1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/indirect.c
4 *
5 * from
6 *
7 * linux/fs/ext4/inode.c
8 *
9 * Copyright (C) 1992, 1993, 1994, 1995
10 * Remy Card (card@masi.ibp.fr)
11 * Laboratoire MASI - Institut Blaise Pascal
12 * Universite Pierre et Marie Curie (Paris VI)
13 *
14 * from
15 *
16 * linux/fs/minix/inode.c
17 *
18 * Copyright (C) 1991, 1992 Linus Torvalds
19 *
20 * Goal-directed block allocation by Stephen Tweedie
21 * (sct@redhat.com), 1993, 1998
22 */
23
24 #include "ext4_jbd2.h"
25 #include "truncate.h"
26 #include <linux/dax.h>
27 #include <linux/uio.h>
28
29 #include <trace/events/ext4.h>
30
31 typedef struct {
32 __le32 *p;
33 __le32 key;
34 struct buffer_head *bh;
35 } Indirect;
36
add_chain(Indirect * p,struct buffer_head * bh,__le32 * v)37 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
38 {
39 p->key = *(p->p = v);
40 p->bh = bh;
41 }
42
43 /**
44 * ext4_block_to_path - parse the block number into array of offsets
45 * @inode: inode in question (we are only interested in its superblock)
46 * @i_block: block number to be parsed
47 * @offsets: array to store the offsets in
48 * @boundary: set this non-zero if the referred-to block is likely to be
49 * followed (on disk) by an indirect block.
50 *
51 * To store the locations of file's data ext4 uses a data structure common
52 * for UNIX filesystems - tree of pointers anchored in the inode, with
53 * data blocks at leaves and indirect blocks in intermediate nodes.
54 * This function translates the block number into path in that tree -
55 * return value is the path length and @offsets[n] is the offset of
56 * pointer to (n+1)th node in the nth one. If @block is out of range
57 * (negative or too large) warning is printed and zero returned.
58 *
59 * Note: function doesn't find node addresses, so no IO is needed. All
60 * we need to know is the capacity of indirect blocks (taken from the
61 * inode->i_sb).
62 */
63
64 /*
65 * Portability note: the last comparison (check that we fit into triple
66 * indirect block) is spelled differently, because otherwise on an
67 * architecture with 32-bit longs and 8Kb pages we might get into trouble
68 * if our filesystem had 8Kb blocks. We might use long long, but that would
69 * kill us on x86. Oh, well, at least the sign propagation does not matter -
70 * i_block would have to be negative in the very beginning, so we would not
71 * get there at all.
72 */
73
ext4_block_to_path(struct inode * inode,ext4_lblk_t i_block,ext4_lblk_t offsets[4],int * boundary)74 static int ext4_block_to_path(struct inode *inode,
75 ext4_lblk_t i_block,
76 ext4_lblk_t offsets[4], int *boundary)
77 {
78 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
79 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
80 const long direct_blocks = EXT4_NDIR_BLOCKS,
81 indirect_blocks = ptrs,
82 double_blocks = (1 << (ptrs_bits * 2));
83 int n = 0;
84 int final = 0;
85
86 if (i_block < direct_blocks) {
87 offsets[n++] = i_block;
88 final = direct_blocks;
89 } else if ((i_block -= direct_blocks) < indirect_blocks) {
90 offsets[n++] = EXT4_IND_BLOCK;
91 offsets[n++] = i_block;
92 final = ptrs;
93 } else if ((i_block -= indirect_blocks) < double_blocks) {
94 offsets[n++] = EXT4_DIND_BLOCK;
95 offsets[n++] = i_block >> ptrs_bits;
96 offsets[n++] = i_block & (ptrs - 1);
97 final = ptrs;
98 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
99 offsets[n++] = EXT4_TIND_BLOCK;
100 offsets[n++] = i_block >> (ptrs_bits * 2);
101 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
102 offsets[n++] = i_block & (ptrs - 1);
103 final = ptrs;
104 } else {
105 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
106 i_block + direct_blocks +
107 indirect_blocks + double_blocks, inode->i_ino);
108 }
109 if (boundary)
110 *boundary = final - 1 - (i_block & (ptrs - 1));
111 return n;
112 }
113
114 /**
115 * ext4_get_branch - read the chain of indirect blocks leading to data
116 * @inode: inode in question
117 * @depth: depth of the chain (1 - direct pointer, etc.)
118 * @offsets: offsets of pointers in inode/indirect blocks
119 * @chain: place to store the result
120 * @err: here we store the error value
121 *
122 * Function fills the array of triples <key, p, bh> and returns %NULL
123 * if everything went OK or the pointer to the last filled triple
124 * (incomplete one) otherwise. Upon the return chain[i].key contains
125 * the number of (i+1)-th block in the chain (as it is stored in memory,
126 * i.e. little-endian 32-bit), chain[i].p contains the address of that
127 * number (it points into struct inode for i==0 and into the bh->b_data
128 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
129 * block for i>0 and NULL for i==0. In other words, it holds the block
130 * numbers of the chain, addresses they were taken from (and where we can
131 * verify that chain did not change) and buffer_heads hosting these
132 * numbers.
133 *
134 * Function stops when it stumbles upon zero pointer (absent block)
135 * (pointer to last triple returned, *@err == 0)
136 * or when it gets an IO error reading an indirect block
137 * (ditto, *@err == -EIO)
138 * or when it reads all @depth-1 indirect blocks successfully and finds
139 * the whole chain, all way to the data (returns %NULL, *err == 0).
