1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
16 * Based on the original timer wheel code
17 *
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
44
45 #include <linux/uaccess.h>
46
47 #include <trace/events/timer.h>
48
49 #include "tick-internal.h"
50
51 /*
52 * Masks for selecting the soft and hard context timers from
53 * cpu_base->active
54 */
55 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59
60 /*
61 * The timer bases:
62 *
63 * There are more clockids than hrtimer bases. Thus, we index
64 * into the timer bases by the hrtimer_base_type enum. When trying
65 * to reach a base using a clockid, hrtimer_clockid_to_base()
66 * is used to convert from clockid to the proper hrtimer_base_type.
67 */
68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69 {
70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 },
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
92 },
93 {
94 .index = HRTIMER_BASE_MONOTONIC_SOFT,
95 .clockid = CLOCK_MONOTONIC,
96 .get_time = &ktime_get,
97 },
98 {
99 .index = HRTIMER_BASE_REALTIME_SOFT,
100 .clockid = CLOCK_REALTIME,
101 .get_time = &ktime_get_real,
102 },
103 {
104 .index = HRTIMER_BASE_BOOTTIME_SOFT,
105 .clockid = CLOCK_BOOTTIME,
106 .get_time = &ktime_get_boottime,
107 },
108 {
109 .index = HRTIMER_BASE_TAI_SOFT,
110 .clockid = CLOCK_TAI,
111 .get_time = &ktime_get_clocktai,
112 },
113 }
114 };
115
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 /* Make sure we catch unsupported clockids */
118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
119
120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
123 [CLOCK_TAI] = HRTIMER_BASE_TAI,
124 };
125
126 /*
127 * Functions and macros which are different for UP/SMP systems are kept in a
128 * single place
129 */
130 #ifdef CONFIG_SMP
131
132 /*
133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134 * such that hrtimer_callback_running() can unconditionally dereference
135 * timer->base->cpu_base
136 */
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
139 };
140
141 #define migration_base migration_cpu_base.clock_base[0]
142
is_migration_base(struct hrtimer_clock_base * base)143 static inline bool is_migration_base(struct hrtimer_clock_base *base)
144 {
145 return base == &migration_base;
146 }
147
148 /*
149 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
150 * means that all timers which are tied to this base via timer->base are
151 * locked, and the base itself is locked too.
152 *
153 * So __run_timers/migrate_timers can safely modify all timers which could
154 * be found on the lists/queues.
155 *
156 * When the timer's base is locked, and the timer removed from list, it is
157 * possible to set timer->base = &migration_base and drop the lock: the timer
158 * remains locked.
159 */
160 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)161 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
162 unsigned long *flags)
163 {
164 struct hrtimer_clock_base *base;
165
166 for (;;) {
167 base = READ_ONCE(timer->base);
168 if (likely(base != &migration_base)) {
169 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
170 if (likely(base == timer->base))
171 return base;
172 /* The timer has migrated to another CPU: */
173 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
174 }
175 cpu_relax();
176 }
177 }
178
179 /*
180 * We do not migrate the timer when it is expiring before the next
181 * event on the target cpu. When high resolution is enabled, we cannot
182 * reprogram the target cpu hardware and we would cause it to fire
183 * late. To keep it simple, we handle the high resolution enabled and
184 * disabled case similar.
185 *
186 * Called with cpu_base->lock of target cpu held.
187 */
188 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)189 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
190 {
191 ktime_t expires;
192
193 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
194 return expires < new_base->cpu_base->expires_next;
195 }
196
197 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)198 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
199 int pinned)
200 {
201 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
202 if (static_branch_likely(&timers_migration_enabled) && !pinned)
203 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
204 #endif
205 return base;
206 }
207
208 /*
209 * We switch the timer base to a power-optimized selected CPU target,
210 * if:
211 * - NO_HZ_COMMON is enabled
212 * - timer migration is enabled
213 * - the timer callback is not running
214 * - the timer is not the first expiring timer on the new target
215 *
216 * If one of the above requirements is not fulfilled we move the timer
217 * to the current CPU or leave it on the previously assigned CPU if
218 * the timer callback is currently running.
219 */
220 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)221 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
222 int pinned)
223 {
224 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
225 struct hrtimer_clock_base *new_base;
226 int basenum = base->index;
227
228 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
229 new_cpu_base = get_target_base(this_cpu_base, pinned);
230 again:
231 new_base = &new_cpu_base->clock_base[basenum];
232
233 if (base != new_base) {
234 /*
235 * We are trying to move timer to new_base.
236 * However we can't change timer's base while it is running,
237 * so we keep it on the same CPU. No hassle vs. reprogramming
238 * the event source in the high resolution case. The softirq
239 * code will take care of this when the timer function has
240 * completed. There is no conflict as we hold the lock until
241 * the timer is enqueued.
242 */
243 if (unlikely(hrtimer_callback_running(timer)))
244 return base;
245
246 /* See the comment in lock_hrtimer_base() */
247 WRITE_ONCE(timer->base, &migration_base);
248 raw_spin_unlock(&base->cpu_base->lock);
249 raw_spin_lock(&new_base->cpu_base->lock);
250
251 if (new_cpu_base != this_cpu_base &&
252 hrtimer_check_target(timer, new_base)) {
253 raw_spin_unlock(&new_base->cpu_base->lock);
254 raw_spin_lock(&base->cpu_base->lock);
255 new_cpu_base = this_cpu_base;
256 WRITE_ONCE(timer->base, base);
257 goto again;
258 }
259 WRITE_ONCE(timer->base, new_base);
260 } else {
261 if (new_cpu_base != this_cpu_base &&
262 hrtimer_check_target(timer, new_base)) {
263 new_cpu_base = this_cpu_base;
264 goto again;
265 }
266 }
267 return new_base;
268 }
269
270 #else /* CONFIG_SMP */
271
is_migration_base(struct hrtimer_clock_base * base)272 static inline bool is_migration_base(struct hrtimer_clock_base *base)
273 {
274 return false;
275 }
276
277 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)278 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
279 {
280 struct hrtimer_clock_base *base = timer->base;
281
282 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
283
284 return base;
285 }
286
287 # define switch_hrtimer_base(t, b, p) (b)
288
289 #endif /* !CONFIG_SMP */
290
291 /*
292 * Functions for the union type storage format of ktime_t which are
293 * too large for inlining:
294 */
295 #if BITS_PER_LONG < 64
296 /*
297 * Divide a ktime value by a nanosecond value
298 */
__ktime_divns(const ktime_t kt,s64 div)299 s64 __ktime_divns(const ktime_t kt, s64 div)
300 {
301 int sft = 0;
302 s64 dclc;
303 u64 tmp;
304
305 dclc = ktime_to_ns(kt);
306 tmp = dclc < 0 ? -dclc : dclc;
307
308 /* Make sure the divisor is less than 2^32: */
309 while (div >> 32) {
310 sft++;
311 div >>= 1;
312 }
313 tmp >>= sft;
314 do_div(tmp, (unsigned long) div);
315 return dclc < 0 ? -tmp : tmp;
316 }
317 EXPORT_SYMBOL_GPL(__ktime_divns);
318 #endif /* BITS_PER_LONG >= 64 */
319
320 /*
321 * Add two ktime values and do a safety check for overflow:
322 */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)323 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
324 {
325 ktime_t res = ktime_add_unsafe(lhs, rhs);
326
327 /*
328 * We use KTIME_SEC_MAX here, the maximum timeout which we can
329 * return to user space in a timespec:
330 */
331 if (res < 0 || res < lhs || res < rhs)
332 res = ktime_set(KTIME_SEC_MAX, 0);
333
334 return res;
335 }
336
337 EXPORT_SYMBOL_GPL(ktime_add_safe);
338
339 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
340
341 static struct debug_obj_descr hrtimer_debug_descr;
342
hrtimer_debug_hint(void * addr)343 static void *hrtimer_debug_hint(void *addr)
344 {
345 return ((struct hrtimer *) addr)->function;
346 }
347
348 /*
349 * fixup_init is called when:
350 * - an active object is initialized
351 */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)352 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
353 {
354 struct hrtimer *timer = addr;
355
356 switch (state) {
357 case ODEBUG_STATE_ACTIVE:
358 hrtimer_cancel(timer);
359 debug_object_init(timer, &hrtimer_debug_descr);
360 return true;
361 default:
362 return false;
363 }
364 }
365
366 /*
367 * fixup_activate is called when:
368 * - an active object is activated
369 * - an unknown non-static object is activated
370 */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)371 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
372 {
373 switch (state) {
374 case ODEBUG_STATE_ACTIVE:
375 WARN_ON(1);
376 /* fall through */
377 default:
378 return false;
379 }
380 }
381
382 /*
383 * fixup_free is called when:
384 * - an active object is freed
385 */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)386 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
