• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct page;
27 struct mm_struct;
28 struct kmem_cache;
29 
30 /* Cgroup-specific page state, on top of universal node page state */
31 enum memcg_stat_item {
32 	MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
33 	MEMCG_RSS,
34 	MEMCG_RSS_HUGE,
35 	MEMCG_SWAP,
36 	MEMCG_SOCK,
37 	/* XXX: why are these zone and not node counters? */
38 	MEMCG_KERNEL_STACK_KB,
39 	MEMCG_NR_STAT,
40 };
41 
42 enum memcg_memory_event {
43 	MEMCG_LOW,
44 	MEMCG_HIGH,
45 	MEMCG_MAX,
46 	MEMCG_OOM,
47 	MEMCG_OOM_KILL,
48 	MEMCG_SWAP_MAX,
49 	MEMCG_SWAP_FAIL,
50 	MEMCG_NR_MEMORY_EVENTS,
51 };
52 
53 enum mem_cgroup_protection {
54 	MEMCG_PROT_NONE,
55 	MEMCG_PROT_LOW,
56 	MEMCG_PROT_MIN,
57 };
58 
59 struct mem_cgroup_reclaim_cookie {
60 	pg_data_t *pgdat;
61 	int priority;
62 	unsigned int generation;
63 };
64 
65 #ifdef CONFIG_MEMCG
66 
67 #define MEM_CGROUP_ID_SHIFT	16
68 #define MEM_CGROUP_ID_MAX	USHRT_MAX
69 
70 struct mem_cgroup_id {
71 	int id;
72 	refcount_t ref;
73 };
74 
75 /*
76  * Per memcg event counter is incremented at every pagein/pageout. With THP,
77  * it will be incremated by the number of pages. This counter is used for
78  * for trigger some periodic events. This is straightforward and better
79  * than using jiffies etc. to handle periodic memcg event.
80  */
81 enum mem_cgroup_events_target {
82 	MEM_CGROUP_TARGET_THRESH,
83 	MEM_CGROUP_TARGET_SOFTLIMIT,
84 	MEM_CGROUP_TARGET_NUMAINFO,
85 	MEM_CGROUP_NTARGETS,
86 };
87 
88 struct memcg_vmstats_percpu {
89 	long stat[MEMCG_NR_STAT];
90 	unsigned long events[NR_VM_EVENT_ITEMS];
91 	unsigned long nr_page_events;
92 	unsigned long targets[MEM_CGROUP_NTARGETS];
93 };
94 
95 struct mem_cgroup_reclaim_iter {
96 	struct mem_cgroup *position;
97 	/* scan generation, increased every round-trip */
98 	unsigned int generation;
99 };
100 
101 struct lruvec_stat {
102 	long count[NR_VM_NODE_STAT_ITEMS];
103 };
104 
105 /*
106  * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
107  * which have elements charged to this memcg.
108  */
109 struct memcg_shrinker_map {
110 	struct rcu_head rcu;
111 	unsigned long map[0];
112 };
113 
114 /*
115  * per-zone information in memory controller.
116  */
117 struct mem_cgroup_per_node {
118 	struct lruvec		lruvec;
119 
120 	/* Legacy local VM stats */
121 	struct lruvec_stat __percpu *lruvec_stat_local;
122 
123 	/* Subtree VM stats (batched updates) */
124 	struct lruvec_stat __percpu *lruvec_stat_cpu;
125 	atomic_long_t		lruvec_stat[NR_VM_NODE_STAT_ITEMS];
126 
127 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
128 
129 	struct mem_cgroup_reclaim_iter	iter[DEF_PRIORITY + 1];
130 
131 	struct memcg_shrinker_map __rcu	*shrinker_map;
132 
133 	struct rb_node		tree_node;	/* RB tree node */
134 	unsigned long		usage_in_excess;/* Set to the value by which */
135 						/* the soft limit is exceeded*/
136 	bool			on_tree;
137 	bool			congested;	/* memcg has many dirty pages */
138 						/* backed by a congested BDI */
139 
140 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
141 						/* use container_of	   */
142 };
143 
144 struct mem_cgroup_threshold {
145 	struct eventfd_ctx *eventfd;
146 	unsigned long threshold;
147 };
148 
149 /* For threshold */
150 struct mem_cgroup_threshold_ary {
151 	/* An array index points to threshold just below or equal to usage. */
152 	int current_threshold;
153 	/* Size of entries[] */
154 	unsigned int size;
155 	/* Array of thresholds */
156 	struct mem_cgroup_threshold entries[0];
157 };
158 
159 struct mem_cgroup_thresholds {
160 	/* Primary thresholds array */
161 	struct mem_cgroup_threshold_ary *primary;
162 	/*
163 	 * Spare threshold array.
164 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
165 	 * It must be able to store at least primary->size - 1 entries.
166 	 */
167 	struct mem_cgroup_threshold_ary *spare;
168 };
169 
170 enum memcg_kmem_state {
171 	KMEM_NONE,
172 	KMEM_ALLOCATED,
173 	KMEM_ONLINE,
174 };
175 
176 #if defined(CONFIG_SMP)
177 struct memcg_padding {
178 	char x[0];
179 } ____cacheline_internodealigned_in_smp;
180 #define MEMCG_PADDING(name)      struct memcg_padding name;
181 #else
182 #define MEMCG_PADDING(name)
183 #endif
184 
185 /*
186  * Remember four most recent foreign writebacks with dirty pages in this
187  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
188  * one in a given round, we're likely to catch it later if it keeps
189  * foreign-dirtying, so a fairly low count should be enough.
190  *
191  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
192  */
193 #define MEMCG_CGWB_FRN_CNT	4
194 
195 struct memcg_cgwb_frn {
196 	u64 bdi_id;			/* bdi->id of the foreign inode */
197 	int memcg_id;			/* memcg->css.id of foreign inode */
198 	u64 at;				/* jiffies_64 at the time of dirtying */
199 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
200 };
201 
202 /*
203  * The memory controller data structure. The memory controller controls both
204  * page cache and RSS per cgroup. We would eventually like to provide
205  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
206  * to help the administrator determine what knobs to tune.
