1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14 #ifndef _TCP_H
15 #define _TCP_H
16
17 #define FASTRETRANS_DEBUG 1
18
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/cryptohash.h>
27 #include <linux/kref.h>
28 #include <linux/ktime.h>
29
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42
43 #include <linux/seq_file.h>
44 #include <linux/memcontrol.h>
45 #include <linux/bpf-cgroup.h>
46 #include <linux/siphash.h>
47
48 extern struct inet_hashinfo tcp_hashinfo;
49
50 extern struct percpu_counter tcp_orphan_count;
51 void tcp_time_wait(struct sock *sk, int state, int timeo);
52
53 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
54 #define MAX_TCP_OPTION_SPACE 40
55 #define TCP_MIN_SND_MSS 48
56 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
57
58 /*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62 #define MAX_TCP_WINDOW 32767U
63
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS 88U
66
67 /* The initial MTU to use for probing */
68 #define TCP_BASE_MSS 1024
69
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL 600
72
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD 8
75
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS 16U
81
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE 14U
84
85 /* urg_data states */
86 #define TCP_URG_VALID 0x0100
87 #define TCP_URG_NOTYET 0x0200
88 #define TCP_URG_READ 0x0400
89
90 #define TCP_RETR1 3 /*
91 * This is how many retries it does before it
92 * tries to figure out if the gateway is
93 * down. Minimal RFC value is 3; it corresponds
94 * to ~3sec-8min depending on RTO.
95 */
96
97 #define TCP_RETR2 15 /*
98 * This should take at least
99 * 90 minutes to time out.
100 * RFC1122 says that the limit is 100 sec.
101 * 15 is ~13-30min depending on RTO.
102 */
103
104 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
105 * when active opening a connection.
106 * RFC1122 says the minimum retry MUST
107 * be at least 180secs. Nevertheless
108 * this value is corresponding to
109 * 63secs of retransmission with the
110 * current initial RTO.
111 */
112
113 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
114 * when passive opening a connection.
115 * This is corresponding to 31secs of
116 * retransmission with the current
117 * initial RTO.
118 */
119
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 * state, about 60 seconds */
122 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
123 /* BSD style FIN_WAIT2 deadlock breaker.
124 * It used to be 3min, new value is 60sec,
125 * to combine FIN-WAIT-2 timeout with
126 * TIME-WAIT timer.
127 */
128 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
129
130 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
131 #if HZ >= 100
132 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
133 #define TCP_ATO_MIN ((unsigned)(HZ/25))
134 #else
135 #define TCP_DELACK_MIN 4U
136 #define TCP_ATO_MIN 4U
137 #endif
138 #define TCP_RTO_MAX ((unsigned)(120*HZ))
139 #define TCP_RTO_MIN ((unsigned)(HZ/5))
140 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
141
142 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
143
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
146 * used as a fallback RTO for the
147 * initial data transmission if no
148 * valid RTT sample has been acquired,
149 * most likely due to retrans in 3WHS.
150 */
151
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 * for local resources.
154 */
155 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
156 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
157 #define TCP_KEEPALIVE_INTVL (75*HZ)
158
159 #define MAX_TCP_KEEPIDLE 32767
160 #define MAX_TCP_KEEPINTVL 32767
161 #define MAX_TCP_KEEPCNT 127
162 #define MAX_TCP_SYNCNT 127
163
164 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
165
166 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
167 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
168 * after this time. It should be equal
169 * (or greater than) TCP_TIMEWAIT_LEN
170 * to provide reliability equal to one
171 * provided by timewait state.
172 */
173 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
174 * timestamps. It must be less than
175 * minimal timewait lifetime.
176 */
177 /*
178 * TCP option
179 */
180
181 #define TCPOPT_NOP 1 /* Padding */
182 #define TCPOPT_EOL 0 /* End of options */
183 #define TCPOPT_MSS 2 /* Segment size negotiating */
184 #define TCPOPT_WINDOW 3 /* Window scaling */
185 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
186 #define TCPOPT_SACK 5 /* SACK Block */
187 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
188 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
189 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
190 #define TCPOPT_EXP 254 /* Experimental */
191 /* Magic number to be after the option value for sharing TCP
192 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
193 */
194 #define TCPOPT_FASTOPEN_MAGIC 0xF989
195 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
196
197 /*
198 * TCP option lengths
199 */
200
201 #define TCPOLEN_MSS 4
202 #define TCPOLEN_WINDOW 3
203 #define TCPOLEN_SACK_PERM 2
204 #define TCPOLEN_TIMESTAMP 10
205 #define TCPOLEN_MD5SIG 18
206 #define TCPOLEN_FASTOPEN_BASE 2
207 #define TCPOLEN_EXP_FASTOPEN_BASE 4
208 #define TCPOLEN_EXP_SMC_BASE 6
209
210 /* But this is what stacks really send out. */
211 #define TCPOLEN_TSTAMP_ALIGNED 12
212 #define TCPOLEN_WSCALE_ALIGNED 4
213 #define TCPOLEN_SACKPERM_ALIGNED 4
214 #define TCPOLEN_SACK_BASE 2
215 #define TCPOLEN_SACK_BASE_ALIGNED 4
216 #define TCPOLEN_SACK_PERBLOCK 8
217 #define TCPOLEN_MD5SIG_ALIGNED 20
218 #define TCPOLEN_MSS_ALIGNED 4
219 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
220
221 /* Flags in tp->nonagle */
222 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
223 #define TCP_NAGLE_CORK 2 /* Socket is corked */
224 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
225
226 /* TCP thin-stream limits */
227 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
228
229 /* TCP initial congestion window as per rfc6928 */
230 #define TCP_INIT_CWND 10
231
232 /* Bit Flags for sysctl_tcp_fastopen */
233 #define TFO_CLIENT_ENABLE 1
234 #define TFO_SERVER_ENABLE 2
235 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
236
237 /* Accept SYN data w/o any cookie option */
238 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
239
240 /* Force enable TFO on all listeners, i.e., not requiring the
241 * TCP_FASTOPEN socket option.
