• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3 
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18 #include <linux/cpu.h>
19 
20 #include <trace/events/cgroup.h>
21 #include <trace/hooks/cgroup.h>
22 
23 #define cg_invalf(fc, fmt, ...) invalf(fc, fmt, ## __VA_ARGS__)
24 
25 /*
26  * pidlists linger the following amount before being destroyed.  The goal
27  * is avoiding frequent destruction in the middle of consecutive read calls
28  * Expiring in the middle is a performance problem not a correctness one.
29  * 1 sec should be enough.
30  */
31 #define CGROUP_PIDLIST_DESTROY_DELAY	HZ
32 
33 /* Controllers blocked by the commandline in v1 */
34 static u16 cgroup_no_v1_mask;
35 
36 /* disable named v1 mounts */
37 static bool cgroup_no_v1_named;
38 
39 /*
40  * pidlist destructions need to be flushed on cgroup destruction.  Use a
41  * separate workqueue as flush domain.
42  */
43 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
44 
45 /*
46  * Protects cgroup_subsys->release_agent_path.  Modifying it also requires
47  * cgroup_mutex.  Reading requires either cgroup_mutex or this spinlock.
48  */
49 static DEFINE_SPINLOCK(release_agent_path_lock);
50 
cgroup1_ssid_disabled(int ssid)51 bool cgroup1_ssid_disabled(int ssid)
52 {
53 	return cgroup_no_v1_mask & (1 << ssid);
54 }
55 
56 /**
57  * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
58  * @from: attach to all cgroups of a given task
59  * @tsk: the task to be attached
60  */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)61 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
62 {
63 	struct cgroup_root *root;
64 	int retval = 0;
65 
66 	mutex_lock(&cgroup_mutex);
67 	cpus_read_lock();
68 	percpu_down_write(&cgroup_threadgroup_rwsem);
69 	for_each_root(root) {
70 		struct cgroup *from_cgrp;
71 
72 		if (root == &cgrp_dfl_root)
73 			continue;
74 
75 		spin_lock_irq(&css_set_lock);
76 		from_cgrp = task_cgroup_from_root(from, root);
77 		spin_unlock_irq(&css_set_lock);
78 
79 		retval = cgroup_attach_task(from_cgrp, tsk, false);
80 		if (retval)
81 			break;
82 	}
83 	percpu_up_write(&cgroup_threadgroup_rwsem);
84 	cpus_read_unlock();
85 	mutex_unlock(&cgroup_mutex);
86 
87 	return retval;
88 }
89 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
90 
91 /**
92  * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
93  * @to: cgroup to which the tasks will be moved
94  * @from: cgroup in which the tasks currently reside
95  *
96  * Locking rules between cgroup_post_fork() and the migration path
97  * guarantee that, if a task is forking while being migrated, the new child
98  * is guaranteed to be either visible in the source cgroup after the
99  * parent's migration is complete or put into the target cgroup.  No task
100  * can slip out of migration through forking.
101  */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)102 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
103 {
104 	DEFINE_CGROUP_MGCTX(mgctx);
105 	struct cgrp_cset_link *link;
106 	struct css_task_iter it;
107 	struct task_struct *task;
108 	int ret;
109 
110 	if (cgroup_on_dfl(to))
111 		return -EINVAL;
112 
113 	ret = cgroup_migrate_vet_dst(to);
114 	if (ret)
115 		return ret;
116 
117 	mutex_lock(&cgroup_mutex);
118 
119 	percpu_down_write(&cgroup_threadgroup_rwsem);
120 
121 	/* all tasks in @from are being moved, all csets are source */
122 	spin_lock_irq(&css_set_lock);
123 	list_for_each_entry(link, &from->cset_links, cset_link)
124 		cgroup_migrate_add_src(link->cset, to, &mgctx);
125 	spin_unlock_irq(&css_set_lock);
126 
127 	ret = cgroup_migrate_prepare_dst(&mgctx);
128 	if (ret)
129 		goto out_err;
130 
131 	/*
132 	 * Migrate tasks one-by-one until @from is empty.  This fails iff
133 	 * ->can_attach() fails.
134 	 */
135 	do {
136 		css_task_iter_start(&from->self, 0, &it);
137 
138 		do {
139 			task = css_task_iter_next(&it);
140 		} while (task && (task->flags & PF_EXITING));
141 
142 		if (task)
143 			get_task_struct(task);
144 		css_task_iter_end(&it);
145 
146 		if (task) {
147 			ret = cgroup_migrate(task, false, &mgctx);
148 			if (!ret)
149 				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
150 			put_task_struct(task);
151 		}
152 	} while (task && !ret);
153 out_err:
154 	cgroup_migrate_finish(&mgctx);
155 	percpu_up_write(&cgroup_threadgroup_rwsem);
156 	mutex_unlock(&cgroup_mutex);
157 	return ret;
158 }
159 
160 /*
161  * Stuff for reading the 'tasks'/'procs' files.
162  *
163  * Reading this file can return large amounts of data if a cgroup has
164  * *lots* of attached tasks. So it may need several calls to read(),
165  * but we cannot guarantee that the information we produce is correct
166  * unless we produce it entirely atomically.
167  *
168  */
169 
170 /* which pidlist file are we talking about? */
171 enum cgroup_filetype {
172 	CGROUP_FILE_PROCS,
173 	CGROUP_FILE_TASKS,
174 };
175 
176 /*
177  * A pidlist is a list of pids that virtually represents the contents of one
178  * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
179  * a pair (one each for procs, tasks) for each pid namespace that's relevant
180  * to the cgroup.