207  */
208 struct mem_cgroup {
209 	struct cgroup_subsys_state css;
210 
211 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
212 	struct mem_cgroup_id id;
213 
214 	/* Accounted resources */
215 	struct page_counter memory;
216 	struct page_counter swap;
217 
218 	/* Legacy consumer-oriented counters */
219 	struct page_counter memsw;
220 	struct page_counter kmem;
221 	struct page_counter tcpmem;
222 
223 	/* Upper bound of normal memory consumption range */
224 	unsigned long high;
225 
226 	/* Range enforcement for interrupt charges */
227 	struct work_struct high_work;
228 
229 	unsigned long soft_limit;
230 
231 	/* vmpressure notifications */
232 	struct vmpressure vmpressure;
233 
234 	/*
235 	 * Should the accounting and control be hierarchical, per subtree?
236 	 */
237 	bool use_hierarchy;
238 
239 	/*
240 	 * Should the OOM killer kill all belonging tasks, had it kill one?
241 	 */
242 	bool oom_group;
243 
244 	/* protected by memcg_oom_lock */
245 	bool		oom_lock;
246 	int		under_oom;
247 
248 	int	swappiness;
249 	/* OOM-Killer disable */
250 	int		oom_kill_disable;
251 
252 	/* memory.events and memory.events.local */
253 	struct cgroup_file events_file;
254 	struct cgroup_file events_local_file;
255 
256 	/* handle for "memory.swap.events" */
257 	struct cgroup_file swap_events_file;
258 
259 	/* protect arrays of thresholds */
260 	struct mutex thresholds_lock;
261 
262 	/* thresholds for memory usage. RCU-protected */
263 	struct mem_cgroup_thresholds thresholds;
264 
265 	/* thresholds for mem+swap usage. RCU-protected */
266 	struct mem_cgroup_thresholds memsw_thresholds;
267 
268 	/* For oom notifier event fd */
269 	struct list_head oom_notify;
270 
271 	/*
272 	 * Should we move charges of a task when a task is moved into this
273 	 * mem_cgroup ? And what type of charges should we move ?
274 	 */
275 	unsigned long move_charge_at_immigrate;
276 	/* taken only while moving_account > 0 */
277 	spinlock_t		move_lock;
278 	unsigned long		move_lock_flags;
279 
280 	MEMCG_PADDING(_pad1_);
281 
282 	/*
283 	 * set > 0 if pages under this cgroup are moving to other cgroup.
284 	 */
285 	atomic_t		moving_account;
286 	struct task_struct	*move_lock_task;
287 
288 	/* Legacy local VM stats and events */
289 	struct memcg_vmstats_percpu __percpu *vmstats_local;
290 
291 	/* Subtree VM stats and events (batched updates) */
292 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
293 
294 	MEMCG_PADDING(_pad2_);
295 
296 	atomic_long_t		vmstats[MEMCG_NR_STAT];
297 	atomic_long_t		vmevents[NR_VM_EVENT_ITEMS];
298 
299 	/* memory.events */
300 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
301 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
302 
303 	unsigned long		socket_pressure;
304 
305 	/* Legacy tcp memory accounting */
306 	bool			tcpmem_active;
307 	int			tcpmem_pressure;
308 
309 #ifdef CONFIG_MEMCG_KMEM
310         /* Index in the kmem_cache->memcg_params.memcg_caches array */
311 	int kmemcg_id;
312 	enum memcg_kmem_state kmem_state;
313 	struct list_head kmem_caches;
314 #endif
315 
316 	int last_scanned_node;
317 #if MAX_NUMNODES > 1
318 	nodemask_t	scan_nodes;
319 	atomic_t	numainfo_events;
320 	atomic_t	numainfo_updating;
321 #endif
322 
323 #ifdef CONFIG_CGROUP_WRITEBACK
324 	struct list_head cgwb_list;
325 	struct wb_domain cgwb_domain;
326 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
327 #endif
328 
329 	/* List of events which userspace want to receive */
330 	struct list_head event_list;
331 	spinlock_t event_list_lock;
332 
333 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_GKI_OPT_FEATURES)
334 	struct deferred_split deferred_split_queue;
335 #endif
336 
337 	struct mem_cgroup_per_node *nodeinfo[0];
338 	/* WARNING: nodeinfo must be the last member here */
339 };
340 
341 /*
342  * size of first charge trial. "32" comes from vmscan.c's magic value.
343  * TODO: maybe necessary to use big numbers in big irons.
344  */
345 #define MEMCG_CHARGE_BATCH 32U
346 
347 extern struct mem_cgroup *root_mem_cgroup;
348 
mem_cgroup_is_root(struct mem_cgroup * memcg)349 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
350 {
351 	return (memcg == root_mem_cgroup);
352 }
353 
mem_cgroup_disabled(void)354 static inline bool mem_cgroup_disabled(void)
355 {
356 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
357 }
358 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)359 static inline void mem_cgroup_protection(struct mem_cgroup *root,
360 					 struct mem_cgroup *memcg,
361 					 unsigned long *min,
362 					 unsigned long *low)
363 {
364 	*min = *low = 0;
365 
366 	if (mem_cgroup_disabled())
367 		return;
368 
369 	/*
370 	 * There is no reclaim protection applied to a targeted reclaim.
371 	 * We are special casing this specific case here because
372 	 * mem_cgroup_protected calculation is not robust enough to keep
373 	 * the protection invariant for calculated effective values for
374 	 * parallel reclaimers with different reclaim target. This is
375 	 * especially a problem for tail memcgs (as they have pages on LRU)
376 	 * which would want to have effective values 0 for targeted reclaim
377 	 * but a different value for external reclaim.