140 *
141 * Need to be called with
142 * down_read(&EXT4_I(inode)->i_data_sem)
143 */
ext4_get_branch(struct inode * inode,int depth,ext4_lblk_t * offsets,Indirect chain[4],int * err)144 static Indirect *ext4_get_branch(struct inode *inode, int depth,
145 ext4_lblk_t *offsets,
146 Indirect chain[4], int *err)
147 {
148 struct super_block *sb = inode->i_sb;
149 Indirect *p = chain;
150 struct buffer_head *bh;
151 unsigned int key;
152 int ret = -EIO;
153
154 *err = 0;
155 /* i_data is not going away, no lock needed */
156 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
157 if (!p->key)
158 goto no_block;
159 while (--depth) {
160 key = le32_to_cpu(p->key);
161 if (key > ext4_blocks_count(EXT4_SB(sb)->s_es)) {
162 /* the block was out of range */
163 ret = -EFSCORRUPTED;
164 goto failure;
165 }
166 bh = sb_getblk(sb, key);
167 if (unlikely(!bh)) {
168 ret = -ENOMEM;
169 goto failure;
170 }
171
172 if (!bh_uptodate_or_lock(bh)) {
173 if (bh_submit_read(bh) < 0) {
174 put_bh(bh);
175 goto failure;
176 }
177 /* validate block references */
178 if (ext4_check_indirect_blockref(inode, bh)) {
179 put_bh(bh);
180 goto failure;
181 }
182 }
183
184 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
185 /* Reader: end */
186 if (!p->key)
187 goto no_block;
188 }
189 return NULL;
190
191 failure:
192 *err = ret;
193 no_block:
194 return p;
195 }
196
197 /**
198 * ext4_find_near - find a place for allocation with sufficient locality
199 * @inode: owner
200 * @ind: descriptor of indirect block.
201 *
202 * This function returns the preferred place for block allocation.
203 * It is used when heuristic for sequential allocation fails.
204 * Rules are:
205 * + if there is a block to the left of our position - allocate near it.
206 * + if pointer will live in indirect block - allocate near that block.
207 * + if pointer will live in inode - allocate in the same
208 * cylinder group.
209 *
210 * In the latter case we colour the starting block by the callers PID to
211 * prevent it from clashing with concurrent allocations for a different inode
212 * in the same block group. The PID is used here so that functionally related
213 * files will be close-by on-disk.
214 *
215 * Caller must make sure that @ind is valid and will stay that way.
216 */
ext4_find_near(struct inode * inode,Indirect * ind)217 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
218 {
219 struct ext4_inode_info *ei = EXT4_I(inode);
220 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
221 __le32 *p;
222
223 /* Try to find previous block */
224 for (p = ind->p - 1; p >= start; p--) {
225 if (*p)
226 return le32_to_cpu(*p);
227 }
228
229 /* No such thing, so let's try location of indirect block */
230 if (ind->bh)
231 return ind->bh->b_blocknr;
232
233 /*
234 * It is going to be referred to from the inode itself? OK, just put it
235 * into the same cylinder group then.
236 */
237 return ext4_inode_to_goal_block(inode);
238 }
239
240 /**
241 * ext4_find_goal - find a preferred place for allocation.
242 * @inode: owner
243 * @block: block we want
244 * @partial: pointer to the last triple within a chain
245 *
246 * Normally this function find the preferred place for block allocation,
247 * returns it.
248 * Because this is only used for non-extent files, we limit the block nr
249 * to 32 bits.
250 */
ext4_find_goal(struct inode * inode,ext4_lblk_t block,Indirect * partial)251 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
252 Indirect *partial)
253 {
254 ext4_fsblk_t goal;
255
256 /*
257 * XXX need to get goal block from mballoc's data structures
258 */
259
260 goal = ext4_find_near(inode, partial);
261 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
262 return goal;
263 }
264
265 /**
266 * ext4_blks_to_allocate - Look up the block map and count the number
267 * of direct blocks need to be allocated for the given branch.
268 *
269 * @branch: chain of indirect blocks
270 * @k: number of blocks need for indirect blocks
271 * @blks: number of data blocks to be mapped.
272 * @blocks_to_boundary: the offset in the indirect block
273 *
274 * return the total number of blocks to be allocate, including the
275 * direct and indirect blocks.
276 */
ext4_blks_to_allocate(Indirect * branch,int k,unsigned int blks,int blocks_to_boundary)277 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
278 int blocks_to_boundary)
279 {
280 unsigned int count = 0;
281
282 /*
283 * Simple case, [t,d]Indirect block(s) has not allocated yet
284 * then it's clear blocks on that path have not allocated
285 */
286 if (k > 0) {
287 /* right now we don't handle cross boundary allocation */
288 if (blks < blocks_to_boundary + 1)
289 count += blks;
290 else
291 count += blocks_to_boundary + 1;
292 return count;
293 }
294
295 count++;
296 while (count < blks && count <= blocks_to_boundary &&
297 le32_to_cpu(*(branch[0].p + count)) == 0) {
298 count++;
299 }
300 return count;
301 }
302
303 /**
304 * ext4_alloc_branch() - allocate and set up a chain of blocks
305 * @handle: handle for this transaction
306 * @ar: structure describing the allocation request
307 * @indirect_blks: number of allocated indirect blocks
308 * @offsets: offsets (in the blocks) to store the pointers to next.
309 * @branch: place to store the chain in.
310 *
311 * This function allocates blocks, zeroes out all but the last one,
312 * links them into chain and (if we are synchronous) writes them to disk.
313 * In other words, it prepares a branch that can be spliced onto the
314 * inode. It stores the information about that chain in the branch[], in
315 * the same format as ext4_get_branch() would do. We are calling it after
316 * we had read the existing part of chain and partial points to the last
317 * triple of that (one with zero ->key). Upon the exit we have the same
318 * picture as after the successful ext4_get_block(), except that in one
319 * place chain is disconnected - *branch->p is still zero (we did not
320 * set the last link), but branch->key contains the number that should
321 * be placed into *branch->p to fill that gap.
322 *
323 * If allocation fails we free all blocks we've allocated (and forget
324 * their buffer_heads) and return the error value the from failed
325 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
326 * as described above and return 0.