387 {
388 struct hrtimer *timer = addr;
389
390 switch (state) {
391 case ODEBUG_STATE_ACTIVE:
392 hrtimer_cancel(timer);
393 debug_object_free(timer, &hrtimer_debug_descr);
394 return true;
395 default:
396 return false;
397 }
398 }
399
400 static struct debug_obj_descr hrtimer_debug_descr = {
401 .name = "hrtimer",
402 .debug_hint = hrtimer_debug_hint,
403 .fixup_init = hrtimer_fixup_init,
404 .fixup_activate = hrtimer_fixup_activate,
405 .fixup_free = hrtimer_fixup_free,
406 };
407
debug_hrtimer_init(struct hrtimer * timer)408 static inline void debug_hrtimer_init(struct hrtimer *timer)
409 {
410 debug_object_init(timer, &hrtimer_debug_descr);
411 }
412
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)413 static inline void debug_hrtimer_activate(struct hrtimer *timer,
414 enum hrtimer_mode mode)
415 {
416 debug_object_activate(timer, &hrtimer_debug_descr);
417 }
418
debug_hrtimer_deactivate(struct hrtimer * timer)419 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
420 {
421 debug_object_deactivate(timer, &hrtimer_debug_descr);
422 }
423
debug_hrtimer_free(struct hrtimer * timer)424 static inline void debug_hrtimer_free(struct hrtimer *timer)
425 {
426 debug_object_free(timer, &hrtimer_debug_descr);
427 }
428
429 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
430 enum hrtimer_mode mode);
431
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)432 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
433 enum hrtimer_mode mode)
434 {
435 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
436 __hrtimer_init(timer, clock_id, mode);
437 }
438 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
439
440 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
441 clockid_t clock_id, enum hrtimer_mode mode);
442
hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)443 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
444 clockid_t clock_id, enum hrtimer_mode mode)
445 {
446 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
447 __hrtimer_init_sleeper(sl, clock_id, mode);
448 }
449 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
450
destroy_hrtimer_on_stack(struct hrtimer * timer)451 void destroy_hrtimer_on_stack(struct hrtimer *timer)
452 {
453 debug_object_free(timer, &hrtimer_debug_descr);
454 }
455 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
456
457 #else
458
debug_hrtimer_init(struct hrtimer * timer)459 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer,enum hrtimer_mode mode)460 static inline void debug_hrtimer_activate(struct hrtimer *timer,
461 enum hrtimer_mode mode) { }
debug_hrtimer_deactivate(struct hrtimer * timer)462 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
463 #endif
464
465 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)466 debug_init(struct hrtimer *timer, clockid_t clockid,
467 enum hrtimer_mode mode)
468 {
469 debug_hrtimer_init(timer);
470 trace_hrtimer_init(timer, clockid, mode);
471 }
472
debug_activate(struct hrtimer * timer,enum hrtimer_mode mode)473 static inline void debug_activate(struct hrtimer *timer,
474 enum hrtimer_mode mode)
475 {
476 debug_hrtimer_activate(timer, mode);
477 trace_hrtimer_start(timer, mode);
478 }
479
debug_deactivate(struct hrtimer * timer)480 static inline void debug_deactivate(struct hrtimer *timer)
481 {
482 debug_hrtimer_deactivate(timer);
483 trace_hrtimer_cancel(timer);
484 }
485
486 static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base * cpu_base,unsigned int * active)487 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
488 {
489 unsigned int idx;
490
491 if (!*active)
492 return NULL;
493
494 idx = __ffs(*active);
495 *active &= ~(1U << idx);
496
497 return &cpu_base->clock_base[idx];
498 }
499
500 #define for_each_active_base(base, cpu_base, active) \
501 while ((base = __next_base((cpu_base), &(active))))
502
__hrtimer_next_event_base(struct hrtimer_cpu_base * cpu_base,const struct hrtimer * exclude,unsigned int active,ktime_t expires_next)503 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
504 const struct hrtimer *exclude,
505 unsigned int active,
506 ktime_t expires_next)
507 {
508 struct hrtimer_clock_base *base;
509 ktime_t expires;
510
511 for_each_active_base(base, cpu_base, active) {
512 struct timerqueue_node *next;
513 struct hrtimer *timer;
514
515 next = timerqueue_getnext(&base->active);
516 timer = container_of(next, struct hrtimer, node);
517 if (timer == exclude) {
518 /* Get to the next timer in the queue. */
519 next = timerqueue_iterate_next(next);
520 if (!next)
521 continue;
522
523 timer = container_of(next, struct hrtimer, node);
524 }
525 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
526 if (expires < expires_next) {
527 expires_next = expires;
528
529 /* Skip cpu_base update if a timer is being excluded. */
530 if (exclude)
531 continue;
532
533 if (timer->is_soft)
534 cpu_base->softirq_next_timer = timer;
535 else
536 cpu_base->next_timer = timer;
537 }
538 }
539 /*
540 * clock_was_set() might have changed base->offset of any of
541 * the clock bases so the result might be negative. Fix it up
542 * to prevent a false positive in clockevents_program_event().
543 */
544 if (expires_next < 0)
545 expires_next = 0;
546 return expires_next;
547 }
548
549 /*
550 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
551 * but does not set cpu_base::*expires_next, that is done by
552 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
553 * cpu_base::*expires_next right away, reprogramming logic would no longer
554 * work.
555 *
556 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
557 * those timers will get run whenever the softirq gets handled, at the end of
558 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
559 *
560 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
561 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
562 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
563 *
564 * @active_mask must be one of:
565 * - HRTIMER_ACTIVE_ALL,
566 * - HRTIMER_ACTIVE_SOFT, or
567 * - HRTIMER_ACTIVE_HARD.
568 */
569 static ktime_t
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base,unsigned int active_mask)570 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
571 {
572 unsigned int active;
573 struct hrtimer *next_timer = NULL;
574 ktime_t expires_next = KTIME_MAX;
575
576 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
577 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
578 cpu_base->softirq_next_timer = NULL;
579 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
580 active, KTIME_MAX);
581
582 next_timer = cpu_base->softirq_next_timer;
583 }
584
585 if (active_mask & HRTIMER_ACTIVE_HARD) {
586 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
587 cpu_base->next_timer = next_timer;
588 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
589 expires_next);
590 }
591
592 return expires_next;
593 }
594
hrtimer_update_next_event(struct hrtimer_cpu_base * cpu_base)595 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
596 {
597 ktime_t expires_next, soft = KTIME_MAX;
598
599 /*
600 * If the soft interrupt has already been activated, ignore the
601 * soft bases. They will be handled in the already raised soft
602 * interrupt.
603 */
604 if (!cpu_base->softirq_activated) {
605 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
606 /*
607 * Update the soft expiry time. clock_settime() might have
608 * affected it.
609 */
610 cpu_base->softirq_expires_next = soft;
611 }
612
613 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
614 /*
615 * If a softirq timer is expiring first, update cpu_base->next_timer
616 * and program the hardware with the soft expiry time.
617 */
618 if (expires_next > soft) {
619 cpu_base->next_timer = cpu_base->softirq_next_timer;
620 expires_next = soft;
621 }
622
623 return expires_next;
624 }
625
hrtimer_update_base(struct hrtimer_cpu_base * base)626 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
627 {
628 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
629 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
630 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
631
632 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
633 offs_real, offs_boot, offs_tai);
634
635 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
636 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
637 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
638
639 return now;
640 }
641
642 /*
643 * Is the high resolution mode active ?
644 */
__hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)645 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
646 {
647 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
648 cpu_base->hres_active : 0;
649 }
650
hrtimer_hres_active(void)651 static inline int hrtimer_hres_active(void)
652 {
653 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
654 }
655
656 /*
657 * Reprogram the event source with checking both queues for the
658 * next event
659 * Called with interrupts disabled and base->lock held
660 */
661 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)662 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
663 {
664 ktime_t expires_next;
665
666 expires_next = hrtimer_update_next_event(cpu_base);
667
668 if (skip_equal && expires_next == cpu_base->expires_next)
669 return;
670
671 cpu_base->expires_next = expires_next;
672
673 /*
674 * If hres is not active, hardware does not have to be
675 * reprogrammed yet.