181  */
182 struct cgroup_pidlist {
183 	/*
184 	 * used to find which pidlist is wanted. doesn't change as long as
185 	 * this particular list stays in the list.
186 	*/
187 	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
188 	/* array of xids */
189 	pid_t *list;
190 	/* how many elements the above list has */
191 	int length;
192 	/* each of these stored in a list by its cgroup */
193 	struct list_head links;
194 	/* pointer to the cgroup we belong to, for list removal purposes */
195 	struct cgroup *owner;
196 	/* for delayed destruction */
197 	struct delayed_work destroy_dwork;
198 };
199 
200 /*
201  * Used to destroy all pidlists lingering waiting for destroy timer.  None
202  * should be left afterwards.
203  */
cgroup1_pidlist_destroy_all(struct cgroup * cgrp)204 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
205 {
206 	struct cgroup_pidlist *l, *tmp_l;
207 
208 	mutex_lock(&cgrp->pidlist_mutex);
209 	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
210 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
211 	mutex_unlock(&cgrp->pidlist_mutex);
212 
213 	flush_workqueue(cgroup_pidlist_destroy_wq);
214 	BUG_ON(!list_empty(&cgrp->pidlists));
215 }
216 
cgroup_pidlist_destroy_work_fn(struct work_struct * work)217 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
218 {
219 	struct delayed_work *dwork = to_delayed_work(work);
220 	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
221 						destroy_dwork);
222 	struct cgroup_pidlist *tofree = NULL;
223 
224 	mutex_lock(&l->owner->pidlist_mutex);
225 
226 	/*
227 	 * Destroy iff we didn't get queued again.  The state won't change
228 	 * as destroy_dwork can only be queued while locked.
229 	 */
230 	if (!delayed_work_pending(dwork)) {
231 		list_del(&l->links);
232 		kvfree(l->list);
233 		put_pid_ns(l->key.ns);
234 		tofree = l;
235 	}
236 
237 	mutex_unlock(&l->owner->pidlist_mutex);
238 	kfree(tofree);
239 }
240 
241 /*
242  * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
243  * Returns the number of unique elements.
244  */
pidlist_uniq(pid_t * list,int length)245 static int pidlist_uniq(pid_t *list, int length)
246 {
247 	int src, dest = 1;
248 
249 	/*
250 	 * we presume the 0th element is unique, so i starts at 1. trivial
251 	 * edge cases first; no work needs to be done for either
252 	 */
253 	if (length == 0 || length == 1)
254 		return length;
255 	/* src and dest walk down the list; dest counts unique elements */
256 	for (src = 1; src < length; src++) {
257 		/* find next unique element */
258 		while (list[src] == list[src-1]) {
259 			src++;
260 			if (src == length)
261 				goto after;
262 		}
263 		/* dest always points to where the next unique element goes */
264 		list[dest] = list[src];
265 		dest++;
266 	}
267 after:
268 	return dest;
269 }
270 
271 /*
272  * The two pid files - task and cgroup.procs - guaranteed that the result
273  * is sorted, which forced this whole pidlist fiasco.  As pid order is
274  * different per namespace, each namespace needs differently sorted list,
275  * making it impossible to use, for example, single rbtree of member tasks
276  * sorted by task pointer.  As pidlists can be fairly large, allocating one
277  * per open file is dangerous, so cgroup had to implement shared pool of
278  * pidlists keyed by cgroup and namespace.
279  */
cmppid(const void * a,const void * b)280 static int cmppid(const void *a, const void *b)
281 {
282 	return *(pid_t *)a - *(pid_t *)b;
283 }
284 
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)285 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
286 						  enum cgroup_filetype type)
287 {
288 	struct cgroup_pidlist *l;
289 	/* don't need task_nsproxy() if we're looking at ourself */
290 	struct pid_namespace *ns = task_active_pid_ns(current);
291 
292 	lockdep_assert_held(&cgrp->pidlist_mutex);
293 
294 	list_for_each_entry(l, &cgrp->pidlists, links)
295 		if (l->key.type == type && l->key.ns == ns)
296 			return l;
297 	return NULL;
298 }
299 
300 /*
301  * find the appropriate pidlist for our purpose (given procs vs tasks)
302  * returns with the lock on that pidlist already held, and takes care
303  * of the use count, or returns NULL with no locks held if we're out of
304  * memory.
305  */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)306 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
307 						enum cgroup_filetype type)
308 {
309 	struct cgroup_pidlist *l;
310 
311 	lockdep_assert_held(&cgrp->pidlist_mutex);
312 
313 	l = cgroup_pidlist_find(cgrp, type);
314 	if (l)
315 		return l;
316 
317 	/* entry not found; create a new one */
318 	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
319 	if (!l)
320 		return l;
321 
322 	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
323 	l->key.type = type;
324 	/* don't need task_nsproxy() if we're looking at ourself */
325 	l->key.ns = get_pid_ns(task_active_pid_ns(current));
326 	l->owner = cgrp;
327 	list_add(&l->links, &cgrp->pidlists);
328 	return l;
329 }
330 
331 /*
332  * Load a cgroup's pidarray with either procs' tgids or tasks' pids
333  */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)334 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
335 			      struct cgroup_pidlist **lp)
336 {
337 	pid_t *array;
338 	int length;
339 	int pid, n = 0; /* used for populating the array */
340 	struct css_task_iter it;
341 	struct task_struct *tsk;
342 	struct cgroup_pidlist *l;
343 
344 	lockdep_assert_held(&cgrp->pidlist_mutex);
345 
346 	/*
347 	 * If cgroup gets more users after we read count, we won't have
348 	 * enough space - tough.  This race is indistinguishable to the
349 	 * caller from the case that the additional cgroup users didn't
350 	 * show up until sometime later on.
