * we race with xive_esc_irq() and xive_irq_eoi().
1143 */
1144 xd->stale_p = false;
1145 smp_mb(); /* paired with smb_wmb in xive_esc_irq */
1146 if (!vcpu->arch.xive_esc_on)
1147 xd->stale_p = true;
1148 }
1149
kvmppc_xive_cleanup_vcpu(struct kvm_vcpu * vcpu)1150 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
1151 {
1152 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1153 struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
1154 int i;
1155
1156 if (!kvmppc_xics_enabled(vcpu))
1157 return;
1158
1159 if (!xc)
1160 return;
1161
1162 pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
1163
1164 /* Ensure no interrupt is still routed to that VP */
1165 xc->valid = false;
1166 kvmppc_xive_disable_vcpu_interrupts(vcpu);
1167
1168 /* Mask the VP IPI */
1169 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1170
1171 /* Free escalations */
1172 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1173 if (xc->esc_virq[i]) {
1174 if (xc->xive->single_escalation)
1175 xive_cleanup_single_escalation(vcpu, xc,
1176 xc->esc_virq[i]);
1177 free_irq(xc->esc_virq[i], vcpu);
1178 irq_dispose_mapping(xc->esc_virq[i]);
1179 kfree(xc->esc_virq_names[i]);
1180 }
1181 }
1182
1183 /* Disable the VP */
1184 xive_native_disable_vp(xc->vp_id);
1185
1186 /* Clear the cam word so guest entry won't try to push context */
1187 vcpu->arch.xive_cam_word = 0;
1188
1189 /* Free the queues */
1190 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1191 struct xive_q *q = &xc->queues[i];
1192
1193 xive_native_disable_queue(xc->vp_id, q, i);
1194 if (q->qpage) {
1195 free_pages((unsigned long)q->qpage,
1196 xive->q_page_order);
1197 q->qpage = NULL;
1198 }
1199 }
1200
1201 /* Free the IPI */
1202 if (xc->vp_ipi) {
1203 xive_cleanup_irq_data(&xc->vp_ipi_data);
1204 xive_native_free_irq(xc->vp_ipi);
1205 }
1206 /* Free the VP */
1207 kfree(xc);
1208
1209 /* Cleanup the vcpu */
1210 vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
1211 vcpu->arch.xive_vcpu = NULL;
1212 }
1213
kvmppc_xive_connect_vcpu(struct kvm_device * dev,struct kvm_vcpu * vcpu,u32 cpu)1214 int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1215 struct kvm_vcpu *vcpu, u32 cpu)
1216 {
1217 struct kvmppc_xive *xive = dev->private;
1218 struct kvmppc_xive_vcpu *xc;
1219 int i, r = -EBUSY;
1220 u32 vp_id;
1221
1222 pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1223
1224 if (dev->ops != &kvm_xive_ops) {
1225 pr_devel("Wrong ops !\n");
1226 return -EPERM;
1227 }
1228 if (xive->kvm != vcpu->kvm)
1229 return -EPERM;
1230 if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT)
1231 return -EBUSY;
1232 if (cpu >= (KVM_MAX_VCPUS * vcpu->kvm->arch.emul_smt_mode)) {
1233 pr_devel("Out of bounds !\n");
1234 return -EINVAL;
1235 }
1236
1237 /* We need to synchronize with queue provisioning */
1238 mutex_lock(&xive->lock);
1239
1240 vp_id = kvmppc_xive_vp(xive, cpu);
1241 if (kvmppc_xive_vp_in_use(xive->kvm, vp_id)) {
1242 pr_devel("Duplicate !\n");
1243 r = -EEXIST;
1244 goto bail;
1245 }
1246
1247 xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1248 if (!xc) {
1249 r = -ENOMEM;
1250 goto bail;
1251 }
1252
1253 vcpu->arch.xive_vcpu = xc;
1254 xc->xive = xive;
1255 xc->vcpu = vcpu;
1256 xc->server_num = cpu;
1257 xc->vp_id = vp_id;
1258 xc->mfrr = 0xff;
1259 xc->valid = true;
1260
1261 r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1262 if (r)
1263 goto bail;
1264
1265 /* Configure VCPU fields for use by assembly push/pull */
1266 vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1267 vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1268
1269 /* Allocate IPI */
1270 xc->vp_ipi = xive_native_alloc_irq();
1271 if (!xc->vp_ipi) {
1272 pr_err("Failed to allocate xive irq for VCPU IPI\n");
1273 r = -EIO;
1274 goto bail;
1275 }
1276 pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1277
1278 r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1279 if (r)
1280 goto bail;
1281
1282 /*
1283 * Enable the VP first as the single escalation mode will
1284 * affect escalation interrupts numbering
1285 */
1286 r = xive_native_enable_vp(xc->vp_id, xive->single_escalation);
1287 if (r) {
1288 pr_err("Failed to enable VP in OPAL, err %d\n", r);
1289 goto bail;
1290 }
1291
1292 /*
1293 * Initialize queues. Initially we set them all for no queueing
1294 * and we enable escalation for queue 0 only which we'll use for
1295 * our mfrr change notifications. If the VCPU is hot-plugged, we
1296 * do handle provisioning however based on the existing "map"
1297 * of enabled queues.