378 	 *
379 	 * Example
380 	 * Let's have global and A's reclaim in parallel:
381 	 *  |
382 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
383 	 *  |\
384 	 *  | C (low = 1G, usage = 2.5G)
385 	 *  B (low = 1G, usage = 0.5G)
386 	 *
387 	 * For the global reclaim
388 	 * A.elow = A.low
389 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
390 	 * C.elow = min(C.usage, C.low)
391 	 *
392 	 * With the effective values resetting we have A reclaim
393 	 * A.elow = 0
394 	 * B.elow = B.low
395 	 * C.elow = C.low
396 	 *
397 	 * If the global reclaim races with A's reclaim then
398 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
399 	 * is possible and reclaiming B would be violating the protection.
400 	 *
401 	 */
402 	if (root == memcg)
403 		return;
404 
405 	*min = READ_ONCE(memcg->memory.emin);
406 	*low = READ_ONCE(memcg->memory.elow);
407 }
408 
409 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
410 						struct mem_cgroup *memcg);
411 
412 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
413 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
414 			  bool compound);
415 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
416 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
417 			  bool compound);
418 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
419 			      bool lrucare, bool compound);
420 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
421 		bool compound);
422 void mem_cgroup_uncharge(struct page *page);
423 void mem_cgroup_uncharge_list(struct list_head *page_list);
424 
425 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
426 
427 static struct mem_cgroup_per_node *
mem_cgroup_nodeinfo(struct mem_cgroup * memcg,int nid)428 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
429 {
430 	return memcg->nodeinfo[nid];
431 }
432 
433 /**
434  * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
435  * @node: node of the wanted lruvec
436  * @memcg: memcg of the wanted lruvec
437  *
438  * Returns the lru list vector holding pages for a given @node or a given
439  * @memcg and @zone. This can be the node lruvec, if the memory controller
440  * is disabled.
441  */
mem_cgroup_lruvec(struct pglist_data * pgdat,struct mem_cgroup * memcg)442 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
443 				struct mem_cgroup *memcg)
444 {
445 	struct mem_cgroup_per_node *mz;
446 	struct lruvec *lruvec;
447 
448 	if (mem_cgroup_disabled()) {
449 		lruvec = node_lruvec(pgdat);
450 		goto out;
451 	}
452 
453 	mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
454 	lruvec = &mz->lruvec;
455 out:
456 	/*
457 	 * Since a node can be onlined after the mem_cgroup was created,
458 	 * we have to be prepared to initialize lruvec->pgdat here;
459 	 * and if offlined then reonlined, we need to reinitialize it.
460 	 */
461 	if (unlikely(lruvec->pgdat != pgdat))
462 		lruvec->pgdat = pgdat;
463 	return lruvec;
464 }
465 
466 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
467 
468 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
469 
470 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
471 
472 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
473 
474 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)475 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
476 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
477 }
478 
mem_cgroup_put(struct mem_cgroup * memcg)479 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
480 {
481 	if (memcg)
482 		css_put(&memcg->css);
483 }
484 
485 #define mem_cgroup_from_counter(counter, member)	\
486 	container_of(counter, struct mem_cgroup, member)
487 
488 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
489 				   struct mem_cgroup *,
490 				   struct mem_cgroup_reclaim_cookie *);
491 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
492 int mem_cgroup_scan_tasks(struct mem_cgroup *,
493 			  int (*)(struct task_struct *, void *), void *);
494 
mem_cgroup_id(struct mem_cgroup * memcg)495 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
496 {
497 	if (mem_cgroup_disabled())
498 		return 0;
499 
500 	return memcg->id.id;
501 }
502 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
503 
mem_cgroup_from_seq(struct seq_file * m)504 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
505 {
506 	return mem_cgroup_from_css(seq_css(m));
507 }
508 
lruvec_memcg(struct lruvec * lruvec)509 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
510 {
511 	struct mem_cgroup_per_node *mz;
512 
513 	if (mem_cgroup_disabled())
514 		return NULL;
515 
516 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
517 	return mz->memcg;
518 }
519 
520 /**
521  * parent_mem_cgroup - find the accounting parent of a memcg
522  * @memcg: memcg whose parent to find
523  *
524  * Returns the parent memcg, or NULL if this is the root or the memory
525  * controller is in legacy no-hierarchy mode.
526  */
parent_mem_cgroup(struct mem_cgroup * memcg)527 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
528 {
529 	if (!memcg->memory.parent)
530 		return NULL;
531 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
532 }
533 
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)534 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
535 			      struct mem_cgroup *root)
536 {
537 	if (root == memcg)
538 		return true;
539 	if (!root->use_hierarchy)
540 		return false;
541 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
542 }
543 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)544 static inline bool mm_match_cgroup(struct mm_struct *mm,
545 				   struct mem_cgroup *memcg)
546 {
547 	struct mem_cgroup *task_memcg;
548 	bool match = false;
549 
550 	rcu_read_lock();
551 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
552 	if (task_memcg)
553 		match = mem_cgroup_is_descendant(task_memcg, memcg);
554 	rcu_read_unlock();
555 	return match;
556 }
557 
558 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
559 ino_t page_cgroup_ino(struct page *page);
560 
mem_cgroup_online(struct mem_cgroup * memcg)561 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
562 {
563 	if (mem_cgroup_disabled())
564 		return true;
565 	return !!(memcg->css.flags & CSS_ONLINE);
566 }
567 
568 /*
569  * For memory reclaim.