327 */
ext4_alloc_branch(handle_t * handle,struct ext4_allocation_request * ar,int indirect_blks,ext4_lblk_t * offsets,Indirect * branch)328 static int ext4_alloc_branch(handle_t *handle,
329 struct ext4_allocation_request *ar,
330 int indirect_blks, ext4_lblk_t *offsets,
331 Indirect *branch)
332 {
333 struct buffer_head * bh;
334 ext4_fsblk_t b, new_blocks[4];
335 __le32 *p;
336 int i, j, err, len = 1;
337
338 for (i = 0; i <= indirect_blks; i++) {
339 if (i == indirect_blks) {
340 new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
341 } else
342 ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
343 ar->inode, ar->goal,
344 ar->flags & EXT4_MB_DELALLOC_RESERVED,
345 NULL, &err);
346 if (err) {
347 i--;
348 goto failed;
349 }
350 branch[i].key = cpu_to_le32(new_blocks[i]);
351 if (i == 0)
352 continue;
353
354 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
355 if (unlikely(!bh)) {
356 err = -ENOMEM;
357 goto failed;
358 }
359 lock_buffer(bh);
360 BUFFER_TRACE(bh, "call get_create_access");
361 err = ext4_journal_get_create_access(handle, bh);
362 if (err) {
363 unlock_buffer(bh);
364 goto failed;
365 }
366
367 memset(bh->b_data, 0, bh->b_size);
368 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
369 b = new_blocks[i];
370
371 if (i == indirect_blks)
372 len = ar->len;
373 for (j = 0; j < len; j++)
374 *p++ = cpu_to_le32(b++);
375
376 BUFFER_TRACE(bh, "marking uptodate");
377 set_buffer_uptodate(bh);
378 unlock_buffer(bh);
379
380 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
381 err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
382 if (err)
383 goto failed;
384 }
385 return 0;
386 failed:
387 for (; i >= 0; i--) {
388 /*
389 * We want to ext4_forget() only freshly allocated indirect
390 * blocks. Buffer for new_blocks[i-1] is at branch[i].bh and
391 * buffer at branch[0].bh is indirect block / inode already
392 * existing before ext4_alloc_branch() was called.
393 */
394 if (i > 0 && i != indirect_blks && branch[i].bh)
395 ext4_forget(handle, 1, ar->inode, branch[i].bh,
396 branch[i].bh->b_blocknr);
397 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
398 (i == indirect_blks) ? ar->len : 1, 0);
399 }
400 return err;
401 }
402
403 /**
404 * ext4_splice_branch() - splice the allocated branch onto inode.
405 * @handle: handle for this transaction
406 * @ar: structure describing the allocation request
407 * @where: location of missing link
408 * @num: number of indirect blocks we are adding
409 *
410 * This function fills the missing link and does all housekeeping needed in
411 * inode (->i_blocks, etc.). In case of success we end up with the full
412 * chain to new block and return 0.
413 */
ext4_splice_branch(handle_t * handle,struct ext4_allocation_request * ar,Indirect * where,int num)414 static int ext4_splice_branch(handle_t *handle,
415 struct ext4_allocation_request *ar,
416 Indirect *where, int num)
417 {
418 int i;
419 int err = 0;
420 ext4_fsblk_t current_block;
421
422 /*
423 * If we're splicing into a [td]indirect block (as opposed to the
424 * inode) then we need to get write access to the [td]indirect block
425 * before the splice.
426 */
427 if (where->bh) {
428 BUFFER_TRACE(where->bh, "get_write_access");
429 err = ext4_journal_get_write_access(handle, where->bh);
430 if (err)
431 goto err_out;
432 }
433 /* That's it */
434
435 *where->p = where->key;
436
437 /*
438 * Update the host buffer_head or inode to point to more just allocated
439 * direct blocks blocks
440 */
441 if (num == 0 && ar->len > 1) {
442 current_block = le32_to_cpu(where->key) + 1;
443 for (i = 1; i < ar->len; i++)
444 *(where->p + i) = cpu_to_le32(current_block++);
445 }
446
447 /* We are done with atomic stuff, now do the rest of housekeeping */
448 /* had we spliced it onto indirect block? */
449 if (where->bh) {
450 /*
451 * If we spliced it onto an indirect block, we haven't
452 * altered the inode. Note however that if it is being spliced
453 * onto an indirect block at the very end of the file (the
454 * file is growing) then we *will* alter the inode to reflect
455 * the new i_size. But that is not done here - it is done in
456 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
457 */
458 jbd_debug(5, "splicing indirect only\n");
459 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
460 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
461 if (err)
462 goto err_out;
463 } else {
464 /*
465 * OK, we spliced it into the inode itself on a direct block.
466 */
467 ext4_mark_inode_dirty(handle, ar->inode);
468 jbd_debug(5, "splicing direct\n");
469 }
470 return err;
471
472 err_out:
473 for (i = 1; i <= num; i++) {
474 /*
475 * branch[i].bh is newly allocated, so there is no
476 * need to revoke the block, which is why we don't
477 * need to set EXT4_FREE_BLOCKS_METADATA.
478 */
479 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
480 EXT4_FREE_BLOCKS_FORGET);
481 }
482 ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
483 ar->len, 0);
484
485 return err;
486 }
487
488 /*
489 * The ext4_ind_map_blocks() function handles non-extents inodes
490 * (i.e., using the traditional indirect/double-indirect i_blocks
491 * scheme) for ext4_map_blocks().
492 *
493 * Allocation strategy is simple: if we have to allocate something, we will
494 * have to go the whole way to leaf. So let's do it before attaching anything
495 * to tree, set linkage between the newborn blocks, write them if sync is
496 * required, recheck the path, free and repeat if check fails, otherwise
497 * set the last missing link (that will protect us from any truncate-generated
498 * removals - all blocks on the path are immune now) and possibly force the
499 * write on the parent block.
500 * That has a nice additional property: no special recovery from the failed
501 * allocations is needed - we simply release blocks and do not touch anything
502 * reachable from inode.
503 *
504 * `handle' can be NULL if create == 0.
505 *
506 * return > 0, # of blocks mapped or allocated.
507 * return = 0, if plain lookup failed.
508 * return < 0, error case.
509 *
510 * The ext4_ind_get_blocks() function should be called with
511 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
512 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
513 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
514 * blocks.
