• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * Copyright (C) 2007 Oracle.  All rights reserved.
4   */
5  
6  #ifndef BTRFS_INODE_H
7  #define BTRFS_INODE_H
8  
9  #include <linux/hash.h>
10  #include "extent_map.h"
11  #include "extent_io.h"
12  #include "ordered-data.h"
13  #include "delayed-inode.h"
14  
15  /*
16   * ordered_data_close is set by truncate when a file that used
17   * to have good data has been truncated to zero.  When it is set
18   * the btrfs file release call will add this inode to the
19   * ordered operations list so that we make sure to flush out any
20   * new data the application may have written before commit.
21   */
22  enum {
23  	BTRFS_INODE_ORDERED_DATA_CLOSE,
24  	BTRFS_INODE_DUMMY,
25  	BTRFS_INODE_IN_DEFRAG,
26  	BTRFS_INODE_HAS_ASYNC_EXTENT,
27  	BTRFS_INODE_NEEDS_FULL_SYNC,
28  	BTRFS_INODE_COPY_EVERYTHING,
29  	BTRFS_INODE_IN_DELALLOC_LIST,
30  	BTRFS_INODE_READDIO_NEED_LOCK,
31  	BTRFS_INODE_HAS_PROPS,
32  	BTRFS_INODE_SNAPSHOT_FLUSH,
33  };
34  
35  /* in memory btrfs inode */
36  struct btrfs_inode {
37  	/* which subvolume this inode belongs to */
38  	struct btrfs_root *root;
39  
40  	/* key used to find this inode on disk.  This is used by the code
41  	 * to read in roots of subvolumes
42  	 */
43  	struct btrfs_key location;
44  
45  	/*
46  	 * Lock for counters and all fields used to determine if the inode is in
47  	 * the log or not (last_trans, last_sub_trans, last_log_commit,
48  	 * logged_trans).
49  	 */
50  	spinlock_t lock;
51  
52  	/* the extent_tree has caches of all the extent mappings to disk */
53  	struct extent_map_tree extent_tree;
54  
55  	/* the io_tree does range state (DIRTY, LOCKED etc) */
56  	struct extent_io_tree io_tree;
57  
58  	/* special utility tree used to record which mirrors have already been
59  	 * tried when checksums fail for a given block
60  	 */
61  	struct extent_io_tree io_failure_tree;
62  
63  	/* held while logging the inode in tree-log.c */
64  	struct mutex log_mutex;
65  
66  	/* held while doing delalloc reservations */
67  	struct mutex delalloc_mutex;
68  
69  	/* used to order data wrt metadata */
70  	struct btrfs_ordered_inode_tree ordered_tree;
71  
72  	/* list of all the delalloc inodes in the FS.  There are times we need
73  	 * to write all the delalloc pages to disk, and this list is used
74  	 * to walk them all.
75  	 */
76  	struct list_head delalloc_inodes;
77  
78  	/* node for the red-black tree that links inodes in subvolume root */
79  	struct rb_node rb_node;
80  
81  	unsigned long runtime_flags;
82  
83  	/* Keep track of who's O_SYNC/fsyncing currently */
84  	atomic_t sync_writers;
85  
86  	/* full 64 bit generation number, struct vfs_inode doesn't have a big
87  	 * enough field for this.
88  	 */
89  	u64 generation;
90  
91  	/*
92  	 * transid of the trans_handle that last modified this inode
93  	 */
94  	u64 last_trans;
95  
96  	/*
97  	 * transid that last logged this inode
98  	 */
99  	u64 logged_trans;
100  
101  	/*
102  	 * log transid when this inode was last modified
103  	 */
104  	int last_sub_trans;
105  
106  	/* a local copy of root's last_log_commit */
107  	int last_log_commit;
108  
109  	/* total number of bytes pending delalloc, used by stat to calc the
110  	 * real block usage of the file
111  	 */
112  	u64 delalloc_bytes;
113  
114  	/*
115  	 * Total number of bytes pending delalloc that fall within a file
116  	 * range that is either a hole or beyond EOF (and no prealloc extent
117  	 * exists in the range). This is always <= delalloc_bytes.
118  	 */
119  	u64 new_delalloc_bytes;
120  
121  	/*
122  	 * total number of bytes pending defrag, used by stat to check whether
123  	 * it needs COW.