242 */
243 #define TFO_SERVER_WO_SOCKOPT1 0x400
244
245
246 /* sysctl variables for tcp */
247 extern int sysctl_tcp_max_orphans;
248 extern long sysctl_tcp_mem[3];
249
250 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
251 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
252 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
253
254 extern atomic_long_t tcp_memory_allocated;
255 extern struct percpu_counter tcp_sockets_allocated;
256 extern unsigned long tcp_memory_pressure;
257
258 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)259 static inline bool tcp_under_memory_pressure(const struct sock *sk)
260 {
261 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
262 mem_cgroup_under_socket_pressure(sk->sk_memcg))
263 return true;
264
265 return READ_ONCE(tcp_memory_pressure);
266 }
267 /*
268 * The next routines deal with comparing 32 bit unsigned ints
269 * and worry about wraparound (automatic with unsigned arithmetic).
270 */
271
before(__u32 seq1,__u32 seq2)272 static inline bool before(__u32 seq1, __u32 seq2)
273 {
274 return (__s32)(seq1-seq2) < 0;
275 }
276 #define after(seq2, seq1) before(seq1, seq2)
277
278 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)279 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
280 {
281 return seq3 - seq2 >= seq1 - seq2;
282 }
283
tcp_out_of_memory(struct sock * sk)284 static inline bool tcp_out_of_memory(struct sock *sk)
285 {
286 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
287 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
288 return true;
289 return false;
290 }
291
292 void sk_forced_mem_schedule(struct sock *sk, int size);
293
tcp_too_many_orphans(struct sock * sk,int shift)294 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
295 {
296 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
297 int orphans = percpu_counter_read_positive(ocp);
298
299 if (orphans << shift > sysctl_tcp_max_orphans) {
300 orphans = percpu_counter_sum_positive(ocp);
301 if (orphans << shift > sysctl_tcp_max_orphans)
302 return true;
303 }
304 return false;
305 }
306
307 bool tcp_check_oom(struct sock *sk, int shift);
308
309
310 extern struct proto tcp_prot;
311
312 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
315 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
316
317 void tcp_tasklet_init(void);
318
319 int tcp_v4_err(struct sk_buff *skb, u32);
320
321 void tcp_shutdown(struct sock *sk, int how);
322
323 int tcp_v4_early_demux(struct sk_buff *skb);
324 int tcp_v4_rcv(struct sk_buff *skb);
325
326 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
330 int flags);
331 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
332 size_t size, int flags);
333 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
334 size_t size, int flags);
335 void tcp_release_cb(struct sock *sk);
336 void tcp_wfree(struct sk_buff *skb);
337 void tcp_write_timer_handler(struct sock *sk);
338 void tcp_delack_timer_handler(struct sock *sk);
339 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
340 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
341 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
342 void tcp_rcv_space_adjust(struct sock *sk);
343 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
344 void tcp_twsk_destructor(struct sock *sk);
345 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
346 struct pipe_inode_info *pipe, size_t len,
347 unsigned int flags);
348
tcp_dec_quickack_mode(struct sock * sk)349 static inline void tcp_dec_quickack_mode(struct sock *sk)
350 {
351 struct inet_connection_sock *icsk = inet_csk(sk);
352
353 if (icsk->icsk_ack.quick) {
354 /* How many ACKs S/ACKing new data have we sent? */
355 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
356
357 if (pkts >= icsk->icsk_ack.quick) {
358 icsk->icsk_ack.quick = 0;
359 /* Leaving quickack mode we deflate ATO. */
360 icsk->icsk_ack.ato = TCP_ATO_MIN;
361 } else
362 icsk->icsk_ack.quick -= pkts;
363 }
364 }
365
366 #define TCP_ECN_OK 1
367 #define TCP_ECN_QUEUE_CWR 2
368 #define TCP_ECN_DEMAND_CWR 4
369 #define TCP_ECN_SEEN 8
370
371 enum tcp_tw_status {
372 TCP_TW_SUCCESS = 0,
373 TCP_TW_RST = 1,
374 TCP_TW_ACK = 2,
375 TCP_TW_SYN = 3
376 };
377
378
379 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
380 struct sk_buff *skb,
381 const struct tcphdr *th);
382 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
383 struct request_sock *req, bool fastopen,
384 bool *lost_race);
385 int tcp_child_process(struct sock *parent, struct sock *child,
386 struct sk_buff *skb);
387 void tcp_enter_loss(struct sock *sk);
388 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
389 void tcp_clear_retrans(struct tcp_sock *tp);
390 void tcp_update_metrics(struct sock *sk);
391 void tcp_init_metrics(struct sock *sk);
392 void tcp_metrics_init(void);
393 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
394 void __tcp_close(struct sock *sk, long timeout);
395 void tcp_close(struct sock *sk, long timeout);
396 void tcp_init_sock(struct sock *sk);
397 void tcp_init_transfer(struct sock *sk, int bpf_op);
398 __poll_t tcp_poll(struct file *file, struct socket *sock,
399 struct poll_table_struct *wait);
400 int tcp_getsockopt(struct sock *sk, int level, int optname,
401 char __user *optval, int __user *optlen);
402 int tcp_setsockopt(struct sock *sk, int level, int optname,
403 char __user *optval, unsigned int optlen);
404 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
405 char __user *optval, int __user *optlen);
406 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
407 char __user *optval, unsigned int optlen);
408 void tcp_set_keepalive(struct sock *sk, int val);
409 void tcp_syn_ack_timeout(const struct request_sock *req);
410 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
411 int flags, int *addr_len);
412 int tcp_set_rcvlowat(struct sock *sk, int val);
413 void tcp_data_ready(struct sock *sk);
414 #ifdef CONFIG_MMU
415 int tcp_mmap(struct file *file, struct socket *sock,
416 struct vm_area_struct *vma);
417 #endif
418 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
419 struct tcp_options_received *opt_rx,
420 int estab, struct tcp_fastopen_cookie *foc);
421 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
422
423 /*
424 * BPF SKB-less helpers
425 */
426 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
427 struct tcphdr *th, u32 *cookie);
428 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
429 struct tcphdr *th, u32 *cookie);
430 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
431 const struct tcp_request_sock_ops *af_ops,
432 struct sock *sk, struct tcphdr *th);
433 /*
434 * TCP v4 functions exported for the inet6 API
435 */
436
437 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
438 void tcp_v4_mtu_reduced(struct sock *sk);
439 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
440 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
441 struct sock *tcp_create_openreq_child(const struct sock *sk,
442 struct request_sock *req,
443 struct sk_buff *skb);
444 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
445 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