1298 */
1299 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1300 struct xive_q *q = &xc->queues[i];
1301
1302 /* Single escalation, no queue 7 */
1303 if (i == 7 && xive->single_escalation)
1304 break;
1305
1306 /* Is queue already enabled ? Provision it */
1307 if (xive->qmap & (1 << i)) {
1308 r = xive_provision_queue(vcpu, i);
1309 if (r == 0 && !xive->single_escalation)
1310 kvmppc_xive_attach_escalation(
1311 vcpu, i, xive->single_escalation);
1312 if (r)
1313 goto bail;
1314 } else {
1315 r = xive_native_configure_queue(xc->vp_id,
1316 q, i, NULL, 0, true);
1317 if (r) {
1318 pr_err("Failed to configure queue %d for VCPU %d\n",
1319 i, cpu);
1320 goto bail;
1321 }
1322 }
1323 }
1324
1325 /* If not done above, attach priority 0 escalation */
1326 r = kvmppc_xive_attach_escalation(vcpu, 0, xive->single_escalation);
1327 if (r)
1328 goto bail;
1329
1330 /* Route the IPI */
1331 r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1332 if (!r)
1333 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1334
1335 bail:
1336 mutex_unlock(&xive->lock);
1337 if (r) {
1338 kvmppc_xive_cleanup_vcpu(vcpu);
1339 return r;
1340 }
1341
1342 vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1343 return 0;
1344 }
1345
1346 /*
1347 * Scanning of queues before/after migration save
1348 */
xive_pre_save_set_queued(struct kvmppc_xive * xive,u32 irq)1349 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1350 {
1351 struct kvmppc_xive_src_block *sb;
1352 struct kvmppc_xive_irq_state *state;
1353 u16 idx;
1354
1355 sb = kvmppc_xive_find_source(xive, irq, &idx);
1356 if (!sb)
1357 return;
1358
1359 state = &sb->irq_state[idx];
1360
1361 /* Some sanity checking */
1362 if (!state->valid) {
1363 pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1364 return;
1365 }
1366
1367 /*
1368 * If the interrupt is in a queue it should have P set.
1369 * We warn so that gets reported. A backtrace isn't useful
1370 * so no need to use a WARN_ON.
1371 */
1372 if (!state->saved_p)
1373 pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1374
1375 /* Set flag */
1376 state->in_queue = true;
1377 }
1378
xive_pre_save_mask_irq(struct kvmppc_xive * xive,struct kvmppc_xive_src_block * sb,u32 irq)1379 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1380 struct kvmppc_xive_src_block *sb,
1381 u32 irq)
1382 {
1383 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1384
1385 if (!state->valid)
1386 return;
1387
1388 /* Mask and save state, this will also sync HW queues */
1389 state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1390
1391 /* Transfer P and Q */
1392 state->saved_p = state->old_p;
1393 state->saved_q = state->old_q;
1394
1395 /* Unlock */
1396 arch_spin_unlock(&sb->lock);
1397 }
1398
xive_pre_save_unmask_irq(struct kvmppc_xive * xive,struct kvmppc_xive_src_block * sb,u32 irq)1399 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1400 struct kvmppc_xive_src_block *sb,
1401 u32 irq)
1402 {
1403 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1404
1405 if (!state->valid)
1406 return;
1407
1408 /*
1409 * Lock / exclude EOI (not technically necessary if the
1410 * guest isn't running concurrently. If this becomes a
1411 * performance issue we can probably remove the lock.