351 	 */
352 	length = cgroup_task_count(cgrp);
353 	array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
354 	if (!array)
355 		return -ENOMEM;
356 	/* now, populate the array */
357 	css_task_iter_start(&cgrp->self, 0, &it);
358 	while ((tsk = css_task_iter_next(&it))) {
359 		if (unlikely(n == length))
360 			break;
361 		/* get tgid or pid for procs or tasks file respectively */
362 		if (type == CGROUP_FILE_PROCS)
363 			pid = task_tgid_vnr(tsk);
364 		else
365 			pid = task_pid_vnr(tsk);
366 		if (pid > 0) /* make sure to only use valid results */
367 			array[n++] = pid;
368 	}
369 	css_task_iter_end(&it);
370 	length = n;
371 	/* now sort & strip out duplicates (tgids or recycled thread PIDs) */
372 	sort(array, length, sizeof(pid_t), cmppid, NULL);
373 	length = pidlist_uniq(array, length);
374 
375 	l = cgroup_pidlist_find_create(cgrp, type);
376 	if (!l) {
377 		kvfree(array);
378 		return -ENOMEM;
379 	}
380 
381 	/* store array, freeing old if necessary */
382 	kvfree(l->list);
383 	l->list = array;
384 	l->length = length;
385 	*lp = l;
386 	return 0;
387 }
388 
389 /*
390  * seq_file methods for the tasks/procs files. The seq_file position is the
391  * next pid to display; the seq_file iterator is a pointer to the pid
392  * in the cgroup->l->list array.
393  */
394 
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)395 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
396 {
397 	/*
398 	 * Initially we receive a position value that corresponds to
399 	 * one more than the last pid shown (or 0 on the first call or
400 	 * after a seek to the start). Use a binary-search to find the
401 	 * next pid to display, if any
402 	 */
403 	struct kernfs_open_file *of = s->private;
404 	struct cgroup_file_ctx *ctx = of->priv;
405 	struct cgroup *cgrp = seq_css(s)->cgroup;
406 	struct cgroup_pidlist *l;
407 	enum cgroup_filetype type = seq_cft(s)->private;
408 	int index = 0, pid = *pos;
409 	int *iter, ret;
410 
411 	mutex_lock(&cgrp->pidlist_mutex);
412 
413 	/*
414 	 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
415 	 * start() after open. If the matching pidlist is around, we can use
416 	 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
417 	 * directly. It could already have been destroyed.
418 	 */
419 	if (ctx->procs1.pidlist)
420 		ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
421 
422 	/*
423 	 * Either this is the first start() after open or the matching
424 	 * pidlist has been destroyed inbetween.  Create a new one.
425 	 */
426 	if (!ctx->procs1.pidlist) {
427 		ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
428 		if (ret)
429 			return ERR_PTR(ret);
430 	}
431 	l = ctx->procs1.pidlist;
432 
433 	if (pid) {
434 		int end = l->length;
435 
436 		while (index < end) {
437 			int mid = (index + end) / 2;
438 			if (l->list[mid] == pid) {
439 				index = mid;
440 				break;
441 			} else if (l->list[mid] <= pid)
442 				index = mid + 1;
443 			else
444 				end = mid;
445 		}
446 	}
447 	/* If we're off the end of the array, we're done */
448 	if (index >= l->length)
449 		return NULL;
450 	/* Update the abstract position to be the actual pid that we found */
451 	iter = l->list + index;
452 	*pos = *iter;
453 	return iter;
454 }
455 
cgroup_pidlist_stop(struct seq_file * s,void * v)456 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
457 {
458 	struct kernfs_open_file *of = s->private;
459 	struct cgroup_file_ctx *ctx = of->priv;
460 	struct cgroup_pidlist *l = ctx->procs1.pidlist;
461 
462 	if (l)
463 		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
464 				 CGROUP_PIDLIST_DESTROY_DELAY);
465 	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
466 }
467 
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)468 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
469 {
470 	struct kernfs_open_file *of = s->private;
471 	struct cgroup_file_ctx *ctx = of->priv;
472 	struct cgroup_pidlist *l = ctx->procs1.pidlist;
473 	pid_t *p = v;
474 	pid_t *end = l->list + l->length;
475 	/*
476 	 * Advance to the next pid in the array. If this goes off the
477 	 * end, we're done
478 	 */
479 	p++;
480 	if (p >= end) {
481 		(*pos)++;
482 		return NULL;
483 	} else {
484 		*pos = *p;
485 		return p;
486 	}
487 }
488 
cgroup_pidlist_show(struct seq_file * s,void * v)489 static int cgroup_pidlist_show(struct seq_file *s, void *v)
490 {
491 	seq_printf(s, "%d\n", *(int *)v);
492 
493 	return 0;
494 }
495 
__cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)496 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
497 				     char *buf, size_t nbytes, loff_t off,
498 				     bool threadgroup)
499 {
500 	struct cgroup *cgrp;
501 	struct task_struct *task;
502 	const struct cred *cred, *tcred;
503 	ssize_t ret;
504 	bool locked;
505 
506 	cgrp = cgroup_kn_lock_live(of->kn, false);
507 	if (!cgrp)
508 		return -ENODEV;
509 
510 	task = cgroup_procs_write_start(buf, threadgroup, &locked);
511 	ret = PTR_ERR_OR_ZERO(task);
512 	if (ret)
513 		goto out_unlock;
514 
515 	/*
516 	 * Even if we're attaching all tasks in the thread group, we only need
517 	 * to check permissions on one of them. Check permissions using the
518 	 * credentials from file open to protect against inherited fd attacks.