446 struct request_sock *req,
447 struct dst_entry *dst,
448 struct request_sock *req_unhash,
449 bool *own_req);
450 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
451 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
452 int tcp_connect(struct sock *sk);
453 enum tcp_synack_type {
454 TCP_SYNACK_NORMAL,
455 TCP_SYNACK_FASTOPEN,
456 TCP_SYNACK_COOKIE,
457 };
458 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
459 struct request_sock *req,
460 struct tcp_fastopen_cookie *foc,
461 enum tcp_synack_type synack_type);
462 int tcp_disconnect(struct sock *sk, int flags);
463
464 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
465 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
466 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
467
468 /* From syncookies.c */
469 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
470 struct request_sock *req,
471 struct dst_entry *dst, u32 tsoff);
472 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
473 u32 cookie);
474 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
475 #ifdef CONFIG_SYN_COOKIES
476
477 /* Syncookies use a monotonic timer which increments every 60 seconds.
478 * This counter is used both as a hash input and partially encoded into
479 * the cookie value. A cookie is only validated further if the delta
480 * between the current counter value and the encoded one is less than this,
481 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
482 * the counter advances immediately after a cookie is generated).
483 */
484 #define MAX_SYNCOOKIE_AGE 2
485 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
486 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
487
488 /* syncookies: remember time of last synqueue overflow
489 * But do not dirty this field too often (once per second is enough)
490 * It is racy as we do not hold a lock, but race is very minor.
491 */
tcp_synq_overflow(const struct sock * sk)492 static inline void tcp_synq_overflow(const struct sock *sk)
493 {
494 unsigned int last_overflow;
495 unsigned int now = jiffies;
496
497 if (sk->sk_reuseport) {
498 struct sock_reuseport *reuse;
499
500 reuse = rcu_dereference(sk->sk_reuseport_cb);
501 if (likely(reuse)) {
502 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
503 if (!time_between32(now, last_overflow,
504 last_overflow + HZ))
505 WRITE_ONCE(reuse->synq_overflow_ts, now);
506 return;
507 }
508 }
509
510 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
511 if (!time_between32(now, last_overflow, last_overflow + HZ))
512 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
513 }
514
515 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)516 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
517 {
518 unsigned int last_overflow;
519 unsigned int now = jiffies;
520
521 if (sk->sk_reuseport) {
522 struct sock_reuseport *reuse;
523
524 reuse = rcu_dereference(sk->sk_reuseport_cb);
525 if (likely(reuse)) {
526 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
527 return !time_between32(now, last_overflow - HZ,
528 last_overflow +
529 TCP_SYNCOOKIE_VALID);
530 }
531 }
532
533 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
534
535 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
536 * then we're under synflood. However, we have to use
537 * 'last_overflow - HZ' as lower bound. That's because a concurrent
538 * tcp_synq_overflow() could update .ts_recent_stamp after we read
539 * jiffies but before we store .ts_recent_stamp into last_overflow,
540 * which could lead to rejecting a valid syncookie.
541 */
542 return !time_between32(now, last_overflow - HZ,
543 last_overflow + TCP_SYNCOOKIE_VALID);
544 }
545
tcp_cookie_time(void)546 static inline u32 tcp_cookie_time(void)
547 {
548 u64 val = get_jiffies_64();
549
550 do_div(val, TCP_SYNCOOKIE_PERIOD);
551 return val;
552 }
553
554 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
555 u16 *mssp);
556 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
557 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
558 bool cookie_timestamp_decode(const struct net *net,
559 struct tcp_options_received *opt);
560 bool cookie_ecn_ok(const struct tcp_options_received *opt,
561 const struct net *net, const struct dst_entry *dst);
562
563 /* From net/ipv6/syncookies.c */
564 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
565 u32 cookie);
566 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
567
568 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
569 const struct tcphdr *th, u16 *mssp);
570 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
571 #endif
572 /* tcp_output.c */
573
574 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
575 int nonagle);
576 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
577 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
578 void tcp_retransmit_timer(struct sock *sk);
579 void tcp_xmit_retransmit_queue(struct sock *);
580 void tcp_simple_retransmit(struct sock *);
581 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
582 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
583 enum tcp_queue {
584 TCP_FRAG_IN_WRITE_QUEUE,
585 TCP_FRAG_IN_RTX_QUEUE,
586 };
587 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
588 struct sk_buff *skb, u32 len,
589 unsigned int mss_now, gfp_t gfp);
590
591 void tcp_send_probe0(struct sock *);
592 void tcp_send_partial(struct sock *);
593 int tcp_write_wakeup(struct sock *, int mib);
594 void tcp_send_fin(struct sock *sk);
595 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
596 int tcp_send_synack(struct sock *);
597 void tcp_push_one(struct sock *, unsigned int mss_now);
598 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
599 void tcp_send_ack(struct sock *sk);
600 void tcp_send_delayed_ack(struct sock *sk);
601 void tcp_send_loss_probe(struct sock *sk);
602 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
603 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
604 const struct sk_buff *next_skb);
605
606 /* tcp_input.c */
607 void tcp_rearm_rto(struct sock *sk);
608 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
609 void tcp_reset(struct sock *sk);
610 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
611 void tcp_fin(struct sock *sk);
612 void tcp_check_space(struct sock *sk);
613
614 /* tcp_timer.c */
615 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)616 static inline void tcp_clear_xmit_timers(struct sock *sk)
617 {
618 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
619 __sock_put(sk);
620
621 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
622 __sock_put(sk);
623
624 inet_csk_clear_xmit_timers(sk);
625 }
626
627 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
628 unsigned int tcp_current_mss(struct sock *sk);
629 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
630
631 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)632 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
633 {
634 int cutoff;
635
636 /* When peer uses tiny windows, there is no use in packetizing
637 * to sub-MSS pieces for the sake of SWS or making sure there
638 * are enough packets in the pipe for fast recovery.