515 */
ext4_ind_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)516 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
517 struct ext4_map_blocks *map,
518 int flags)
519 {
520 struct ext4_allocation_request ar;
521 int err = -EIO;
522 ext4_lblk_t offsets[4];
523 Indirect chain[4];
524 Indirect *partial;
525 int indirect_blks;
526 int blocks_to_boundary = 0;
527 int depth;
528 int count = 0;
529 ext4_fsblk_t first_block = 0;
530
531 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
532 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
533 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
534 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
535 &blocks_to_boundary);
536
537 if (depth == 0)
538 goto out;
539
540 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
541
542 /* Simplest case - block found, no allocation needed */
543 if (!partial) {
544 first_block = le32_to_cpu(chain[depth - 1].key);
545 count++;
546 /*map more blocks*/
547 while (count < map->m_len && count <= blocks_to_boundary) {
548 ext4_fsblk_t blk;
549
550 blk = le32_to_cpu(*(chain[depth-1].p + count));
551
552 if (blk == first_block + count)
553 count++;
554 else
555 break;
556 }
557 goto got_it;
558 }
559
560 /* Next simple case - plain lookup failed */
561 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
562 unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
563 int i;
564
565 /*
566 * Count number blocks in a subtree under 'partial'. At each
567 * level we count number of complete empty subtrees beyond
568 * current offset and then descend into the subtree only
569 * partially beyond current offset.
570 */
571 count = 0;
572 for (i = partial - chain + 1; i < depth; i++)
573 count = count * epb + (epb - offsets[i] - 1);
574 count++;
575 /* Fill in size of a hole we found */
576 map->m_pblk = 0;
577 map->m_len = min_t(unsigned int, map->m_len, count);
578 goto cleanup;
579 }
580
581 /* Failed read of indirect block */
582 if (err == -EIO)
583 goto cleanup;
584
585 /*
586 * Okay, we need to do block allocation.
587 */
588 if (ext4_has_feature_bigalloc(inode->i_sb)) {
589 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
590 "non-extent mapped inodes with bigalloc");
591 return -EFSCORRUPTED;
592 }
593
594 /* Set up for the direct block allocation */
595 memset(&ar, 0, sizeof(ar));
596 ar.inode = inode;
597 ar.logical = map->m_lblk;
598 if (S_ISREG(inode->i_mode))
599 ar.flags = EXT4_MB_HINT_DATA;
600 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
601 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
602 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
603 ar.flags |= EXT4_MB_USE_RESERVED;
604
605 ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
606
607 /* the number of blocks need to allocate for [d,t]indirect blocks */
608 indirect_blks = (chain + depth) - partial - 1;
609
610 /*
611 * Next look up the indirect map to count the totoal number of
612 * direct blocks to allocate for this branch.
613 */
614 ar.len = ext4_blks_to_allocate(partial, indirect_blks,
615 map->m_len, blocks_to_boundary);
616
617 /*
618 * Block out ext4_truncate while we alter the tree
619 */
620 err = ext4_alloc_branch(handle, &ar, indirect_blks,
621 offsets + (partial - chain), partial);
622
623 /*
624 * The ext4_splice_branch call will free and forget any buffers
625 * on the new chain if there is a failure, but that risks using
626 * up transaction credits, especially for bitmaps where the
627 * credits cannot be returned. Can we handle this somehow? We
628 * may need to return -EAGAIN upwards in the worst case. --sct
629 */
630 if (!err)
631 err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
632 if (err)
633 goto cleanup;
634
635 map->m_flags |= EXT4_MAP_NEW;
636
637 ext4_update_inode_fsync_trans(handle, inode, 1);
638 count = ar.len;
639
640 /*
641 * Update reserved blocks/metadata blocks after successful block
642 * allocation which had been deferred till now.
643 */
644 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
645 ext4_da_update_reserve_space(inode, count, 1);
646
647 got_it:
648 map->m_flags |= EXT4_MAP_MAPPED;
649 map->m_pblk = le32_to_cpu(chain[depth-1].key);
650 map->m_len = count;
651 if (count > blocks_to_boundary)
652 map->m_flags |= EXT4_MAP_BOUNDARY;
653 err = count;
654 /* Clean up and exit */
655 partial = chain + depth - 1; /* the whole chain */
656 cleanup:
657 while (partial > chain) {
658 BUFFER_TRACE(partial->bh, "call brelse");
659 brelse(partial->bh);
660 partial--;
661 }
662 out:
663 trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
664 return err;
665 }
666
667 /*
668 * Calculate the number of metadata blocks need to reserve
669 * to allocate a new block at @lblocks for non extent file based file
670 */
ext4_ind_calc_metadata_amount(struct inode * inode,sector_t lblock)671 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
672 {
673 struct ext4_inode_info *ei = EXT4_I(inode);
674 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
675 int blk_bits;
676
677 if (lblock < EXT4_NDIR_BLOCKS)
678 return 0;
679
680 lblock -= EXT4_NDIR_BLOCKS;
681
682 if (ei->i_da_metadata_calc_len &&
683 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
684 ei->i_da_metadata_calc_len++;
685 return 0;
686 }
687 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
688 ei->i_da_metadata_calc_len = 1;
689 blk_bits = order_base_2(lblock);
690 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
691 }
692
693 /*
694 * Calculate number of indirect blocks touched by mapping @nrblocks logically
695 * contiguous blocks
696 */
ext4_ind_trans_blocks(struct inode * inode,int nrblocks)697 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
698 {
699 /*
700 * With N contiguous data blocks, we need at most
701 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
702 * 2 dindirect blocks, and 1 tindirect block
703 */
704 return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
705 }
706
707 /*
708 * Truncate transactions can be complex and absolutely huge. So we need to
709 * be able to restart the transaction at a conventient checkpoint to make
710 * sure we don't overflow the journal.
711 *
712 * Try to extend this transaction for the purposes of truncation. If
713 * extend fails, we need to propagate the failure up and restart the
714 * transaction in the top-level truncate loop. --sct
715 *
716 * Returns 0 if we managed to create more room. If we can't create more
717 * room, and the transaction must be restarted we return 1.
718 */
try_to_extend_transaction(handle_t * handle,struct inode * inode)719 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
720 {
721 if (!ext4_handle_valid(handle))
722 return 0;
723 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
724 return 0;
725 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
726 return 0;
727 return 1;
728 }
729
730 /*
731 * Probably it should be a library function... search for first non-zero word
732 * or memcmp with zero_page, whatever is better for particular architecture.
733 * Linus?