570  */
571 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
572 
573 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
574 		int zid, int nr_pages);
575 
576 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)577 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
578 		enum lru_list lru, int zone_idx)
579 {
580 	struct mem_cgroup_per_node *mz;
581 
582 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
583 	return mz->lru_zone_size[zone_idx][lru];
584 }
585 
586 void mem_cgroup_handle_over_high(void);
587 
588 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
589 
590 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
591 
592 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
593 				struct task_struct *p);
594 
595 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
596 
mem_cgroup_enter_user_fault(void)597 static inline void mem_cgroup_enter_user_fault(void)
598 {
599 	WARN_ON(current->in_user_fault);
600 	current->in_user_fault = 1;
601 }
602 
mem_cgroup_exit_user_fault(void)603 static inline void mem_cgroup_exit_user_fault(void)
604 {
605 	WARN_ON(!current->in_user_fault);
606 	current->in_user_fault = 0;
607 }
608 
task_in_memcg_oom(struct task_struct * p)609 static inline bool task_in_memcg_oom(struct task_struct *p)
610 {
611 	return p->memcg_in_oom;
612 }
613 
614 bool mem_cgroup_oom_synchronize(bool wait);
615 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
616 					    struct mem_cgroup *oom_domain);
617 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
618 
619 #ifdef CONFIG_MEMCG_SWAP
620 extern int do_swap_account;
621 #endif
622 
623 struct mem_cgroup *lock_page_memcg(struct page *page);
624 void __unlock_page_memcg(struct mem_cgroup *memcg);
625 void unlock_page_memcg(struct page *page);
626 
627 /*
628  * idx can be of type enum memcg_stat_item or node_stat_item.
629  * Keep in sync with memcg_exact_page_state().
630  */
memcg_page_state(struct mem_cgroup * memcg,int idx)631 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
632 {
633 	long x = atomic_long_read(&memcg->vmstats[idx]);
634 #ifdef CONFIG_SMP
635 	if (x < 0)
636 		x = 0;
637 #endif
638 	return x;
639 }
640 
641 /*
642  * idx can be of type enum memcg_stat_item or node_stat_item.
643  * Keep in sync with memcg_exact_page_state().
644  */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)645 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
646 						   int idx)
647 {
648 	long x = 0;
649 	int cpu;
650 
651 	for_each_possible_cpu(cpu)
652 		x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
653 #ifdef CONFIG_SMP
654 	if (x < 0)
655 		x = 0;
656 #endif
657 	return x;
658 }
659 
660 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
661 
662 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)663 static inline void mod_memcg_state(struct mem_cgroup *memcg,
664 				   int idx, int val)
665 {
666 	unsigned long flags;
667 
668 	local_irq_save(flags);
669 	__mod_memcg_state(memcg, idx, val);
670 	local_irq_restore(flags);
671 }
672 
673 /**
674  * mod_memcg_page_state - update page state statistics
675  * @page: the page
676  * @idx: page state item to account
677  * @val: number of pages (positive or negative)
678  *
679  * The @page must be locked or the caller must use lock_page_memcg()
680  * to prevent double accounting when the page is concurrently being
681  * moved to another memcg:
682  *
683  *   lock_page(page) or lock_page_memcg(page)
684  *   if (TestClearPageState(page))
685  *     mod_memcg_page_state(page, state, -1);
686  *   unlock_page(page) or unlock_page_memcg(page)
687  *
688  * Kernel pages are an exception to this, since they'll never move.
689  */
__mod_memcg_page_state(struct page * page,int idx,int val)690 static inline void __mod_memcg_page_state(struct page *page,
691 					  int idx, int val)
692 {
693 	if (page->mem_cgroup)
694 		__mod_memcg_state(page->mem_cgroup, idx, val);
695 }
696 
mod_memcg_page_state(struct page * page,int idx,int val)697 static inline void mod_memcg_page_state(struct page *page,
698 					int idx, int val)
699 {
700 	if (page->mem_cgroup)
701 		mod_memcg_state(page->mem_cgroup, idx, val);
702 }
703 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)704 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
705 					      enum node_stat_item idx)
706 {
707 	struct mem_cgroup_per_node *pn;
708 	long x;
709 
710 	if (mem_cgroup_disabled())
711 		return node_page_state(lruvec_pgdat(lruvec), idx);
712 
713 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
714 	x = atomic_long_read(&pn->lruvec_stat[idx]);
715 #ifdef CONFIG_SMP
716 	if (x < 0)
717 		x = 0;
718 #endif
719 	return x;
720 }
721 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)722 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
723 						    enum node_stat_item idx)
724 {
725 	struct mem_cgroup_per_node *pn;
726 	long x = 0;
727 	int cpu;
728 
729 	if (mem_cgroup_disabled())
730 		return node_page_state(lruvec_pgdat(lruvec), idx);
731 
732 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
733 	for_each_possible_cpu(cpu)
734 		x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
735 #ifdef CONFIG_SMP
736 	if (x < 0)
737 		x = 0;
738 #endif
739 	return x;
740 }
741 
742 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
743 			int val);
744 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val);
745 void mod_memcg_obj_state(void *p, int idx, int val);
746 
mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)747 static inline void mod_lruvec_state(struct lruvec *lruvec,
748 				    enum node_stat_item idx, int val)
749 {
750 	unsigned long flags;
751 
752 	local_irq_save(flags);
753 	__mod_lruvec_state(lruvec, idx, val);
754 	local_irq_restore(flags);
755 }
756 
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)757 static inline void __mod_lruvec_page_state(struct page *page,
758 					   enum node_stat_item idx, int val)
759 {
760 	pg_data_t *pgdat = page_pgdat(page);
761 	struct lruvec *lruvec;
762 
763 	/* Untracked pages have no memcg, no lruvec. Update only the node */
764 	if (!page->mem_cgroup) {
765 		__mod_node_page_state(pgdat, idx, val);
766 		return;
767 	}
768 
769 	lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
770 	__mod_lruvec_state(lruvec, idx, val);
771 }
772 
mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)773 static inline void mod_lruvec_page_state(struct page *page,
774 					 enum node_stat_item idx, int val)
775 {
776 	unsigned long flags;
777 
778 	local_irq_save(flags);
779 	__mod_lruvec_page_state(page, idx, val);
780 	local_irq_restore(flags);
781 }
782 
783 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
784 						gfp_t gfp_mask,
785 						unsigned long *total_scanned);
786 
787 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
788 			  unsigned long count);
789 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)790 static inline void count_memcg_events(struct mem_cgroup *memcg,
791 				      enum vm_event_item idx,
792 				      unsigned long count)
793 {
794 	unsigned long flags;
795 
796 	local_irq_save(flags);
797 	__count_memcg_events(memcg, idx, count);
798 	local_irq_restore(flags);
799 }
800 
count_memcg_page_event(struct page * page,enum vm_event_item idx)801 static inline void count_memcg_page_event(struct page *page,
802 					  enum vm_event_item idx)
803 {
804 	if (page->mem_cgroup)
805 		count_memcg_events(page->mem_cgroup, idx, 1);
806 }
807 
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)808 static inline void count_memcg_event_mm(struct mm_struct *mm,
809 					enum vm_event_item idx)
810 {
811 	struct mem_cgroup *memcg;
812 
813 	if (mem_cgroup_disabled())
814 		return;
815 
816 	rcu_read_lock();
817 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
818 	if (likely(memcg))
819 		count_memcg_events(memcg, idx, 1);
820 	rcu_read_unlock();
821 }
822 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)823 static inline void memcg_memory_event(struct mem_cgroup *memcg,
824 				      enum memcg_memory_event event)
825 {
826 	atomic_long_inc(&memcg->memory_events_local[event]);
827 	cgroup_file_notify(&memcg->events_local_file);
828 
829 	do {
830 		atomic_long_inc(&memcg->memory_events[event]);
831 		cgroup_file_notify(&memcg->events_file);
832 
833 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
834 			break;
835 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
836 			break;
837 	} while ((memcg = parent_mem_cgroup(memcg)) &&
838 		 !mem_cgroup_is_root(memcg));
839 }
840 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)841 static inline void memcg_memory_event_mm(struct mm_struct *mm,
842 					 enum memcg_memory_event event)
843 {
844 	struct mem_cgroup *memcg;
845 
846 	if (mem_cgroup_disabled())
847 		return;
848 
849 	rcu_read_lock();
850 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
851 	if (likely(memcg))
852 		memcg_memory_event(memcg, event);
853 	rcu_read_unlock();
854 }
855 
856 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
857 void mem_cgroup_split_huge_fixup(struct page *head);
858 #endif
859 
860 #else /* CONFIG_MEMCG */
861 
862 #define MEM_CGROUP_ID_SHIFT	0
863 #define MEM_CGROUP_ID_MAX	0
864 
865 struct mem_cgroup;
866 
mem_cgroup_is_root(struct mem_cgroup * memcg)867 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
868 {
869 	return true;
870 }
871 
mem_cgroup_disabled(void)872 static inline bool mem_cgroup_disabled(void)
873 {
874 	return true;
875 }
876 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)877 static inline void memcg_memory_event(struct mem_cgroup *memcg,
878 				      enum memcg_memory_event event)
879 {
880 }
881 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)882 static inline void memcg_memory_event_mm(struct mm_struct *mm,
883 					 enum memcg_memory_event event)
884 {
885 }
886 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)887 static inline void mem_cgroup_protection(struct mem_cgroup *root,
888 					 struct mem_cgroup *memcg,
889 					 unsigned long *min,
890 					 unsigned long *low)
891 {
892 	*min = *low = 0;
893 }
894 
mem_cgroup_protected(struct mem_cgroup * root,struct mem_cgroup * memcg)895 static inline enum mem_cgroup_protection mem_cgroup_protected(
896 	struct mem_cgroup *root, struct mem_cgroup *memcg)
897 {
898 	return MEMCG_PROT_NONE;
899 }
900 
mem_cgroup_try_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp,bool compound)901 static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
902 					gfp_t gfp_mask,
903 					struct mem_cgroup **memcgp,
904 					bool compound)
905 {
906 	*memcgp = NULL;
907 	return 0;
908 }
909 
mem_cgroup_try_charge_delay(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp,bool compound)910 static inline int mem_cgroup_try_charge_delay(struct page *page,
911 					      struct mm_struct *mm,
912 					      gfp_t gfp_mask,
913 					      struct mem_cgroup **memcgp,
914 					      bool compound)
915 {
916 	*memcgp = NULL;
917 	return 0;
918 }
919 
mem_cgroup_commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare,bool compound)920 static inline void mem_cgroup_commit_charge(struct page *page,
921 					    struct mem_cgroup *memcg,
922 					    bool lrucare, bool compound)
923 {
924 }
925 
mem_cgroup_cancel_charge(struct page * page,struct mem_cgroup * memcg,bool compound)926 static inline void mem_cgroup_cancel_charge(struct page *page,
927 					    struct mem_cgroup *memcg,
928 					    bool compound)
929 {
930 }
931 
mem_cgroup_uncharge(struct page * page)932 static inline void mem_cgroup_uncharge(struct page *page)
933 {
934 }
935 
mem_cgroup_uncharge_list(struct list_head * page_list)936 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
937 {
938 }
939 
mem_cgroup_migrate(struct page * old,struct page * new)940 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
941 {
942 }
943 
mem_cgroup_lruvec(struct pglist_data * pgdat,struct mem_cgroup * memcg)944 static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
945 				struct mem_cgroup *memcg)
946 {
947 	return node_lruvec(pgdat);
948 }
949 
mem_cgroup_page_lruvec(struct page * page,struct pglist_data * pgdat)950 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
951 						    struct pglist_data *pgdat)
952 {
953 	return &pgdat->lruvec;
954 }
955 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)956 static inline bool mm_match_cgroup(struct mm_struct *mm,
957 		struct mem_cgroup *memcg)
958 {
959 	return true;
960 }
961 
get_mem_cgroup_from_mm(struct mm_struct * mm)962 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
963 {
964 	return NULL;
965 }
966 
get_mem_cgroup_from_page(struct page * page)967 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
968 {
