• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/indirect.c
4  *
5  *  from
6  *
7  *  linux/fs/ext4/inode.c
8  *
9  * Copyright (C) 1992, 1993, 1994, 1995
10  * Remy Card (card@masi.ibp.fr)
11  * Laboratoire MASI - Institut Blaise Pascal
12  * Universite Pierre et Marie Curie (Paris VI)
13  *
14  *  from
15  *
16  *  linux/fs/minix/inode.c
17  *
18  *  Copyright (C) 1991, 1992  Linus Torvalds
19  *
20  *  Goal-directed block allocation by Stephen Tweedie
21  *	(sct@redhat.com), 1993, 1998
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "truncate.h"
26 #include <linux/dax.h>
27 #include <linux/uio.h>
28 
29 #include <trace/events/ext4.h>
30 
31 typedef struct {
32 	__le32	*p;
33 	__le32	key;
34 	struct buffer_head *bh;
35 } Indirect;
36 
add_chain(Indirect * p,struct buffer_head * bh,__le32 * v)37 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
38 {
39 	p->key = *(p->p = v);
40 	p->bh = bh;
41 }
42 
43 /**
44  *	ext4_block_to_path - parse the block number into array of offsets
45  *	@inode: inode in question (we are only interested in its superblock)
46  *	@i_block: block number to be parsed
47  *	@offsets: array to store the offsets in
48  *	@boundary: set this non-zero if the referred-to block is likely to be
49  *	       followed (on disk) by an indirect block.
50  *
51  *	To store the locations of file's data ext4 uses a data structure common
52  *	for UNIX filesystems - tree of pointers anchored in the inode, with
53  *	data blocks at leaves and indirect blocks in intermediate nodes.
54  *	This function translates the block number into path in that tree -
55  *	return value is the path length and @offsets[n] is the offset of
56  *	pointer to (n+1)th node in the nth one. If @block is out of range
57  *	(negative or too large) warning is printed and zero returned.
58  *
59  *	Note: function doesn't find node addresses, so no IO is needed. All
60  *	we need to know is the capacity of indirect blocks (taken from the
61  *	inode->i_sb).
62  */
63 
64 /*
65  * Portability note: the last comparison (check that we fit into triple
66  * indirect block) is spelled differently, because otherwise on an
67  * architecture with 32-bit longs and 8Kb pages we might get into trouble
68  * if our filesystem had 8Kb blocks. We might use long long, but that would
69  * kill us on x86. Oh, well, at least the sign propagation does not matter -
70  * i_block would have to be negative in the very beginning, so we would not
71  * get there at all.
72  */
73 
ext4_block_to_path(struct inode * inode,ext4_lblk_t i_block,ext4_lblk_t offsets[4],int * boundary)74 static int ext4_block_to_path(struct inode *inode,
75 			      ext4_lblk_t i_block,
76 			      ext4_lblk_t offsets[4], int *boundary)
77 {
78 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
79 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
80 	const long direct_blocks = EXT4_NDIR_BLOCKS,
81 		indirect_blocks = ptrs,
82 		double_blocks = (1 << (ptrs_bits * 2));
83 	int n = 0;
84 	int final = 0;
85 
86 	if (i_block < direct_blocks) {
87 		offsets[n++] = i_block;
88 		final = direct_blocks;
89 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
90 		offsets[n++] = EXT4_IND_BLOCK;
91 		offsets[n++] = i_block;
92 		final = ptrs;
93 	} else if ((i_block -= indirect_blocks) < double_blocks) {
94 		offsets[n++] = EXT4_DIND_BLOCK;
95 		offsets[n++] = i_block >> ptrs_bits;
96 		offsets[n++] = i_block & (ptrs - 1);
97 		final = ptrs;
98 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
99 		offsets[n++] = EXT4_TIND_BLOCK;
100 		offsets[n++] = i_block >> (ptrs_bits * 2);
101 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
102 		offsets[n++] = i_block & (ptrs - 1);
103 		final = ptrs;
104 	} else {
105 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
106 			     i_block + direct_blocks +
107 			     indirect_blocks + double_blocks, inode->i_ino);
108 	}
109 	if (boundary)
110 		*boundary = final - 1 - (i_block & (ptrs - 1));
111 	return n;
112 }
113 
114 /**
115  *	ext4_get_branch - read the chain of indirect blocks leading to data
116  *	@inode: inode in question
117  *	@depth: depth of the chain (1 - direct pointer, etc.)
118  *	@offsets: offsets of pointers in inode/indirect blocks
119  *	@chain: place to store the result
120  *	@err: here we store the error value
121  *
122  *	Function fills the array of triples <key, p, bh> and returns %NULL
123  *	if everything went OK or the pointer to the last filled triple
124  *	(incomplete one) otherwise. Upon the return chain[i].key contains
125  *	the number of (i+1)-th block in the chain (as it is stored in memory,
126  *	i.e. little-endian 32-bit), chain[i].p contains the address of that
127  *	number (it points into struct inode for i==0 and into the bh->b_data
128  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
129  *	block for i>0 and NULL for i==0. In other words, it holds the block
130  *	numbers of the chain, addresses they were taken from (and where we can
131  *	verify that chain did not change) and buffer_heads hosting these
132  *	numbers.
133  *
134  *	Function stops when it stumbles upon zero pointer (absent block)
135  *		(pointer to last triple returned, *@err == 0)
136  *	or when it gets an IO error reading an indirect block
137  *		(ditto, *@err == -EIO)
138  *	or when it reads all @depth-1 indirect blocks successfully and finds
139  *	the whole chain, all way to the data (returns %NULL, *err == 0).
140  *
141  *      Need to be called with
142  *      down_read(&EXT4_I(inode)->i_data_sem)
143  */
ext4_get_branch(struct inode * inode,int depth,ext4_lblk_t * offsets,Indirect chain[4],int * err)144 static Indirect *ext4_get_branch(struct inode *inode, int depth,
145 				 ext4_lblk_t  *offsets,
146 				 Indirect chain[4], int *err)
147 {
148 	struct super_block *sb = inode->i_sb;
149 	Indirect *p = chain;
150 	struct buffer_head *bh;
151 	unsigned int key;
152 	int ret = -EIO;
153 
154 	*err = 0;
155 	/* i_data is not going away, no lock needed */
156 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
157 	if (!p->key)
158 		goto no_block;
159 	while (--depth) {
160 		key = le32_to_cpu(p->key);
161 		if (key > ext4_blocks_count(EXT4_SB(sb)->s_es)) {
162 			/* the block was out of range */
163 			ret = -EFSCORRUPTED;
164 			goto failure;
165 		}
166 		bh = sb_getblk(sb, key);
167 		if (unlikely(!bh)) {
168 			ret = -ENOMEM;
169 			goto failure;
170 		}
171 
172 		if (!bh_uptodate_or_lock(bh)) {
173 			if (bh_submit_read(bh) < 0) {
174 				put_bh(bh);
175 				goto failure;
176 			}
177 			/* validate block references */
178 			if (ext4_check_indirect_blockref(inode, bh)) {
179 				put_bh(bh);
180 				goto failure;
181 			}
182 		}
183 
184 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
185 		/* Reader: end */
186 		if (!p->key)
187 			goto no_block;
188 	}
189 	return NULL;
190 
191 failure:
192 	*err = ret;
193 no_block:
194 	return p;
195 }
196 
197 /**
198  *	ext4_find_near - find a place for allocation with sufficient locality
199  *	@inode: owner
200  *	@ind: descriptor of indirect block.