519 	 */
520 	cred = of->file->f_cred;
521 	tcred = get_task_cred(task);
522 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
523 	    !uid_eq(cred->euid, tcred->uid) &&
524 	    !uid_eq(cred->euid, tcred->suid) &&
525 	    !ns_capable(tcred->user_ns, CAP_SYS_NICE))
526 		ret = -EACCES;
527 	put_cred(tcred);
528 	if (ret)
529 		goto out_finish;
530 
531 	ret = cgroup_attach_task(cgrp, task, threadgroup);
532 	trace_android_vh_cgroup_set_task(ret, task);
533 
534 out_finish:
535 	cgroup_procs_write_finish(task, locked);
536 out_unlock:
537 	cgroup_kn_unlock(of->kn);
538 
539 	return ret ?: nbytes;
540 }
541 
cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)542 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
543 				   char *buf, size_t nbytes, loff_t off)
544 {
545 	return __cgroup1_procs_write(of, buf, nbytes, off, true);
546 }
547 
cgroup1_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)548 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
549 				   char *buf, size_t nbytes, loff_t off)
550 {
551 	return __cgroup1_procs_write(of, buf, nbytes, off, false);
552 }
553 
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)554 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
555 					  char *buf, size_t nbytes, loff_t off)
556 {
557 	struct cgroup *cgrp;
558 	struct cgroup_file_ctx *ctx;
559 
560 	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
561 
562 	/*
563 	 * Release agent gets called with all capabilities,
564 	 * require capabilities to set release agent.
565 	 */
566 	ctx = of->priv;
567 	if ((ctx->ns->user_ns != &init_user_ns) ||
568 	    !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
569 		return -EPERM;
570 
571 	cgrp = cgroup_kn_lock_live(of->kn, false);
572 	if (!cgrp)
573 		return -ENODEV;
574 	spin_lock(&release_agent_path_lock);
575 	strlcpy(cgrp->root->release_agent_path, strstrip(buf),
576 		sizeof(cgrp->root->release_agent_path));
577 	spin_unlock(&release_agent_path_lock);
578 	cgroup_kn_unlock(of->kn);
579 	return nbytes;
580 }
581 
cgroup_release_agent_show(struct seq_file * seq,void * v)582 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
583 {
584 	struct cgroup *cgrp = seq_css(seq)->cgroup;
585 
586 	spin_lock(&release_agent_path_lock);
587 	seq_puts(seq, cgrp->root->release_agent_path);
588 	spin_unlock(&release_agent_path_lock);
589 	seq_putc(seq, '\n');
590 	return 0;
591 }
592 
cgroup_sane_behavior_show(struct seq_file * seq,void * v)593 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
594 {
595 	seq_puts(seq, "0\n");
596 	return 0;
597 }
598 
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)599 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
600 					 struct cftype *cft)
601 {
602 	return notify_on_release(css->cgroup);
603 }
604 
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)605 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
606 					  struct cftype *cft, u64 val)
607 {
608 	if (val)
609 		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
610 	else
611 		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
612 	return 0;
613 }
614 
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)615 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
616 				      struct cftype *cft)
617 {
618 	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
619 }
620 
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)621 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
622 				       struct cftype *cft, u64 val)
623 {
624 	if (val)
625 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
626 	else
627 		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
628 	return 0;
629 }
630 
631 /* cgroup core interface files for the legacy hierarchies */
632 struct cftype cgroup1_base_files[] = {
633 	{
634 		.name = "cgroup.procs",
635 		.seq_start = cgroup_pidlist_start,
636 		.seq_next = cgroup_pidlist_next,
637 		.seq_stop = cgroup_pidlist_stop,
638 		.seq_show = cgroup_pidlist_show,
639 		.private = CGROUP_FILE_PROCS,
640 		.write = cgroup1_procs_write,
641 	},
642 	{
643 		.name = "cgroup.clone_children",
644 		.read_u64 = cgroup_clone_children_read,
645 		.write_u64 = cgroup_clone_children_write,
646 	},
647 	{
648 		.name = "cgroup.sane_behavior",
649 		.flags = CFTYPE_ONLY_ON_ROOT,
650 		.seq_show = cgroup_sane_behavior_show,
651 	},
652 	{
653 		.name = "tasks",
654 		.seq_start = cgroup_pidlist_start,
655 		.seq_next = cgroup_pidlist_next,
656 		.seq_stop = cgroup_pidlist_stop,
657 		.seq_show = cgroup_pidlist_show,
658 		.private = CGROUP_FILE_TASKS,
659 		.write = cgroup1_tasks_write,
660 	},
661 	{
662 		.name = "notify_on_release",
663 		.read_u64 = cgroup_read_notify_on_release,
664 		.write_u64 = cgroup_write_notify_on_release,
665 	},
666 	{
667 		.name = "release_agent",
668 		.flags = CFTYPE_ONLY_ON_ROOT,
669 		.seq_show = cgroup_release_agent_show,
670 		.write = cgroup_release_agent_write,
671 		.max_write_len = PATH_MAX - 1,
672 	},
673 	{ }	/* terminate */
674 };
675 
676 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)677 int proc_cgroupstats_show(struct seq_file *m, void *v)
678 {
679 	struct cgroup_subsys *ss;
680 	int i;
681 
682 	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
683 	/*
684 	 * ideally we don't want subsystems moving around while we do this.