734 */
all_zeroes(__le32 * p,__le32 * q)735 static inline int all_zeroes(__le32 *p, __le32 *q)
736 {
737 while (p < q)
738 if (*p++)
739 return 0;
740 return 1;
741 }
742
743 /**
744 * ext4_find_shared - find the indirect blocks for partial truncation.
745 * @inode: inode in question
746 * @depth: depth of the affected branch
747 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
748 * @chain: place to store the pointers to partial indirect blocks
749 * @top: place to the (detached) top of branch
750 *
751 * This is a helper function used by ext4_truncate().
752 *
753 * When we do truncate() we may have to clean the ends of several
754 * indirect blocks but leave the blocks themselves alive. Block is
755 * partially truncated if some data below the new i_size is referred
756 * from it (and it is on the path to the first completely truncated
757 * data block, indeed). We have to free the top of that path along
758 * with everything to the right of the path. Since no allocation
759 * past the truncation point is possible until ext4_truncate()
760 * finishes, we may safely do the latter, but top of branch may
761 * require special attention - pageout below the truncation point
762 * might try to populate it.
763 *
764 * We atomically detach the top of branch from the tree, store the
765 * block number of its root in *@top, pointers to buffer_heads of
766 * partially truncated blocks - in @chain[].bh and pointers to
767 * their last elements that should not be removed - in
768 * @chain[].p. Return value is the pointer to last filled element
769 * of @chain.
770 *
771 * The work left to caller to do the actual freeing of subtrees:
772 * a) free the subtree starting from *@top
773 * b) free the subtrees whose roots are stored in
774 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
775 * c) free the subtrees growing from the inode past the @chain[0].
776 * (no partially truncated stuff there). */
777
ext4_find_shared(struct inode * inode,int depth,ext4_lblk_t offsets[4],Indirect chain[4],__le32 * top)778 static Indirect *ext4_find_shared(struct inode *inode, int depth,
779 ext4_lblk_t offsets[4], Indirect chain[4],
780 __le32 *top)
781 {
782 Indirect *partial, *p;
783 int k, err;
784
785 *top = 0;
786 /* Make k index the deepest non-null offset + 1 */
787 for (k = depth; k > 1 && !offsets[k-1]; k--)
788 ;
789 partial = ext4_get_branch(inode, k, offsets, chain, &err);
790 /* Writer: pointers */
791 if (!partial)
792 partial = chain + k-1;
793 /*
794 * If the branch acquired continuation since we've looked at it -
795 * fine, it should all survive and (new) top doesn't belong to us.
796 */
797 if (!partial->key && *partial->p)
798 /* Writer: end */
799 goto no_top;
800 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
801 ;
802 /*
803 * OK, we've found the last block that must survive. The rest of our
804 * branch should be detached before unlocking. However, if that rest
805 * of branch is all ours and does not grow immediately from the inode
806 * it's easier to cheat and just decrement partial->p.
807 */
808 if (p == chain + k - 1 && p > chain) {
809 p->p--;
810 } else {
811 *top = *p->p;
812 /* Nope, don't do this in ext4. Must leave the tree intact */
813 #if 0
814 *p->p = 0;
815 #endif
816 }
817 /* Writer: end */
818
819 while (partial > p) {
820 brelse(partial->bh);
821 partial--;
822 }
823 no_top:
824 return partial;
825 }
826
827 /*
828 * Zero a number of block pointers in either an inode or an indirect block.
829 * If we restart the transaction we must again get write access to the
830 * indirect block for further modification.
831 *
832 * We release `count' blocks on disk, but (last - first) may be greater
833 * than `count' because there can be holes in there.
834 *
835 * Return 0 on success, 1 on invalid block range
836 * and < 0 on fatal error.
837 */
ext4_clear_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block_to_free,unsigned long count,__le32 * first,__le32 * last)838 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
839 struct buffer_head *bh,
840 ext4_fsblk_t block_to_free,
841 unsigned long count, __le32 *first,
842 __le32 *last)
843 {
844 __le32 *p;
845 int flags = EXT4_FREE_BLOCKS_VALIDATED;
846 int err;
847
848 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
849 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
850 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
851 else if (ext4_should_journal_data(inode))
852 flags |= EXT4_FREE_BLOCKS_FORGET;
853
854 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
855 count)) {
856 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
857 "blocks %llu len %lu",
858 (unsigned long long) block_to_free, count);
859 return 1;
860 }
861
862 if (try_to_extend_transaction(handle, inode)) {
863 if (bh) {
864 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
865 err = ext4_handle_dirty_metadata(handle, inode, bh);
866 if (unlikely(err))
867 goto out_err;
868 }
869 err = ext4_mark_inode_dirty(handle, inode);
870 if (unlikely(err))
871 goto out_err;
872 err = ext4_truncate_restart_trans(handle, inode,
873 ext4_blocks_for_truncate(inode));
874 if (unlikely(err))
875 goto out_err;
876 if (bh) {
877 BUFFER_TRACE(bh, "retaking write access");
878 err = ext4_journal_get_write_access(handle, bh);
879 if (unlikely(err))
880 goto out_err;
881 }
882 }
883
884 for (p = first; p < last; p++)
885 *p = 0;
886
887 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
888 return 0;
889 out_err:
890 ext4_std_error(inode->i_sb, err);
891 return err;
892 }
893
894 /**
895 * ext4_free_data - free a list of data blocks
896 * @handle: handle for this transaction
897 * @inode: inode we are dealing with
898 * @this_bh: indirect buffer_head which contains *@first and *@last
899 * @first: array of block numbers
900 * @last: points immediately past the end of array
901 *
902 * We are freeing all blocks referred from that array (numbers are stored as
903 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
904 *
905 * We accumulate contiguous runs of blocks to free. Conveniently, if these
906 * blocks are contiguous then releasing them at one time will only affect one
907 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
908 * actually use a lot of journal space.
909 *
910 * @this_bh will be %NULL if @first and @last point into the inode's direct
911 * block pointers.