676 *
677 * If a hang was detected in the last timer interrupt then we
678 * leave the hang delay active in the hardware. We want the
679 * system to make progress. That also prevents the following
680 * scenario:
681 * T1 expires 50ms from now
682 * T2 expires 5s from now
683 *
684 * T1 is removed, so this code is called and would reprogram
685 * the hardware to 5s from now. Any hrtimer_start after that
686 * will not reprogram the hardware due to hang_detected being
687 * set. So we'd effectivly block all timers until the T2 event
688 * fires.
689 */
690 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
691 return;
692
693 tick_program_event(cpu_base->expires_next, 1);
694 }
695
696 /* High resolution timer related functions */
697 #ifdef CONFIG_HIGH_RES_TIMERS
698
699 /*
700 * High resolution timer enabled ?
701 */
702 static bool hrtimer_hres_enabled __read_mostly = true;
703 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
704 EXPORT_SYMBOL_GPL(hrtimer_resolution);
705
706 /*
707 * Enable / Disable high resolution mode
708 */
setup_hrtimer_hres(char * str)709 static int __init setup_hrtimer_hres(char *str)
710 {
711 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
712 }
713
714 __setup("highres=", setup_hrtimer_hres);
715
716 /*
717 * hrtimer_high_res_enabled - query, if the highres mode is enabled
718 */
hrtimer_is_hres_enabled(void)719 static inline int hrtimer_is_hres_enabled(void)
720 {
721 return hrtimer_hres_enabled;
722 }
723
724 /*
725 * Retrigger next event is called after clock was set
726 *
727 * Called with interrupts disabled via on_each_cpu()
728 */
retrigger_next_event(void * arg)729 static void retrigger_next_event(void *arg)
730 {
731 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
732
733 if (!__hrtimer_hres_active(base))
734 return;
735
736 raw_spin_lock(&base->lock);
737 hrtimer_update_base(base);
738 hrtimer_force_reprogram(base, 0);
739 raw_spin_unlock(&base->lock);
740 }
741
742 /*
743 * Switch to high resolution mode
744 */
hrtimer_switch_to_hres(void)745 static void hrtimer_switch_to_hres(void)
746 {
747 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
748
749 if (tick_init_highres()) {
750 pr_warn("Could not switch to high resolution mode on CPU %u\n",
751 base->cpu);
752 return;
753 }
754 base->hres_active = 1;
755 hrtimer_resolution = HIGH_RES_NSEC;
756
757 tick_setup_sched_timer();
758 /* "Retrigger" the interrupt to get things going */
759 retrigger_next_event(NULL);
760 }
761
762 #else
763
hrtimer_is_hres_enabled(void)764 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)765 static inline void hrtimer_switch_to_hres(void) { }
retrigger_next_event(void * arg)766 static inline void retrigger_next_event(void *arg) { }
767
768 #endif /* CONFIG_HIGH_RES_TIMERS */
769
770 /*
771 * When a timer is enqueued and expires earlier than the already enqueued
772 * timers, we have to check, whether it expires earlier than the timer for
773 * which the clock event device was armed.
774 *
775 * Called with interrupts disabled and base->cpu_base.lock held
776 */
hrtimer_reprogram(struct hrtimer * timer,bool reprogram)777 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
778 {
779 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
780 struct hrtimer_clock_base *base = timer->base;
781 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
782
783 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
784
785 /*
786 * CLOCK_REALTIME timer might be requested with an absolute
787 * expiry time which is less than base->offset. Set it to 0.
788 */
789 if (expires < 0)
790 expires = 0;
791
792 if (timer->is_soft) {
793 /*
794 * soft hrtimer could be started on a remote CPU. In this
795 * case softirq_expires_next needs to be updated on the
796 * remote CPU. The soft hrtimer will not expire before the
797 * first hard hrtimer on the remote CPU -
798 * hrtimer_check_target() prevents this case.
799 */
800 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
801
802 if (timer_cpu_base->softirq_activated)
803 return;
804
805 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
806 return;
807
808 timer_cpu_base->softirq_next_timer = timer;
809 timer_cpu_base->softirq_expires_next = expires;
810
811 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
812 !reprogram)
813 return;
814 }
815
816 /*
817 * If the timer is not on the current cpu, we cannot reprogram
818 * the other cpus clock event device.
819 */
820 if (base->cpu_base != cpu_base)
821 return;
822
823 /*
824 * If the hrtimer interrupt is running, then it will
825 * reevaluate the clock bases and reprogram the clock event
826 * device. The callbacks are always executed in hard interrupt
827 * context so we don't need an extra check for a running
828 * callback.
829 */
830 if (cpu_base->in_hrtirq)
831 return;
832
833 if (expires >= cpu_base->expires_next)
834 return;
835
836 /* Update the pointer to the next expiring timer */
837 cpu_base->next_timer = timer;
838 cpu_base->expires_next = expires;
839
840 /*
841 * If hres is not active, hardware does not have to be
842 * programmed yet.
843 *
844 * If a hang was detected in the last timer interrupt then we
845 * do not schedule a timer which is earlier than the expiry
846 * which we enforced in the hang detection. We want the system
847 * to make progress.
848 */
849 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
850 return;
851
852 /*
853 * Program the timer hardware. We enforce the expiry for
854 * events which are already in the past.
855 */
856 tick_program_event(expires, 1);
857 }
858
859 /*
860 * Clock realtime was set
861 *
862 * Change the offset of the realtime clock vs. the monotonic
863 * clock.
864 *
865 * We might have to reprogram the high resolution timer interrupt. On
866 * SMP we call the architecture specific code to retrigger _all_ high
867 * resolution timer interrupts. On UP we just disable interrupts and
868 * call the high resolution interrupt code.
869 */
clock_was_set(void)870 void clock_was_set(void)
871 {
872 #ifdef CONFIG_HIGH_RES_TIMERS
873 /* Retrigger the CPU local events everywhere */
874 on_each_cpu(retrigger_next_event, NULL, 1);
875 #endif
876 timerfd_clock_was_set();
877 }
878
clock_was_set_work(struct work_struct * work)879 static void clock_was_set_work(struct work_struct *work)
880 {
881 clock_was_set();
882 }
883
884 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
885
886 /*
887 * Called from timekeeping and resume code to reprogram the hrtimer
888 * interrupt device on all cpus and to notify timerfd.
889 */
clock_was_set_delayed(void)890 void clock_was_set_delayed(void)
891 {
892 schedule_work(&hrtimer_work);
893 }
894
895 /*
896 * During resume we might have to reprogram the high resolution timer
897 * interrupt on all online CPUs. However, all other CPUs will be
898 * stopped with IRQs interrupts disabled so the clock_was_set() call
899 * must be deferred.
900 */
hrtimers_resume(void)901 void hrtimers_resume(void)
902 {
903 lockdep_assert_irqs_disabled();
904 /* Retrigger on the local CPU */
905 retrigger_next_event(NULL);
906 /* And schedule a retrigger for all others */
907 clock_was_set_delayed();
908 }
909
910 /*
911 * Counterpart to lock_hrtimer_base above:
912 */
913 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)914 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
915 {
916 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
917 }
918
919 /**
920 * hrtimer_forward - forward the timer expiry
921 * @timer: hrtimer to forward
922 * @now: forward past this time
923 * @interval: the interval to forward
924 *
925 * Forward the timer expiry so it will expire in the future.
926 * Returns the number of overruns.
927 *
928 * Can be safely called from the callback function of @timer. If
929 * called from other contexts @timer must neither be enqueued nor
930 * running the callback and the caller needs to take care of
931 * serialization.
932 *
933 * Note: This only updates the timer expiry value and does not requeue
934 * the timer.
935 */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)936 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
937 {
938 u64 orun = 1;
939 ktime_t delta;
940
941 delta = ktime_sub(now, hrtimer_get_expires(timer));
942
943 if (delta < 0)
944 return 0;
945
946 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
947 return 0;
948
949 if (interval < hrtimer_resolution)
950 interval = hrtimer_resolution;
951
952 if (unlikely(delta >= interval)) {
953 s64 incr = ktime_to_ns(interval);
954
955 orun = ktime_divns(delta, incr);
956 hrtimer_add_expires_ns(timer, incr * orun);
957 if (hrtimer_get_expires_tv64(timer) > now)
958 return orun;
959 /*
960 * This (and the ktime_add() below) is the
961 * correction for exact:
962 */
963 orun++;
964 }
965 hrtimer_add_expires(timer, interval);
966
967 return orun;
968 }
969 EXPORT_SYMBOL_GPL(hrtimer_forward);
970
971 /*
972 * enqueue_hrtimer - internal function to (re)start a timer
973 *
974 * The timer is inserted in expiry order. Insertion into the
975 * red black tree is O(log(n)). Must hold the base lock.