201  *
202  *	This function returns the preferred place for block allocation.
203  *	It is used when heuristic for sequential allocation fails.
204  *	Rules are:
205  *	  + if there is a block to the left of our position - allocate near it.
206  *	  + if pointer will live in indirect block - allocate near that block.
207  *	  + if pointer will live in inode - allocate in the same
208  *	    cylinder group.
209  *
210  * In the latter case we colour the starting block by the callers PID to
211  * prevent it from clashing with concurrent allocations for a different inode
212  * in the same block group.   The PID is used here so that functionally related
213  * files will be close-by on-disk.
214  *
215  *	Caller must make sure that @ind is valid and will stay that way.
216  */
ext4_find_near(struct inode * inode,Indirect * ind)217 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
218 {
219 	struct ext4_inode_info *ei = EXT4_I(inode);
220 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
221 	__le32 *p;
222 
223 	/* Try to find previous block */
224 	for (p = ind->p - 1; p >= start; p--) {
225 		if (*p)
226 			return le32_to_cpu(*p);
227 	}
228 
229 	/* No such thing, so let's try location of indirect block */
230 	if (ind->bh)
231 		return ind->bh->b_blocknr;
232 
233 	/*
234 	 * It is going to be referred to from the inode itself? OK, just put it
235 	 * into the same cylinder group then.
236 	 */
237 	return ext4_inode_to_goal_block(inode);
238 }
239 
240 /**
241  *	ext4_find_goal - find a preferred place for allocation.
242  *	@inode: owner
243  *	@block:  block we want
244  *	@partial: pointer to the last triple within a chain
245  *
246  *	Normally this function find the preferred place for block allocation,
247  *	returns it.
248  *	Because this is only used for non-extent files, we limit the block nr
249  *	to 32 bits.
250  */
ext4_find_goal(struct inode * inode,ext4_lblk_t block,Indirect * partial)251 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
252 				   Indirect *partial)
253 {
254 	ext4_fsblk_t goal;
255 
256 	/*
257 	 * XXX need to get goal block from mballoc's data structures
258 	 */
259 
260 	goal = ext4_find_near(inode, partial);
261 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
262 	return goal;
263 }
264 
265 /**
266  *	ext4_blks_to_allocate - Look up the block map and count the number
267  *	of direct blocks need to be allocated for the given branch.
268  *
269  *	@branch: chain of indirect blocks
270  *	@k: number of blocks need for indirect blocks
271  *	@blks: number of data blocks to be mapped.
272  *	@blocks_to_boundary:  the offset in the indirect block
273  *
274  *	return the total number of blocks to be allocate, including the
275  *	direct and indirect blocks.
276  */
ext4_blks_to_allocate(Indirect * branch,int k,unsigned int blks,int blocks_to_boundary)277 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
278 				 int blocks_to_boundary)
279 {
280 	unsigned int count = 0;
281 
282 	/*
283 	 * Simple case, [t,d]Indirect block(s) has not allocated yet
284 	 * then it's clear blocks on that path have not allocated
285 	 */
286 	if (k > 0) {
287 		/* right now we don't handle cross boundary allocation */
288 		if (blks < blocks_to_boundary + 1)
289 			count += blks;
290 		else
291 			count += blocks_to_boundary + 1;
292 		return count;
293 	}
294 
295 	count++;
296 	while (count < blks && count <= blocks_to_boundary &&
297 		le32_to_cpu(*(branch[0].p + count)) == 0) {
298 		count++;
299 	}
300 	return count;
301 }
302 
303 /**
304  * ext4_alloc_branch() - allocate and set up a chain of blocks
305  * @handle: handle for this transaction
306  * @ar: structure describing the allocation request
307  * @indirect_blks: number of allocated indirect blocks
308  * @offsets: offsets (in the blocks) to store the pointers to next.
309  * @branch: place to store the chain in.
310  *
311  *	This function allocates blocks, zeroes out all but the last one,
312  *	links them into chain and (if we are synchronous) writes them to disk.
313  *	In other words, it prepares a branch that can be spliced onto the
314  *	inode. It stores the information about that chain in the branch[], in
315  *	the same format as ext4_get_branch() would do. We are calling it after
316  *	we had read the existing part of chain and partial points to the last
317  *	triple of that (one with zero ->key). Upon the exit we have the same
318  *	picture as after the successful ext4_get_block(), except that in one
319  *	place chain is disconnected - *branch->p is still zero (we did not
320  *	set the last link), but branch->key contains the number that should
321  *	be placed into *branch->p to fill that gap.
322  *
323  *	If allocation fails we free all blocks we've allocated (and forget
324  *	their buffer_heads) and return the error value the from failed
325  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
326  *	as described above and return 0.