912 */
ext4_free_data(handle_t * handle,struct inode * inode,struct buffer_head * this_bh,__le32 * first,__le32 * last)913 static void ext4_free_data(handle_t *handle, struct inode *inode,
914 struct buffer_head *this_bh,
915 __le32 *first, __le32 *last)
916 {
917 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
918 unsigned long count = 0; /* Number of blocks in the run */
919 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
920 corresponding to
921 block_to_free */
922 ext4_fsblk_t nr; /* Current block # */
923 __le32 *p; /* Pointer into inode/ind
924 for current block */
925 int err = 0;
926
927 if (this_bh) { /* For indirect block */
928 BUFFER_TRACE(this_bh, "get_write_access");
929 err = ext4_journal_get_write_access(handle, this_bh);
930 /* Important: if we can't update the indirect pointers
931 * to the blocks, we can't free them. */
932 if (err)
933 return;
934 }
935
936 for (p = first; p < last; p++) {
937 nr = le32_to_cpu(*p);
938 if (nr) {
939 /* accumulate blocks to free if they're contiguous */
940 if (count == 0) {
941 block_to_free = nr;
942 block_to_free_p = p;
943 count = 1;
944 } else if (nr == block_to_free + count) {
945 count++;
946 } else {
947 err = ext4_clear_blocks(handle, inode, this_bh,
948 block_to_free, count,
949 block_to_free_p, p);
950 if (err)
951 break;
952 block_to_free = nr;
953 block_to_free_p = p;
954 count = 1;
955 }
956 }
957 }
958
959 if (!err && count > 0)
960 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
961 count, block_to_free_p, p);
962 if (err < 0)
963 /* fatal error */
964 return;
965
966 if (this_bh) {
967 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
968
969 /*
970 * The buffer head should have an attached journal head at this
971 * point. However, if the data is corrupted and an indirect
972 * block pointed to itself, it would have been detached when
973 * the block was cleared. Check for this instead of OOPSing.
974 */
975 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
976 ext4_handle_dirty_metadata(handle, inode, this_bh);
977 else
978 EXT4_ERROR_INODE(inode,
979 "circular indirect block detected at "
980 "block %llu",
981 (unsigned long long) this_bh->b_blocknr);
982 }
983 }
984
985 /**
986 * ext4_free_branches - free an array of branches
987 * @handle: JBD handle for this transaction
988 * @inode: inode we are dealing with
989 * @parent_bh: the buffer_head which contains *@first and *@last
990 * @first: array of block numbers
991 * @last: pointer immediately past the end of array
992 * @depth: depth of the branches to free
993 *
994 * We are freeing all blocks referred from these branches (numbers are
995 * stored as little-endian 32-bit) and updating @inode->i_blocks
996 * appropriately.
997 */
ext4_free_branches(handle_t * handle,struct inode * inode,struct buffer_head * parent_bh,__le32 * first,__le32 * last,int depth)998 static void ext4_free_branches(handle_t *handle, struct inode *inode,
999 struct buffer_head *parent_bh,
1000 __le32 *first, __le32 *last, int depth)
1001 {
1002 ext4_fsblk_t nr;
1003 __le32 *p;
1004
1005 if (ext4_handle_is_aborted(handle))
1006 return;
1007
1008 if (depth--) {
1009 struct buffer_head *bh;
1010 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1011 p = last;
1012 while (--p >= first) {
1013 nr = le32_to_cpu(*p);
1014 if (!nr)
1015 continue; /* A hole */
1016
1017 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1018 nr, 1)) {
1019 EXT4_ERROR_INODE(inode,
1020 "invalid indirect mapped "
1021 "block %lu (level %d)",
1022 (unsigned long) nr, depth);
1023 break;
1024 }
1025
1026 /* Go read the buffer for the next level down */
1027 bh = sb_bread(inode->i_sb, nr);
1028
1029 /*
1030 * A read failure? Report error and clear slot
1031 * (should be rare).
1032 */
1033 if (!bh) {
1034 EXT4_ERROR_INODE_BLOCK(inode, nr,
1035 "Read failure");
1036 continue;
1037 }
1038
1039 /* This zaps the entire block. Bottom up. */
1040 BUFFER_TRACE(bh, "free child branches");
1041 ext4_free_branches(handle, inode, bh,
1042 (__le32 *) bh->b_data,
1043 (__le32 *) bh->b_data + addr_per_block,
1044 depth);
1045 brelse(bh);
1046
1047 /*
1048 * Everything below this this pointer has been
1049 * released. Now let this top-of-subtree go.
1050 *
1051 * We want the freeing of this indirect block to be
1052 * atomic in the journal with the updating of the
1053 * bitmap block which owns it. So make some room in
1054 * the journal.
1055 *
1056 * We zero the parent pointer *after* freeing its
1057 * pointee in the bitmaps, so if extend_transaction()
1058 * for some reason fails to put the bitmap changes and
1059 * the release into the same transaction, recovery
1060 * will merely complain about releasing a free block,
1061 * rather than leaking blocks.
1062 */
1063 if (ext4_handle_is_aborted(handle))
1064 return;
1065 if (try_to_extend_transaction(handle, inode)) {
1066 ext4_mark_inode_dirty(handle, inode);
1067 ext4_truncate_restart_trans(handle, inode,
1068 ext4_blocks_for_truncate(inode));
1069 }
1070
1071 /*
1072 * The forget flag here is critical because if
1073 * we are journaling (and not doing data
1074 * journaling), we have to make sure a revoke
1075 * record is written to prevent the journal
1076 * replay from overwriting the (former)
1077 * indirect block if it gets reallocated as a
1078 * data block. This must happen in the same
1079 * transaction where the data blocks are
1080 * actually freed.