1412 */
1413 xive_lock_for_unmask(sb, state);
1414
1415 /* Restore mask/prio if it wasn't masked */
1416 if (state->saved_scan_prio != MASKED)
1417 xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1418
1419 /* Unlock */
1420 arch_spin_unlock(&sb->lock);
1421 }
1422
xive_pre_save_queue(struct kvmppc_xive * xive,struct xive_q * q)1423 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1424 {
1425 u32 idx = q->idx;
1426 u32 toggle = q->toggle;
1427 u32 irq;
1428
1429 do {
1430 irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1431 if (irq > XICS_IPI)
1432 xive_pre_save_set_queued(xive, irq);
1433 } while(irq);
1434 }
1435
xive_pre_save_scan(struct kvmppc_xive * xive)1436 static void xive_pre_save_scan(struct kvmppc_xive *xive)
1437 {
1438 struct kvm_vcpu *vcpu = NULL;
1439 int i, j;
1440
1441 /*
1442 * See comment in xive_get_source() about how this
1443 * work. Collect a stable state for all interrupts
1444 */
1445 for (i = 0; i <= xive->max_sbid; i++) {
1446 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1447 if (!sb)
1448 continue;
1449 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1450 xive_pre_save_mask_irq(xive, sb, j);
1451 }
1452
1453 /* Then scan the queues and update the "in_queue" flag */
1454 kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1455 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1456 if (!xc)
1457 continue;
1458 for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1459 if (xc->queues[j].qpage)
1460 xive_pre_save_queue(xive, &xc->queues[j]);
1461 }
1462 }
1463
1464 /* Finally restore interrupt states */
1465 for (i = 0; i <= xive->max_sbid; i++) {
1466 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1467 if (!sb)
1468 continue;
1469 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1470 xive_pre_save_unmask_irq(xive, sb, j);
1471 }
1472 }
1473
xive_post_save_scan(struct kvmppc_xive * xive)1474 static void xive_post_save_scan(struct kvmppc_xive *xive)
1475 {
1476 u32 i, j;
1477
1478 /* Clear all the in_queue flags */
1479 for (i = 0; i <= xive->max_sbid; i++) {
1480 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1481 if (!sb)
1482 continue;
1483 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1484 sb->irq_state[j].in_queue = false;
1485 }
1486
1487 /* Next get_source() will do a new scan */
1488 xive->saved_src_count = 0;
1489 }
1490
1491 /*
1492 * This returns the source configuration and state to user space.
1493 */
xive_get_source(struct kvmppc_xive * xive,long irq,u64 addr)1494 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1495 {
1496 struct kvmppc_xive_src_block *sb;
1497 struct kvmppc_xive_irq_state *state;
1498 u64 __user *ubufp = (u64 __user *) addr;
1499 u64 val, prio;
1500 u16 idx;
1501
1502 sb = kvmppc_xive_find_source(xive, irq, &idx);
1503 if (!sb)
1504 return -ENOENT;
1505
1506 state = &sb->irq_state[idx];
1507
1508 if (!state->valid)
1509 return -ENOENT;
1510
1511 pr_devel("get_source(%ld)...\n", irq);
1512
1513 /*
1514 * So to properly save the state into something that looks like a
1515 * XICS migration stream we cannot treat interrupts individually.
1516 *
1517 * We need, instead, mask them all (& save their previous PQ state)
1518 * to get a stable state in the HW, then sync them to ensure that
1519 * any interrupt that had already fired hits its queue, and finally
1520 * scan all the queues to collect which interrupts are still present
1521 * in the queues, so we can set the "pending" flag on them and
1522 * they can be resent on restore.
1523 *
1524 * So we do it all when the "first" interrupt gets saved, all the
1525 * state is collected at that point, the rest of xive_get_source()
1526 * will merely collect and convert that state to the expected
1527 * userspace bit mask.
