• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * <linux/usb/gadget.h>
4  *
5  * We call the USB code inside a Linux-based peripheral device a "gadget"
6  * driver, except for the hardware-specific bus glue.  One USB host can
7  * master many USB gadgets, but the gadgets are only slaved to one host.
8  *
9  *
10  * (C) Copyright 2002-2004 by David Brownell
11  * All Rights Reserved.
12  *
13  * This software is licensed under the GNU GPL version 2.
14  */
15 
16 #ifndef __LINUX_USB_GADGET_H
17 #define __LINUX_USB_GADGET_H
18 
19 #include <linux/device.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/slab.h>
24 #include <linux/scatterlist.h>
25 #include <linux/types.h>
26 #include <linux/workqueue.h>
27 #include <linux/usb/ch9.h>
28 #include <linux/android_kabi.h>
29 
30 #define UDC_TRACE_STR_MAX	512
31 
32 struct usb_ep;
33 
34 /**
35  * struct usb_request - describes one i/o request
36  * @buf: Buffer used for data.  Always provide this; some controllers
37  *	only use PIO, or don't use DMA for some endpoints.
38  * @dma: DMA address corresponding to 'buf'.  If you don't set this
39  *	field, and the usb controller needs one, it is responsible
40  *	for mapping and unmapping the buffer.
41  * @sg: a scatterlist for SG-capable controllers.
42  * @num_sgs: number of SG entries
43  * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
44  * @length: Length of that data
45  * @stream_id: The stream id, when USB3.0 bulk streams are being used
46  * @no_interrupt: If true, hints that no completion irq is needed.
47  *	Helpful sometimes with deep request queues that are handled
48  *	directly by DMA controllers.
49  * @zero: If true, when writing data, makes the last packet be "short"
50  *     by adding a zero length packet as needed;
51  * @short_not_ok: When reading data, makes short packets be
52  *     treated as errors (queue stops advancing till cleanup).
53  * @dma_mapped: Indicates if request has been mapped to DMA (internal)
54  * @complete: Function called when request completes, so this request and
55  *	its buffer may be re-used.  The function will always be called with
56  *	interrupts disabled, and it must not sleep.
57  *	Reads terminate with a short packet, or when the buffer fills,
58  *	whichever comes first.  When writes terminate, some data bytes
59  *	will usually still be in flight (often in a hardware fifo).
60  *	Errors (for reads or writes) stop the queue from advancing
61  *	until the completion function returns, so that any transfers
62  *	invalidated by the error may first be dequeued.
63  * @context: For use by the completion callback
64  * @list: For use by the gadget driver.
65  * @frame_number: Reports the interval number in (micro)frame in which the
66  *	isochronous transfer was transmitted or received.
67  * @status: Reports completion code, zero or a negative errno.
68  *	Normally, faults block the transfer queue from advancing until
69  *	the completion callback returns.
70  *	Code "-ESHUTDOWN" indicates completion caused by device disconnect,
71  *	or when the driver disabled the endpoint.
72  * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
73  *	transfers) this may be less than the requested length.  If the
74  *	short_not_ok flag is set, short reads are treated as errors
75  *	even when status otherwise indicates successful completion.
76  *	Note that for writes (IN transfers) some data bytes may still
77  *	reside in a device-side FIFO when the request is reported as
78  *	complete.
79  *
80  * These are allocated/freed through the endpoint they're used with.  The
81  * hardware's driver can add extra per-request data to the memory it returns,
82  * which often avoids separate memory allocations (potential failures),
83  * later when the request is queued.
84  *
85  * Request flags affect request handling, such as whether a zero length
86  * packet is written (the "zero" flag), whether a short read should be
87  * treated as an error (blocking request queue advance, the "short_not_ok"
88  * flag), or hinting that an interrupt is not required (the "no_interrupt"
89  * flag, for use with deep request queues).
90  *
91  * Bulk endpoints can use any size buffers, and can also be used for interrupt
92  * transfers. interrupt-only endpoints can be much less functional.
93  *
94  * NOTE:  this is analogous to 'struct urb' on the host side, except that
95  * it's thinner and promotes more pre-allocation.
96  */
97 
98 struct usb_request {
99 	void			*buf;
100 	unsigned		length;
101 	dma_addr_t		dma;
102 
103 	struct scatterlist	*sg;
104 	unsigned		num_sgs;
105 	unsigned		num_mapped_sgs;
106 
107 	unsigned		stream_id:16;
108 	unsigned		no_interrupt:1;
109 	unsigned		zero:1;
110 	unsigned		short_not_ok:1;
111 	unsigned		dma_mapped:1;
112 
113 	void			(*complete)(struct usb_ep *ep,
114 					struct usb_request *req);
115 	void			*context;
116 	struct list_head	list;
117 
118 	unsigned		frame_number;		/* ISO ONLY */
119 
120 	int			status;
121 	unsigned		actual;
122 };
123 
124 /*-------------------------------------------------------------------------*/
125 
126 /* endpoint-specific parts of the api to the usb controller hardware.