685 	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
686 	 * subsys/hierarchy state.
687 	 */
688 	mutex_lock(&cgroup_mutex);
689 
690 	for_each_subsys(ss, i)
691 		seq_printf(m, "%s\t%d\t%d\t%d\n",
692 			   ss->legacy_name, ss->root->hierarchy_id,
693 			   atomic_read(&ss->root->nr_cgrps),
694 			   cgroup_ssid_enabled(i));
695 
696 	mutex_unlock(&cgroup_mutex);
697 	return 0;
698 }
699 
700 /**
701  * cgroupstats_build - build and fill cgroupstats
702  * @stats: cgroupstats to fill information into
703  * @dentry: A dentry entry belonging to the cgroup for which stats have
704  * been requested.
705  *
706  * Build and fill cgroupstats so that taskstats can export it to user
707  * space.
708  */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)709 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
710 {
711 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
712 	struct cgroup *cgrp;
713 	struct css_task_iter it;
714 	struct task_struct *tsk;
715 
716 	/* it should be kernfs_node belonging to cgroupfs and is a directory */
717 	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
718 	    kernfs_type(kn) != KERNFS_DIR)
719 		return -EINVAL;
720 
721 	mutex_lock(&cgroup_mutex);
722 
723 	/*
724 	 * We aren't being called from kernfs and there's no guarantee on
725 	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
726 	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
727 	 */
728 	rcu_read_lock();
729 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
730 	if (!cgrp || cgroup_is_dead(cgrp)) {
731 		rcu_read_unlock();
732 		mutex_unlock(&cgroup_mutex);
733 		return -ENOENT;
734 	}
735 	rcu_read_unlock();
736 
737 	css_task_iter_start(&cgrp->self, 0, &it);
738 	while ((tsk = css_task_iter_next(&it))) {
739 		switch (tsk->state) {
740 		case TASK_RUNNING:
741 			stats->nr_running++;
742 			break;
743 		case TASK_INTERRUPTIBLE:
744 			stats->nr_sleeping++;
745 			break;
746 		case TASK_UNINTERRUPTIBLE:
747 			stats->nr_uninterruptible++;
748 			break;
749 		case TASK_STOPPED:
750 			stats->nr_stopped++;
751 			break;
752 		default:
753 			if (delayacct_is_task_waiting_on_io(tsk))
754 				stats->nr_io_wait++;
755 			break;
756 		}
757 	}
758 	css_task_iter_end(&it);
759 
760 	mutex_unlock(&cgroup_mutex);
761 	return 0;
762 }
763 
cgroup1_check_for_release(struct cgroup * cgrp)764 void cgroup1_check_for_release(struct cgroup *cgrp)
765 {
766 	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
767 	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
768 		schedule_work(&cgrp->release_agent_work);
769 }
770 
771 /*
772  * Notify userspace when a cgroup is released, by running the
773  * configured release agent with the name of the cgroup (path
774  * relative to the root of cgroup file system) as the argument.
775  *
776  * Most likely, this user command will try to rmdir this cgroup.
777  *
778  * This races with the possibility that some other task will be
779  * attached to this cgroup before it is removed, or that some other
780  * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
781  * The presumed 'rmdir' will fail quietly if this cgroup is no longer
782  * unused, and this cgroup will be reprieved from its death sentence,
783  * to continue to serve a useful existence.  Next time it's released,
784  * we will get notified again, if it still has 'notify_on_release' set.
785  *
786  * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
787  * means only wait until the task is successfully execve()'d.  The
788  * separate release agent task is forked by call_usermodehelper(),
789  * then control in this thread returns here, without waiting for the
790  * release agent task.  We don't bother to wait because the caller of
791  * this routine has no use for the exit status of the release agent
792  * task, so no sense holding our caller up for that.
793  */
cgroup1_release_agent(struct work_struct * work)794 void cgroup1_release_agent(struct work_struct *work)
795 {
796 	struct cgroup *cgrp =
797 		container_of(work, struct cgroup, release_agent_work);
798 	char *pathbuf = NULL, *agentbuf = NULL;
799 	char *argv[3], *envp[3];
800 	int ret;
801 
802 	mutex_lock(&cgroup_mutex);
803 
804 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
805 	agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
806 	if (!pathbuf || !agentbuf || !strlen(agentbuf))
807 		goto out;
808 
809 	spin_lock_irq(&css_set_lock);
810 	ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
811 	spin_unlock_irq(&css_set_lock);
812 	if (ret < 0 || ret >= PATH_MAX)
813 		goto out;
814 
815 	argv[0] = agentbuf;
816 	argv[1] = pathbuf;
817 	argv[2] = NULL;
818 
819 	/* minimal command environment */
820 	envp[0] = "HOME=/";
821 	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
822 	envp[2] = NULL;
823 
824 	mutex_unlock(&cgroup_mutex);
825 	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
826 	goto out_free;
827 out:
828 	mutex_unlock(&cgroup_mutex);
829 out_free:
830 	kfree(agentbuf);
831 	kfree(pathbuf);
832 }
833 
834 /*
835  * cgroup_rename - Only allow simple rename of directories in place.