327  */
ext4_alloc_branch(handle_t * handle,struct ext4_allocation_request * ar,int indirect_blks,ext4_lblk_t * offsets,Indirect * branch)328 static int ext4_alloc_branch(handle_t *handle,
329 			     struct ext4_allocation_request *ar,
330 			     int indirect_blks, ext4_lblk_t *offsets,
331 			     Indirect *branch)
332 {
333 	struct buffer_head *		bh;
334 	ext4_fsblk_t			b, new_blocks[4];
335 	__le32				*p;
336 	int				i, j, err, len = 1;
337 
338 	for (i = 0; i <= indirect_blks; i++) {
339 		if (i == indirect_blks) {
340 			new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
341 		} else
342 			ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
343 					ar->inode, ar->goal,
344 					ar->flags & EXT4_MB_DELALLOC_RESERVED,
345 					NULL, &err);
346 		if (err) {
347 			i--;
348 			goto failed;
349 		}
350 		branch[i].key = cpu_to_le32(new_blocks[i]);
351 		if (i == 0)
352 			continue;
353 
354 		bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
355 		if (unlikely(!bh)) {
356 			err = -ENOMEM;
357 			goto failed;
358 		}
359 		lock_buffer(bh);
360 		BUFFER_TRACE(bh, "call get_create_access");
361 		err = ext4_journal_get_create_access(handle, bh);
362 		if (err) {
363 			unlock_buffer(bh);
364 			goto failed;
365 		}
366 
367 		memset(bh->b_data, 0, bh->b_size);
368 		p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
369 		b = new_blocks[i];
370 
371 		if (i == indirect_blks)
372 			len = ar->len;
373 		for (j = 0; j < len; j++)
374 			*p++ = cpu_to_le32(b++);
375 
376 		BUFFER_TRACE(bh, "marking uptodate");
377 		set_buffer_uptodate(bh);
378 		unlock_buffer(bh);
379 
380 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
381 		err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
382 		if (err)
383 			goto failed;
384 	}
385 	return 0;
386 failed:
387 	for (; i >= 0; i--) {
388 		/*
389 		 * We want to ext4_forget() only freshly allocated indirect
390 		 * blocks.  Buffer for new_blocks[i-1] is at branch[i].bh and
391 		 * buffer at branch[0].bh is indirect block / inode already
392 		 * existing before ext4_alloc_branch() was called.
393 		 */
394 		if (i > 0 && i != indirect_blks && branch[i].bh)
395 			ext4_forget(handle, 1, ar->inode, branch[i].bh,
396 				    branch[i].bh->b_blocknr);
397 		ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
398 				 (i == indirect_blks) ? ar->len : 1, 0);
399 	}
400 	return err;
401 }
402 
403 /**
404  * ext4_splice_branch() - splice the allocated branch onto inode.
405  * @handle: handle for this transaction
406  * @ar: structure describing the allocation request
407  * @where: location of missing link
408  * @num:   number of indirect blocks we are adding
409  *
410  * This function fills the missing link and does all housekeeping needed in
411  * inode (->i_blocks, etc.). In case of success we end up with the full
412  * chain to new block and return 0.
413  */
ext4_splice_branch(handle_t * handle,struct ext4_allocation_request * ar,Indirect * where,int num)414 static int ext4_splice_branch(handle_t *handle,
415 			      struct ext4_allocation_request *ar,
416 			      Indirect *where, int num)
417 {
418 	int i;
419 	int err = 0;
420 	ext4_fsblk_t current_block;
421 
422 	/*
423 	 * If we're splicing into a [td]indirect block (as opposed to the
424 	 * inode) then we need to get write access to the [td]indirect block
425 	 * before the splice.
426 	 */
427 	if (where->bh) {
428 		BUFFER_TRACE(where->bh, "get_write_access");
429 		err = ext4_journal_get_write_access(handle, where->bh);
430 		if (err)
431 			goto err_out;
432 	}
433 	/* That's it */
434 
435 	*where->p = where->key;
436 
437 	/*
438 	 * Update the host buffer_head or inode to point to more just allocated
439 	 * direct blocks blocks
440 	 */
441 	if (num == 0 && ar->len > 1) {
442 		current_block = le32_to_cpu(where->key) + 1;
443 		for (i = 1; i < ar->len; i++)
444 			*(where->p + i) = cpu_to_le32(current_block++);
445 	}
446 
447 	/* We are done with atomic stuff, now do the rest of housekeeping */
448 	/* had we spliced it onto indirect block? */
449 	if (where->bh) {
450 		/*
451 		 * If we spliced it onto an indirect block, we haven't
452 		 * altered the inode.  Note however that if it is being spliced
453 		 * onto an indirect block at the very end of the file (the
454 		 * file is growing) then we *will* alter the inode to reflect
455 		 * the new i_size.  But that is not done here - it is done in
456 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
457 		 */
458 		jbd_debug(5, "splicing indirect only\n");
459 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
460 		err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
461 		if (err)
462 			goto err_out;
463 	} else {
464 		/*
465 		 * OK, we spliced it into the inode itself on a direct block.
466 		 */
467 		ext4_mark_inode_dirty(handle, ar->inode);
468 		jbd_debug(5, "splicing direct\n");
469 	}
470 	return err;
471 
472 err_out:
473 	for (i = 1; i <= num; i++) {
474 		/*
475 		 * branch[i].bh is newly allocated, so there is no
476 		 * need to revoke the block, which is why we don't
477 		 * need to set EXT4_FREE_BLOCKS_METADATA.
478 		 */
479 		ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
480 				 EXT4_FREE_BLOCKS_FORGET);
481 	}
482 	ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
483 			 ar->len, 0);
484 
485 	return err;
486 }
487 
488 /*
489  * The ext4_ind_map_blocks() function handles non-extents inodes
490  * (i.e., using the traditional indirect/double-indirect i_blocks
491  * scheme) for ext4_map_blocks().
492  *
493  * Allocation strategy is simple: if we have to allocate something, we will
494  * have to go the whole way to leaf. So let's do it before attaching anything
495  * to tree, set linkage between the newborn blocks, write them if sync is
496  * required, recheck the path, free and repeat if check fails, otherwise
497  * set the last missing link (that will protect us from any truncate-generated
498  * removals - all blocks on the path are immune now) and possibly force the
499  * write on the parent block.
500  * That has a nice additional property: no special recovery from the failed
501  * allocations is needed - we simply release blocks and do not touch anything
502  * reachable from inode.
503  *
504  * `handle' can be NULL if create == 0.
505  *
506  * return > 0, # of blocks mapped or allocated.
507  * return = 0, if plain lookup failed.
508  * return < 0, error case.
509  *
510  * The ext4_ind_get_blocks() function should be called with
511  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
512  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
513  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
514  * blocks.
515  */
ext4_ind_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)516 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
517 			struct ext4_map_blocks *map,
518 			int flags)
519 {
520 	struct ext4_allocation_request ar;
521 	int err = -EIO;
522 	ext4_lblk_t offsets[4];
523 	Indirect chain[4];
524 	Indirect *partial;
525 	int indirect_blks;
526 	int blocks_to_boundary = 0;
527 	int depth;
528 	int count = 0;
529 	ext4_fsblk_t first_block = 0;
530 
531 	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
532 	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
533 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
534 	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
535 				   &blocks_to_boundary);
536 
537 	if (depth == 0)
538 		goto out;
539 
540 	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
541 
542 	/* Simplest case - block found, no allocation needed */
543 	if (!partial) {
544 		first_block = le32_to_cpu(chain[depth - 1].key);
545 		count++;
546 		/*map more blocks*/
547 		while (count < map->m_len && count <= blocks_to_boundary) {
548 			ext4_fsblk_t blk;
549 
550 			blk = le32_to_cpu(*(chain[depth-1].p + count));
551 
552 			if (blk == first_block + count)
553 				count++;
554 			else
555 				break;
556 		}
557 		goto got_it;
558 	}
559 
560 	/* Next simple case - plain lookup failed */
561 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
562 		unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
563 		int i;
564 
565 		/*
566 		 * Count number blocks in a subtree under 'partial'. At each
567 		 * level we count number of complete empty subtrees beyond
568 		 * current offset and then descend into the subtree only
569 		 * partially beyond current offset.