127  * unlike the urb model, (de)multiplexing layers are not required.
128  * (so this api could slash overhead if used on the host side...)
129  *
130  * note that device side usb controllers commonly differ in how many
131  * endpoints they support, as well as their capabilities.
132  */
133 struct usb_ep_ops {
134 	int (*enable) (struct usb_ep *ep,
135 		const struct usb_endpoint_descriptor *desc);
136 	int (*disable) (struct usb_ep *ep);
137 	void (*dispose) (struct usb_ep *ep);
138 
139 	struct usb_request *(*alloc_request) (struct usb_ep *ep,
140 		gfp_t gfp_flags);
141 	void (*free_request) (struct usb_ep *ep, struct usb_request *req);
142 
143 	int (*queue) (struct usb_ep *ep, struct usb_request *req,
144 		gfp_t gfp_flags);
145 	int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
146 
147 	int (*set_halt) (struct usb_ep *ep, int value);
148 	int (*set_wedge) (struct usb_ep *ep);
149 
150 	int (*fifo_status) (struct usb_ep *ep);
151 	void (*fifo_flush) (struct usb_ep *ep);
152 };
153 
154 /**
155  * struct usb_ep_caps - endpoint capabilities description
156  * @type_control:Endpoint supports control type (reserved for ep0).
157  * @type_iso:Endpoint supports isochronous transfers.
158  * @type_bulk:Endpoint supports bulk transfers.
159  * @type_int:Endpoint supports interrupt transfers.
160  * @dir_in:Endpoint supports IN direction.
161  * @dir_out:Endpoint supports OUT direction.
162  */
163 struct usb_ep_caps {
164 	unsigned type_control:1;
165 	unsigned type_iso:1;
166 	unsigned type_bulk:1;
167 	unsigned type_int:1;
168 	unsigned dir_in:1;
169 	unsigned dir_out:1;
170 };
171 
172 #define USB_EP_CAPS_TYPE_CONTROL     0x01
173 #define USB_EP_CAPS_TYPE_ISO         0x02
174 #define USB_EP_CAPS_TYPE_BULK        0x04
175 #define USB_EP_CAPS_TYPE_INT         0x08
176 #define USB_EP_CAPS_TYPE_ALL \
177 	(USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
178 #define USB_EP_CAPS_DIR_IN           0x01
179 #define USB_EP_CAPS_DIR_OUT          0x02
180 #define USB_EP_CAPS_DIR_ALL  (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)
181 
182 #define USB_EP_CAPS(_type, _dir) \
183 	{ \
184 		.type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
185 		.type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
186 		.type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
187 		.type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
188 		.dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
189 		.dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
190 	}
191 
192 /**
193  * struct usb_ep - device side representation of USB endpoint
194  * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
195  * @ops: Function pointers used to access hardware-specific operations.
196  * @ep_list:the gadget's ep_list holds all of its endpoints
197  * @caps:The structure describing types and directions supported by endoint.
198  * @enabled: The current endpoint enabled/disabled state.
199  * @claimed: True if this endpoint is claimed by a function.
200  * @maxpacket:The maximum packet size used on this endpoint.  The initial
201  *	value can sometimes be reduced (hardware allowing), according to
202  *	the endpoint descriptor used to configure the endpoint.
203  * @maxpacket_limit:The maximum packet size value which can be handled by this
204  *	endpoint. It's set once by UDC driver when endpoint is initialized, and
205  *	should not be changed. Should not be confused with maxpacket.
206  * @max_streams: The maximum number of streams supported
207  *	by this EP (0 - 16, actual number is 2^n)
208  * @mult: multiplier, 'mult' value for SS Isoc EPs
209  * @maxburst: the maximum number of bursts supported by this EP (for usb3)
210  * @driver_data:for use by the gadget driver.
211  * @address: used to identify the endpoint when finding descriptor that
212  *	matches connection speed
213  * @desc: endpoint descriptor.  This pointer is set before the endpoint is
214  *	enabled and remains valid until the endpoint is disabled.
215  * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
216  *	descriptor that is used to configure the endpoint
217  *
218  * the bus controller driver lists all the general purpose endpoints in
219  * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
220  * and is accessed only in response to a driver setup() callback.