1528 */
1529 if (xive->saved_src_count == 0)
1530 xive_pre_save_scan(xive);
1531 xive->saved_src_count++;
1532
1533 /* Convert saved state into something compatible with xics */
1534 val = state->act_server;
1535 prio = state->saved_scan_prio;
1536
1537 if (prio == MASKED) {
1538 val |= KVM_XICS_MASKED;
1539 prio = state->saved_priority;
1540 }
1541 val |= prio << KVM_XICS_PRIORITY_SHIFT;
1542 if (state->lsi) {
1543 val |= KVM_XICS_LEVEL_SENSITIVE;
1544 if (state->saved_p)
1545 val |= KVM_XICS_PENDING;
1546 } else {
1547 if (state->saved_p)
1548 val |= KVM_XICS_PRESENTED;
1549
1550 if (state->saved_q)
1551 val |= KVM_XICS_QUEUED;
1552
1553 /*
1554 * We mark it pending (which will attempt a re-delivery)
1555 * if we are in a queue *or* we were masked and had
1556 * Q set which is equivalent to the XICS "masked pending"
1557 * state
1558 */
1559 if (state->in_queue || (prio == MASKED && state->saved_q))
1560 val |= KVM_XICS_PENDING;
1561 }
1562
1563 /*
1564 * If that was the last interrupt saved, reset the
1565 * in_queue flags
1566 */
1567 if (xive->saved_src_count == xive->src_count)
1568 xive_post_save_scan(xive);
1569
1570 /* Copy the result to userspace */
1571 if (put_user(val, ubufp))
1572 return -EFAULT;
1573
1574 return 0;
1575 }
1576
kvmppc_xive_create_src_block(struct kvmppc_xive * xive,int irq)1577 struct kvmppc_xive_src_block *kvmppc_xive_create_src_block(
1578 struct kvmppc_xive *xive, int irq)
1579 {
1580 struct kvmppc_xive_src_block *sb;
1581 int i, bid;
1582
1583 bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1584
1585 mutex_lock(&xive->lock);
1586
1587 /* block already exists - somebody else got here first */
1588 if (xive->src_blocks[bid])
1589 goto out;
1590
1591 /* Create the ICS */
1592 sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1593 if (!sb)
1594 goto out;
1595
1596 sb->id = bid;
1597
1598 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1599 sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1600 sb->irq_state[i].eisn = 0;
1601 sb->irq_state[i].guest_priority = MASKED;
1602 sb->irq_state[i].saved_priority = MASKED;
1603 sb->irq_state[i].act_priority = MASKED;
1604 }
1605 smp_wmb();
1606 xive->src_blocks[bid] = sb;
1607
1608 if (bid > xive->max_sbid)
1609 xive->max_sbid = bid;
1610
1611 out:
1612 mutex_unlock(&xive->lock);
1613 return xive->src_blocks[bid];
1614 }
1615
xive_check_delayed_irq(struct kvmppc_xive * xive,u32 irq)1616 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1617 {
1618 struct kvm *kvm = xive->kvm;
1619 struct kvm_vcpu *vcpu = NULL;
1620 int i;
1621
1622 kvm_for_each_vcpu(i, vcpu, kvm) {
1623 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1624
1625 if (!xc)
1626 continue;
1627
1628 if (xc->delayed_irq == irq) {
1629 xc->delayed_irq = 0;
1630 xive->delayed_irqs--;
1631 return true;
1632 }
1633 }
1634 return false;
1635 }
1636
xive_set_source(struct kvmppc_xive * xive,long irq,u64 addr)1637 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1638 {
1639 struct kvmppc_xive_src_block *sb;
1640 struct kvmppc_xive_irq_state *state;
1641 u64 __user *ubufp = (u64 __user *) addr;
1642 u16 idx;
1643 u64 val;
1644 u8 act_prio, guest_prio;
1645 u32 server;
1646 int rc = 0;
1647
1648 if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1649 return -ENOENT;
1650
1651 pr_devel("set_source(irq=0x%lx)\n", irq);
1652
1653 /* Find the source */
1654 sb = kvmppc_xive_find_source(xive, irq, &idx);
1655 if (!sb) {
1656 pr_devel("No source, creating source block...\n");
1657 sb = kvmppc_xive_create_src_block(xive, irq);
1658 if (!sb) {
1659 pr_devel("Failed to create block...\n");
1660 return -ENOMEM;
1661 }
1662 }
1663 state = &sb->irq_state[idx];
1664
1665 /* Read user passed data */
1666 if (get_user(val, ubufp)) {
1667 pr_devel("fault getting user info !\n");
1668 return -EFAULT;
1669 }
1670
1671 server = val & KVM_XICS_DESTINATION_MASK;
1672 guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1673
1674 pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1675 val, server, guest_prio);
1676
1677 /*
1678 * If the source doesn't already have an IPI, allocate
1679 * one and get the corresponding data
1680 */
1681 if (!state->ipi_number) {
1682 state->ipi_number = xive_native_alloc_irq();
1683 if (state->ipi_number == 0) {
1684 pr_devel("Failed to allocate IPI !\n");
1685 return -ENOMEM;
1686 }
1687 xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1688 pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1689 }
1690
1691 /*
1692 * We use lock_and_mask() to set us in the right masked
1693 * state. We will override that state from the saved state
1694 * further down, but this will handle the cases of interrupts
1695 * that need FW masking. We set the initial guest_priority to
1696 * 0 before calling it to ensure it actually performs the masking.