570 		 */
571 		count = 0;
572 		for (i = partial - chain + 1; i < depth; i++)
573 			count = count * epb + (epb - offsets[i] - 1);
574 		count++;
575 		/* Fill in size of a hole we found */
576 		map->m_pblk = 0;
577 		map->m_len = min_t(unsigned int, map->m_len, count);
578 		goto cleanup;
579 	}
580 
581 	/* Failed read of indirect block */
582 	if (err == -EIO)
583 		goto cleanup;
584 
585 	/*
586 	 * Okay, we need to do block allocation.
587 	*/
588 	if (ext4_has_feature_bigalloc(inode->i_sb)) {
589 		EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
590 				 "non-extent mapped inodes with bigalloc");
591 		return -EFSCORRUPTED;
592 	}
593 
594 	/* Set up for the direct block allocation */
595 	memset(&ar, 0, sizeof(ar));
596 	ar.inode = inode;
597 	ar.logical = map->m_lblk;
598 	if (S_ISREG(inode->i_mode))
599 		ar.flags = EXT4_MB_HINT_DATA;
600 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
601 		ar.flags |= EXT4_MB_DELALLOC_RESERVED;
602 	if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
603 		ar.flags |= EXT4_MB_USE_RESERVED;
604 
605 	ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
606 
607 	/* the number of blocks need to allocate for [d,t]indirect blocks */
608 	indirect_blks = (chain + depth) - partial - 1;
609 
610 	/*
611 	 * Next look up the indirect map to count the totoal number of
612 	 * direct blocks to allocate for this branch.
613 	 */
614 	ar.len = ext4_blks_to_allocate(partial, indirect_blks,
615 				       map->m_len, blocks_to_boundary);
616 
617 	/*
618 	 * Block out ext4_truncate while we alter the tree
619 	 */
620 	err = ext4_alloc_branch(handle, &ar, indirect_blks,
621 				offsets + (partial - chain), partial);
622 
623 	/*
624 	 * The ext4_splice_branch call will free and forget any buffers
625 	 * on the new chain if there is a failure, but that risks using
626 	 * up transaction credits, especially for bitmaps where the
627 	 * credits cannot be returned.  Can we handle this somehow?  We
628 	 * may need to return -EAGAIN upwards in the worst case.  --sct
629 	 */
630 	if (!err)
631 		err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
632 	if (err)
633 		goto cleanup;
634 
635 	map->m_flags |= EXT4_MAP_NEW;
636 
637 	ext4_update_inode_fsync_trans(handle, inode, 1);
638 	count = ar.len;
639 
640 	/*
641 	 * Update reserved blocks/metadata blocks after successful block
642 	 * allocation which had been deferred till now.
643 	 */
644 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
645 		ext4_da_update_reserve_space(inode, count, 1);
646 
647 got_it:
648 	map->m_flags |= EXT4_MAP_MAPPED;
649 	map->m_pblk = le32_to_cpu(chain[depth-1].key);
650 	map->m_len = count;
651 	if (count > blocks_to_boundary)
652 		map->m_flags |= EXT4_MAP_BOUNDARY;
653 	err = count;
654 	/* Clean up and exit */
655 	partial = chain + depth - 1;	/* the whole chain */
656 cleanup:
657 	while (partial > chain) {
658 		BUFFER_TRACE(partial->bh, "call brelse");
659 		brelse(partial->bh);
660 		partial--;
661 	}
662 out:
663 	trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
664 	return err;
665 }
666 
667 /*
668  * Calculate the number of metadata blocks need to reserve
669  * to allocate a new block at @lblocks for non extent file based file
670  */
ext4_ind_calc_metadata_amount(struct inode * inode,sector_t lblock)671 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
672 {
673 	struct ext4_inode_info *ei = EXT4_I(inode);
674 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
675 	int blk_bits;
676 
677 	if (lblock < EXT4_NDIR_BLOCKS)
678 		return 0;
679 
680 	lblock -= EXT4_NDIR_BLOCKS;
681 
682 	if (ei->i_da_metadata_calc_len &&
683 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
684 		ei->i_da_metadata_calc_len++;
685 		return 0;
686 	}
687 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
688 	ei->i_da_metadata_calc_len = 1;
689 	blk_bits = order_base_2(lblock);
690 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
691 }
692 
693 /*
694  * Calculate number of indirect blocks touched by mapping @nrblocks logically
695  * contiguous blocks
696  */
ext4_ind_trans_blocks(struct inode * inode,int nrblocks)697 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
698 {
699 	/*
700 	 * With N contiguous data blocks, we need at most
701 	 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
702 	 * 2 dindirect blocks, and 1 tindirect block
703 	 */
704 	return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
705 }
706 
707 /*
708  * Truncate transactions can be complex and absolutely huge.  So we need to
709  * be able to restart the transaction at a conventient checkpoint to make
710  * sure we don't overflow the journal.
711  *
712  * Try to extend this transaction for the purposes of truncation.  If
713  * extend fails, we need to propagate the failure up and restart the
714  * transaction in the top-level truncate loop. --sct
715  *
716  * Returns 0 if we managed to create more room.  If we can't create more
717  * room, and the transaction must be restarted we return 1.
718  */
try_to_extend_transaction(handle_t * handle,struct inode * inode)719 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
720 {
721 	if (!ext4_handle_valid(handle))
722 		return 0;
723 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
724 		return 0;
725 	if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
726 		return 0;
727 	return 1;
728 }
729 
730 /*
731  * Probably it should be a library function... search for first non-zero word
732  * or memcmp with zero_page, whatever is better for particular architecture.
733  * Linus?
734  */
all_zeroes(__le32 * p,__le32 * q)735 static inline int all_zeroes(__le32 *p, __le32 *q)
736 {
737 	while (p < q)
738 		if (*p++)
739 			return 0;
740 	return 1;
741 }
742 
743 /**
744  *	ext4_find_shared - find the indirect blocks for partial truncation.