639 *
640 * On the other hand, for extremely large MSS devices, handling
641 * smaller than MSS windows in this way does make sense.
642 */
643 if (tp->max_window > TCP_MSS_DEFAULT)
644 cutoff = (tp->max_window >> 1);
645 else
646 cutoff = tp->max_window;
647
648 if (cutoff && pktsize > cutoff)
649 return max_t(int, cutoff, 68U - tp->tcp_header_len);
650 else
651 return pktsize;
652 }
653
654 /* tcp.c */
655 void tcp_get_info(struct sock *, struct tcp_info *);
656
657 /* Read 'sendfile()'-style from a TCP socket */
658 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
659 sk_read_actor_t recv_actor);
660
661 void tcp_initialize_rcv_mss(struct sock *sk);
662
663 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
664 int tcp_mss_to_mtu(struct sock *sk, int mss);
665 void tcp_mtup_init(struct sock *sk);
666 void tcp_init_buffer_space(struct sock *sk);
667
tcp_bound_rto(const struct sock * sk)668 static inline void tcp_bound_rto(const struct sock *sk)
669 {
670 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
671 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
672 }
673
__tcp_set_rto(const struct tcp_sock * tp)674 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
675 {
676 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
677 }
678
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)679 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
680 {
681 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
682 ntohl(TCP_FLAG_ACK) |
683 snd_wnd);
684 }
685
tcp_fast_path_on(struct tcp_sock * tp)686 static inline void tcp_fast_path_on(struct tcp_sock *tp)
687 {
688 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
689 }
690
tcp_fast_path_check(struct sock * sk)691 static inline void tcp_fast_path_check(struct sock *sk)
692 {
693 struct tcp_sock *tp = tcp_sk(sk);
694
695 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
696 tp->rcv_wnd &&
697 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
698 !tp->urg_data)
699 tcp_fast_path_on(tp);
700 }
701
702 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)703 static inline u32 tcp_rto_min(struct sock *sk)
704 {
705 const struct dst_entry *dst = __sk_dst_get(sk);
706 u32 rto_min = TCP_RTO_MIN;
707
708 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
709 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
710 return rto_min;
711 }
712
tcp_rto_min_us(struct sock * sk)713 static inline u32 tcp_rto_min_us(struct sock *sk)
714 {
715 return jiffies_to_usecs(tcp_rto_min(sk));
716 }
717
tcp_ca_dst_locked(const struct dst_entry * dst)718 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
719 {
720 return dst_metric_locked(dst, RTAX_CC_ALGO);
721 }
722
723 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)724 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
725 {
726 return minmax_get(&tp->rtt_min);
727 }
728
729 /* Compute the actual receive window we are currently advertising.
730 * Rcv_nxt can be after the window if our peer push more data
731 * than the offered window.
732 */
tcp_receive_window(const struct tcp_sock * tp)733 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
734 {
735 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
736
737 if (win < 0)
738 win = 0;
739 return (u32) win;
740 }
741
742 /* Choose a new window, without checks for shrinking, and without
743 * scaling applied to the result. The caller does these things
744 * if necessary. This is a "raw" window selection.
745 */
746 u32 __tcp_select_window(struct sock *sk);
747
748 void tcp_send_window_probe(struct sock *sk);
749
750 /* TCP uses 32bit jiffies to save some space.
751 * Note that this is different from tcp_time_stamp, which
752 * historically has been the same until linux-4.13.
753 */
754 #define tcp_jiffies32 ((u32)jiffies)
755
756 /*
757 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
758 * It is no longer tied to jiffies, but to 1 ms clock.
759 * Note: double check if you want to use tcp_jiffies32 instead of this.