1697 */
1698 state->guest_priority = 0;
1699 xive_lock_and_mask(xive, sb, state);
1700
1701 /*
1702 * Now, we select a target if we have one. If we don't we
1703 * leave the interrupt untargetted. It means that an interrupt
1704 * can become "untargetted" accross migration if it was masked
1705 * by set_xive() but there is little we can do about it.
1706 */
1707
1708 /* First convert prio and mark interrupt as untargetted */
1709 act_prio = xive_prio_from_guest(guest_prio);
1710 state->act_priority = MASKED;
1711
1712 /*
1713 * We need to drop the lock due to the mutex below. Hopefully
1714 * nothing is touching that interrupt yet since it hasn't been
1715 * advertized to a running guest yet
1716 */
1717 arch_spin_unlock(&sb->lock);
1718
1719 /* If we have a priority target the interrupt */
1720 if (act_prio != MASKED) {
1721 /* First, check provisioning of queues */
1722 mutex_lock(&xive->lock);
1723 rc = xive_check_provisioning(xive->kvm, act_prio);
1724 mutex_unlock(&xive->lock);
1725
1726 /* Target interrupt */
1727 if (rc == 0)
1728 rc = xive_target_interrupt(xive->kvm, state,
1729 server, act_prio);
1730 /*
1731 * If provisioning or targetting failed, leave it
1732 * alone and masked. It will remain disabled until
1733 * the guest re-targets it.
1734 */
1735 }
1736
1737 /*
1738 * Find out if this was a delayed irq stashed in an ICP,
1739 * in which case, treat it as pending
1740 */
1741 if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1742 val |= KVM_XICS_PENDING;
1743 pr_devel(" Found delayed ! forcing PENDING !\n");
1744 }
1745
1746 /* Cleanup the SW state */
1747 state->old_p = false;
1748 state->old_q = false;
1749 state->lsi = false;
1750 state->asserted = false;
1751
1752 /* Restore LSI state */
1753 if (val & KVM_XICS_LEVEL_SENSITIVE) {
1754 state->lsi = true;
1755 if (val & KVM_XICS_PENDING)
1756 state->asserted = true;
1757 pr_devel(" LSI ! Asserted=%d\n", state->asserted);
1758 }
1759
1760 /*
1761 * Restore P and Q. If the interrupt was pending, we
1762 * force Q and !P, which will trigger a resend.
1763 *
1764 * That means that a guest that had both an interrupt
1765 * pending (queued) and Q set will restore with only
1766 * one instance of that interrupt instead of 2, but that
1767 * is perfectly fine as coalescing interrupts that haven't
1768 * been presented yet is always allowed.
1769 */
1770 if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
1771 state->old_p = true;
1772 if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1773 state->old_q = true;
1774
1775 pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q);
1776
1777 /*
1778 * If the interrupt was unmasked, update guest priority and
1779 * perform the appropriate state transition and do a
1780 * re-trigger if necessary.
1781 */
1782 if (val & KVM_XICS_MASKED) {
1783 pr_devel(" masked, saving prio\n");
1784 state->guest_priority = MASKED;
1785 state->saved_priority = guest_prio;
1786 } else {
1787 pr_devel(" unmasked, restoring to prio %d\n", guest_prio);
1788 xive_finish_unmask(xive, sb, state, guest_prio);
1789 state->saved_priority = guest_prio;
1790 }
1791
1792 /* Increment the number of valid sources and mark this one valid */
1793 if (!state->valid)
1794 xive->src_count++;
1795 state->valid = true;
1796
1797 return 0;
1798 }
1799
kvmppc_xive_set_irq(struct kvm * kvm,int irq_source_id,u32 irq,int level,bool line_status)1800 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1801 bool line_status)
1802 {
1803 struct kvmppc_xive *xive = kvm->arch.xive;
1804 struct kvmppc_xive_src_block *sb;
1805 struct kvmppc_xive_irq_state *state;
1806 u16 idx;
1807
1808 if (!xive)
1809 return -ENODEV;
1810
1811 sb = kvmppc_xive_find_source(xive, irq, &idx);
1812 if (!sb)
1813 return -EINVAL;
1814
1815 /* Perform locklessly .... (we need to do some RCUisms here...) */
1816 state = &sb->irq_state[idx];
1817 if (!state->valid)
1818 return -EINVAL;
1819
1820 /* We don't allow a trigger on a passed-through interrupt */
1821 if (state->pt_number)
1822 return -EINVAL;