1081 */
1082 ext4_free_blocks(handle, inode, NULL, nr, 1,
1083 EXT4_FREE_BLOCKS_METADATA|
1084 EXT4_FREE_BLOCKS_FORGET);
1085
1086 if (parent_bh) {
1087 /*
1088 * The block which we have just freed is
1089 * pointed to by an indirect block: journal it
1090 */
1091 BUFFER_TRACE(parent_bh, "get_write_access");
1092 if (!ext4_journal_get_write_access(handle,
1093 parent_bh)){
1094 *p = 0;
1095 BUFFER_TRACE(parent_bh,
1096 "call ext4_handle_dirty_metadata");
1097 ext4_handle_dirty_metadata(handle,
1098 inode,
1099 parent_bh);
1100 }
1101 }
1102 }
1103 } else {
1104 /* We have reached the bottom of the tree. */
1105 BUFFER_TRACE(parent_bh, "free data blocks");
1106 ext4_free_data(handle, inode, parent_bh, first, last);
1107 }
1108 }
1109
ext4_ind_truncate(handle_t * handle,struct inode * inode)1110 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1111 {
1112 struct ext4_inode_info *ei = EXT4_I(inode);
1113 __le32 *i_data = ei->i_data;
1114 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1115 ext4_lblk_t offsets[4];
1116 Indirect chain[4];
1117 Indirect *partial;
1118 __le32 nr = 0;
1119 int n = 0;
1120 ext4_lblk_t last_block, max_block;
1121 unsigned blocksize = inode->i_sb->s_blocksize;
1122
1123 last_block = (inode->i_size + blocksize-1)
1124 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1125 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1126 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1127
1128 if (last_block != max_block) {
1129 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1130 if (n == 0)
1131 return;
1132 }
1133
1134 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1135
1136 /*
1137 * The orphan list entry will now protect us from any crash which
1138 * occurs before the truncate completes, so it is now safe to propagate
1139 * the new, shorter inode size (held for now in i_size) into the
1140 * on-disk inode. We do this via i_disksize, which is the value which
1141 * ext4 *really* writes onto the disk inode.
1142 */
1143 ei->i_disksize = inode->i_size;
1144
1145 if (last_block == max_block) {
1146 /*
1147 * It is unnecessary to free any data blocks if last_block is
1148 * equal to the indirect block limit.
1149 */
1150 return;
1151 } else if (n == 1) { /* direct blocks */
1152 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1153 i_data + EXT4_NDIR_BLOCKS);
1154 goto do_indirects;
1155 }
1156
1157 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1158 /* Kill the top of shared branch (not detached) */
1159 if (nr) {
1160 if (partial == chain) {
1161 /* Shared branch grows from the inode */
1162 ext4_free_branches(handle, inode, NULL,
1163 &nr, &nr+1, (chain+n-1) - partial);
1164 *partial->p = 0;
1165 /*
1166 * We mark the inode dirty prior to restart,
1167 * and prior to stop. No need for it here.
1168 */
1169 } else {
1170 /* Shared branch grows from an indirect block */
1171 BUFFER_TRACE(partial->bh, "get_write_access");
1172 ext4_free_branches(handle, inode, partial->bh,
1173 partial->p,
1174 partial->p+1, (chain+n-1) - partial);
1175 }
1176 }
1177 /* Clear the ends of indirect blocks on the shared branch */
1178 while (partial > chain) {
1179 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1180 (__le32*)partial->bh->b_data+addr_per_block,
1181 (chain+n-1) - partial);
1182 BUFFER_TRACE(partial->bh, "call brelse");
1183 brelse(partial->bh);
1184 partial--;
1185 }
1186 do_indirects:
1187 /* Kill the remaining (whole) subtrees */
1188 switch (offsets[0]) {
1189 default:
1190 nr = i_data[EXT4_IND_BLOCK];
1191 if (nr) {
1192 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1193 i_data[EXT4_IND_BLOCK] = 0;
1194 }
1195 /* fall through */
1196 case EXT4_IND_BLOCK:
1197 nr = i_data[EXT4_DIND_BLOCK];
1198 if (nr) {
1199 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1200 i_data[EXT4_DIND_BLOCK] = 0;
1201 }
1202 /* fall through */
1203 case EXT4_DIND_BLOCK:
1204 nr = i_data[EXT4_TIND_BLOCK];
1205 if (nr) {
1206 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1207 i_data[EXT4_TIND_BLOCK] = 0;
1208 }
1209 /* fall through */
1210 case EXT4_TIND_BLOCK:
1211 ;
1212 }
1213 }
1214
1215 /**
1216 * ext4_ind_remove_space - remove space from the range
1217 * @handle: JBD handle for this transaction
1218 * @inode: inode we are dealing with
1219 * @start: First block to remove
1220 * @end: One block after the last block to remove (exclusive)
1221 *
1222 * Free the blocks in the defined range (end is exclusive endpoint of
1223 * range). This is used by ext4_punch_hole().
1224 */
ext4_ind_remove_space(handle_t * handle,struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)1225 int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1226 ext4_lblk_t start, ext4_lblk_t end)
1227 {
1228 struct ext4_inode_info *ei = EXT4_I(inode);
1229 __le32 *i_data = ei->i_data;
1230 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1231 ext4_lblk_t offsets[4], offsets2[4];
1232 Indirect chain[4], chain2[4];
1233 Indirect *partial, *partial2;
1234 Indirect *p = NULL, *p2 = NULL;
1235 ext4_lblk_t max_block;
1236 __le32 nr = 0, nr2 = 0;
1237 int n = 0, n2 = 0;
1238 unsigned blocksize = inode->i_sb->s_blocksize;
1239
1240 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1241 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1242 if (end >= max_block)
1243 end = max_block;
1244 if ((start >= end) || (start > max_block))
1245 return 0;
1246
1247 n = ext4_block_to_path(inode, start, offsets, NULL);
1248 n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1249
1250 BUG_ON(n > n2);
1251
1252 if ((n == 1) && (n == n2)) {
1253 /* We're punching only within direct block range */
1254 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1255 i_data + offsets2[0]);
1256 return 0;
1257 } else if (n2 > n) {
1258 /*
1259 * Start and end are on a different levels so we're going to
1260 * free partial block at start, and partial block at end of
1261 * the range. If there are some levels in between then
1262 * do_indirects label will take care of that.
1263 */
1264
1265 if (n == 1) {
1266 /*
1267 * Start is at the direct block level, free
1268 * everything to the end of the level.