760 */
761 #define TCP_TS_HZ 1000
762
tcp_clock_ns(void)763 static inline u64 tcp_clock_ns(void)
764 {
765 return ktime_get_ns();
766 }
767
tcp_clock_us(void)768 static inline u64 tcp_clock_us(void)
769 {
770 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
771 }
772
773 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
tcp_time_stamp(const struct tcp_sock * tp)774 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
775 {
776 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
777 }
778
779 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
tcp_ns_to_ts(u64 ns)780 static inline u64 tcp_ns_to_ts(u64 ns)
781 {
782 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
783 }
784
785 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
tcp_time_stamp_raw(void)786 static inline u32 tcp_time_stamp_raw(void)
787 {
788 return tcp_ns_to_ts(tcp_clock_ns());
789 }
790
791 void tcp_mstamp_refresh(struct tcp_sock *tp);
792
tcp_stamp_us_delta(u64 t1,u64 t0)793 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
794 {
795 return max_t(s64, t1 - t0, 0);
796 }
797
tcp_skb_timestamp(const struct sk_buff * skb)798 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
799 {
800 return tcp_ns_to_ts(skb->skb_mstamp_ns);
801 }
802
803 /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)804 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
805 {
806 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
807 }
808
809
810 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
811
812 #define TCPHDR_FIN 0x01
813 #define TCPHDR_SYN 0x02
814 #define TCPHDR_RST 0x04
815 #define TCPHDR_PSH 0x08
816 #define TCPHDR_ACK 0x10
817 #define TCPHDR_URG 0x20
818 #define TCPHDR_ECE 0x40
819 #define TCPHDR_CWR 0x80
820
821 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
822
823 /* This is what the send packet queuing engine uses to pass
824 * TCP per-packet control information to the transmission code.
825 * We also store the host-order sequence numbers in here too.
826 * This is 44 bytes if IPV6 is enabled.
827 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
828 */
829 struct tcp_skb_cb {
830 __u32 seq; /* Starting sequence number */
831 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
832 union {
833 /* Note : tcp_tw_isn is used in input path only
834 * (isn chosen by tcp_timewait_state_process())
835 *
836 * tcp_gso_segs/size are used in write queue only,
837 * cf tcp_skb_pcount()/tcp_skb_mss()
838 */
839 __u32 tcp_tw_isn;
840 struct {
841 u16 tcp_gso_segs;
842 u16 tcp_gso_size;
843 };
844 };
845 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
846
847 __u8 sacked; /* State flags for SACK. */
848 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
849 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
850 #define TCPCB_LOST 0x04 /* SKB is lost */
851 #define TCPCB_TAGBITS 0x07 /* All tag bits */
852 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
853 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
854 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
855 TCPCB_REPAIRED)
856
857 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
858 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
859 eor:1, /* Is skb MSG_EOR marked? */
860 has_rxtstamp:1, /* SKB has a RX timestamp */
861 unused:5;
862 __u32 ack_seq; /* Sequence number ACK'd */
863 union {
864 struct {
865 /* There is space for up to 24 bytes */
866 __u32 in_flight:30,/* Bytes in flight at transmit */
867 is_app_limited:1, /* cwnd not fully used? */
868 unused:1;
869 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
870 __u32 delivered;
871 /* start of send pipeline phase */
872 u64 first_tx_mstamp;
873 /* when we reached the "delivered" count */
874 u64 delivered_mstamp;
875 } tx; /* only used for outgoing skbs */
876 union {
877 struct inet_skb_parm h4;
878 #if IS_ENABLED(CONFIG_IPV6)
879 struct inet6_skb_parm h6;
880 #endif
881 } header; /* For incoming skbs */
882 struct {
883 __u32 flags;
884 struct sock *sk_redir;
885 void *data_end;
886 } bpf;
887 };
888 };
889
890 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
891
bpf_compute_data_end_sk_skb(struct sk_buff * skb)892 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
893 {
894 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
895 }
896
tcp_skb_bpf_ingress(const struct sk_buff * skb)897 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
898 {
899 return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
900 }
901
tcp_skb_bpf_redirect_fetch(struct sk_buff * skb)902 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
903 {
904 return TCP_SKB_CB(skb)->bpf.sk_redir;
905 }
906
tcp_skb_bpf_redirect_clear(struct sk_buff * skb)907 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
908 {
909 TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
910 }
911
912 #if IS_ENABLED(CONFIG_IPV6)
913 /* This is the variant of inet6_iif() that must be used by TCP,
914 * as TCP moves IP6CB into a different location in skb->cb[]
915 */
tcp_v6_iif(const struct sk_buff * skb)916 static inline int tcp_v6_iif(const struct sk_buff *skb)
917 {
918 return TCP_SKB_CB(skb)->header.h6.iif;
919 }
920
tcp_v6_iif_l3_slave(const struct sk_buff * skb)921 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
922 {
923 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
924
925 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
926 }
927
928 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)929 static inline int tcp_v6_sdif(const struct sk_buff *skb)
930 {
931 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
932 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
933 return TCP_SKB_CB(skb)->header.h6.iif;
934 #endif
935 return 0;
936 }
937
938 void tcp_v6_early_demux(struct sk_buff *skb);
939 #endif
940
inet_exact_dif_match(struct net * net,struct sk_buff * skb)941 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
942 {
943 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
944 if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
945 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
946 return true;
947 #endif
948 return false;
949 }
950
951 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)952 static inline int tcp_v4_sdif(struct sk_buff *skb)
953 {
954 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
955 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
956 return TCP_SKB_CB(skb)->header.h4.iif;
957 #endif
958 return 0;
959 }
960
961 /* Due to TSO, an SKB can be composed of multiple actual
962 * packets. To keep these tracked properly, we use this.