836  */
cgroup1_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)837 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
838 			  const char *new_name_str)
839 {
840 	struct cgroup *cgrp = kn->priv;
841 	int ret;
842 
843 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
844 	if (strchr(new_name_str, '\n'))
845 		return -EINVAL;
846 
847 	if (kernfs_type(kn) != KERNFS_DIR)
848 		return -ENOTDIR;
849 	if (kn->parent != new_parent)
850 		return -EIO;
851 
852 	/*
853 	 * We're gonna grab cgroup_mutex which nests outside kernfs
854 	 * active_ref.  kernfs_rename() doesn't require active_ref
855 	 * protection.  Break them before grabbing cgroup_mutex.
856 	 */
857 	kernfs_break_active_protection(new_parent);
858 	kernfs_break_active_protection(kn);
859 
860 	mutex_lock(&cgroup_mutex);
861 
862 	ret = kernfs_rename(kn, new_parent, new_name_str);
863 	if (!ret)
864 		TRACE_CGROUP_PATH(rename, cgrp);
865 
866 	mutex_unlock(&cgroup_mutex);
867 
868 	kernfs_unbreak_active_protection(kn);
869 	kernfs_unbreak_active_protection(new_parent);
870 	return ret;
871 }
872 
cgroup1_show_options(struct seq_file * seq,struct kernfs_root * kf_root)873 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
874 {
875 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
876 	struct cgroup_subsys *ss;
877 	int ssid;
878 
879 	for_each_subsys(ss, ssid)
880 		if (root->subsys_mask & (1 << ssid))
881 			seq_show_option(seq, ss->legacy_name, NULL);
882 	if (root->flags & CGRP_ROOT_NOPREFIX)
883 		seq_puts(seq, ",noprefix");
884 	if (root->flags & CGRP_ROOT_XATTR)
885 		seq_puts(seq, ",xattr");
886 	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
887 		seq_puts(seq, ",cpuset_v2_mode");
888 
889 	spin_lock(&release_agent_path_lock);
890 	if (strlen(root->release_agent_path))
891 		seq_show_option(seq, "release_agent",
892 				root->release_agent_path);
893 	spin_unlock(&release_agent_path_lock);
894 
895 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
896 		seq_puts(seq, ",clone_children");
897 	if (strlen(root->name))
898 		seq_show_option(seq, "name", root->name);
899 	return 0;
900 }
901 
902 enum cgroup1_param {
903 	Opt_all,
904 	Opt_clone_children,
905 	Opt_cpuset_v2_mode,
906 	Opt_name,
907 	Opt_none,
908 	Opt_noprefix,
909 	Opt_release_agent,
910 	Opt_xattr,
911 };
912 
913 static const struct fs_parameter_spec cgroup1_param_specs[] = {
914 	fsparam_flag  ("all",		Opt_all),
915 	fsparam_flag  ("clone_children", Opt_clone_children),
916 	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
917 	fsparam_string("name",		Opt_name),
918 	fsparam_flag  ("none",		Opt_none),
919 	fsparam_flag  ("noprefix",	Opt_noprefix),
920 	fsparam_string("release_agent",	Opt_release_agent),
921 	fsparam_flag  ("xattr",		Opt_xattr),
922 	{}
923 };
924 
925 const struct fs_parameter_description cgroup1_fs_parameters = {
926 	.name		= "cgroup1",
927 	.specs		= cgroup1_param_specs,
928 };
929 
cgroup1_parse_param(struct fs_context * fc,struct fs_parameter * param)930 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
931 {
932 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
933 	struct cgroup_subsys *ss;
934 	struct fs_parse_result result;
935 	int opt, i;
936 
937 	opt = fs_parse(fc, &cgroup1_fs_parameters, param, &result);
938 	if (opt == -ENOPARAM) {
939 		if (strcmp(param->key, "source") == 0) {
940 			if (param->type != fs_value_is_string)
941 				return invalf(fc, "Non-string source");
942 			if (fc->source)
943 				return invalf(fc, "Multiple sources not supported");
944 			fc->source = param->string;
945 			param->string = NULL;
946 			return 0;
947 		}
948 		for_each_subsys(ss, i) {
949 			if (strcmp(param->key, ss->legacy_name))
950 				continue;
951 			if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
952 				return invalf(fc, "Disabled controller '%s'",
953 					       param->key);
954 			ctx->subsys_mask |= (1 << i);
955 			return 0;
956 		}
957 		return cg_invalf(fc, "cgroup1: Unknown subsys name '%s'", param->key);
958 	}
959 	if (opt < 0)
960 		return opt;
961 
962 	switch (opt) {
963 	case Opt_none:
964 		/* Explicitly have no subsystems */
965 		ctx->none = true;
966 		break;
967 	case Opt_all:
968 		ctx->all_ss = true;
969 		break;
970 	case Opt_noprefix:
971 		ctx->flags |= CGRP_ROOT_NOPREFIX;
972 		break;
973 	case Opt_clone_children:
974 		ctx->cpuset_clone_children = true;
975 		break;
976 	case Opt_cpuset_v2_mode:
977 		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
978 		break;
979 	case Opt_xattr:
980 		ctx->flags |= CGRP_ROOT_XATTR;
981 		break;
982 	case Opt_release_agent:
983 		/* Specifying two release agents is forbidden */
984 		if (ctx->release_agent)
985 			return cg_invalf(fc, "cgroup1: release_agent respecified");
986 		/*
987 		 * Release agent gets called with all capabilities,
988 		 * require capabilities to set release agent.