1269 */
1270 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1271 i_data + EXT4_NDIR_BLOCKS);
1272 goto end_range;
1273 }
1274
1275
1276 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1277 if (nr) {
1278 if (partial == chain) {
1279 /* Shared branch grows from the inode */
1280 ext4_free_branches(handle, inode, NULL,
1281 &nr, &nr+1, (chain+n-1) - partial);
1282 *partial->p = 0;
1283 } else {
1284 /* Shared branch grows from an indirect block */
1285 BUFFER_TRACE(partial->bh, "get_write_access");
1286 ext4_free_branches(handle, inode, partial->bh,
1287 partial->p,
1288 partial->p+1, (chain+n-1) - partial);
1289 }
1290 }
1291
1292 /*
1293 * Clear the ends of indirect blocks on the shared branch
1294 * at the start of the range
1295 */
1296 while (partial > chain) {
1297 ext4_free_branches(handle, inode, partial->bh,
1298 partial->p + 1,
1299 (__le32 *)partial->bh->b_data+addr_per_block,
1300 (chain+n-1) - partial);
1301 partial--;
1302 }
1303
1304 end_range:
1305 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1306 if (nr2) {
1307 if (partial2 == chain2) {
1308 /*
1309 * Remember, end is exclusive so here we're at
1310 * the start of the next level we're not going
1311 * to free. Everything was covered by the start
1312 * of the range.
1313 */
1314 goto do_indirects;
1315 }
1316 } else {
1317 /*
1318 * ext4_find_shared returns Indirect structure which
1319 * points to the last element which should not be
1320 * removed by truncate. But this is end of the range
1321 * in punch_hole so we need to point to the next element
1322 */
1323 partial2->p++;
1324 }
1325
1326 /*
1327 * Clear the ends of indirect blocks on the shared branch
1328 * at the end of the range
1329 */
1330 while (partial2 > chain2) {
1331 ext4_free_branches(handle, inode, partial2->bh,
1332 (__le32 *)partial2->bh->b_data,
1333 partial2->p,
1334 (chain2+n2-1) - partial2);
1335 partial2--;
1336 }
1337 goto do_indirects;
1338 }
1339
1340 /* Punch happened within the same level (n == n2) */
1341 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1342 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1343
1344 /* Free top, but only if partial2 isn't its subtree. */
1345 if (nr) {
1346 int level = min(partial - chain, partial2 - chain2);
1347 int i;
1348 int subtree = 1;
1349
1350 for (i = 0; i <= level; i++) {
1351 if (offsets[i] != offsets2[i]) {
1352 subtree = 0;
1353 break;
1354 }
1355 }
1356
1357 if (!subtree) {
1358 if (partial == chain) {
1359 /* Shared branch grows from the inode */
1360 ext4_free_branches(handle, inode, NULL,
1361 &nr, &nr+1,
1362 (chain+n-1) - partial);
1363 *partial->p = 0;
1364 } else {
1365 /* Shared branch grows from an indirect block */
1366 BUFFER_TRACE(partial->bh, "get_write_access");
1367 ext4_free_branches(handle, inode, partial->bh,
1368 partial->p,
1369 partial->p+1,
1370 (chain+n-1) - partial);
1371 }
1372 }
1373 }
1374
1375 if (!nr2) {
1376 /*
1377 * ext4_find_shared returns Indirect structure which
1378 * points to the last element which should not be
1379 * removed by truncate. But this is end of the range
1380 * in punch_hole so we need to point to the next element
1381 */
1382 partial2->p++;
1383 }
1384
1385 while (partial > chain || partial2 > chain2) {
1386 int depth = (chain+n-1) - partial;
1387 int depth2 = (chain2+n2-1) - partial2;
1388
1389 if (partial > chain && partial2 > chain2 &&
1390 partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1391 /*
1392 * We've converged on the same block. Clear the range,
1393 * then we're done.
1394 */
1395 ext4_free_branches(handle, inode, partial->bh,
1396 partial->p + 1,
1397 partial2->p,
1398 (chain+n-1) - partial);
1399 goto cleanup;
1400 }
1401
1402 /*
1403 * The start and end partial branches may not be at the same
1404 * level even though the punch happened within one level. So, we
1405 * give them a chance to arrive at the same level, then walk
1406 * them in step with each other until we converge on the same
1407 * block.
1408 */
1409 if (partial > chain && depth <= depth2) {
1410 ext4_free_branches(handle, inode, partial->bh,
1411 partial->p + 1,
1412 (__le32 *)partial->bh->b_data+addr_per_block,
1413 (chain+n-1) - partial);
1414 partial--;
1415 }
1416 if (partial2 > chain2 && depth2 <= depth) {
1417 ext4_free_branches(handle, inode, partial2->bh,
1418 (__le32 *)partial2->bh->b_data,
1419 partial2->p,
1420 (chain2+n2-1) - partial2);
1421 partial2--;
1422 }
1423 }
1424
1425 cleanup:
1426 while (p && p > chain) {
1427 BUFFER_TRACE(p->bh, "call brelse");
1428 brelse(p->bh);
1429 p--;
1430 }
1431 while (p2 && p2 > chain2) {
1432 BUFFER_TRACE(p2->bh, "call brelse");
1433 brelse(p2->bh);
1434 p2--;
1435 }
1436 return 0;
1437
1438 do_indirects:
1439 /* Kill the remaining (whole) subtrees */
1440 switch (offsets[0]) {
1441 default:
1442 if (++n >= n2)
1443 break;
1444 nr = i_data[EXT4_IND_BLOCK];
1445 if (nr) {
1446 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1447 i_data[EXT4_IND_BLOCK] = 0;
1448 }
1449 /* fall through */
1450 case EXT4_IND_BLOCK:
1451 if (++n >= n2)
1452 break;
1453 nr = i_data[EXT4_DIND_BLOCK];
1454 if (nr) {
1455 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1456 i_data[EXT4_DIND_BLOCK] = 0;
1457 }
1458 /* fall through */
1459 case EXT4_DIND_BLOCK:
1460 if (++n >= n2)
1461 break;
1462 nr = i_data[EXT4_TIND_BLOCK];
1463 if (nr) {
1464 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1465 i_data[EXT4_TIND_BLOCK] = 0;
1466 }
1467 /* fall through */
1468 case EXT4_TIND_BLOCK:
1469 ;
1470 }
1471 goto cleanup;
1472 }
1473