976 *
977 * Returns 1 when the new timer is the leftmost timer in the tree.
978 */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,enum hrtimer_mode mode)979 static int enqueue_hrtimer(struct hrtimer *timer,
980 struct hrtimer_clock_base *base,
981 enum hrtimer_mode mode)
982 {
983 debug_activate(timer, mode);
984
985 base->cpu_base->active_bases |= 1 << base->index;
986
987 /* Pairs with the lockless read in hrtimer_is_queued() */
988 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
989
990 return timerqueue_add(&base->active, &timer->node);
991 }
992
993 /*
994 * __remove_hrtimer - internal function to remove a timer
995 *
996 * Caller must hold the base lock.
997 *
998 * High resolution timer mode reprograms the clock event device when the
999 * timer is the one which expires next. The caller can disable this by setting
1000 * reprogram to zero. This is useful, when the context does a reprogramming
1001 * anyway (e.g. timer interrupt)
1002 */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)1003 static void __remove_hrtimer(struct hrtimer *timer,
1004 struct hrtimer_clock_base *base,
1005 u8 newstate, int reprogram)
1006 {
1007 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1008 u8 state = timer->state;
1009
1010 /* Pairs with the lockless read in hrtimer_is_queued() */
1011 WRITE_ONCE(timer->state, newstate);
1012 if (!(state & HRTIMER_STATE_ENQUEUED))
1013 return;
1014
1015 if (!timerqueue_del(&base->active, &timer->node))
1016 cpu_base->active_bases &= ~(1 << base->index);
1017
1018 /*
1019 * Note: If reprogram is false we do not update
1020 * cpu_base->next_timer. This happens when we remove the first
1021 * timer on a remote cpu. No harm as we never dereference
1022 * cpu_base->next_timer. So the worst thing what can happen is
1023 * an superflous call to hrtimer_force_reprogram() on the
1024 * remote cpu later on if the same timer gets enqueued again.
1025 */
1026 if (reprogram && timer == cpu_base->next_timer)
1027 hrtimer_force_reprogram(cpu_base, 1);
1028 }
1029
1030 /*
1031 * remove hrtimer, called with base lock held
1032 */
1033 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart,bool keep_local)1034 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1035 bool restart, bool keep_local)
1036 {
1037 u8 state = timer->state;
1038
1039 if (state & HRTIMER_STATE_ENQUEUED) {
1040 bool reprogram;
1041
1042 /*
1043 * Remove the timer and force reprogramming when high
1044 * resolution mode is active and the timer is on the current
1045 * CPU. If we remove a timer on another CPU, reprogramming is
1046 * skipped. The interrupt event on this CPU is fired and
1047 * reprogramming happens in the interrupt handler. This is a
1048 * rare case and less expensive than a smp call.
1049 */
1050 debug_deactivate(timer);
1051 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1052
1053 /*
1054 * If the timer is not restarted then reprogramming is
1055 * required if the timer is local. If it is local and about
1056 * to be restarted, avoid programming it twice (on removal
1057 * and a moment later when it's requeued).
1058 */
1059 if (!restart)
1060 state = HRTIMER_STATE_INACTIVE;
1061 else
1062 reprogram &= !keep_local;
1063
1064 __remove_hrtimer(timer, base, state, reprogram);
1065 return 1;
1066 }
1067 return 0;
1068 }
1069
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)1070 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1071 const enum hrtimer_mode mode)
1072 {
1073 #ifdef CONFIG_TIME_LOW_RES
1074 /*
1075 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1076 * granular time values. For relative timers we add hrtimer_resolution
1077 * (i.e. one jiffie) to prevent short timeouts.
1078 */
1079 timer->is_rel = mode & HRTIMER_MODE_REL;
1080 if (timer->is_rel)
1081 tim = ktime_add_safe(tim, hrtimer_resolution);
1082 #endif
1083 return tim;
1084 }
1085
1086 static void
hrtimer_update_softirq_timer(struct hrtimer_cpu_base * cpu_base,bool reprogram)1087 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1088 {
1089 ktime_t expires;
1090
1091 /*
1092 * Find the next SOFT expiration.
1093 */
1094 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1095
1096 /*
1097 * reprogramming needs to be triggered, even if the next soft
1098 * hrtimer expires at the same time than the next hard
1099 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1100 */
1101 if (expires == KTIME_MAX)
1102 return;
1103
1104 /*
1105 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1106 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1107 */
1108 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1109 }
1110
__hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode,struct hrtimer_clock_base * base)1111 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1112 u64 delta_ns, const enum hrtimer_mode mode,
1113 struct hrtimer_clock_base *base)
1114 {
1115 struct hrtimer_clock_base *new_base;
1116 bool force_local, first;
1117
1118 /*
1119 * If the timer is on the local cpu base and is the first expiring
1120 * timer then this might end up reprogramming the hardware twice
1121 * (on removal and on enqueue). To avoid that by prevent the
1122 * reprogram on removal, keep the timer local to the current CPU
1123 * and enforce reprogramming after it is queued no matter whether
1124 * it is the new first expiring timer again or not.
1125 */
1126 force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1127 force_local &= base->cpu_base->next_timer == timer;
1128
1129 /*
1130 * Remove an active timer from the queue. In case it is not queued
1131 * on the current CPU, make sure that remove_hrtimer() updates the
1132 * remote data correctly.
1133 *
1134 * If it's on the current CPU and the first expiring timer, then
1135 * skip reprogramming, keep the timer local and enforce
1136 * reprogramming later if it was the first expiring timer. This
1137 * avoids programming the underlying clock event twice (once at
1138 * removal and once after enqueue).
1139 */
1140 remove_hrtimer(timer, base, true, force_local);
1141
1142 if (mode & HRTIMER_MODE_REL)
1143 tim = ktime_add_safe(tim, base->get_time());
1144
1145 tim = hrtimer_update_lowres(timer, tim, mode);
1146
1147 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1148
1149 /* Switch the timer base, if necessary: */
1150 if (!force_local) {
1151 new_base = switch_hrtimer_base(timer, base,
1152 mode & HRTIMER_MODE_PINNED);
1153 } else {
1154 new_base = base;
1155 }
1156
1157 first = enqueue_hrtimer(timer, new_base, mode);
1158 if (!force_local)
1159 return first;
1160
1161 /*
1162 * Timer was forced to stay on the current CPU to avoid
1163 * reprogramming on removal and enqueue. Force reprogram the
1164 * hardware by evaluating the new first expiring timer.
1165 */
1166 hrtimer_force_reprogram(new_base->cpu_base, 1);
1167 return 0;
1168 }
1169
1170 /**
1171 * hrtimer_start_range_ns - (re)start an hrtimer
1172 * @timer: the timer to be added
1173 * @tim: expiry time
1174 * @delta_ns: "slack" range for the timer
1175 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1176 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1177 * softirq based mode is considered for debug purpose only!
1178 */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)1179 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1180 u64 delta_ns, const enum hrtimer_mode mode)
1181 {
1182 struct hrtimer_clock_base *base;
1183 unsigned long flags;
1184
1185 /*
1186 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1187 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1188 * expiry mode because unmarked timers are moved to softirq expiry.
1189 */
1190 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1191 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1192 else
1193 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1194
1195 base = lock_hrtimer_base(timer, &flags);
1196
1197 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1198 hrtimer_reprogram(timer, true);
1199
1200 unlock_hrtimer_base(timer, &flags);
1201 }
1202 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1203
1204 /**
1205 * hrtimer_try_to_cancel - try to deactivate a timer
1206 * @timer: hrtimer to stop
1207 *
1208 * Returns:
1209 *
1210 * * 0 when the timer was not active
1211 * * 1 when the timer was active
1212 * * -1 when the timer is currently executing the callback function and
1213 * cannot be stopped
1214 */
hrtimer_try_to_cancel(struct hrtimer * timer)1215 int hrtimer_try_to_cancel(struct hrtimer *timer)
1216 {
1217 struct hrtimer_clock_base *base;
1218 unsigned long flags;
1219 int ret = -1;
1220
1221 /*
1222 * Check lockless first. If the timer is not active (neither
1223 * enqueued nor running the callback, nothing to do here. The
1224 * base lock does not serialize against a concurrent enqueue,
1225 * so we can avoid taking it.