221  */
222 
223 struct usb_ep {
224 	void			*driver_data;
225 
226 	const char		*name;
227 	const struct usb_ep_ops	*ops;
228 	struct list_head	ep_list;
229 	struct usb_ep_caps	caps;
230 	bool			claimed;
231 	bool			enabled;
232 	unsigned		maxpacket:16;
233 	unsigned		maxpacket_limit:16;
234 	unsigned		max_streams:16;
235 	unsigned		mult:2;
236 	unsigned		maxburst:5;
237 	u8			address;
238 	const struct usb_endpoint_descriptor	*desc;
239 	const struct usb_ss_ep_comp_descriptor	*comp_desc;
240 };
241 
242 /*-------------------------------------------------------------------------*/
243 
244 #if IS_ENABLED(CONFIG_USB_GADGET)
245 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit);
246 int usb_ep_enable(struct usb_ep *ep);
247 int usb_ep_disable(struct usb_ep *ep);
248 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags);
249 void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req);
250 int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags);
251 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
252 int usb_ep_set_halt(struct usb_ep *ep);
253 int usb_ep_clear_halt(struct usb_ep *ep);
254 int usb_ep_set_wedge(struct usb_ep *ep);
255 int usb_ep_fifo_status(struct usb_ep *ep);
256 void usb_ep_fifo_flush(struct usb_ep *ep);
257 #else
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)258 static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
259 		unsigned maxpacket_limit)
260 { }
usb_ep_enable(struct usb_ep * ep)261 static inline int usb_ep_enable(struct usb_ep *ep)
262 { return 0; }
usb_ep_disable(struct usb_ep * ep)263 static inline int usb_ep_disable(struct usb_ep *ep)
264 { return 0; }
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)265 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
266 		gfp_t gfp_flags)
267 { return NULL; }
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)268 static inline void usb_ep_free_request(struct usb_ep *ep,
269 		struct usb_request *req)
270 { }
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)271 static inline int usb_ep_queue(struct usb_ep *ep, struct usb_request *req,
272 		gfp_t gfp_flags)
273 { return 0; }
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)274 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
275 { return 0; }
usb_ep_set_halt(struct usb_ep * ep)276 static inline int usb_ep_set_halt(struct usb_ep *ep)
277 { return 0; }
usb_ep_clear_halt(struct usb_ep * ep)278 static inline int usb_ep_clear_halt(struct usb_ep *ep)
279 { return 0; }
usb_ep_set_wedge(struct usb_ep * ep)280 static inline int usb_ep_set_wedge(struct usb_ep *ep)
281 { return 0; }
usb_ep_fifo_status(struct usb_ep * ep)282 static inline int usb_ep_fifo_status(struct usb_ep *ep)
283 { return 0; }
usb_ep_fifo_flush(struct usb_ep * ep)284 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
285 { }
286 #endif /* USB_GADGET */
287 
288 /*-------------------------------------------------------------------------*/
289 
290 struct usb_dcd_config_params {
291 	__u8  bU1devExitLat;	/* U1 Device exit Latency */
292 #define USB_DEFAULT_U1_DEV_EXIT_LAT	0x01	/* Less then 1 microsec */
293 	__le16 bU2DevExitLat;	/* U2 Device exit Latency */
294 #define USB_DEFAULT_U2_DEV_EXIT_LAT	0x1F4	/* Less then 500 microsec */
295 	__u8 besl_baseline;	/* Recommended baseline BESL (0-15) */
296 	__u8 besl_deep;		/* Recommended deep BESL (0-15) */
297 #define USB_DEFAULT_BESL_UNSPECIFIED	0xFF	/* No recommended value */
298 };
299 
300 
301 struct usb_gadget;
302 struct usb_gadget_driver;
303 struct usb_udc;
304 
305 /* the rest of the api to the controller hardware: device operations,
306  * which don't involve endpoints (or i/o).
307  */
308 struct usb_gadget_ops {
309 	int	(*get_frame)(struct usb_gadget *);
310 	int	(*wakeup)(struct usb_gadget *);
311 	int	(*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
312 	int	(*vbus_session) (struct usb_gadget *, int is_active);
313 	int	(*vbus_draw) (struct usb_gadget *, unsigned mA);
314 	int	(*pullup) (struct usb_gadget *, int is_on);
315 	int	(*ioctl)(struct usb_gadget *,
316 				unsigned code, unsigned long param);
317 	void	(*get_config_params)(struct usb_gadget *,
318 				     struct usb_dcd_config_params *);
319 	int	(*udc_start)(struct usb_gadget *,
320 			struct usb_gadget_driver *);
321 	int	(*udc_stop)(struct usb_gadget *);
322 	void	(*udc_set_speed)(struct usb_gadget *, enum usb_device_speed);
323 	struct usb_ep *(*match_ep)(struct usb_gadget *,
324 			struct usb_endpoint_descriptor *,
325 			struct usb_ss_ep_comp_descriptor *);
326 };
327 
328 /**
329  * struct usb_gadget - represents a usb slave device
330  * @work: (internal use) Workqueue to be used for sysfs_notify()
331  * @udc: struct usb_udc pointer for this gadget
332  * @ops: Function pointers used to access hardware-specific operations.