989 		 */
990 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
991 			return cg_invalf(fc, "cgroup1: Setting release_agent not allowed");
992 		ctx->release_agent = param->string;
993 		param->string = NULL;
994 		break;
995 	case Opt_name:
996 		/* blocked by boot param? */
997 		if (cgroup_no_v1_named)
998 			return -ENOENT;
999 		/* Can't specify an empty name */
1000 		if (!param->size)
1001 			return cg_invalf(fc, "cgroup1: Empty name");
1002 		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
1003 			return cg_invalf(fc, "cgroup1: Name too long");
1004 		/* Must match [\w.-]+ */
1005 		for (i = 0; i < param->size; i++) {
1006 			char c = param->string[i];
1007 			if (isalnum(c))
1008 				continue;
1009 			if ((c == '.') || (c == '-') || (c == '_'))
1010 				continue;
1011 			return cg_invalf(fc, "cgroup1: Invalid name");
1012 		}
1013 		/* Specifying two names is forbidden */
1014 		if (ctx->name)
1015 			return cg_invalf(fc, "cgroup1: name respecified");
1016 		ctx->name = param->string;
1017 		param->string = NULL;
1018 		break;
1019 	}
1020 	return 0;
1021 }
1022 
check_cgroupfs_options(struct fs_context * fc)1023 static int check_cgroupfs_options(struct fs_context *fc)
1024 {
1025 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1026 	u16 mask = U16_MAX;
1027 	u16 enabled = 0;
1028 	struct cgroup_subsys *ss;
1029 	int i;
1030 
1031 #ifdef CONFIG_CPUSETS
1032 	mask = ~((u16)1 << cpuset_cgrp_id);
1033 #endif
1034 	for_each_subsys(ss, i)
1035 		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1036 			enabled |= 1 << i;
1037 
1038 	ctx->subsys_mask &= enabled;
1039 
1040 	/*
1041 	 * In absense of 'none', 'name=' or subsystem name options,
1042 	 * let's default to 'all'.
1043 	 */
1044 	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1045 		ctx->all_ss = true;
1046 
1047 	if (ctx->all_ss) {
1048 		/* Mutually exclusive option 'all' + subsystem name */
1049 		if (ctx->subsys_mask)
1050 			return cg_invalf(fc, "cgroup1: subsys name conflicts with all");
1051 		/* 'all' => select all the subsystems */
1052 		ctx->subsys_mask = enabled;
1053 	}
1054 
1055 	/*
1056 	 * We either have to specify by name or by subsystems. (So all
1057 	 * empty hierarchies must have a name).
1058 	 */
1059 	if (!ctx->subsys_mask && !ctx->name)
1060 		return cg_invalf(fc, "cgroup1: Need name or subsystem set");
1061 
1062 	/*
1063 	 * Option noprefix was introduced just for backward compatibility
1064 	 * with the old cpuset, so we allow noprefix only if mounting just
1065 	 * the cpuset subsystem.
1066 	 */
1067 	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1068 		return cg_invalf(fc, "cgroup1: noprefix used incorrectly");
1069 
1070 	/* Can't specify "none" and some subsystems */
1071 	if (ctx->subsys_mask && ctx->none)
1072 		return cg_invalf(fc, "cgroup1: none used incorrectly");
1073 
1074 	return 0;
1075 }
1076 
cgroup1_reconfigure(struct fs_context * fc)1077 int cgroup1_reconfigure(struct fs_context *fc)
1078 {
1079 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1080 	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1081 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1082 	int ret = 0;
1083 	u16 added_mask, removed_mask;
1084 
1085 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1086 
1087 	/* See what subsystems are wanted */
1088 	ret = check_cgroupfs_options(fc);
1089 	if (ret)
1090 		goto out_unlock;
1091 
1092 	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1093 		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1094 			task_tgid_nr(current), current->comm);
1095 
1096 	added_mask = ctx->subsys_mask & ~root->subsys_mask;
1097 	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1098 
1099 	/* Don't allow flags or name to change at remount */
1100 	if ((ctx->flags ^ root->flags) ||
1101 	    (ctx->name && strcmp(ctx->name, root->name))) {
1102 		cg_invalf(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1103 		       ctx->flags, ctx->name ?: "", root->flags, root->name);
1104 		ret = -EINVAL;
1105 		goto out_unlock;
1106 	}
1107 
1108 	/* remounting is not allowed for populated hierarchies */
1109 	if (!list_empty(&root->cgrp.self.children)) {
1110 		ret = -EBUSY;
1111 		goto out_unlock;
1112 	}
1113 
1114 	ret = rebind_subsystems(root, added_mask);
1115 	if (ret)
1116 		goto out_unlock;
1117 
1118 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1119 
1120 	if (ctx->release_agent) {
1121 		spin_lock(&release_agent_path_lock);
1122 		strcpy(root->release_agent_path, ctx->release_agent);
1123 		spin_unlock(&release_agent_path_lock);
1124 	}
1125 
1126 	trace_cgroup_remount(root);
1127 
1128  out_unlock:
1129 	mutex_unlock(&cgroup_mutex);
1130 	return ret;
1131 }
1132 
1133 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1134 	.rename			= cgroup1_rename,
1135 	.show_options		= cgroup1_show_options,
1136 	.mkdir			= cgroup_mkdir,
1137 	.rmdir			= cgroup_rmdir,
1138 	.show_path		= cgroup_show_path,
1139 };
1140 
1141 /*
1142  * The guts of cgroup1 mount - find or create cgroup_root to use.
1143  * Called with cgroup_mutex held; returns 0 on success, -E... on
1144  * error and positive - in case when the candidate is busy dying.
1145  * On success it stashes a reference to cgroup_root into given
1146  * cgroup_fs_context; that reference is *NOT* counting towards the
1147  * cgroup_root refcount.