1226 */
1227 if (!hrtimer_active(timer))
1228 return 0;
1229
1230 base = lock_hrtimer_base(timer, &flags);
1231
1232 if (!hrtimer_callback_running(timer))
1233 ret = remove_hrtimer(timer, base, false, false);
1234
1235 unlock_hrtimer_base(timer, &flags);
1236
1237 return ret;
1238
1239 }
1240 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1241
1242 #ifdef CONFIG_PREEMPT_RT
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1243 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1244 {
1245 spin_lock_init(&base->softirq_expiry_lock);
1246 }
1247
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1248 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1249 {
1250 spin_lock(&base->softirq_expiry_lock);
1251 }
1252
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1253 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1254 {
1255 spin_unlock(&base->softirq_expiry_lock);
1256 }
1257
1258 /*
1259 * The counterpart to hrtimer_cancel_wait_running().
1260 *
1261 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1262 * the timer callback to finish. Drop expiry_lock and reaquire it. That
1263 * allows the waiter to acquire the lock and make progress.
1264 */
hrtimer_sync_wait_running(struct hrtimer_cpu_base * cpu_base,unsigned long flags)1265 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1266 unsigned long flags)
1267 {
1268 if (atomic_read(&cpu_base->timer_waiters)) {
1269 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1270 spin_unlock(&cpu_base->softirq_expiry_lock);
1271 spin_lock(&cpu_base->softirq_expiry_lock);
1272 raw_spin_lock_irq(&cpu_base->lock);
1273 }
1274 }
1275
1276 /*
1277 * This function is called on PREEMPT_RT kernels when the fast path
1278 * deletion of a timer failed because the timer callback function was
1279 * running.
1280 *
1281 * This prevents priority inversion: if the soft irq thread is preempted
1282 * in the middle of a timer callback, then calling del_timer_sync() can
1283 * lead to two issues:
1284 *
1285 * - If the caller is on a remote CPU then it has to spin wait for the timer
1286 * handler to complete. This can result in unbound priority inversion.
1287 *
1288 * - If the caller originates from the task which preempted the timer
1289 * handler on the same CPU, then spin waiting for the timer handler to
1290 * complete is never going to end.
1291 */
hrtimer_cancel_wait_running(const struct hrtimer * timer)1292 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1293 {
1294 /* Lockless read. Prevent the compiler from reloading it below */
1295 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1296
1297 /*
1298 * Just relax if the timer expires in hard interrupt context or if
1299 * it is currently on the migration base.
1300 */
1301 if (!timer->is_soft || is_migration_base(base)) {
1302 cpu_relax();
1303 return;
1304 }
1305
1306 /*
1307 * Mark the base as contended and grab the expiry lock, which is
1308 * held by the softirq across the timer callback. Drop the lock
1309 * immediately so the softirq can expire the next timer. In theory
1310 * the timer could already be running again, but that's more than
1311 * unlikely and just causes another wait loop.
1312 */
1313 atomic_inc(&base->cpu_base->timer_waiters);
1314 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1315 atomic_dec(&base->cpu_base->timer_waiters);
1316 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1317 }
1318 #else
1319 static inline void
hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base * base)1320 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1321 static inline void
hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base * base)1322 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1323 static inline void
hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base * base)1324 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
hrtimer_sync_wait_running(struct hrtimer_cpu_base * base,unsigned long flags)1325 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1326 unsigned long flags) { }
1327 #endif
1328
1329 /**
1330 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1331 * @timer: the timer to be cancelled
1332 *
1333 * Returns:
1334 * 0 when the timer was not active
1335 * 1 when the timer was active
1336 */
hrtimer_cancel(struct hrtimer * timer)1337 int hrtimer_cancel(struct hrtimer *timer)
1338 {
1339 int ret;
1340
1341 do {
1342 ret = hrtimer_try_to_cancel(timer);
1343
1344 if (ret < 0)
1345 hrtimer_cancel_wait_running(timer);
1346 } while (ret < 0);
1347 return ret;
1348 }
1349 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1350
1351 /**
1352 * hrtimer_get_remaining - get remaining time for the timer
1353 * @timer: the timer to read
1354 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1355 */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1356 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1357 {
1358 unsigned long flags;
1359 ktime_t rem;
1360
1361 lock_hrtimer_base(timer, &flags);
1362 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1363 rem = hrtimer_expires_remaining_adjusted(timer);
1364 else
1365 rem = hrtimer_expires_remaining(timer);
1366 unlock_hrtimer_base(timer, &flags);
1367
1368 return rem;
1369 }
1370 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1371
1372 #ifdef CONFIG_NO_HZ_COMMON
1373 /**
1374 * hrtimer_get_next_event - get the time until next expiry event
1375 *
1376 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1377 */
hrtimer_get_next_event(void)1378 u64 hrtimer_get_next_event(void)
1379 {
1380 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1381 u64 expires = KTIME_MAX;
1382 unsigned long flags;
1383
1384 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1385
1386 if (!__hrtimer_hres_active(cpu_base))
1387 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1388
1389 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1390
1391 return expires;
1392 }
1393
1394 /**
1395 * hrtimer_next_event_without - time until next expiry event w/o one timer
1396 * @exclude: timer to exclude
1397 *
1398 * Returns the next expiry time over all timers except for the @exclude one or
1399 * KTIME_MAX if none of them is pending.
1400 */
hrtimer_next_event_without(const struct hrtimer * exclude)1401 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1402 {
1403 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1404 u64 expires = KTIME_MAX;
1405 unsigned long flags;
1406
1407 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1408
1409 if (__hrtimer_hres_active(cpu_base)) {
1410 unsigned int active;
1411
1412 if (!cpu_base->softirq_activated) {
1413 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1414 expires = __hrtimer_next_event_base(cpu_base, exclude,
1415 active, KTIME_MAX);
1416 }
1417 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1418 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1419 expires);
1420 }
1421
1422 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1423
1424 return expires;
1425 }
1426 #endif
1427
hrtimer_clockid_to_base(clockid_t clock_id)1428 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1429 {
1430 if (likely(clock_id < MAX_CLOCKS)) {
1431 int base = hrtimer_clock_to_base_table[clock_id];
1432
1433 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1434 return base;
1435 }
1436 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1437 return HRTIMER_BASE_MONOTONIC;
1438 }
1439
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1440 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1441 enum hrtimer_mode mode)
1442 {
1443 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1444 struct hrtimer_cpu_base *cpu_base;
1445 int base;
1446
1447 /*
1448 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1449 * marked for hard interrupt expiry mode are moved into soft
1450 * interrupt context for latency reasons and because the callbacks
1451 * can invoke functions which might sleep on RT, e.g. spin_lock().
1452 */
1453 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1454 softtimer = true;
1455
1456 memset(timer, 0, sizeof(struct hrtimer));
1457
1458 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1459
1460 /*
1461 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1462 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1463 * ensure POSIX compliance.
1464 */
1465 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1466 clock_id = CLOCK_MONOTONIC;
1467
1468 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1469 base += hrtimer_clockid_to_base(clock_id);
1470 timer->is_soft = softtimer;
1471 timer->is_hard = !softtimer;
1472 timer->base = &cpu_base->clock_base[base];
1473 timerqueue_init(&timer->node);
1474 }
1475
1476 /**
1477 * hrtimer_init - initialize a timer to the given clock
1478 * @timer: the timer to be initialized
1479 * @clock_id: the clock to be used
1480 * @mode: The modes which are relevant for intitialization:
1481 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1482 * HRTIMER_MODE_REL_SOFT
1483 *
1484 * The PINNED variants of the above can be handed in,
1485 * but the PINNED bit is ignored as pinning happens
1486 * when the hrtimer is started
1487 */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1488 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1489 enum hrtimer_mode mode)
1490 {
1491 debug_init(timer, clock_id, mode);
1492 __hrtimer_init(timer, clock_id, mode);
1493 }
1494 EXPORT_SYMBOL_GPL(hrtimer_init);
1495
1496 /*
1497 * A timer is active, when it is enqueued into the rbtree or the
1498 * callback function is running or it's in the state of being migrated
1499 * to another cpu.
1500 *
1501 * It is important for this function to not return a false negative.