333  * @ep0: Endpoint zero, used when reading or writing responses to
334  *	driver setup() requests
335  * @ep_list: List of other endpoints supported by the device.
336  * @speed: Speed of current connection to USB host.
337  * @max_speed: Maximal speed the UDC can handle.  UDC must support this
338  *      and all slower speeds.
339  * @state: the state we are now (attached, suspended, configured, etc)
340  * @name: Identifies the controller hardware type.  Used in diagnostics
341  *	and sometimes configuration.
342  * @dev: Driver model state for this abstract device.
343  * @isoch_delay: value from Set Isoch Delay request. Only valid on SS/SSP
344  * @out_epnum: last used out ep number
345  * @in_epnum: last used in ep number
346  * @mA: last set mA value
347  * @otg_caps: OTG capabilities of this gadget.
348  * @sg_supported: true if we can handle scatter-gather
349  * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
350  *	gadget driver must provide a USB OTG descriptor.
351  * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
352  *	is in the Mini-AB jack, and HNP has been used to switch roles
353  *	so that the "A" device currently acts as A-Peripheral, not A-Host.
354  * @a_hnp_support: OTG device feature flag, indicating that the A-Host
355  *	supports HNP at this port.
356  * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
357  *	only supports HNP on a different root port.
358  * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
359  *	enabled HNP support.
360  * @hnp_polling_support: OTG device feature flag, indicating if the OTG device
361  *	in peripheral mode can support HNP polling.
362  * @host_request_flag: OTG device feature flag, indicating if A-Peripheral
363  *	or B-Peripheral wants to take host role.
364  * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
365  *	MaxPacketSize.
366  * @quirk_altset_not_supp: UDC controller doesn't support alt settings.
367  * @quirk_stall_not_supp: UDC controller doesn't support stalling.
368  * @quirk_zlp_not_supp: UDC controller doesn't support ZLP.
369  * @quirk_avoids_skb_reserve: udc/platform wants to avoid skb_reserve() in
370  *	u_ether.c to improve performance.
371  * @is_selfpowered: if the gadget is self-powered.
372  * @deactivated: True if gadget is deactivated - in deactivated state it cannot
373  *	be connected.
374  * @connected: True if gadget is connected.
375  * @lpm_capable: If the gadget max_speed is FULL or HIGH, this flag
376  *	indicates that it supports LPM as per the LPM ECN & errata.
377  * @irq: the interrupt number for device controller.
378  *
379  * Gadgets have a mostly-portable "gadget driver" implementing device
380  * functions, handling all usb configurations and interfaces.  Gadget
381  * drivers talk to hardware-specific code indirectly, through ops vectors.
382  * That insulates the gadget driver from hardware details, and packages
383  * the hardware endpoints through generic i/o queues.  The "usb_gadget"
384  * and "usb_ep" interfaces provide that insulation from the hardware.
385  *
386  * Except for the driver data, all fields in this structure are
387  * read-only to the gadget driver.  That driver data is part of the
388  * "driver model" infrastructure in 2.6 (and later) kernels, and for
389  * earlier systems is grouped in a similar structure that's not known
390  * to the rest of the kernel.
391  *
392  * Values of the three OTG device feature flags are updated before the
393  * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
394  * driver suspend() calls.  They are valid only when is_otg, and when the
395  * device is acting as a B-Peripheral (so is_a_peripheral is false).
396  */
397 struct usb_gadget {
398 	struct work_struct		work;
399 	struct usb_udc			*udc;
400 	/* readonly to gadget driver */
401 	const struct usb_gadget_ops	*ops;
402 	struct usb_ep			*ep0;
403 	struct list_head		ep_list;	/* of usb_ep */
404 	enum usb_device_speed		speed;
405 	enum usb_device_speed		max_speed;
406 	enum usb_device_state		state;
407 	const char			*name;
408 	struct device			dev;
409 	unsigned			isoch_delay;
410 	unsigned			out_epnum;
411 	unsigned			in_epnum;
412 	unsigned			mA;
413 	struct usb_otg_caps		*otg_caps;
414 
415 	unsigned			sg_supported:1;
416 	unsigned			is_otg:1;
417 	unsigned			is_a_peripheral:1;
418 	unsigned			b_hnp_enable:1;
419 	unsigned			a_hnp_support:1;
420 	unsigned			a_alt_hnp_support:1;
421 	unsigned			hnp_polling_support:1;
422 	unsigned			host_request_flag:1;
423 	unsigned			quirk_ep_out_aligned_size:1;
424 	unsigned			quirk_altset_not_supp:1;
425 	unsigned			quirk_stall_not_supp:1;
426 	unsigned			quirk_zlp_not_supp:1;
427 	unsigned			quirk_avoids_skb_reserve:1;
428 	unsigned			is_selfpowered:1;
429 	unsigned			deactivated:1;
430 	unsigned			connected:1;
431 	unsigned			lpm_capable:1;
432 	int				irq;
433 
434 	ANDROID_KABI_RESERVE(1);
435 	ANDROID_KABI_RESERVE(2);
436 	ANDROID_KABI_RESERVE(3);
437 	ANDROID_KABI_RESERVE(4);
438 };
439 #define work_to_gadget(w)	(container_of((w), struct usb_gadget, work))
440 
set_gadget_data(struct usb_gadget * gadget,void * data)441 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
442 	{ dev_set_drvdata(&gadget->dev, data); }
get_gadget_data(struct usb_gadget * gadget)443 static inline void *get_gadget_data(struct usb_gadget *gadget)
444 	{ return dev_get_drvdata(&gadget->dev); }
dev_to_usb_gadget(struct device * dev)445 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
446 {
447 	return container_of(dev, struct usb_gadget, dev);
448 }
449 
450 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
451 #define gadget_for_each_ep(tmp, gadget) \
452 	list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
453 
454 /**
455  * usb_ep_align - returns @len aligned to ep's maxpacketsize.