963 */
tcp_skb_pcount(const struct sk_buff * skb)964 static inline int tcp_skb_pcount(const struct sk_buff *skb)
965 {
966 return TCP_SKB_CB(skb)->tcp_gso_segs;
967 }
968
tcp_skb_pcount_set(struct sk_buff * skb,int segs)969 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
970 {
971 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
972 }
973
tcp_skb_pcount_add(struct sk_buff * skb,int segs)974 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
975 {
976 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
977 }
978
979 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)980 static inline int tcp_skb_mss(const struct sk_buff *skb)
981 {
982 return TCP_SKB_CB(skb)->tcp_gso_size;
983 }
984
tcp_skb_can_collapse_to(const struct sk_buff * skb)985 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
986 {
987 return likely(!TCP_SKB_CB(skb)->eor);
988 }
989
990 /* Events passed to congestion control interface */
991 enum tcp_ca_event {
992 CA_EVENT_TX_START, /* first transmit when no packets in flight */
993 CA_EVENT_CWND_RESTART, /* congestion window restart */
994 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
995 CA_EVENT_LOSS, /* loss timeout */
996 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
997 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
998 };
999
1000 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1001 enum tcp_ca_ack_event_flags {
1002 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
1003 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
1004 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
1005 };
1006
1007 /*
1008 * Interface for adding new TCP congestion control handlers
1009 */
1010 #define TCP_CA_NAME_MAX 16
1011 #define TCP_CA_MAX 128
1012 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1013
1014 #define TCP_CA_UNSPEC 0
1015
1016 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1017 #define TCP_CONG_NON_RESTRICTED 0x1
1018 /* Requires ECN/ECT set on all packets */
1019 #define TCP_CONG_NEEDS_ECN 0x2
1020
1021 union tcp_cc_info;
1022
1023 struct ack_sample {
1024 u32 pkts_acked;
1025 s32 rtt_us;
1026 u32 in_flight;
1027 };
1028
1029 /* A rate sample measures the number of (original/retransmitted) data
1030 * packets delivered "delivered" over an interval of time "interval_us".
1031 * The tcp_rate.c code fills in the rate sample, and congestion
1032 * control modules that define a cong_control function to run at the end
1033 * of ACK processing can optionally chose to consult this sample when
1034 * setting cwnd and pacing rate.
1035 * A sample is invalid if "delivered" or "interval_us" is negative.
1036 */
1037 struct rate_sample {
1038 u64 prior_mstamp; /* starting timestamp for interval */
1039 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1040 s32 delivered; /* number of packets delivered over interval */
1041 long interval_us; /* time for tp->delivered to incr "delivered" */
1042 u32 snd_interval_us; /* snd interval for delivered packets */
1043 u32 rcv_interval_us; /* rcv interval for delivered packets */
1044 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1045 int losses; /* number of packets marked lost upon ACK */
1046 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1047 u32 prior_in_flight; /* in flight before this ACK */
1048 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1049 bool is_retrans; /* is sample from retransmission? */
1050 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1051 };
1052
1053 struct tcp_congestion_ops {
1054 struct list_head list;
1055 u32 key;
1056 u32 flags;
1057
1058 /* initialize private data (optional) */
1059 void (*init)(struct sock *sk);
1060 /* cleanup private data (optional) */
1061 void (*release)(struct sock *sk);
1062
1063 /* return slow start threshold (required) */
1064 u32 (*ssthresh)(struct sock *sk);
1065 /* do new cwnd calculation (required) */
1066 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1067 /* call before changing ca_state (optional) */
1068 void (*set_state)(struct sock *sk, u8 new_state);
1069 /* call when cwnd event occurs (optional) */
1070 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1071 /* call when ack arrives (optional) */
1072 void (*in_ack_event)(struct sock *sk, u32 flags);
1073 /* new value of cwnd after loss (required) */
1074 u32 (*undo_cwnd)(struct sock *sk);
1075 /* hook for packet ack accounting (optional) */
1076 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1077 /* override sysctl_tcp_min_tso_segs */
1078 u32 (*min_tso_segs)(struct sock *sk);
1079 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1080 u32 (*sndbuf_expand)(struct sock *sk);
1081 /* call when packets are delivered to update cwnd and pacing rate,
1082 * after all the ca_state processing. (optional)
1083 */
1084 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1085 /* get info for inet_diag (optional) */
1086 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1087 union tcp_cc_info *info);
1088
1089 char name[TCP_CA_NAME_MAX];
1090 struct module *owner;
1091 };
1092
1093 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1094 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1095
1096 void tcp_assign_congestion_control(struct sock *sk);
1097 void tcp_init_congestion_control(struct sock *sk);
1098 void tcp_cleanup_congestion_control(struct sock *sk);
1099 int tcp_set_default_congestion_control(struct net *net, const char *name);
1100 void tcp_get_default_congestion_control(struct net *net, char *name);
1101 void tcp_get_available_congestion_control(char *buf, size_t len);
1102 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1103 int tcp_set_allowed_congestion_control(char *allowed);
1104 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1105 bool reinit, bool cap_net_admin);
1106 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1107 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1108
1109 u32 tcp_reno_ssthresh(struct sock *sk);
1110 u32 tcp_reno_undo_cwnd(struct sock *sk);
1111 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1112 extern struct tcp_congestion_ops tcp_reno;
1113
1114 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1115 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1116 #ifdef CONFIG_INET
1117 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1118 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1119 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1120 {
1121 return NULL;
1122 }
1123 #endif
1124
tcp_ca_needs_ecn(const struct sock * sk)1125 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1126 {
1127 const struct inet_connection_sock *icsk = inet_csk(sk);
1128
1129 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1130 }
1131
tcp_set_ca_state(struct sock * sk,const u8 ca_state)1132 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1133 {
1134 struct inet_connection_sock *icsk = inet_csk(sk);
1135
1136 if (icsk->icsk_ca_ops->set_state)
1137 icsk->icsk_ca_ops->set_state(sk, ca_state);
1138 icsk->icsk_ca_state = ca_state;
1139 }
1140
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1141 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1142 {
1143 const struct inet_connection_sock *icsk = inet_csk(sk);
1144
1145 if (icsk->icsk_ca_ops->cwnd_event)
1146 icsk->icsk_ca_ops->cwnd_event(sk, event);
1147 }
1148
1149 /* From tcp_rate.c */
1150 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1151 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1152 struct rate_sample *rs);
1153 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1154 bool is_sack_reneg, struct rate_sample *rs);
1155 void tcp_rate_check_app_limited(struct sock *sk);
1156
1157 /* These functions determine how the current flow behaves in respect of SACK
1158 * handling. SACK is negotiated with the peer, and therefore it can vary
1159 * between different flows.