745  *	@inode:	  inode in question
746  *	@depth:	  depth of the affected branch
747  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
748  *	@chain:	  place to store the pointers to partial indirect blocks
749  *	@top:	  place to the (detached) top of branch
750  *
751  *	This is a helper function used by ext4_truncate().
752  *
753  *	When we do truncate() we may have to clean the ends of several
754  *	indirect blocks but leave the blocks themselves alive. Block is
755  *	partially truncated if some data below the new i_size is referred
756  *	from it (and it is on the path to the first completely truncated
757  *	data block, indeed).  We have to free the top of that path along
758  *	with everything to the right of the path. Since no allocation
759  *	past the truncation point is possible until ext4_truncate()
760  *	finishes, we may safely do the latter, but top of branch may
761  *	require special attention - pageout below the truncation point
762  *	might try to populate it.
763  *
764  *	We atomically detach the top of branch from the tree, store the
765  *	block number of its root in *@top, pointers to buffer_heads of
766  *	partially truncated blocks - in @chain[].bh and pointers to
767  *	their last elements that should not be removed - in
768  *	@chain[].p. Return value is the pointer to last filled element
769  *	of @chain.
770  *
771  *	The work left to caller to do the actual freeing of subtrees:
772  *		a) free the subtree starting from *@top
773  *		b) free the subtrees whose roots are stored in
774  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
775  *		c) free the subtrees growing from the inode past the @chain[0].
776  *			(no partially truncated stuff there).  */
777 
ext4_find_shared(struct inode * inode,int depth,ext4_lblk_t offsets[4],Indirect chain[4],__le32 * top)778 static Indirect *ext4_find_shared(struct inode *inode, int depth,
779 				  ext4_lblk_t offsets[4], Indirect chain[4],
780 				  __le32 *top)
781 {
782 	Indirect *partial, *p;
783 	int k, err;
784 
785 	*top = 0;
786 	/* Make k index the deepest non-null offset + 1 */
787 	for (k = depth; k > 1 && !offsets[k-1]; k--)
788 		;
789 	partial = ext4_get_branch(inode, k, offsets, chain, &err);
790 	/* Writer: pointers */
791 	if (!partial)
792 		partial = chain + k-1;
793 	/*
794 	 * If the branch acquired continuation since we've looked at it -
795 	 * fine, it should all survive and (new) top doesn't belong to us.
796 	 */
797 	if (!partial->key && *partial->p)
798 		/* Writer: end */
799 		goto no_top;
800 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
801 		;
802 	/*
803 	 * OK, we've found the last block that must survive. The rest of our
804 	 * branch should be detached before unlocking. However, if that rest
805 	 * of branch is all ours and does not grow immediately from the inode
806 	 * it's easier to cheat and just decrement partial->p.
807 	 */
808 	if (p == chain + k - 1 && p > chain) {
809 		p->p--;
810 	} else {
811 		*top = *p->p;
812 		/* Nope, don't do this in ext4.  Must leave the tree intact */
813 #if 0
814 		*p->p = 0;
815 #endif
816 	}
817 	/* Writer: end */
818 
819 	while (partial > p) {
820 		brelse(partial->bh);
821 		partial--;
822 	}
823 no_top:
824 	return partial;
825 }
826 
827 /*
828  * Zero a number of block pointers in either an inode or an indirect block.
829  * If we restart the transaction we must again get write access to the
830  * indirect block for further modification.
831  *
832  * We release `count' blocks on disk, but (last - first) may be greater
833  * than `count' because there can be holes in there.
834  *
835  * Return 0 on success, 1 on invalid block range
836  * and < 0 on fatal error.
837  */
ext4_clear_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block_to_free,unsigned long count,__le32 * first,__le32 * last)838 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
839 			     struct buffer_head *bh,
840 			     ext4_fsblk_t block_to_free,
841 			     unsigned long count, __le32 *first,
842 			     __le32 *last)
843 {
844 	__le32 *p;
845 	int	flags = EXT4_FREE_BLOCKS_VALIDATED;
846 	int	err;
847 
848 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
849 	    ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
850 		flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
851 	else if (ext4_should_journal_data(inode))
852 		flags |= EXT4_FREE_BLOCKS_FORGET;
853 
854 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
855 				   count)) {
856 		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
857 				 "blocks %llu len %lu",
858 				 (unsigned long long) block_to_free, count);
859 		return 1;
860 	}
861 
862 	if (try_to_extend_transaction(handle, inode)) {
863 		if (bh) {
864 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
865 			err = ext4_handle_dirty_metadata(handle, inode, bh);
866 			if (unlikely(err))
867 				goto out_err;
868 		}
869 		err = ext4_mark_inode_dirty(handle, inode);
870 		if (unlikely(err))
871 			goto out_err;
872 		err = ext4_truncate_restart_trans(handle, inode,
873 					ext4_blocks_for_truncate(inode));
874 		if (unlikely(err))
875 			goto out_err;
876 		if (bh) {
877 			BUFFER_TRACE(bh, "retaking write access");
878 			err = ext4_journal_get_write_access(handle, bh);
879 			if (unlikely(err))
880 				goto out_err;
881 		}
882 	}
883 
884 	for (p = first; p < last; p++)
885 		*p = 0;
886 
887 	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
888 	return 0;
889 out_err:
890 	ext4_std_error(inode->i_sb, err);
891 	return err;
892 }
893 
894 /**
895  * ext4_free_data - free a list of data blocks
896  * @handle:	handle for this transaction
897  * @inode:	inode we are dealing with
898  * @this_bh:	indirect buffer_head which contains *@first and *@last
899  * @first:	array of block numbers
900  * @last:	points immediately past the end of array
901  *
902  * We are freeing all blocks referred from that array (numbers are stored as
903  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
904  *
905  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
906  * blocks are contiguous then releasing them at one time will only affect one
907  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
908  * actually use a lot of journal space.
909  *
910  * @this_bh will be %NULL if @first and @last point into the inode's direct
911  * block pointers.