456  * @ep: the endpoint whose maxpacketsize is used to align @len
457  * @len: buffer size's length to align to @ep's maxpacketsize
458  *
459  * This helper is used to align buffer's size to an ep's maxpacketsize.
460  */
usb_ep_align(struct usb_ep * ep,size_t len)461 static inline size_t usb_ep_align(struct usb_ep *ep, size_t len)
462 {
463 	int max_packet_size = (size_t)usb_endpoint_maxp(ep->desc) & 0x7ff;
464 
465 	return round_up(len, max_packet_size);
466 }
467 
468 /**
469  * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
470  *	requires quirk_ep_out_aligned_size, otherwise returns len.
471  * @g: controller to check for quirk
472  * @ep: the endpoint whose maxpacketsize is used to align @len
473  * @len: buffer size's length to align to @ep's maxpacketsize
474  *
475  * This helper is used in case it's required for any reason to check and maybe
476  * align buffer's size to an ep's maxpacketsize.
477  */
478 static inline size_t
usb_ep_align_maybe(struct usb_gadget * g,struct usb_ep * ep,size_t len)479 usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
480 {
481 	return g->quirk_ep_out_aligned_size ? usb_ep_align(ep, len) : len;
482 }
483 
484 /**
485  * gadget_is_altset_supported - return true iff the hardware supports
486  *	altsettings
487  * @g: controller to check for quirk
488  */
gadget_is_altset_supported(struct usb_gadget * g)489 static inline int gadget_is_altset_supported(struct usb_gadget *g)
490 {
491 	return !g->quirk_altset_not_supp;
492 }
493 
494 /**
495  * gadget_is_stall_supported - return true iff the hardware supports stalling
496  * @g: controller to check for quirk
497  */
gadget_is_stall_supported(struct usb_gadget * g)498 static inline int gadget_is_stall_supported(struct usb_gadget *g)
499 {
500 	return !g->quirk_stall_not_supp;
501 }
502 
503 /**
504  * gadget_is_zlp_supported - return true iff the hardware supports zlp
505  * @g: controller to check for quirk
506  */
gadget_is_zlp_supported(struct usb_gadget * g)507 static inline int gadget_is_zlp_supported(struct usb_gadget *g)
508 {
509 	return !g->quirk_zlp_not_supp;
510 }
511 
512 /**
513  * gadget_avoids_skb_reserve - return true iff the hardware would like to avoid
514  *	skb_reserve to improve performance.
515  * @g: controller to check for quirk
516  */
gadget_avoids_skb_reserve(struct usb_gadget * g)517 static inline int gadget_avoids_skb_reserve(struct usb_gadget *g)
518 {
519 	return g->quirk_avoids_skb_reserve;
520 }
521 
522 /**
523  * gadget_is_dualspeed - return true iff the hardware handles high speed
524  * @g: controller that might support both high and full speeds
525  */
gadget_is_dualspeed(struct usb_gadget * g)526 static inline int gadget_is_dualspeed(struct usb_gadget *g)
527 {
528 	return g->max_speed >= USB_SPEED_HIGH;
529 }
530 
531 /**
532  * gadget_is_superspeed() - return true if the hardware handles superspeed
533  * @g: controller that might support superspeed
534  */
gadget_is_superspeed(struct usb_gadget * g)535 static inline int gadget_is_superspeed(struct usb_gadget *g)
536 {
537 	return g->max_speed >= USB_SPEED_SUPER;
538 }
539 
540 /**
541  * gadget_is_superspeed_plus() - return true if the hardware handles
542  *	superspeed plus
543  * @g: controller that might support superspeed plus
544  */
gadget_is_superspeed_plus(struct usb_gadget * g)545 static inline int gadget_is_superspeed_plus(struct usb_gadget *g)
546 {
547 	return g->max_speed >= USB_SPEED_SUPER_PLUS;
548 }
549 
550 /**
551  * gadget_is_otg - return true iff the hardware is OTG-ready
552  * @g: controller that might have a Mini-AB connector
553  *
554  * This is a runtime test, since kernels with a USB-OTG stack sometimes
555  * run on boards which only have a Mini-B (or Mini-A) connector.