1502 */
hrtimer_active(const struct hrtimer * timer)1503 bool hrtimer_active(const struct hrtimer *timer)
1504 {
1505 struct hrtimer_clock_base *base;
1506 unsigned int seq;
1507
1508 do {
1509 base = READ_ONCE(timer->base);
1510 seq = raw_read_seqcount_begin(&base->seq);
1511
1512 if (timer->state != HRTIMER_STATE_INACTIVE ||
1513 base->running == timer)
1514 return true;
1515
1516 } while (read_seqcount_retry(&base->seq, seq) ||
1517 base != READ_ONCE(timer->base));
1518
1519 return false;
1520 }
1521 EXPORT_SYMBOL_GPL(hrtimer_active);
1522
1523 /*
1524 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1525 * distinct sections:
1526 *
1527 * - queued: the timer is queued
1528 * - callback: the timer is being ran
1529 * - post: the timer is inactive or (re)queued
1530 *
1531 * On the read side we ensure we observe timer->state and cpu_base->running
1532 * from the same section, if anything changed while we looked at it, we retry.
1533 * This includes timer->base changing because sequence numbers alone are
1534 * insufficient for that.
1535 *
1536 * The sequence numbers are required because otherwise we could still observe
1537 * a false negative if the read side got smeared over multiple consequtive
1538 * __run_hrtimer() invocations.
1539 */
1540
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now,unsigned long flags)1541 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1542 struct hrtimer_clock_base *base,
1543 struct hrtimer *timer, ktime_t *now,
1544 unsigned long flags)
1545 {
1546 enum hrtimer_restart (*fn)(struct hrtimer *);
1547 int restart;
1548
1549 lockdep_assert_held(&cpu_base->lock);
1550
1551 debug_deactivate(timer);
1552 base->running = timer;
1553
1554 /*
1555 * Separate the ->running assignment from the ->state assignment.
1556 *
1557 * As with a regular write barrier, this ensures the read side in
1558 * hrtimer_active() cannot observe base->running == NULL &&
1559 * timer->state == INACTIVE.
1560 */
1561 raw_write_seqcount_barrier(&base->seq);
1562
1563 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1564 fn = timer->function;
1565
1566 /*
1567 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1568 * timer is restarted with a period then it becomes an absolute
1569 * timer. If its not restarted it does not matter.
1570 */
1571 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1572 timer->is_rel = false;
1573
1574 /*
1575 * The timer is marked as running in the CPU base, so it is
1576 * protected against migration to a different CPU even if the lock
1577 * is dropped.
1578 */
1579 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1580 trace_hrtimer_expire_entry(timer, now);
1581 restart = fn(timer);
1582 trace_hrtimer_expire_exit(timer);
1583 raw_spin_lock_irq(&cpu_base->lock);
1584
1585 /*
1586 * Note: We clear the running state after enqueue_hrtimer and
1587 * we do not reprogram the event hardware. Happens either in
1588 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1589 *
1590 * Note: Because we dropped the cpu_base->lock above,
1591 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1592 * for us already.
1593 */
1594 if (restart != HRTIMER_NORESTART &&
1595 !(timer->state & HRTIMER_STATE_ENQUEUED))
1596 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1597
1598 /*
1599 * Separate the ->running assignment from the ->state assignment.
1600 *
1601 * As with a regular write barrier, this ensures the read side in
1602 * hrtimer_active() cannot observe base->running.timer == NULL &&
1603 * timer->state == INACTIVE.
1604 */
1605 raw_write_seqcount_barrier(&base->seq);
1606
1607 WARN_ON_ONCE(base->running != timer);
1608 base->running = NULL;
1609 }
1610
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now,unsigned long flags,unsigned int active_mask)1611 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1612 unsigned long flags, unsigned int active_mask)
1613 {
1614 struct hrtimer_clock_base *base;
1615 unsigned int active = cpu_base->active_bases & active_mask;
1616
1617 for_each_active_base(base, cpu_base, active) {
1618 struct timerqueue_node *node;
1619 ktime_t basenow;
1620
1621 basenow = ktime_add(now, base->offset);
1622
1623 while ((node = timerqueue_getnext(&base->active))) {
1624 struct hrtimer *timer;
1625
1626 timer = container_of(node, struct hrtimer, node);
1627
1628 /*
1629 * The immediate goal for using the softexpires is
1630 * minimizing wakeups, not running timers at the
1631 * earliest interrupt after their soft expiration.
1632 * This allows us to avoid using a Priority Search
1633 * Tree, which can answer a stabbing querry for
1634 * overlapping intervals and instead use the simple
1635 * BST we already have.
1636 * We don't add extra wakeups by delaying timers that
1637 * are right-of a not yet expired timer, because that
1638 * timer will have to trigger a wakeup anyway.
1639 */
1640 if (basenow < hrtimer_get_softexpires_tv64(timer))
1641 break;
1642
1643 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1644 if (active_mask == HRTIMER_ACTIVE_SOFT)
1645 hrtimer_sync_wait_running(cpu_base, flags);
1646 }
1647 }
1648 }
1649
hrtimer_run_softirq(struct softirq_action * h)1650 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1651 {
1652 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1653 unsigned long flags;
1654 ktime_t now;
1655
1656 hrtimer_cpu_base_lock_expiry(cpu_base);
1657 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1658
1659 now = hrtimer_update_base(cpu_base);
1660 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1661
1662 cpu_base->softirq_activated = 0;
1663 hrtimer_update_softirq_timer(cpu_base, true);
1664
1665 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1666 hrtimer_cpu_base_unlock_expiry(cpu_base);
1667 }
1668
1669 #ifdef CONFIG_HIGH_RES_TIMERS
1670
1671 /*
1672 * High resolution timer interrupt
1673 * Called with interrupts disabled
1674 */
hrtimer_interrupt(struct clock_event_device * dev)1675 void hrtimer_interrupt(struct clock_event_device *dev)
1676 {
1677 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1678 ktime_t expires_next, now, entry_time, delta;
1679 unsigned long flags;
1680 int retries = 0;
1681
1682 BUG_ON(!cpu_base->hres_active);
1683 cpu_base->nr_events++;
1684 dev->next_event = KTIME_MAX;
1685
1686 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1687 entry_time = now = hrtimer_update_base(cpu_base);
1688 retry:
1689 cpu_base->in_hrtirq = 1;
1690 /*
1691 * We set expires_next to KTIME_MAX here with cpu_base->lock
1692 * held to prevent that a timer is enqueued in our queue via
1693 * the migration code. This does not affect enqueueing of
1694 * timers which run their callback and need to be requeued on
1695 * this CPU.
1696 */
1697 cpu_base->expires_next = KTIME_MAX;
1698
1699 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1700 cpu_base->softirq_expires_next = KTIME_MAX;
1701 cpu_base->softirq_activated = 1;
1702 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1703 }
1704
1705 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1706
1707 /* Reevaluate the clock bases for the [soft] next expiry */
1708 expires_next = hrtimer_update_next_event(cpu_base);
1709 /*
1710 * Store the new expiry value so the migration code can verify
1711 * against it.
1712 */
1713 cpu_base->expires_next = expires_next;
1714 cpu_base->in_hrtirq = 0;
1715 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1716
1717 /* Reprogramming necessary ? */
1718 if (!tick_program_event(expires_next, 0)) {
1719 cpu_base->hang_detected = 0;
1720 return;
1721 }
1722
1723 /*
1724 * The next timer was already expired due to:
1725 * - tracing
1726 * - long lasting callbacks
1727 * - being scheduled away when running in a VM
1728 *
1729 * We need to prevent that we loop forever in the hrtimer
1730 * interrupt routine. We give it 3 attempts to avoid
1731 * overreacting on some spurious event.
1732 *
1733 * Acquire base lock for updating the offsets and retrieving
1734 * the current time.
1735 */
1736 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1737 now = hrtimer_update_base(cpu_base);
1738 cpu_base->nr_retries++;
1739 if (++retries < 3)
1740 goto retry;
1741 /*
1742 * Give the system a chance to do something else than looping
1743 * here. We stored the entry time, so we know exactly how long
1744 * we spent here. We schedule the next event this amount of
1745 * time away.
1746 */
1747 cpu_base->nr_hangs++;
1748 cpu_base->hang_detected = 1;
1749 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1750
1751 delta = ktime_sub(now, entry_time);
1752 if ((unsigned int)delta > cpu_base->max_hang_time)
1753 cpu_base->max_hang_time = (unsigned int) delta;
1754 /*
1755 * Limit it to a sensible value as we enforce a longer
1756 * delay. Give the CPU at least 100ms to catch up.