1823
1824 if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1825 state->asserted = 1;
1826 else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1827 state->asserted = 0;
1828 return 0;
1829 }
1830
1831 /* Trigger the IPI */
1832 xive_irq_trigger(&state->ipi_data);
1833
1834 return 0;
1835 }
1836
xive_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)1837 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1838 {
1839 struct kvmppc_xive *xive = dev->private;
1840
1841 /* We honor the existing XICS ioctl */
1842 switch (attr->group) {
1843 case KVM_DEV_XICS_GRP_SOURCES:
1844 return xive_set_source(xive, attr->attr, attr->addr);
1845 }
1846 return -ENXIO;
1847 }
1848
xive_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)1849 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1850 {
1851 struct kvmppc_xive *xive = dev->private;
1852
1853 /* We honor the existing XICS ioctl */
1854 switch (attr->group) {
1855 case KVM_DEV_XICS_GRP_SOURCES:
1856 return xive_get_source(xive, attr->attr, attr->addr);
1857 }
1858 return -ENXIO;
1859 }
1860
xive_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)1861 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1862 {
1863 /* We honor the same limits as XICS, at least for now */
1864 switch (attr->group) {
1865 case KVM_DEV_XICS_GRP_SOURCES:
1866 if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1867 attr->attr < KVMPPC_XICS_NR_IRQS)
1868 return 0;
1869 break;
1870 }
1871 return -ENXIO;
1872 }
1873
kvmppc_xive_cleanup_irq(u32 hw_num,struct xive_irq_data * xd)1874 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
1875 {
1876 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
1877 xive_native_configure_irq(hw_num, 0, MASKED, 0);
1878 }
1879
kvmppc_xive_free_sources(struct kvmppc_xive_src_block * sb)1880 void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
1881 {
1882 int i;
1883
1884 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1885 struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
1886
1887 if (!state->valid)
1888 continue;
1889
1890 kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
1891 xive_cleanup_irq_data(&state->ipi_data);
1892 xive_native_free_irq(state->ipi_number);
1893
1894 /* Pass-through, cleanup too but keep IRQ hw data */
1895 if (state->pt_number)
1896 kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
1897
1898 state->valid = false;
1899 }
1900 }
1901
1902 /*
1903 * Called when device fd is closed. kvm->lock is held.
1904 */
kvmppc_xive_release(struct kvm_device * dev)1905 static void kvmppc_xive_release(struct kvm_device *dev)
1906 {
1907 struct kvmppc_xive *xive = dev->private;
1908 struct kvm *kvm = xive->kvm;
1909 struct kvm_vcpu *vcpu;
1910 int i;
1911
1912 pr_devel("Releasing xive device\n");
1913
1914 /*
1915 * Since this is the device release function, we know that
1916 * userspace does not have any open fd referring to the
1917 * device. Therefore there can not be any of the device
1918 * attribute set/get functions being executed concurrently,
1919 * and similarly, the connect_vcpu and set/clr_mapped
1920 * functions also cannot be being executed.
1921 */
1922
1923 debugfs_remove(xive->dentry);
1924
1925 /*
1926 * We should clean up the vCPU interrupt presenters first.
1927 */
1928 kvm_for_each_vcpu(i, vcpu, kvm) {
1929 /*
1930 * Take vcpu->mutex to ensure that no one_reg get/set ioctl
1931 * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently.
1932 * Holding the vcpu->mutex also means that the vcpu cannot
1933 * be executing the KVM_RUN ioctl, and therefore it cannot
1934 * be executing the XIVE push or pull code or accessing
1935 * the XIVE MMIO regions.
1936 */
1937 mutex_lock(&vcpu->mutex);
1938 kvmppc_xive_cleanup_vcpu(vcpu);
1939 mutex_unlock(&vcpu->mutex);
1940 }
1941
1942 /*
1943 * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type
1944 * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe
1945 * against xive code getting called during vcpu execution or
1946 * set/get one_reg operations.