556  */
gadget_is_otg(struct usb_gadget * g)557 static inline int gadget_is_otg(struct usb_gadget *g)
558 {
559 #ifdef CONFIG_USB_OTG
560 	return g->is_otg;
561 #else
562 	return 0;
563 #endif
564 }
565 
566 /*-------------------------------------------------------------------------*/
567 
568 #if IS_ENABLED(CONFIG_USB_GADGET)
569 int usb_gadget_frame_number(struct usb_gadget *gadget);
570 int usb_gadget_wakeup(struct usb_gadget *gadget);
571 int usb_gadget_set_selfpowered(struct usb_gadget *gadget);
572 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget);
573 int usb_gadget_vbus_connect(struct usb_gadget *gadget);
574 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA);
575 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget);
576 int usb_gadget_connect(struct usb_gadget *gadget);
577 int usb_gadget_disconnect(struct usb_gadget *gadget);
578 int usb_gadget_deactivate(struct usb_gadget *gadget);
579 int usb_gadget_activate(struct usb_gadget *gadget);
580 #else
usb_gadget_frame_number(struct usb_gadget * gadget)581 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
582 { return 0; }
usb_gadget_wakeup(struct usb_gadget * gadget)583 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
584 { return 0; }
usb_gadget_set_selfpowered(struct usb_gadget * gadget)585 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
586 { return 0; }
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)587 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
588 { return 0; }
usb_gadget_vbus_connect(struct usb_gadget * gadget)589 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
590 { return 0; }
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)591 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
592 { return 0; }
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)593 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
594 { return 0; }
usb_gadget_connect(struct usb_gadget * gadget)595 static inline int usb_gadget_connect(struct usb_gadget *gadget)
596 { return 0; }
usb_gadget_disconnect(struct usb_gadget * gadget)597 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
598 { return 0; }
usb_gadget_deactivate(struct usb_gadget * gadget)599 static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
600 { return 0; }
usb_gadget_activate(struct usb_gadget * gadget)601 static inline int usb_gadget_activate(struct usb_gadget *gadget)
602 { return 0; }
603 #endif /* CONFIG_USB_GADGET */
604 
605 /*-------------------------------------------------------------------------*/
606 
607 /**
608  * struct usb_gadget_driver - driver for usb 'slave' devices
609  * @function: String describing the gadget's function
610  * @max_speed: Highest speed the driver handles.
611  * @setup: Invoked for ep0 control requests that aren't handled by
612  *	the hardware level driver. Most calls must be handled by
613  *	the gadget driver, including descriptor and configuration
614  *	management.  The 16 bit members of the setup data are in
615  *	USB byte order. Called in_interrupt; this may not sleep.  Driver
616  *	queues a response to ep0, or returns negative to stall.
617  * @disconnect: Invoked after all transfers have been stopped,
618  *	when the host is disconnected.  May be called in_interrupt; this
619  *	may not sleep.  Some devices can't detect disconnect, so this might
620  *	not be called except as part of controller shutdown.
621  * @bind: the driver's bind callback
622  * @unbind: Invoked when the driver is unbound from a gadget,
623  *	usually from rmmod (after a disconnect is reported).
624  *	Called in a context that permits sleeping.
625  * @suspend: Invoked on USB suspend.  May be called in_interrupt.
626  * @resume: Invoked on USB resume.  May be called in_interrupt.
627  * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
628  *	and should be called in_interrupt.
629  * @driver: Driver model state for this driver.
630  * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL,
631  *	this driver will be bound to any available UDC.
632  * @pending: UDC core private data used for deferred probe of this driver.
633  * @match_existing_only: If udc is not found, return an error and don't add this
634  *      gadget driver to list of pending driver
635  *
636  * Devices are disabled till a gadget driver successfully bind()s, which
637  * means the driver will handle setup() requests needed to enumerate (and
638  * meet "chapter 9" requirements) then do some useful work.
639  *
640  * If gadget->is_otg is true, the gadget driver must provide an OTG
641  * descriptor during enumeration, or else fail the bind() call.  In such
642  * cases, no USB traffic may flow until both bind() returns without
643  * having called usb_gadget_disconnect(), and the USB host stack has
644  * initialized.
645  *
646  * Drivers use hardware-specific knowledge to configure the usb hardware.
647  * endpoint addressing is only one of several hardware characteristics that
648  * are in descriptors the ep0 implementation returns from setup() calls.