1757 */
1758 if (delta > 100 * NSEC_PER_MSEC)
1759 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1760 else
1761 expires_next = ktime_add(now, delta);
1762 tick_program_event(expires_next, 1);
1763 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1764 }
1765
1766 /* called with interrupts disabled */
__hrtimer_peek_ahead_timers(void)1767 static inline void __hrtimer_peek_ahead_timers(void)
1768 {
1769 struct tick_device *td;
1770
1771 if (!hrtimer_hres_active())
1772 return;
1773
1774 td = this_cpu_ptr(&tick_cpu_device);
1775 if (td && td->evtdev)
1776 hrtimer_interrupt(td->evtdev);
1777 }
1778
1779 #else /* CONFIG_HIGH_RES_TIMERS */
1780
__hrtimer_peek_ahead_timers(void)1781 static inline void __hrtimer_peek_ahead_timers(void) { }
1782
1783 #endif /* !CONFIG_HIGH_RES_TIMERS */
1784
1785 /*
1786 * Called from run_local_timers in hardirq context every jiffy
1787 */
hrtimer_run_queues(void)1788 void hrtimer_run_queues(void)
1789 {
1790 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1791 unsigned long flags;
1792 ktime_t now;
1793
1794 if (__hrtimer_hres_active(cpu_base))
1795 return;
1796
1797 /*
1798 * This _is_ ugly: We have to check periodically, whether we
1799 * can switch to highres and / or nohz mode. The clocksource
1800 * switch happens with xtime_lock held. Notification from
1801 * there only sets the check bit in the tick_oneshot code,
1802 * otherwise we might deadlock vs. xtime_lock.
1803 */
1804 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1805 hrtimer_switch_to_hres();
1806 return;
1807 }
1808
1809 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1810 now = hrtimer_update_base(cpu_base);
1811
1812 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1813 cpu_base->softirq_expires_next = KTIME_MAX;
1814 cpu_base->softirq_activated = 1;
1815 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1816 }
1817
1818 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1819 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1820 }
1821
1822 /*
1823 * Sleep related functions:
1824 */
hrtimer_wakeup(struct hrtimer * timer)1825 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1826 {
1827 struct hrtimer_sleeper *t =
1828 container_of(timer, struct hrtimer_sleeper, timer);
1829 struct task_struct *task = t->task;
1830
1831 t->task = NULL;
1832 if (task)
1833 wake_up_process(task);
1834
1835 return HRTIMER_NORESTART;
1836 }
1837
1838 /**
1839 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1840 * @sl: sleeper to be started
1841 * @mode: timer mode abs/rel
1842 *
1843 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1844 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1845 */
hrtimer_sleeper_start_expires(struct hrtimer_sleeper * sl,enum hrtimer_mode mode)1846 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1847 enum hrtimer_mode mode)
1848 {
1849 /*
1850 * Make the enqueue delivery mode check work on RT. If the sleeper
1851 * was initialized for hard interrupt delivery, force the mode bit.
1852 * This is a special case for hrtimer_sleepers because
1853 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1854 * fiddling with this decision is avoided at the call sites.
1855 */
1856 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1857 mode |= HRTIMER_MODE_HARD;
1858
1859 hrtimer_start_expires(&sl->timer, mode);
1860 }
1861 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1862
__hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)1863 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1864 clockid_t clock_id, enum hrtimer_mode mode)
1865 {
1866 /*
1867 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1868 * marked for hard interrupt expiry mode are moved into soft
1869 * interrupt context either for latency reasons or because the
1870 * hrtimer callback takes regular spinlocks or invokes other
1871 * functions which are not suitable for hard interrupt context on
1872 * PREEMPT_RT.
1873 *
1874 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1875 * context, but there is a latency concern: Untrusted userspace can
1876 * spawn many threads which arm timers for the same expiry time on
1877 * the same CPU. That causes a latency spike due to the wakeup of
1878 * a gazillion threads.
1879 *
1880 * OTOH, priviledged real-time user space applications rely on the
1881 * low latency of hard interrupt wakeups. If the current task is in
1882 * a real-time scheduling class, mark the mode for hard interrupt
1883 * expiry.
1884 */
1885 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1886 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1887 mode |= HRTIMER_MODE_HARD;
1888 }
1889
1890 __hrtimer_init(&sl->timer, clock_id, mode);
1891 sl->timer.function = hrtimer_wakeup;
1892 sl->task = current;
1893 }
1894
1895 /**
1896 * hrtimer_init_sleeper - initialize sleeper to the given clock
1897 * @sl: sleeper to be initialized
1898 * @clock_id: the clock to be used
1899 * @mode: timer mode abs/rel
1900 */
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,clockid_t clock_id,enum hrtimer_mode mode)1901 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1902 enum hrtimer_mode mode)
1903 {
1904 debug_init(&sl->timer, clock_id, mode);
1905 __hrtimer_init_sleeper(sl, clock_id, mode);
1906
1907 }
1908 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1909
nanosleep_copyout(struct restart_block * restart,struct timespec64 * ts)1910 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1911 {
1912 switch(restart->nanosleep.type) {
1913 #ifdef CONFIG_COMPAT_32BIT_TIME
1914 case TT_COMPAT:
1915 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1916 return -EFAULT;
1917 break;
1918 #endif
1919 case TT_NATIVE:
1920 if (put_timespec64(ts, restart->nanosleep.rmtp))
1921 return -EFAULT;
1922 break;
1923 default:
1924 BUG();
1925 }
1926 return -ERESTART_RESTARTBLOCK;
1927 }
1928
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)1929 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1930 {
1931 struct restart_block *restart;
1932
1933 do {
1934 set_current_state(TASK_INTERRUPTIBLE);
1935 hrtimer_sleeper_start_expires(t, mode);
1936
1937 if (likely(t->task))
1938 freezable_schedule();
1939
1940 hrtimer_cancel(&t->timer);
1941 mode = HRTIMER_MODE_ABS;
1942
1943 } while (t->task && !signal_pending(current));
1944
1945 __set_current_state(TASK_RUNNING);
1946
1947 if (!t->task)
1948 return 0;
1949
1950 restart = ¤t->restart_block;
1951 if (restart->nanosleep.type != TT_NONE) {
1952 ktime_t rem = hrtimer_expires_remaining(&t->timer);
1953 struct timespec64 rmt;
1954
1955 if (rem <= 0)
1956 return 0;
1957 rmt = ktime_to_timespec64(rem);
1958
1959 return nanosleep_copyout(restart, &rmt);
1960 }
1961 return -ERESTART_RESTARTBLOCK;
1962 }
1963
hrtimer_nanosleep_restart(struct restart_block * restart)1964 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1965 {
1966 struct hrtimer_sleeper t;
1967 int ret;
1968
1969 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1970 HRTIMER_MODE_ABS);
1971 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1972 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1973 destroy_hrtimer_on_stack(&t.timer);
1974 return ret;
1975 }
1976
hrtimer_nanosleep(const struct timespec64 * rqtp,const enum hrtimer_mode mode,const clockid_t clockid)1977 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1978 const enum hrtimer_mode mode, const clockid_t clockid)
1979 {
1980 struct restart_block *restart;
1981 struct hrtimer_sleeper t;
1982 int ret = 0;
1983 u64 slack;
1984
1985 slack = current->timer_slack_ns;
1986 if (dl_task(current) || rt_task(current))
1987 slack = 0;
1988
1989 hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1990 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1991 ret = do_nanosleep(&t, mode);
1992 if (ret != -ERESTART_RESTARTBLOCK)
1993 goto out;
1994
1995 /* Absolute timers do not update the rmtp value and restart: */
1996 if (mode == HRTIMER_MODE_ABS) {
1997 ret = -ERESTARTNOHAND;
1998 goto out;
1999 }
2000
2001 restart = ¤t->restart_block;
2002 restart->nanosleep.clockid = t.timer.base->clockid;
2003 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2004 set_restart_fn(restart, hrtimer_nanosleep_restart);
2005 out:
2006 destroy_hrtimer_on_stack(&t.timer);
2007 return ret;
2008 }
2009
2010 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
2011
SYSCALL_DEFINE2(nanosleep,struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)2012 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2013 struct __kernel_timespec __user *, rmtp)
2014 {
2015 struct timespec64 tu;
2016
2017 if (get_timespec64(&tu, rqtp))
2018 return -EFAULT;
2019
2020 if (!timespec64_valid(&tu))
2021 return -EINVAL;
2022