1947 */
1948 kvm->arch.xive = NULL;
1949
1950 /* Mask and free interrupts */
1951 for (i = 0; i <= xive->max_sbid; i++) {
1952 if (xive->src_blocks[i])
1953 kvmppc_xive_free_sources(xive->src_blocks[i]);
1954 kfree(xive->src_blocks[i]);
1955 xive->src_blocks[i] = NULL;
1956 }
1957
1958 if (xive->vp_base != XIVE_INVALID_VP)
1959 xive_native_free_vp_block(xive->vp_base);
1960
1961 /*
1962 * A reference of the kvmppc_xive pointer is now kept under
1963 * the xive_devices struct of the machine for reuse. It is
1964 * freed when the VM is destroyed for now until we fix all the
1965 * execution paths.
1966 */
1967
1968 kfree(dev);
1969 }
1970
1971 /*
1972 * When the guest chooses the interrupt mode (XICS legacy or XIVE
1973 * native), the VM will switch of KVM device. The previous device will
1974 * be "released" before the new one is created.
1975 *
1976 * Until we are sure all execution paths are well protected, provide a
1977 * fail safe (transitional) method for device destruction, in which
1978 * the XIVE device pointer is recycled and not directly freed.
1979 */
kvmppc_xive_get_device(struct kvm * kvm,u32 type)1980 struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type)
1981 {
1982 struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ?
1983 &kvm->arch.xive_devices.native :
1984 &kvm->arch.xive_devices.xics_on_xive;
1985 struct kvmppc_xive *xive = *kvm_xive_device;
1986
1987 if (!xive) {
1988 xive = kzalloc(sizeof(*xive), GFP_KERNEL);
1989 *kvm_xive_device = xive;
1990 } else {
1991 memset(xive, 0, sizeof(*xive));
1992 }
1993
1994 return xive;
1995 }
1996
1997 /*
1998 * Create a XICS device with XIVE backend. kvm->lock is held.
1999 */
kvmppc_xive_create(struct kvm_device * dev,u32 type)2000 static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
2001 {
2002 struct kvmppc_xive *xive;
2003 struct kvm *kvm = dev->kvm;
2004 int ret = 0;
2005
2006 pr_devel("Creating xive for partition\n");
2007
2008 /* Already there ? */
2009 if (kvm->arch.xive)
2010 return -EEXIST;
2011
2012 xive = kvmppc_xive_get_device(kvm, type);
2013 if (!xive)
2014 return -ENOMEM;
2015
2016 dev->private = xive;
2017 xive->dev = dev;
2018 xive->kvm = kvm;
2019 mutex_init(&xive->lock);
2020
2021 /* We use the default queue size set by the host */
2022 xive->q_order = xive_native_default_eq_shift();
2023 if (xive->q_order < PAGE_SHIFT)
2024 xive->q_page_order = 0;
2025 else
2026 xive->q_page_order = xive->q_order - PAGE_SHIFT;
2027
2028 /* Allocate a bunch of VPs */
2029 xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS);
2030 pr_devel("VP_Base=%x\n", xive->vp_base);
2031
2032 if (xive->vp_base == XIVE_INVALID_VP)
2033 ret = -ENOMEM;
2034
2035 xive->single_escalation = xive_native_has_single_escalation();
2036
2037 if (ret)
2038 return ret;
2039
2040 kvm->arch.xive = xive;
2041 return 0;
2042 }
2043
kvmppc_xive_debug_show_queues(struct seq_file * m,struct kvm_vcpu * vcpu)2044 int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu)
2045 {
2046 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2047 unsigned int i;
2048
2049 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
2050 struct xive_q *q = &xc->queues[i];
2051 u32 i0, i1, idx;
2052
2053 if (!q->qpage && !xc->esc_virq[i])
2054 continue;
2055
2056 seq_printf(m, " [q%d]: ", i);
2057
2058 if (q->qpage) {
2059 idx = q->idx;
2060 i0 = be32_to_cpup(q->qpage + idx);
2061 idx = (idx + 1) & q->msk;
2062 i1 = be32_to_cpup(q->qpage + idx);
2063 seq_printf(m, "T=%d %08x %08x...\n", q->toggle,
2064 i0, i1);
2065 }
2066 if (xc->esc_virq[i]) {
2067 struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
2068 struct xive_irq_data *xd =
2069 irq_data_get_irq_handler_data(d);