969 	return NULL;
970 }
971 
mem_cgroup_put(struct mem_cgroup * memcg)972 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
973 {
974 }
975 
976 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)977 mem_cgroup_iter(struct mem_cgroup *root,
978 		struct mem_cgroup *prev,
979 		struct mem_cgroup_reclaim_cookie *reclaim)
980 {
981 	return NULL;
982 }
983 
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)984 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
985 					 struct mem_cgroup *prev)
986 {
987 }
988 
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)989 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
990 		int (*fn)(struct task_struct *, void *), void *arg)
991 {
992 	return 0;
993 }
994 
mem_cgroup_id(struct mem_cgroup * memcg)995 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
996 {
997 	return 0;
998 }
999 
mem_cgroup_from_id(unsigned short id)1000 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1001 {
1002 	WARN_ON_ONCE(id);
1003 	/* XXX: This should always return root_mem_cgroup */
1004 	return NULL;
1005 }
1006 
mem_cgroup_from_seq(struct seq_file * m)1007 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1008 {
1009 	return NULL;
1010 }
1011 
lruvec_memcg(struct lruvec * lruvec)1012 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1013 {
1014 	return NULL;
1015 }
1016 
mem_cgroup_online(struct mem_cgroup * memcg)1017 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1018 {
1019 	return true;
1020 }
1021 
1022 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1023 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1024 		enum lru_list lru, int zone_idx)
1025 {
1026 	return 0;
1027 }
1028 
mem_cgroup_get_max(struct mem_cgroup * memcg)1029 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1030 {
1031 	return 0;
1032 }
1033 
mem_cgroup_size(struct mem_cgroup * memcg)1034 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1035 {
1036 	return 0;
1037 }
1038 
1039 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1040 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1041 {
1042 }
1043 
1044 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1045 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1046 {
1047 }
1048 
lock_page_memcg(struct page * page)1049 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1050 {
1051 	return NULL;
1052 }
1053 
__unlock_page_memcg(struct mem_cgroup * memcg)1054 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1055 {
1056 }
1057 
unlock_page_memcg(struct page * page)1058 static inline void unlock_page_memcg(struct page *page)
1059 {
1060 }
1061 
mem_cgroup_handle_over_high(void)1062 static inline void mem_cgroup_handle_over_high(void)
1063 {
1064 }
1065 
mem_cgroup_enter_user_fault(void)1066 static inline void mem_cgroup_enter_user_fault(void)
1067 {
1068 }
1069 
mem_cgroup_exit_user_fault(void)1070 static inline void mem_cgroup_exit_user_fault(void)
1071 {
1072 }
1073 
task_in_memcg_oom(struct task_struct * p)1074 static inline bool task_in_memcg_oom(struct task_struct *p)
1075 {
1076 	return false;
1077 }
1078 
mem_cgroup_oom_synchronize(bool wait)1079 static inline bool mem_cgroup_oom_synchronize(bool wait)
1080 {
1081 	return false;
1082 }
1083 
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1084 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1085 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1086 {
1087 	return NULL;
1088 }
1089 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1090 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1091 {
1092 }
1093 
memcg_page_state(struct mem_cgroup * memcg,int idx)1094 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1095 {
1096 	return 0;
1097 }
1098 
memcg_page_state_local(struct mem_cgroup * memcg,int idx)1099 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1100 						   int idx)
1101 {
1102 	return 0;
1103 }
1104 
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1105 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1106 				     int idx,
1107 				     int nr)
1108 {
1109 }
1110 
mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1111 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1112 				   int idx,
1113 				   int nr)
1114 {
1115 }
1116 
__mod_memcg_page_state(struct page * page,int idx,int nr)1117 static inline void __mod_memcg_page_state(struct page *page,
1118 					  int idx,
1119 					  int nr)
1120 {
1121 }
1122 
mod_memcg_page_state(struct page * page,int idx,int nr)1123 static inline void mod_memcg_page_state(struct page *page,
1124 					int idx,
1125 					int nr)
1126 {
1127 }
1128 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1129 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1130 					      enum node_stat_item idx)
1131 {
1132 	return node_page_state(lruvec_pgdat(lruvec), idx);
1133 }
1134 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1135 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1136 						    enum node_stat_item idx)
1137 {
1138 	return node_page_state(lruvec_pgdat(lruvec), idx);
1139 }
1140 
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1141 static inline void __mod_lruvec_state(struct lruvec *lruvec,
1142 				      enum node_stat_item idx, int val)
1143 {
1144 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1145 }
1146 
mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1147 static inline void mod_lruvec_state(struct lruvec *lruvec,
1148 				    enum node_stat_item idx, int val)
1149 {
1150 	mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1151 }
1152 
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)1153 static inline void __mod_lruvec_page_state(struct page *page,
1154 					   enum node_stat_item idx, int val)
1155 {
1156 	__mod_node_page_state(page_pgdat(page), idx, val);
1157 }
1158 
mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)1159 static inline void mod_lruvec_page_state(struct page *page,
1160 					 enum node_stat_item idx, int val)
1161 {
1162 	mod_node_page_state(page_pgdat(page), idx, val);
1163 }
1164 
__mod_lruvec_slab_state(void * p,enum node_stat_item idx,int val)1165 static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1166 					   int val)
1167 {
1168 	struct page *page = virt_to_head_page(p);
1169 
1170 	__mod_node_page_state(page_pgdat(page), idx, val);
1171 }
1172 