649  *
650  * Except for ep0 implementation, most driver code shouldn't need change to
651  * run on top of different usb controllers.  It'll use endpoints set up by
652  * that ep0 implementation.
653  *
654  * The usb controller driver handles a few standard usb requests.  Those
655  * include set_address, and feature flags for devices, interfaces, and
656  * endpoints (the get_status, set_feature, and clear_feature requests).
657  *
658  * Accordingly, the driver's setup() callback must always implement all
659  * get_descriptor requests, returning at least a device descriptor and
660  * a configuration descriptor.  Drivers must make sure the endpoint
661  * descriptors match any hardware constraints. Some hardware also constrains
662  * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
663  *
664  * The driver's setup() callback must also implement set_configuration,
665  * and should also implement set_interface, get_configuration, and
666  * get_interface.  Setting a configuration (or interface) is where
667  * endpoints should be activated or (config 0) shut down.
668  *
669  * (Note that only the default control endpoint is supported.  Neither
670  * hosts nor devices generally support control traffic except to ep0.)
671  *
672  * Most devices will ignore USB suspend/resume operations, and so will
673  * not provide those callbacks.  However, some may need to change modes
674  * when the host is not longer directing those activities.  For example,
675  * local controls (buttons, dials, etc) may need to be re-enabled since
676  * the (remote) host can't do that any longer; or an error state might
677  * be cleared, to make the device behave identically whether or not
678  * power is maintained.
679  */
680 struct usb_gadget_driver {
681 	char			*function;
682 	enum usb_device_speed	max_speed;
683 	int			(*bind)(struct usb_gadget *gadget,
684 					struct usb_gadget_driver *driver);
685 	void			(*unbind)(struct usb_gadget *);
686 	int			(*setup)(struct usb_gadget *,
687 					const struct usb_ctrlrequest *);
688 	void			(*disconnect)(struct usb_gadget *);
689 	void			(*suspend)(struct usb_gadget *);
690 	void			(*resume)(struct usb_gadget *);
691 	void			(*reset)(struct usb_gadget *);
692 
693 	/* FIXME support safe rmmod */
694 	struct device_driver	driver;
695 
696 	char			*udc_name;
697 	struct list_head	pending;
698 	unsigned                match_existing_only:1;
699 };
700 
701 
702 
703 /*-------------------------------------------------------------------------*/
704 
705 /* driver modules register and unregister, as usual.
706  * these calls must be made in a context that can sleep.
707  *
708  * these will usually be implemented directly by the hardware-dependent
709  * usb bus interface driver, which will only support a single driver.
710  */
711 
712 /**
713  * usb_gadget_probe_driver - probe a gadget driver
714  * @driver: the driver being registered
715  * Context: can sleep
716  *
717  * Call this in your gadget driver's module initialization function,
718  * to tell the underlying usb controller driver about your driver.
719  * The @bind() function will be called to bind it to a gadget before this
720  * registration call returns.  It's expected that the @bind() function will
721  * be in init sections.
722  */
723 int usb_gadget_probe_driver(struct usb_gadget_driver *driver);
724 
725 /**
726  * usb_gadget_unregister_driver - unregister a gadget driver
727  * @driver:the driver being unregistered
728  * Context: can sleep
729  *
730  * Call this in your gadget driver's module cleanup function,
731  * to tell the underlying usb controller that your driver is
732  * going away.  If the controller is connected to a USB host,
733  * it will first disconnect().  The driver is also requested
734  * to unbind() and clean up any device state, before this procedure
735  * finally returns.  It's expected that the unbind() functions
736  * will in in exit sections, so may not be linked in some kernels.
737  */
738 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
739 
740 extern int usb_add_gadget_udc_release(struct device *parent,
741 		struct usb_gadget *gadget, void (*release)(struct device *dev));
742 extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
743 extern void usb_del_gadget_udc(struct usb_gadget *gadget);
744 extern char *usb_get_gadget_udc_name(void);
745 
746 /*-------------------------------------------------------------------------*/
747 
748 /* utility to simplify dealing with string descriptors */
749 
750 /**
751  * struct usb_string - wraps a C string and its USB id
752  * @id:the (nonzero) ID for this string
753  * @s:the string, in UTF-8 encoding
754  *
755  * If you're using usb_gadget_get_string(), use this to wrap a string
756  * together with its ID.
757  */
758 struct usb_string {
759 	u8			id;
760 	const char		*s;
761 };
762 
763 /**
764  * struct usb_gadget_strings - a set of USB strings in a given language
765  * @language:identifies the strings' language (0x0409 for en-us)
766  * @strings:array of strings with their ids
767  *
768  * If you're using usb_gadget_get_string(), use this to wrap all the
769  * strings for a given language.