1160 *
1161 * tcp_is_sack - SACK enabled
1162 * tcp_is_reno - No SACK
1163 */
tcp_is_sack(const struct tcp_sock * tp)1164 static inline int tcp_is_sack(const struct tcp_sock *tp)
1165 {
1166 return likely(tp->rx_opt.sack_ok);
1167 }
1168
tcp_is_reno(const struct tcp_sock * tp)1169 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1170 {
1171 return !tcp_is_sack(tp);
1172 }
1173
tcp_left_out(const struct tcp_sock * tp)1174 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1175 {
1176 return tp->sacked_out + tp->lost_out;
1177 }
1178
1179 /* This determines how many packets are "in the network" to the best
1180 * of our knowledge. In many cases it is conservative, but where
1181 * detailed information is available from the receiver (via SACK
1182 * blocks etc.) we can make more aggressive calculations.
1183 *
1184 * Use this for decisions involving congestion control, use just
1185 * tp->packets_out to determine if the send queue is empty or not.
1186 *
1187 * Read this equation as:
1188 *
1189 * "Packets sent once on transmission queue" MINUS
1190 * "Packets left network, but not honestly ACKed yet" PLUS
1191 * "Packets fast retransmitted"
1192 */
tcp_packets_in_flight(const struct tcp_sock * tp)1193 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1194 {
1195 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1196 }
1197
1198 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1199
tcp_in_slow_start(const struct tcp_sock * tp)1200 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1201 {
1202 return tp->snd_cwnd < tp->snd_ssthresh;
1203 }
1204
tcp_in_initial_slowstart(const struct tcp_sock * tp)1205 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1206 {
1207 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1208 }
1209
tcp_in_cwnd_reduction(const struct sock * sk)1210 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1211 {
1212 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1213 (1 << inet_csk(sk)->icsk_ca_state);
1214 }
1215
1216 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1217 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1218 * ssthresh.
1219 */
tcp_current_ssthresh(const struct sock * sk)1220 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1221 {
1222 const struct tcp_sock *tp = tcp_sk(sk);
1223
1224 if (tcp_in_cwnd_reduction(sk))
1225 return tp->snd_ssthresh;
1226 else
1227 return max(tp->snd_ssthresh,
1228 ((tp->snd_cwnd >> 1) +
1229 (tp->snd_cwnd >> 2)));
1230 }
1231
1232 /* Use define here intentionally to get WARN_ON location shown at the caller */
1233 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1234
1235 void tcp_enter_cwr(struct sock *sk);
1236 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1237
1238 /* The maximum number of MSS of available cwnd for which TSO defers
1239 * sending if not using sysctl_tcp_tso_win_divisor.
1240 */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1241 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1242 {
1243 return 3;
1244 }
1245
1246 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1247 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1248 {
1249 return tp->snd_una + tp->snd_wnd;
1250 }
1251
1252 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1253 * flexible approach. The RFC suggests cwnd should not be raised unless
1254 * it was fully used previously. And that's exactly what we do in
1255 * congestion avoidance mode. But in slow start we allow cwnd to grow
1256 * as long as the application has used half the cwnd.
1257 * Example :
1258 * cwnd is 10 (IW10), but application sends 9 frames.
1259 * We allow cwnd to reach 18 when all frames are ACKed.
1260 * This check is safe because it's as aggressive as slow start which already
1261 * risks 100% overshoot. The advantage is that we discourage application to
1262 * either send more filler packets or data to artificially blow up the cwnd
1263 * usage, and allow application-limited process to probe bw more aggressively.
1264 */
tcp_is_cwnd_limited(const struct sock * sk)1265 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1266 {
1267 const struct tcp_sock *tp = tcp_sk(sk);
1268
1269 if (tp->is_cwnd_limited)
1270 return true;
1271
1272 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1273 if (tcp_in_slow_start(tp))
1274 return tp->snd_cwnd < 2 * tp->max_packets_out;
1275
1276 return false;
1277 }
1278
1279 /* BBR congestion control needs pacing.
1280 * Same remark for SO_MAX_PACING_RATE.
1281 * sch_fq packet scheduler is efficiently handling pacing,
1282 * but is not always installed/used.
1283 * Return true if TCP stack should pace packets itself.
1284 */
tcp_needs_internal_pacing(const struct sock * sk)1285 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1286 {
1287 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1288 }
1289
1290 /* Return in jiffies the delay before one skb is sent.
1291 * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1292 */
tcp_pacing_delay(const struct sock * sk,const struct sk_buff * skb)1293 static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1294 const struct sk_buff *skb)
1295 {
1296 s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1297
1298 pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1299
1300 return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1301 }
1302
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,const unsigned long max_when,const struct sk_buff * skb)1303 static inline void tcp_reset_xmit_timer(struct sock *sk,
1304 const int what,
1305 unsigned long when,
1306 const unsigned long max_when,
1307 const struct sk_buff *skb)
1308 {
1309 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1310 max_when);
1311 }
1312
1313 /* Something is really bad, we could not queue an additional packet,
1314 * because qdisc is full or receiver sent a 0 window, or we are paced.