mod_memcg_obj_state(void * p,int idx,int val)1173 static inline void mod_memcg_obj_state(void *p, int idx, int val)
1174 {
1175 }
1176 
1177 static inline
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1178 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1179 					    gfp_t gfp_mask,
1180 					    unsigned long *total_scanned)
1181 {
1182 	return 0;
1183 }
1184 
mem_cgroup_split_huge_fixup(struct page * head)1185 static inline void mem_cgroup_split_huge_fixup(struct page *head)
1186 {
1187 }
1188 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1189 static inline void count_memcg_events(struct mem_cgroup *memcg,
1190 				      enum vm_event_item idx,
1191 				      unsigned long count)
1192 {
1193 }
1194 
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1195 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1196 					enum vm_event_item idx,
1197 					unsigned long count)
1198 {
1199 }
1200 
count_memcg_page_event(struct page * page,int idx)1201 static inline void count_memcg_page_event(struct page *page,
1202 					  int idx)
1203 {
1204 }
1205 
1206 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1207 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1208 {
1209 }
1210 #endif /* CONFIG_MEMCG */
1211 
1212 /* idx can be of type enum memcg_stat_item or node_stat_item */
__inc_memcg_state(struct mem_cgroup * memcg,int idx)1213 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1214 				     int idx)
1215 {
1216 	__mod_memcg_state(memcg, idx, 1);
1217 }
1218 
1219 /* idx can be of type enum memcg_stat_item or node_stat_item */
__dec_memcg_state(struct mem_cgroup * memcg,int idx)1220 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1221 				     int idx)
1222 {
1223 	__mod_memcg_state(memcg, idx, -1);
1224 }
1225 
1226 /* idx can be of type enum memcg_stat_item or node_stat_item */
__inc_memcg_page_state(struct page * page,int idx)1227 static inline void __inc_memcg_page_state(struct page *page,
1228 					  int idx)
1229 {
1230 	__mod_memcg_page_state(page, idx, 1);
1231 }
1232 
1233 /* idx can be of type enum memcg_stat_item or node_stat_item */
__dec_memcg_page_state(struct page * page,int idx)1234 static inline void __dec_memcg_page_state(struct page *page,
1235 					  int idx)
1236 {
1237 	__mod_memcg_page_state(page, idx, -1);
1238 }
1239 
__inc_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1240 static inline void __inc_lruvec_state(struct lruvec *lruvec,
1241 				      enum node_stat_item idx)
1242 {
1243 	__mod_lruvec_state(lruvec, idx, 1);
1244 }
1245 
__dec_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1246 static inline void __dec_lruvec_state(struct lruvec *lruvec,
1247 				      enum node_stat_item idx)
1248 {
1249 	__mod_lruvec_state(lruvec, idx, -1);
1250 }
1251 
__inc_lruvec_page_state(struct page * page,enum node_stat_item idx)1252 static inline void __inc_lruvec_page_state(struct page *page,
1253 					   enum node_stat_item idx)
1254 {
1255 	__mod_lruvec_page_state(page, idx, 1);
1256 }
1257 
__dec_lruvec_page_state(struct page * page,enum node_stat_item idx)1258 static inline void __dec_lruvec_page_state(struct page *page,
1259 					   enum node_stat_item idx)
1260 {
1261 	__mod_lruvec_page_state(page, idx, -1);
1262 }
1263 
__inc_lruvec_slab_state(void * p,enum node_stat_item idx)1264 static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx)
1265 {
1266 	__mod_lruvec_slab_state(p, idx, 1);
1267 }
1268 
__dec_lruvec_slab_state(void * p,enum node_stat_item idx)1269 static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx)
1270 {
1271 	__mod_lruvec_slab_state(p, idx, -1);
1272 }
1273 
1274 /* idx can be of type enum memcg_stat_item or node_stat_item */
inc_memcg_state(struct mem_cgroup * memcg,int idx)1275 static inline void inc_memcg_state(struct mem_cgroup *memcg,
1276 				   int idx)
1277 {
1278 	mod_memcg_state(memcg, idx, 1);
1279 }
1280 
1281 /* idx can be of type enum memcg_stat_item or node_stat_item */
dec_memcg_state(struct mem_cgroup * memcg,int idx)1282 static inline void dec_memcg_state(struct mem_cgroup *memcg,
1283 				   int idx)
1284 {
1285 	mod_memcg_state(memcg, idx, -1);
1286 }
1287 
1288 /* idx can be of type enum memcg_stat_item or node_stat_item */
inc_memcg_page_state(struct page * page,int idx)1289 static inline void inc_memcg_page_state(struct page *page,
1290 					int idx)
1291 {
1292 	mod_memcg_page_state(page, idx, 1);
1293 }
1294 
1295 /* idx can be of type enum memcg_stat_item or node_stat_item */
dec_memcg_page_state(struct page * page,int idx)1296 static inline void dec_memcg_page_state(struct page *page,
1297 					int idx)
1298 {
1299 	mod_memcg_page_state(page, idx, -1);
1300 }
1301 
inc_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1302 static inline void inc_lruvec_state(struct lruvec *lruvec,
1303 				    enum node_stat_item idx)
1304 {
1305 	mod_lruvec_state(lruvec, idx, 1);
1306 }
1307 
dec_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1308 static inline void dec_lruvec_state(struct lruvec *lruvec,
1309 				    enum node_stat_item idx)
1310 {
1311 	mod_lruvec_state(lruvec, idx, -1);
1312 }
1313 
inc_lruvec_page_state(struct page * page,enum node_stat_item idx)1314 static inline void inc_lruvec_page_state(struct page *page,
1315 					 enum node_stat_item idx)
1316 {
1317 	mod_lruvec_page_state(page, idx, 1);
1318 }
1319 
dec_lruvec_page_state(struct page * page,enum node_stat_item idx)1320 static inline void dec_lruvec_page_state(struct page *page,
1321 					 enum node_stat_item idx)
1322 {
1323 	mod_lruvec_page_state(page, idx, -1);
1324 }
1325 
1326 #ifdef CONFIG_CGROUP_WRITEBACK
1327 
1328 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1329 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1330 			 unsigned long *pheadroom, unsigned long *pdirty,
1331 			 unsigned long *pwriteback);
1332 
1333 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1334 					     struct bdi_writeback *wb);
1335 
mem_cgroup_track_foreign_dirty(struct page * page,struct bdi_writeback * wb)1336 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1337 						  struct bdi_writeback *wb)
1338 {
1339 	if (mem_cgroup_disabled())
1340 		return;
1341 
1342 	if (unlikely(&page->mem_cgroup->css != wb->memcg_css))
1343 		mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1344 }
1345 
1346 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1347 