912  */
ext4_free_data(handle_t * handle,struct inode * inode,struct buffer_head * this_bh,__le32 * first,__le32 * last)913 static void ext4_free_data(handle_t *handle, struct inode *inode,
914 			   struct buffer_head *this_bh,
915 			   __le32 *first, __le32 *last)
916 {
917 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
918 	unsigned long count = 0;	    /* Number of blocks in the run */
919 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
920 					       corresponding to
921 					       block_to_free */
922 	ext4_fsblk_t nr;		    /* Current block # */
923 	__le32 *p;			    /* Pointer into inode/ind
924 					       for current block */
925 	int err = 0;
926 
927 	if (this_bh) {				/* For indirect block */
928 		BUFFER_TRACE(this_bh, "get_write_access");
929 		err = ext4_journal_get_write_access(handle, this_bh);
930 		/* Important: if we can't update the indirect pointers
931 		 * to the blocks, we can't free them. */
932 		if (err)
933 			return;
934 	}
935 
936 	for (p = first; p < last; p++) {
937 		nr = le32_to_cpu(*p);
938 		if (nr) {
939 			/* accumulate blocks to free if they're contiguous */
940 			if (count == 0) {
941 				block_to_free = nr;
942 				block_to_free_p = p;
943 				count = 1;
944 			} else if (nr == block_to_free + count) {
945 				count++;
946 			} else {
947 				err = ext4_clear_blocks(handle, inode, this_bh,
948 						        block_to_free, count,
949 						        block_to_free_p, p);
950 				if (err)
951 					break;
952 				block_to_free = nr;
953 				block_to_free_p = p;
954 				count = 1;
955 			}
956 		}
957 	}
958 
959 	if (!err && count > 0)
960 		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
961 					count, block_to_free_p, p);
962 	if (err < 0)
963 		/* fatal error */
964 		return;
965 
966 	if (this_bh) {
967 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
968 
969 		/*
970 		 * The buffer head should have an attached journal head at this
971 		 * point. However, if the data is corrupted and an indirect
972 		 * block pointed to itself, it would have been detached when
973 		 * the block was cleared. Check for this instead of OOPSing.
974 		 */
975 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
976 			ext4_handle_dirty_metadata(handle, inode, this_bh);
977 		else
978 			EXT4_ERROR_INODE(inode,
979 					 "circular indirect block detected at "
980 					 "block %llu",
981 				(unsigned long long) this_bh->b_blocknr);
982 	}
983 }
984 
985 /**
986  *	ext4_free_branches - free an array of branches
987  *	@handle: JBD handle for this transaction
988  *	@inode:	inode we are dealing with
989  *	@parent_bh: the buffer_head which contains *@first and *@last
990  *	@first:	array of block numbers
991  *	@last:	pointer immediately past the end of array
992  *	@depth:	depth of the branches to free
993  *
994  *	We are freeing all blocks referred from these branches (numbers are
995  *	stored as little-endian 32-bit) and updating @inode->i_blocks
996  *	appropriately.
997  */
ext4_free_branches(handle_t * handle,struct inode * inode,struct buffer_head * parent_bh,__le32 * first,__le32 * last,int depth)998 static void ext4_free_branches(handle_t *handle, struct inode *inode,
999 			       struct buffer_head *parent_bh,
1000 			       __le32 *first, __le32 *last, int depth)
1001 {
1002 	ext4_fsblk_t nr;
1003 	__le32 *p;
1004 
1005 	if (ext4_handle_is_aborted(handle))
1006 		return;
1007 
1008 	if (depth--) {
1009 		struct buffer_head *bh;
1010 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1011 		p = last;
1012 		while (--p >= first) {
1013 			nr = le32_to_cpu(*p);
1014 			if (!nr)
1015 				continue;		/* A hole */
1016 
1017 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1018 						   nr, 1)) {
1019 				EXT4_ERROR_INODE(inode,
1020 						 "invalid indirect mapped "
1021 						 "block %lu (level %d)",
1022 						 (unsigned long) nr, depth);
1023 				break;
1024 			}
1025 
1026 			/* Go read the buffer for the next level down */
1027 			bh = sb_bread(inode->i_sb, nr);
1028 
1029 			/*
1030 			 * A read failure? Report error and clear slot
1031 			 * (should be rare).
1032 			 */
1033 			if (!bh) {
1034 				EXT4_ERROR_INODE_BLOCK(inode, nr,
1035 						       "Read failure");
1036 				continue;
1037 			}
1038 
1039 			/* This zaps the entire block.  Bottom up. */
1040 			BUFFER_TRACE(bh, "free child branches");
1041 			ext4_free_branches(handle, inode, bh,
1042 					(__le32 *) bh->b_data,
1043 					(__le32 *) bh->b_data + addr_per_block,
1044 					depth);
1045 			brelse(bh);
1046 
1047 			/*
1048 			 * Everything below this this pointer has been
1049 			 * released.  Now let this top-of-subtree go.
1050 			 *
1051 			 * We want the freeing of this indirect block to be
1052 			 * atomic in the journal with the updating of the
1053 			 * bitmap block which owns it.  So make some room in
1054 			 * the journal.
1055 			 *
1056 			 * We zero the parent pointer *after* freeing its
1057 			 * pointee in the bitmaps, so if extend_transaction()
1058 			 * for some reason fails to put the bitmap changes and
1059 			 * the release into the same transaction, recovery
1060 			 * will merely complain about releasing a free block,
1061 			 * rather than leaking blocks.
1062 			 */
1063 			if (ext4_handle_is_aborted(handle))
1064 				return;
1065 			if (try_to_extend_transaction(handle, inode)) {
1066 				ext4_mark_inode_dirty(handle, inode);
1067 				ext4_truncate_restart_trans(handle, inode,
1068 					    ext4_blocks_for_truncate(inode));
1069 			}
1070 
1071 			/*
1072 			 * The forget flag here is critical because if
1073 			 * we are journaling (and not doing data
1074 			 * journaling), we have to make sure a revoke
1075 			 * record is written to prevent the journal
1076 			 * replay from overwriting the (former)
1077 			 * indirect block if it gets reallocated as a
1078 			 * data block.  This must happen in the same
1079 			 * transaction where the data blocks are
1080 			 * actually freed.