124  	 */
125  	u64 defrag_bytes;
126  
127  	/*
128  	 * the size of the file stored in the metadata on disk.  data=ordered
129  	 * means the in-memory i_size might be larger than the size on disk
130  	 * because not all the blocks are written yet.
131  	 */
132  	u64 disk_i_size;
133  
134  	/*
135  	 * if this is a directory then index_cnt is the counter for the index
136  	 * number for new files that are created
137  	 */
138  	u64 index_cnt;
139  
140  	/* Cache the directory index number to speed the dir/file remove */
141  	u64 dir_index;
142  
143  	/* the fsync log has some corner cases that mean we have to check
144  	 * directories to see if any unlinks have been done before
145  	 * the directory was logged.  See tree-log.c for all the
146  	 * details
147  	 */
148  	u64 last_unlink_trans;
149  
150  	/*
151  	 * Number of bytes outstanding that are going to need csums.  This is
152  	 * used in ENOSPC accounting.
153  	 */
154  	u64 csum_bytes;
155  
156  	/* flags field from the on disk inode */
157  	u32 flags;
158  
159  	/*
160  	 * Counters to keep track of the number of extent item's we may use due
161  	 * to delalloc and such.  outstanding_extents is the number of extent
162  	 * items we think we'll end up using, and reserved_extents is the number
163  	 * of extent items we've reserved metadata for.
164  	 */
165  	unsigned outstanding_extents;
166  
167  	struct btrfs_block_rsv block_rsv;
168  
169  	/*
170  	 * Cached values of inode properties
171  	 */
172  	unsigned prop_compress;		/* per-file compression algorithm */
173  	/*
174  	 * Force compression on the file using the defrag ioctl, could be
175  	 * different from prop_compress and takes precedence if set
176  	 */
177  	unsigned defrag_compress;
178  
179  	struct btrfs_delayed_node *delayed_node;
180  
181  	/* File creation time. */
182  	struct timespec64 i_otime;
183  
184  	/* Hook into fs_info->delayed_iputs */
185  	struct list_head delayed_iput;
186  
187  	/*
188  	 * To avoid races between lockless (i_mutex not held) direct IO writes
189  	 * and concurrent fsync requests. Direct IO writes must acquire read
190  	 * access on this semaphore for creating an extent map and its
191  	 * corresponding ordered extent. The fast fsync path must acquire write
192  	 * access on this semaphore before it collects ordered extents and
193  	 * extent maps.
194  	 */
195  	struct rw_semaphore dio_sem;
196  
197  	struct inode vfs_inode;
198  };
199  
BTRFS_I(const struct inode * inode)200  static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
201  {
202  	return container_of(inode, struct btrfs_inode, vfs_inode);
203  }
204  
btrfs_inode_hash(u64 objectid,const struct btrfs_root * root)205  static inline unsigned long btrfs_inode_hash(u64 objectid,
206  					     const struct btrfs_root *root)
207  {
208  	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
209  
210  #if BITS_PER_LONG == 32
211  	h = (h >> 32) ^ (h & 0xffffffff);
212  #endif
213  
214  	return (unsigned long)h;
215  }
216  
btrfs_insert_inode_hash(struct inode * inode)217  static inline void btrfs_insert_inode_hash(struct inode *inode)
218  {
219  	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
220  
221  	__insert_inode_hash(inode, h);
222  }
223  
btrfs_ino(const struct btrfs_inode * inode)224  static inline u64 btrfs_ino(const struct btrfs_inode *inode)
225  {
226  	u64 ino = inode->location.objectid;
227  
228  	/*
229  	 * !ino: btree_inode
230  	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
231  	 */
232  	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
233  		ino = inode->vfs_inode.i_ino;
234  	return ino;
235  }
236  
btrfs_i_size_write(struct btrfs_inode * inode,u64 size)237  static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
238  {
239  	i_size_write(&inode->vfs_inode, size);
240  	inode->disk_i_size = size;
241  }
242  
btrfs_is_free_space_inode(struct btrfs_inode * inode)243  static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
244  {
245  	struct btrfs_root *root = inode->root;
246  
247  	if (root == root->fs_info->tree_root &&
248  	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
249  		return true;
250  	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
251  		return true;
252  	return false;
253  }
254  
is_data_inode(struct inode * inode)255  static inline bool is_data_inode(struct inode *inode)
256  {
257  	return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
258  }
259  
btrfs_mod_outstanding_extents(struct btrfs_inode * inode,int mod)260  static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
261  						 int mod)
262  {
263  	lockdep_assert_held(&inode->lock);
264  	inode->outstanding_extents += mod;
265  	if (btrfs_is_free_space_inode(inode))
266  		return;
267  	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
268  						  mod);
269  }
270  
271  /*
272   * Called every time after doing a buffered, direct IO or memory mapped write.