1348 #else	/* CONFIG_CGROUP_WRITEBACK */
1349 
mem_cgroup_wb_domain(struct bdi_writeback * wb)1350 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1351 {
1352 	return NULL;
1353 }
1354 
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1355 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1356 				       unsigned long *pfilepages,
1357 				       unsigned long *pheadroom,
1358 				       unsigned long *pdirty,
1359 				       unsigned long *pwriteback)
1360 {
1361 }
1362 
mem_cgroup_track_foreign_dirty(struct page * page,struct bdi_writeback * wb)1363 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1364 						  struct bdi_writeback *wb)
1365 {
1366 }
1367 
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1368 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1369 {
1370 }
1371 
1372 #endif	/* CONFIG_CGROUP_WRITEBACK */
1373 
1374 struct sock;
1375 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1376 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1377 #ifdef CONFIG_MEMCG
1378 extern struct static_key_false memcg_sockets_enabled_key;
1379 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1380 void mem_cgroup_sk_alloc(struct sock *sk);
1381 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1382 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1383 {
1384 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1385 		return true;
1386 	do {
1387 		if (time_before(jiffies, memcg->socket_pressure))
1388 			return true;
1389 	} while ((memcg = parent_mem_cgroup(memcg)));
1390 	return false;
1391 }
1392 
1393 extern int memcg_expand_shrinker_maps(int new_id);
1394 
1395 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1396 				   int nid, int shrinker_id);
1397 #else
1398 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1399 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1400 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1401 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1402 {
1403 	return false;
1404 }
1405 
memcg_set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1406 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1407 					  int nid, int shrinker_id)
1408 {
1409 }
1410 #endif
1411 
1412 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1413 void memcg_kmem_put_cache(struct kmem_cache *cachep);
1414 
1415 #ifdef CONFIG_MEMCG_KMEM
1416 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1417 void __memcg_kmem_uncharge(struct page *page, int order);
1418 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1419 			      struct mem_cgroup *memcg);
1420 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
1421 				 unsigned int nr_pages);
1422 
1423 extern struct static_key_false memcg_kmem_enabled_key;
1424 extern struct workqueue_struct *memcg_kmem_cache_wq;
1425 
1426 extern int memcg_nr_cache_ids;
1427 void memcg_get_cache_ids(void);
1428 void memcg_put_cache_ids(void);
1429 
1430 /*
1431  * Helper macro to loop through all memcg-specific caches. Callers must still
1432  * check if the cache is valid (it is either valid or NULL).
1433  * the slab_mutex must be held when looping through those caches
1434  */
1435 #define for_each_memcg_cache_index(_idx)	\
1436 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1437 
memcg_kmem_enabled(void)1438 static inline bool memcg_kmem_enabled(void)
1439 {
1440 	return static_branch_unlikely(&memcg_kmem_enabled_key);
1441 }
1442 
memcg_kmem_charge(struct page * page,gfp_t gfp,int order)1443 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1444 {
1445 	if (memcg_kmem_enabled())
1446 		return __memcg_kmem_charge(page, gfp, order);
1447 	return 0;
1448 }
1449 
memcg_kmem_uncharge(struct page * page,int order)1450 static inline void memcg_kmem_uncharge(struct page *page, int order)
1451 {
1452 	if (memcg_kmem_enabled())
1453 		__memcg_kmem_uncharge(page, order);
1454 }
1455 
memcg_kmem_charge_memcg(struct page * page,gfp_t gfp,int order,struct mem_cgroup * memcg)1456 static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp,
1457 					  int order, struct mem_cgroup *memcg)
1458 {
1459 	if (memcg_kmem_enabled())
1460 		return __memcg_kmem_charge_memcg(page, gfp, order, memcg);
1461 	return 0;
1462 }
1463 
memcg_kmem_uncharge_memcg(struct page * page,int order,struct mem_cgroup * memcg)1464 static inline void memcg_kmem_uncharge_memcg(struct page *page, int order,
1465 					     struct mem_cgroup *memcg)
1466 {
1467 	if (memcg_kmem_enabled())
1468 		__memcg_kmem_uncharge_memcg(memcg, 1 << order);
1469 }
1470 
1471 /*
1472  * helper for accessing a memcg's index. It will be used as an index in the
1473  * child cache array in kmem_cache, and also to derive its name. This function
1474  * will return -1 when this is not a kmem-limited memcg.
1475  */
memcg_cache_id(struct mem_cgroup * memcg)1476 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1477 {
1478 	return memcg ? memcg->kmemcg_id : -1;
1479 }
1480 
1481 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1482 
1483 #else
1484 
memcg_kmem_charge(struct page * page,gfp_t gfp,int order)1485 static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1486 {
1487 	return 0;
1488 }
1489 
memcg_kmem_uncharge(struct page * page,int order)1490 static inline void memcg_kmem_uncharge(struct page *page, int order)
1491 {
1492 }
1493 
__memcg_kmem_charge(struct page * page,gfp_t gfp,int order)1494 static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1495 {
1496 	return 0;
1497 }
1498 
__memcg_kmem_uncharge(struct page * page,int order)1499 static inline void __memcg_kmem_uncharge(struct page *page, int order)
1500 {
1501 }
1502 
1503 #define for_each_memcg_cache_index(_idx)	\
1504 	for (; NULL; )
1505 
memcg_kmem_enabled(void)1506 static inline bool memcg_kmem_enabled(void)
1507 {
1508 	return false;
1509 }
1510 
memcg_cache_id(struct mem_cgroup * memcg)1511 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1512 {
1513 	return -1;
1514 }
1515 
memcg_get_cache_ids(void)1516 static inline void memcg_get_cache_ids(void)
1517 {
1518 }
1519 
memcg_put_cache_ids(void)1520 static inline void memcg_put_cache_ids(void)
1521 {
1522 }
1523 
mem_cgroup_from_obj(void * p)1524 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1525 {
1526        return NULL;
1527 }
1528 
1529 #endif /* CONFIG_MEMCG_KMEM */
1530 
1531 #endif /* _LINUX_MEMCONTROL_H */
1532