1081 			 */
1082 			ext4_free_blocks(handle, inode, NULL, nr, 1,
1083 					 EXT4_FREE_BLOCKS_METADATA|
1084 					 EXT4_FREE_BLOCKS_FORGET);
1085 
1086 			if (parent_bh) {
1087 				/*
1088 				 * The block which we have just freed is
1089 				 * pointed to by an indirect block: journal it
1090 				 */
1091 				BUFFER_TRACE(parent_bh, "get_write_access");
1092 				if (!ext4_journal_get_write_access(handle,
1093 								   parent_bh)){
1094 					*p = 0;
1095 					BUFFER_TRACE(parent_bh,
1096 					"call ext4_handle_dirty_metadata");
1097 					ext4_handle_dirty_metadata(handle,
1098 								   inode,
1099 								   parent_bh);
1100 				}
1101 			}
1102 		}
1103 	} else {
1104 		/* We have reached the bottom of the tree. */
1105 		BUFFER_TRACE(parent_bh, "free data blocks");
1106 		ext4_free_data(handle, inode, parent_bh, first, last);
1107 	}
1108 }
1109 
ext4_ind_truncate(handle_t * handle,struct inode * inode)1110 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1111 {
1112 	struct ext4_inode_info *ei = EXT4_I(inode);
1113 	__le32 *i_data = ei->i_data;
1114 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1115 	ext4_lblk_t offsets[4];
1116 	Indirect chain[4];
1117 	Indirect *partial;
1118 	__le32 nr = 0;
1119 	int n = 0;
1120 	ext4_lblk_t last_block, max_block;
1121 	unsigned blocksize = inode->i_sb->s_blocksize;
1122 
1123 	last_block = (inode->i_size + blocksize-1)
1124 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1125 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1126 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1127 
1128 	if (last_block != max_block) {
1129 		n = ext4_block_to_path(inode, last_block, offsets, NULL);
1130 		if (n == 0)
1131 			return;
1132 	}
1133 
1134 	ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1135 
1136 	/*
1137 	 * The orphan list entry will now protect us from any crash which
1138 	 * occurs before the truncate completes, so it is now safe to propagate
1139 	 * the new, shorter inode size (held for now in i_size) into the
1140 	 * on-disk inode. We do this via i_disksize, which is the value which
1141 	 * ext4 *really* writes onto the disk inode.
1142 	 */
1143 	ei->i_disksize = inode->i_size;
1144 
1145 	if (last_block == max_block) {
1146 		/*
1147 		 * It is unnecessary to free any data blocks if last_block is
1148 		 * equal to the indirect block limit.
1149 		 */
1150 		return;
1151 	} else if (n == 1) {		/* direct blocks */
1152 		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1153 			       i_data + EXT4_NDIR_BLOCKS);
1154 		goto do_indirects;
1155 	}
1156 
1157 	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1158 	/* Kill the top of shared branch (not detached) */
1159 	if (nr) {
1160 		if (partial == chain) {
1161 			/* Shared branch grows from the inode */
1162 			ext4_free_branches(handle, inode, NULL,
1163 					   &nr, &nr+1, (chain+n-1) - partial);
1164 			*partial->p = 0;
1165 			/*
1166 			 * We mark the inode dirty prior to restart,
1167 			 * and prior to stop.  No need for it here.
1168 			 */
1169 		} else {
1170 			/* Shared branch grows from an indirect block */
1171 			BUFFER_TRACE(partial->bh, "get_write_access");
1172 			ext4_free_branches(handle, inode, partial->bh,
1173 					partial->p,
1174 					partial->p+1, (chain+n-1) - partial);
1175 		}
1176 	}
1177 	/* Clear the ends of indirect blocks on the shared branch */
1178 	while (partial > chain) {
1179 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1180 				   (__le32*)partial->bh->b_data+addr_per_block,
1181 				   (chain+n-1) - partial);
1182 		BUFFER_TRACE(partial->bh, "call brelse");
1183 		brelse(partial->bh);
1184 		partial--;
1185 	}
1186 do_indirects:
1187 	/* Kill the remaining (whole) subtrees */
1188 	switch (offsets[0]) {
1189 	default:
1190 		nr = i_data[EXT4_IND_BLOCK];
1191 		if (nr) {
1192 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1193 			i_data[EXT4_IND_BLOCK] = 0;
1194 		}
1195 		/* fall through */
1196 	case EXT4_IND_BLOCK:
1197 		nr = i_data[EXT4_DIND_BLOCK];
1198 		if (nr) {
1199 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1200 			i_data[EXT4_DIND_BLOCK] = 0;
1201 		}
1202 		/* fall through */
1203 	case EXT4_DIND_BLOCK:
1204 		nr = i_data[EXT4_TIND_BLOCK];
1205 		if (nr) {
1206 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1207 			i_data[EXT4_TIND_BLOCK] = 0;
1208 		}
1209 		/* fall through */
1210 	case EXT4_TIND_BLOCK:
1211 		;
1212 	}
1213 }
1214 
1215 /**
1216  *	ext4_ind_remove_space - remove space from the range
1217  *	@handle: JBD handle for this transaction
1218  *	@inode:	inode we are dealing with
1219  *	@start:	First block to remove
1220  *	@end:	One block after the last block to remove (exclusive)
1221  *
1222  *	Free the blocks in the defined range (end is exclusive endpoint of
1223  *	range). This is used by ext4_punch_hole().
1224  */
ext4_ind_remove_space(handle_t * handle,struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)1225 int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1226 			  ext4_lblk_t start, ext4_lblk_t end)
1227 {
1228 	struct ext4_inode_info *ei = EXT4_I(inode);
1229 	__le32 *i_data = ei->i_data;
1230 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1231 	ext4_lblk_t offsets[4], offsets2[4];
1232 	Indirect chain[4], chain2[4];
1233 	Indirect *partial, *partial2;
1234 	Indirect *p = NULL, *p2 = NULL;
1235 	ext4_lblk_t max_block;
1236 	__le32 nr = 0, nr2 = 0;
1237 	int n = 0, n2 = 0;
1238 	unsigned blocksize = inode->i_sb->s_blocksize;
1239 
1240 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1241 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1242 	if (end >= max_block)
1243 		end = max_block;
1244 	if ((start >= end) || (start > max_block))
1245 		return 0;
1246 
1247 	n = ext4_block_to_path(inode, start, offsets, NULL);
1248 	n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1249 
1250 	BUG_ON(n > n2);
1251 
1252 	if ((n == 1) && (n == n2)) {
1253 		/* We're punching only within direct block range */
1254 		ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1255 			       i_data + offsets2[0]);
1256 		return 0;
1257 	} else if (n2 > n) {
1258 		/*
1259 		 * Start and end are on a different levels so we're going to
1260 		 * free partial block at start, and partial block at end of
1261 		 * the range. If there are some levels in between then
1262 		 * do_indirects label will take care of that.
1263 		 */
1264 
1265 		if (n == 1) {
1266 			/*
1267 			 * Start is at the direct block level, free
1268 			 * everything to the end of the level.