1148  */
cgroup1_root_to_use(struct fs_context * fc)1149 static int cgroup1_root_to_use(struct fs_context *fc)
1150 {
1151 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1152 	struct cgroup_root *root;
1153 	struct cgroup_subsys *ss;
1154 	int i, ret;
1155 
1156 	/* First find the desired set of subsystems */
1157 	ret = check_cgroupfs_options(fc);
1158 	if (ret)
1159 		return ret;
1160 
1161 	/*
1162 	 * Destruction of cgroup root is asynchronous, so subsystems may
1163 	 * still be dying after the previous unmount.  Let's drain the
1164 	 * dying subsystems.  We just need to ensure that the ones
1165 	 * unmounted previously finish dying and don't care about new ones
1166 	 * starting.  Testing ref liveliness is good enough.
1167 	 */
1168 	for_each_subsys(ss, i) {
1169 		if (!(ctx->subsys_mask & (1 << i)) ||
1170 		    ss->root == &cgrp_dfl_root)
1171 			continue;
1172 
1173 		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1174 			return 1;	/* restart */
1175 		cgroup_put(&ss->root->cgrp);
1176 	}
1177 
1178 	for_each_root(root) {
1179 		bool name_match = false;
1180 
1181 		if (root == &cgrp_dfl_root)
1182 			continue;
1183 
1184 		/*
1185 		 * If we asked for a name then it must match.  Also, if
1186 		 * name matches but sybsys_mask doesn't, we should fail.
1187 		 * Remember whether name matched.
1188 		 */
1189 		if (ctx->name) {
1190 			if (strcmp(ctx->name, root->name))
1191 				continue;
1192 			name_match = true;
1193 		}
1194 
1195 		/*
1196 		 * If we asked for subsystems (or explicitly for no
1197 		 * subsystems) then they must match.
1198 		 */
1199 		if ((ctx->subsys_mask || ctx->none) &&
1200 		    (ctx->subsys_mask != root->subsys_mask)) {
1201 			if (!name_match)
1202 				continue;
1203 			return -EBUSY;
1204 		}
1205 
1206 		if (root->flags ^ ctx->flags)
1207 			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1208 
1209 		ctx->root = root;
1210 		return 0;
1211 	}
1212 
1213 	/*
1214 	 * No such thing, create a new one.  name= matching without subsys
1215 	 * specification is allowed for already existing hierarchies but we
1216 	 * can't create new one without subsys specification.
1217 	 */
1218 	if (!ctx->subsys_mask && !ctx->none)
1219 		return cg_invalf(fc, "cgroup1: No subsys list or none specified");
1220 
1221 	/* Hierarchies may only be created in the initial cgroup namespace. */
1222 	if (ctx->ns != &init_cgroup_ns)
1223 		return -EPERM;
1224 
1225 	root = kzalloc(sizeof(*root), GFP_KERNEL);
1226 	if (!root)
1227 		return -ENOMEM;
1228 
1229 	ctx->root = root;
1230 	init_cgroup_root(ctx);
1231 
1232 	ret = cgroup_setup_root(root, ctx->subsys_mask);
1233 	if (ret)
1234 		cgroup_free_root(root);
1235 	return ret;
1236 }
1237 
cgroup1_get_tree(struct fs_context * fc)1238 int cgroup1_get_tree(struct fs_context *fc)
1239 {
1240 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1241 	int ret;
1242 
1243 	/* Check if the caller has permission to mount. */
1244 	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1245 		return -EPERM;
1246 
1247 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1248 
1249 	ret = cgroup1_root_to_use(fc);
1250 	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1251 		ret = 1;	/* restart */
1252 
1253 	mutex_unlock(&cgroup_mutex);
1254 
1255 	if (!ret)
1256 		ret = cgroup_do_get_tree(fc);
1257 
1258 	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1259 		fc_drop_locked(fc);
1260 		ret = 1;
1261 	}
1262 
1263 	if (unlikely(ret > 0)) {
1264 		msleep(10);
1265 		return restart_syscall();
1266 	}
1267 	return ret;
1268 }
1269 
cgroup1_wq_init(void)1270 static int __init cgroup1_wq_init(void)
1271 {
1272 	/*
1273 	 * Used to destroy pidlists and separate to serve as flush domain.
1274 	 * Cap @max_active to 1 too.
1275 	 */
1276 	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1277 						    0, 1);
1278 	BUG_ON(!cgroup_pidlist_destroy_wq);
1279 	return 0;
1280 }
1281 core_initcall(cgroup1_wq_init);
1282 
cgroup_no_v1(char * str)1283 static int __init cgroup_no_v1(char *str)
1284 {
1285 	struct cgroup_subsys *ss;
1286 	char *token;
1287 	int i;
1288 
1289 	while ((token = strsep(&str, ",")) != NULL) {
1290 		if (!*token)
1291 			continue;
1292 
1293 		if (!strcmp(token, "all")) {
1294 			cgroup_no_v1_mask = U16_MAX;
1295 			continue;
1296 		}
1297 
1298 		if (!strcmp(token, "named")) {
1299 			cgroup_no_v1_named = true;
1300 			continue;
1301 		}
1302 
1303 		for_each_subsys(ss, i) {
1304 			if (strcmp(token, ss->name) &&
1305 			    strcmp(token, ss->legacy_name))
1306 				continue;
1307 
1308 			cgroup_no_v1_mask |= 1 << i;
1309 		}
1310 	}
1311 	return 1;
1312 }
1313 __setup("cgroup_no_v1=", cgroup_no_v1);
1314