273   *
274   * This is to ensure that if we write to a file that was previously fsynced in
275   * the current transaction, then try to fsync it again in the same transaction,
276   * we will know that there were changes in the file and that it needs to be
277   * logged.
278   */
btrfs_set_inode_last_sub_trans(struct btrfs_inode * inode)279  static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode)
280  {
281  	spin_lock(&inode->lock);
282  	inode->last_sub_trans = inode->root->log_transid;
283  	spin_unlock(&inode->lock);
284  }
285  
btrfs_inode_in_log(struct btrfs_inode * inode,u64 generation)286  static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
287  {
288  	int ret = 0;
289  
290  	spin_lock(&inode->lock);
291  	if (inode->logged_trans == generation &&
292  	    inode->last_sub_trans <= inode->last_log_commit &&
293  	    inode->last_sub_trans <= inode->root->last_log_commit) {
294  		/*
295  		 * After a ranged fsync we might have left some extent maps
296  		 * (that fall outside the fsync's range). So return false
297  		 * here if the list isn't empty, to make sure btrfs_log_inode()
298  		 * will be called and process those extent maps.
299  		 */
300  		smp_mb();
301  		if (list_empty(&inode->extent_tree.modified_extents))
302  			ret = 1;
303  	}
304  	spin_unlock(&inode->lock);
305  	return ret;
306  }
307  
308  #define BTRFS_DIO_ORIG_BIO_SUBMITTED	0x1
309  
310  struct btrfs_dio_private {
311  	struct inode *inode;
312  	unsigned long flags;
313  	u64 logical_offset;
314  	u64 disk_bytenr;
315  	u64 bytes;
316  	void *private;
317  
318  	/* number of bios pending for this dio */
319  	atomic_t pending_bios;
320  
321  	/* IO errors */
322  	int errors;
323  
324  	/* orig_bio is our btrfs_io_bio */
325  	struct bio *orig_bio;
326  
327  	/* dio_bio came from fs/direct-io.c */
328  	struct bio *dio_bio;
329  
330  	/*
331  	 * The original bio may be split to several sub-bios, this is
332  	 * done during endio of sub-bios
333  	 */
334  	blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *,
335  			blk_status_t);
336  };
337  
338  /*
339   * Disable DIO read nolock optimization, so new dio readers will be forced
340   * to grab i_mutex. It is used to avoid the endless truncate due to
341   * nonlocked dio read.
342   */
btrfs_inode_block_unlocked_dio(struct btrfs_inode * inode)343  static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
344  {
345  	set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
346  	smp_mb();
347  }
348  
btrfs_inode_resume_unlocked_dio(struct btrfs_inode * inode)349  static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
350  {
351  	smp_mb__before_atomic();
352  	clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
353  }
354  
355  /* Array of bytes with variable length, hexadecimal format 0x1234 */
356  #define CSUM_FMT				"0x%*phN"
357  #define CSUM_FMT_VALUE(size, bytes)		size, bytes
358  
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)359  static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
360  		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
361  {
362  	struct btrfs_root *root = inode->root;
363  	struct btrfs_super_block *sb = root->fs_info->super_copy;
364  	const u16 csum_size = btrfs_super_csum_size(sb);
365  
366  	/* Output minus objectid, which is more meaningful */
367  	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
368  		btrfs_warn_rl(root->fs_info,
369  "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
370  			root->root_key.objectid, btrfs_ino(inode),
371  			logical_start,
372  			CSUM_FMT_VALUE(csum_size, csum),
373  			CSUM_FMT_VALUE(csum_size, csum_expected),
374  			mirror_num);
375  	else
376  		btrfs_warn_rl(root->fs_info,
377  "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
378  			root->root_key.objectid, btrfs_ino(inode),
379  			logical_start,
380  			CSUM_FMT_VALUE(csum_size, csum),
381  			CSUM_FMT_VALUE(csum_size, csum_expected),
382  			mirror_num);
383  }
384  
385  #endif
386