2023 current->restart_block.fn = do_no_restart_syscall;
2024 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2025 current->restart_block.nanosleep.rmtp = rmtp;
2026 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
2027 }
2028
2029 #endif
2030
2031 #ifdef CONFIG_COMPAT_32BIT_TIME
2032
SYSCALL_DEFINE2(nanosleep_time32,struct old_timespec32 __user *,rqtp,struct old_timespec32 __user *,rmtp)2033 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2034 struct old_timespec32 __user *, rmtp)
2035 {
2036 struct timespec64 tu;
2037
2038 if (get_old_timespec32(&tu, rqtp))
2039 return -EFAULT;
2040
2041 if (!timespec64_valid(&tu))
2042 return -EINVAL;
2043
2044 current->restart_block.fn = do_no_restart_syscall;
2045 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2046 current->restart_block.nanosleep.compat_rmtp = rmtp;
2047 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
2048 }
2049 #endif
2050
2051 /*
2052 * Functions related to boot-time initialization:
2053 */
hrtimers_prepare_cpu(unsigned int cpu)2054 int hrtimers_prepare_cpu(unsigned int cpu)
2055 {
2056 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2057 int i;
2058
2059 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2060 cpu_base->clock_base[i].cpu_base = cpu_base;
2061 timerqueue_init_head(&cpu_base->clock_base[i].active);
2062 }
2063
2064 cpu_base->cpu = cpu;
2065 cpu_base->active_bases = 0;
2066 cpu_base->hres_active = 0;
2067 cpu_base->hang_detected = 0;
2068 cpu_base->next_timer = NULL;
2069 cpu_base->softirq_next_timer = NULL;
2070 cpu_base->expires_next = KTIME_MAX;
2071 cpu_base->softirq_expires_next = KTIME_MAX;
2072 hrtimer_cpu_base_init_expiry_lock(cpu_base);
2073 return 0;
2074 }
2075
2076 #ifdef CONFIG_HOTPLUG_CPU
2077
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)2078 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2079 struct hrtimer_clock_base *new_base)
2080 {
2081 struct hrtimer *timer;
2082 struct timerqueue_node *node;
2083
2084 while ((node = timerqueue_getnext(&old_base->active))) {
2085 timer = container_of(node, struct hrtimer, node);
2086 BUG_ON(hrtimer_callback_running(timer));
2087 debug_deactivate(timer);
2088
2089 /*
2090 * Mark it as ENQUEUED not INACTIVE otherwise the
2091 * timer could be seen as !active and just vanish away
2092 * under us on another CPU
2093 */
2094 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2095 timer->base = new_base;
2096 /*
2097 * Enqueue the timers on the new cpu. This does not
2098 * reprogram the event device in case the timer
2099 * expires before the earliest on this CPU, but we run
2100 * hrtimer_interrupt after we migrated everything to
2101 * sort out already expired timers and reprogram the
2102 * event device.
2103 */
2104 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2105 }
2106 }
2107
hrtimers_dead_cpu(unsigned int scpu)2108 int hrtimers_dead_cpu(unsigned int scpu)
2109 {
2110 struct hrtimer_cpu_base *old_base, *new_base;
2111 int i;
2112
2113 BUG_ON(cpu_online(scpu));
2114 tick_cancel_sched_timer(scpu);
2115
2116 /*
2117 * this BH disable ensures that raise_softirq_irqoff() does
2118 * not wakeup ksoftirqd (and acquire the pi-lock) while
2119 * holding the cpu_base lock
2120 */
2121 local_bh_disable();
2122 local_irq_disable();
2123 old_base = &per_cpu(hrtimer_bases, scpu);
2124 new_base = this_cpu_ptr(&hrtimer_bases);
2125 /*
2126 * The caller is globally serialized and nobody else
2127 * takes two locks at once, deadlock is not possible.
2128 */
2129 raw_spin_lock(&new_base->lock);
2130 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2131
2132 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2133 migrate_hrtimer_list(&old_base->clock_base[i],
2134 &new_base->clock_base[i]);
2135 }
2136
2137 /*
2138 * The migration might have changed the first expiring softirq
2139 * timer on this CPU. Update it.
2140 */
2141 hrtimer_update_softirq_timer(new_base, false);
2142
2143 raw_spin_unlock(&old_base->lock);
2144 raw_spin_unlock(&new_base->lock);
2145
2146 /* Check, if we got expired work to do */
2147 __hrtimer_peek_ahead_timers();
2148 local_irq_enable();
2149 local_bh_enable();
2150 return 0;
2151 }
2152
2153 #endif /* CONFIG_HOTPLUG_CPU */
2154
hrtimers_init(void)2155 void __init hrtimers_init(void)
2156 {
2157 hrtimers_prepare_cpu(smp_processor_id());
2158 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2159 }
2160
2161 /**
2162 * schedule_hrtimeout_range_clock - sleep until timeout
2163 * @expires: timeout value (ktime_t)
2164 * @delta: slack in expires timeout (ktime_t)
2165 * @mode: timer mode
2166 * @clock_id: timer clock to be used
2167 */
2168 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,u64 delta,const enum hrtimer_mode mode,clockid_t clock_id)2169 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2170 const enum hrtimer_mode mode, clockid_t clock_id)
2171 {
2172 struct hrtimer_sleeper t;
2173
2174 /*
2175 * Optimize when a zero timeout value is given. It does not
2176 * matter whether this is an absolute or a relative time.
2177 */
2178 if (expires && *expires == 0) {
2179 __set_current_state(TASK_RUNNING);
2180 return 0;
2181 }
2182
2183 /*
2184 * A NULL parameter means "infinite"
2185 */
2186 if (!expires) {
2187 schedule();
2188 return -EINTR;
2189 }
2190
2191 hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2192 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2193 hrtimer_sleeper_start_expires(&t, mode);
2194
2195 if (likely(t.task))
2196 schedule();
2197
2198 hrtimer_cancel(&t.timer);
2199 destroy_hrtimer_on_stack(&t.timer);
2200
2201 __set_current_state(TASK_RUNNING);
2202
2203 return !t.task ? 0 : -EINTR;
2204 }
2205
2206 /**
2207 * schedule_hrtimeout_range - sleep until timeout
2208 * @expires: timeout value (ktime_t)
2209 * @delta: slack in expires timeout (ktime_t)
2210 * @mode: timer mode
2211 *
2212 * Make the current task sleep until the given expiry time has
2213 * elapsed. The routine will return immediately unless
2214 * the current task state has been set (see set_current_state()).
2215 *
2216 * The @delta argument gives the kernel the freedom to schedule the
2217 * actual wakeup to a time that is both power and performance friendly.
2218 * The kernel give the normal best effort behavior for "@expires+@delta",
2219 * but may decide to fire the timer earlier, but no earlier than @expires.
2220 *
2221 * You can set the task state as follows -
2222 *
2223 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2224 * pass before the routine returns unless the current task is explicitly
2225 * woken up, (e.g. by wake_up_process()).
2226 *
2227 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2228 * delivered to the current task or the current task is explicitly woken
2229 * up.
2230 *
2231 * The current task state is guaranteed to be TASK_RUNNING when this
2232 * routine returns.
2233 *
2234 * Returns 0 when the timer has expired. If the task was woken before the
2235 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2236 * by an explicit wakeup, it returns -EINTR.
2237 */
schedule_hrtimeout_range(ktime_t * expires,u64 delta,const enum hrtimer_mode mode)2238 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2239 const enum hrtimer_mode mode)
2240 {
2241 return schedule_hrtimeout_range_clock(expires, delta, mode,
2242 CLOCK_MONOTONIC);
2243 }
2244 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2245
2246 /**
2247 * schedule_hrtimeout - sleep until timeout
2248 * @expires: timeout value (ktime_t)
2249 * @mode: timer mode
2250 *
2251 * Make the current task sleep until the given expiry time has
2252 * elapsed. The routine will return immediately unless
2253 * the current task state has been set (see set_current_state()).
2254 *
2255 * You can set the task state as follows -
2256 *
2257 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2258 * pass before the routine returns unless the current task is explicitly
2259 * woken up, (e.g. by wake_up_process()).
2260 *
2261 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2262 * delivered to the current task or the current task is explicitly woken
2263 * up.
2264 *
2265 * The current task state is guaranteed to be TASK_RUNNING when this
2266 * routine returns.
2267 *
2268 * Returns 0 when the timer has expired. If the task was woken before the
2269 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2270 * by an explicit wakeup, it returns -EINTR.
2271 */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)2272 int __sched schedule_hrtimeout(ktime_t *expires,
2273 const enum hrtimer_mode mode)
2274 {
2275 return schedule_hrtimeout_range(expires, 0, mode);
2276 }
2277 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2278