1269 			 */
1270 			ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1271 				       i_data + EXT4_NDIR_BLOCKS);
1272 			goto end_range;
1273 		}
1274 
1275 
1276 		partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1277 		if (nr) {
1278 			if (partial == chain) {
1279 				/* Shared branch grows from the inode */
1280 				ext4_free_branches(handle, inode, NULL,
1281 					   &nr, &nr+1, (chain+n-1) - partial);
1282 				*partial->p = 0;
1283 			} else {
1284 				/* Shared branch grows from an indirect block */
1285 				BUFFER_TRACE(partial->bh, "get_write_access");
1286 				ext4_free_branches(handle, inode, partial->bh,
1287 					partial->p,
1288 					partial->p+1, (chain+n-1) - partial);
1289 			}
1290 		}
1291 
1292 		/*
1293 		 * Clear the ends of indirect blocks on the shared branch
1294 		 * at the start of the range
1295 		 */
1296 		while (partial > chain) {
1297 			ext4_free_branches(handle, inode, partial->bh,
1298 				partial->p + 1,
1299 				(__le32 *)partial->bh->b_data+addr_per_block,
1300 				(chain+n-1) - partial);
1301 			partial--;
1302 		}
1303 
1304 end_range:
1305 		partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1306 		if (nr2) {
1307 			if (partial2 == chain2) {
1308 				/*
1309 				 * Remember, end is exclusive so here we're at
1310 				 * the start of the next level we're not going
1311 				 * to free. Everything was covered by the start
1312 				 * of the range.
1313 				 */
1314 				goto do_indirects;
1315 			}
1316 		} else {
1317 			/*
1318 			 * ext4_find_shared returns Indirect structure which
1319 			 * points to the last element which should not be
1320 			 * removed by truncate. But this is end of the range
1321 			 * in punch_hole so we need to point to the next element
1322 			 */
1323 			partial2->p++;
1324 		}
1325 
1326 		/*
1327 		 * Clear the ends of indirect blocks on the shared branch
1328 		 * at the end of the range
1329 		 */
1330 		while (partial2 > chain2) {
1331 			ext4_free_branches(handle, inode, partial2->bh,
1332 					   (__le32 *)partial2->bh->b_data,
1333 					   partial2->p,
1334 					   (chain2+n2-1) - partial2);
1335 			partial2--;
1336 		}
1337 		goto do_indirects;
1338 	}
1339 
1340 	/* Punch happened within the same level (n == n2) */
1341 	partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1342 	partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1343 
1344 	/* Free top, but only if partial2 isn't its subtree. */
1345 	if (nr) {
1346 		int level = min(partial - chain, partial2 - chain2);
1347 		int i;
1348 		int subtree = 1;
1349 
1350 		for (i = 0; i <= level; i++) {
1351 			if (offsets[i] != offsets2[i]) {
1352 				subtree = 0;
1353 				break;
1354 			}
1355 		}
1356 
1357 		if (!subtree) {
1358 			if (partial == chain) {
1359 				/* Shared branch grows from the inode */
1360 				ext4_free_branches(handle, inode, NULL,
1361 						   &nr, &nr+1,
1362 						   (chain+n-1) - partial);
1363 				*partial->p = 0;
1364 			} else {
1365 				/* Shared branch grows from an indirect block */
1366 				BUFFER_TRACE(partial->bh, "get_write_access");
1367 				ext4_free_branches(handle, inode, partial->bh,
1368 						   partial->p,
1369 						   partial->p+1,
1370 						   (chain+n-1) - partial);
1371 			}
1372 		}
1373 	}
1374 
1375 	if (!nr2) {
1376 		/*
1377 		 * ext4_find_shared returns Indirect structure which
1378 		 * points to the last element which should not be
1379 		 * removed by truncate. But this is end of the range
1380 		 * in punch_hole so we need to point to the next element
1381 		 */
1382 		partial2->p++;
1383 	}
1384 
1385 	while (partial > chain || partial2 > chain2) {
1386 		int depth = (chain+n-1) - partial;
1387 		int depth2 = (chain2+n2-1) - partial2;
1388 
1389 		if (partial > chain && partial2 > chain2 &&
1390 		    partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1391 			/*
1392 			 * We've converged on the same block. Clear the range,
1393 			 * then we're done.
1394 			 */
1395 			ext4_free_branches(handle, inode, partial->bh,
1396 					   partial->p + 1,
1397 					   partial2->p,
1398 					   (chain+n-1) - partial);
1399 			goto cleanup;
1400 		}
1401 
1402 		/*
1403 		 * The start and end partial branches may not be at the same
1404 		 * level even though the punch happened within one level. So, we
1405 		 * give them a chance to arrive at the same level, then walk
1406 		 * them in step with each other until we converge on the same
1407 		 * block.
1408 		 */
1409 		if (partial > chain && depth <= depth2) {
1410 			ext4_free_branches(handle, inode, partial->bh,
1411 					   partial->p + 1,
1412 					   (__le32 *)partial->bh->b_data+addr_per_block,
1413 					   (chain+n-1) - partial);
1414 			partial--;
1415 		}
1416 		if (partial2 > chain2 && depth2 <= depth) {
1417 			ext4_free_branches(handle, inode, partial2->bh,
1418 					   (__le32 *)partial2->bh->b_data,
1419 					   partial2->p,
1420 					   (chain2+n2-1) - partial2);
1421 			partial2--;
1422 		}
1423 	}
1424 
1425 cleanup:
1426 	while (p && p > chain) {
1427 		BUFFER_TRACE(p->bh, "call brelse");
1428 		brelse(p->bh);
1429 		p--;
1430 	}
1431 	while (p2 && p2 > chain2) {
1432 		BUFFER_TRACE(p2->bh, "call brelse");
1433 		brelse(p2->bh);
1434 		p2--;
1435 	}
1436 	return 0;
1437 
1438 do_indirects:
1439 	/* Kill the remaining (whole) subtrees */
1440 	switch (offsets[0]) {
1441 	default:
1442 		if (++n >= n2)
1443 			break;
1444 		nr = i_data[EXT4_IND_BLOCK];
1445 		if (nr) {
1446 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1447 			i_data[EXT4_IND_BLOCK] = 0;
1448 		}
1449 		/* fall through */
1450 	case EXT4_IND_BLOCK:
1451 		if (++n >= n2)
1452 			break;
1453 		nr = i_data[EXT4_DIND_BLOCK];
1454 		if (nr) {
1455 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1456 			i_data[EXT4_DIND_BLOCK] = 0;
1457 		}
1458 		/* fall through */
1459 	case EXT4_DIND_BLOCK:
1460 		if (++n >= n2)
1461 			break;
1462 		nr = i_data[EXT4_TIND_BLOCK];
1463 		if (nr) {
1464 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1465 			i_data[EXT4_TIND_BLOCK] = 0;
1466 		}
1467 		/* fall through */
1468 	case EXT4_TIND_BLOCK:
1469 		;
1470 	}
1471 	goto cleanup;
1472 }
1473