2070 u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2071
2072 seq_printf(m, "E:%c%c I(%d:%llx:%llx)",
2073 (pq & XIVE_ESB_VAL_P) ? 'P' : 'p',
2074 (pq & XIVE_ESB_VAL_Q) ? 'Q' : 'q',
2075 xc->esc_virq[i], pq, xd->eoi_page);
2076 seq_puts(m, "\n");
2077 }
2078 }
2079 return 0;
2080 }
2081
xive_debug_show(struct seq_file * m,void * private)2082 static int xive_debug_show(struct seq_file *m, void *private)
2083 {
2084 struct kvmppc_xive *xive = m->private;
2085 struct kvm *kvm = xive->kvm;
2086 struct kvm_vcpu *vcpu;
2087 u64 t_rm_h_xirr = 0;
2088 u64 t_rm_h_ipoll = 0;
2089 u64 t_rm_h_cppr = 0;
2090 u64 t_rm_h_eoi = 0;
2091 u64 t_rm_h_ipi = 0;
2092 u64 t_vm_h_xirr = 0;
2093 u64 t_vm_h_ipoll = 0;
2094 u64 t_vm_h_cppr = 0;
2095 u64 t_vm_h_eoi = 0;
2096 u64 t_vm_h_ipi = 0;
2097 unsigned int i;
2098
2099 if (!kvm)
2100 return 0;
2101
2102 seq_printf(m, "=========\nVCPU state\n=========\n");
2103
2104 kvm_for_each_vcpu(i, vcpu, kvm) {
2105 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2106
2107 if (!xc)
2108 continue;
2109
2110 seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x"
2111 " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
2112 xc->server_num, xc->cppr, xc->hw_cppr,
2113 xc->mfrr, xc->pending,
2114 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
2115
2116 kvmppc_xive_debug_show_queues(m, vcpu);
2117
2118 t_rm_h_xirr += xc->stat_rm_h_xirr;
2119 t_rm_h_ipoll += xc->stat_rm_h_ipoll;
2120 t_rm_h_cppr += xc->stat_rm_h_cppr;
2121 t_rm_h_eoi += xc->stat_rm_h_eoi;
2122 t_rm_h_ipi += xc->stat_rm_h_ipi;
2123 t_vm_h_xirr += xc->stat_vm_h_xirr;
2124 t_vm_h_ipoll += xc->stat_vm_h_ipoll;
2125 t_vm_h_cppr += xc->stat_vm_h_cppr;
2126 t_vm_h_eoi += xc->stat_vm_h_eoi;
2127 t_vm_h_ipi += xc->stat_vm_h_ipi;
2128 }
2129
2130 seq_printf(m, "Hcalls totals\n");
2131 seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
2132 seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
2133 seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
2134 seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
2135 seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
2136
2137 return 0;
2138 }
2139
2140 DEFINE_SHOW_ATTRIBUTE(xive_debug);
2141
xive_debugfs_init(struct kvmppc_xive * xive)2142 static void xive_debugfs_init(struct kvmppc_xive *xive)
2143 {
2144 char *name;
2145
2146 name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
2147 if (!name) {
2148 pr_err("%s: no memory for name\n", __func__);
2149 return;
2150 }
2151
2152 xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
2153 xive, &xive_debug_fops);
2154
2155 pr_debug("%s: created %s\n", __func__, name);
2156 kfree(name);
2157 }
2158
kvmppc_xive_init(struct kvm_device * dev)2159 static void kvmppc_xive_init(struct kvm_device *dev)
2160 {
2161 struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
2162
2163 /* Register some debug interfaces */
2164 xive_debugfs_init(xive);
2165 }
2166
2167 struct kvm_device_ops kvm_xive_ops = {
2168 .name = "kvm-xive",
2169 .create = kvmppc_xive_create,
2170 .init = kvmppc_xive_init,
2171 .release = kvmppc_xive_release,
2172 .set_attr = xive_set_attr,
2173 .get_attr = xive_get_attr,
2174 .has_attr = xive_has_attr,
2175 };
2176
kvmppc_xive_init_module(void)2177 void kvmppc_xive_init_module(void)
2178 {
2179 __xive_vm_h_xirr = xive_vm_h_xirr;
2180 __xive_vm_h_ipoll = xive_vm_h_ipoll;
2181 __xive_vm_h_ipi = xive_vm_h_ipi;
2182 __xive_vm_h_cppr = xive_vm_h_cppr;
2183 __xive_vm_h_eoi = xive_vm_h_eoi;
2184 }
2185
kvmppc_xive_exit_module(void)2186 void kvmppc_xive_exit_module(void)
2187 {
2188 __xive_vm_h_xirr = NULL;
2189 __xive_vm_h_ipoll = NULL;
2190 __xive_vm_h_ipi = NULL;
2191 __xive_vm_h_cppr = NULL;
2192 __xive_vm_h_eoi = NULL;
2193 }
2194