770  */
771 struct usb_gadget_strings {
772 	u16			language;	/* 0x0409 for en-us */
773 	struct usb_string	*strings;
774 };
775 
776 struct usb_gadget_string_container {
777 	struct list_head        list;
778 	u8                      *stash[0];
779 };
780 
781 /* put descriptor for string with that id into buf (buflen >= 256) */
782 int usb_gadget_get_string(const struct usb_gadget_strings *table, int id, u8 *buf);
783 
784 /*-------------------------------------------------------------------------*/
785 
786 /* utility to simplify managing config descriptors */
787 
788 /* write vector of descriptors into buffer */
789 int usb_descriptor_fillbuf(void *, unsigned,
790 		const struct usb_descriptor_header **);
791 
792 /* build config descriptor from single descriptor vector */
793 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
794 	void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
795 
796 /* copy a NULL-terminated vector of descriptors */
797 struct usb_descriptor_header **usb_copy_descriptors(
798 		struct usb_descriptor_header **);
799 
800 /**
801  * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
802  * @v: vector of descriptors
803  */
usb_free_descriptors(struct usb_descriptor_header ** v)804 static inline void usb_free_descriptors(struct usb_descriptor_header **v)
805 {
806 	kfree(v);
807 }
808 
809 struct usb_function;
810 int usb_assign_descriptors(struct usb_function *f,
811 		struct usb_descriptor_header **fs,
812 		struct usb_descriptor_header **hs,
813 		struct usb_descriptor_header **ss,
814 		struct usb_descriptor_header **ssp);
815 void usb_free_all_descriptors(struct usb_function *f);
816 
817 struct usb_descriptor_header *usb_otg_descriptor_alloc(
818 				struct usb_gadget *gadget);
819 int usb_otg_descriptor_init(struct usb_gadget *gadget,
820 		struct usb_descriptor_header *otg_desc);
821 /*-------------------------------------------------------------------------*/
822 
823 /* utility to simplify map/unmap of usb_requests to/from DMA */
824 
825 #ifdef	CONFIG_HAS_DMA
826 extern int usb_gadget_map_request_by_dev(struct device *dev,
827 		struct usb_request *req, int is_in);
828 extern int usb_gadget_map_request(struct usb_gadget *gadget,
829 		struct usb_request *req, int is_in);
830 
831 extern void usb_gadget_unmap_request_by_dev(struct device *dev,
832 		struct usb_request *req, int is_in);
833 extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
834 		struct usb_request *req, int is_in);
835 #else /* !CONFIG_HAS_DMA */
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)836 static inline int usb_gadget_map_request_by_dev(struct device *dev,
837 		struct usb_request *req, int is_in) { return -ENOSYS; }
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)838 static inline int usb_gadget_map_request(struct usb_gadget *gadget,
839 		struct usb_request *req, int is_in) { return -ENOSYS; }
840 
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)841 static inline void usb_gadget_unmap_request_by_dev(struct device *dev,
842 		struct usb_request *req, int is_in) { }
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)843 static inline void usb_gadget_unmap_request(struct usb_gadget *gadget,
844 		struct usb_request *req, int is_in) { }
845 #endif /* !CONFIG_HAS_DMA */
846 
847 /*-------------------------------------------------------------------------*/
848 
849 /* utility to set gadget state properly */
850 
851 extern void usb_gadget_set_state(struct usb_gadget *gadget,
852 		enum usb_device_state state);
853 
854 /*-------------------------------------------------------------------------*/
855 
856 /* utility to tell udc core that the bus reset occurs */
857 extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
858 		struct usb_gadget_driver *driver);
859 
860 /*-------------------------------------------------------------------------*/
861 
862 /* utility to give requests back to the gadget layer */
863 
864 extern void usb_gadget_giveback_request(struct usb_ep *ep,
865 		struct usb_request *req);
866 
867 /*-------------------------------------------------------------------------*/
868 
869 /* utility to find endpoint by name */
870 
871 extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
872 		const char *name);
873 
874 /*-------------------------------------------------------------------------*/
875 
876 /* utility to check if endpoint caps match descriptor needs */
877 
878 extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
879 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
880 		struct usb_ss_ep_comp_descriptor *ep_comp);
881 
882 /*-------------------------------------------------------------------------*/
883 
884 /* utility to update vbus status for udc core, it may be scheduled */
885 extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);
886 
887 /*-------------------------------------------------------------------------*/
888 
889 /* utility wrapping a simple endpoint selection policy */
890 
891 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
892 			struct usb_endpoint_descriptor *);
893 
894 
895 extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
896 			struct usb_endpoint_descriptor *,
897 			struct usb_ss_ep_comp_descriptor *);
898 
899 extern void usb_ep_autoconfig_release(struct usb_ep *);
900 
901 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
902 
903 #endif /* __LINUX_USB_GADGET_H */
904