1315 * We do not want to add fuel to the fire, or abort too early,
1316 * so make sure the timer we arm now is at least 200ms in the future,
1317 * regardless of current icsk_rto value (as it could be ~2ms)
1318 */
tcp_probe0_base(const struct sock * sk)1319 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1320 {
1321 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1322 }
1323
1324 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1325 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1326 unsigned long max_when)
1327 {
1328 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1329
1330 return (unsigned long)min_t(u64, when, max_when);
1331 }
1332
tcp_check_probe_timer(struct sock * sk)1333 static inline void tcp_check_probe_timer(struct sock *sk)
1334 {
1335 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1336 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1337 tcp_probe0_base(sk), TCP_RTO_MAX,
1338 NULL);
1339 }
1340
tcp_init_wl(struct tcp_sock * tp,u32 seq)1341 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1342 {
1343 tp->snd_wl1 = seq;
1344 }
1345
tcp_update_wl(struct tcp_sock * tp,u32 seq)1346 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1347 {
1348 tp->snd_wl1 = seq;
1349 }
1350
1351 /*
1352 * Calculate(/check) TCP checksum
1353 */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1354 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1355 __be32 daddr, __wsum base)
1356 {
1357 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1358 }
1359
tcp_checksum_complete(struct sk_buff * skb)1360 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1361 {
1362 return !skb_csum_unnecessary(skb) &&
1363 __skb_checksum_complete(skb);
1364 }
1365
1366 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1367 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1368 void tcp_set_state(struct sock *sk, int state);
1369 void tcp_done(struct sock *sk);
1370 int tcp_abort(struct sock *sk, int err);
1371
tcp_sack_reset(struct tcp_options_received * rx_opt)1372 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1373 {
1374 rx_opt->dsack = 0;
1375 rx_opt->num_sacks = 0;
1376 }
1377
1378 u32 tcp_default_init_rwnd(u32 mss);
1379 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1380
tcp_slow_start_after_idle_check(struct sock * sk)1381 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1382 {
1383 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1384 struct tcp_sock *tp = tcp_sk(sk);
1385 s32 delta;
1386
1387 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1388 tp->packets_out || ca_ops->cong_control)
1389 return;
1390 delta = tcp_jiffies32 - tp->lsndtime;
1391 if (delta > inet_csk(sk)->icsk_rto)
1392 tcp_cwnd_restart(sk, delta);
1393 }
1394
1395 /* Determine a window scaling and initial window to offer. */
1396 void tcp_select_initial_window(const struct sock *sk, int __space,
1397 __u32 mss, __u32 *rcv_wnd,
1398 __u32 *window_clamp, int wscale_ok,
1399 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1400
tcp_win_from_space(const struct sock * sk,int space)1401 static inline int tcp_win_from_space(const struct sock *sk, int space)
1402 {
1403 int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1404
1405 return tcp_adv_win_scale <= 0 ?
1406 (space>>(-tcp_adv_win_scale)) :
1407 space - (space>>tcp_adv_win_scale);
1408 }
1409
1410 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1411 static inline int tcp_space(const struct sock *sk)
1412 {
1413 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1414 READ_ONCE(sk->sk_backlog.len) -
1415 atomic_read(&sk->sk_rmem_alloc));
1416 }
1417
tcp_full_space(const struct sock * sk)1418 static inline int tcp_full_space(const struct sock *sk)
1419 {
1420 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1421 }
1422
1423 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1424 * If 87.5 % (7/8) of the space has been consumed, we want to override
1425 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1426 * len/truesize ratio.
1427 */
tcp_rmem_pressure(const struct sock * sk)1428 static inline bool tcp_rmem_pressure(const struct sock *sk)
1429 {
1430 int rcvbuf, threshold;
1431
1432 if (tcp_under_memory_pressure(sk))
1433 return true;
1434
1435 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1436 threshold = rcvbuf - (rcvbuf >> 3);
1437
1438 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1439 }
1440
1441 extern void tcp_openreq_init_rwin(struct request_sock *req,
1442 const struct sock *sk_listener,
1443 const struct dst_entry *dst);
1444
1445 void tcp_enter_memory_pressure(struct sock *sk);
1446 void tcp_leave_memory_pressure(struct sock *sk);
1447
keepalive_intvl_when(const struct tcp_sock * tp)1448 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1449 {
1450 struct net *net = sock_net((struct sock *)tp);
1451
1452 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1453 }
1454
keepalive_time_when(const struct tcp_sock * tp)1455 static inline int keepalive_time_when(const struct tcp_sock *tp)
1456 {
1457 struct net *net = sock_net((struct sock *)tp);
1458
1459 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1460 }
1461
keepalive_probes(const struct tcp_sock * tp)1462 static inline int keepalive_probes(const struct tcp_sock *tp)
1463 {
1464 struct net *net = sock_net((struct sock *)tp);
1465
1466 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1467 }
1468
keepalive_time_elapsed(const struct tcp_sock * tp)1469 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1470 {
1471 const struct inet_connection_sock *icsk = &tp->inet_conn;
1472
1473 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1474 tcp_jiffies32 - tp->rcv_tstamp);
1475 }
1476
tcp_fin_time(const struct sock * sk)1477 static inline int tcp_fin_time(const struct sock *sk)
1478 {
1479 int fin_timeout = tcp_sk(sk)->linger2 ? :
1480 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1481 const int rto = inet_csk(sk)->icsk_rto;
1482
1483 if (fin_timeout < (rto << 2) - (rto >> 1))
1484 fin_timeout = (rto << 2) - (rto >> 1);
1485
1486 return fin_timeout;
1487 }
1488
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1489 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1490 int paws_win)
1491 {
1492 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1493 return true;
1494 if (unlikely(!time_before32(ktime_get_seconds(),
1495 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1496 return true;
1497 /*
1498 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1499 * then following tcp messages have valid values. Ignore 0 value,
1500 * or else 'negative' tsval might forbid us to accept their packets.
1501 */
1502 if (!rx_opt->ts_recent)
1503 return true;
1504 return false;
1505 }
1506
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1507 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1508 int rst)
1509 {
1510 if (tcp_paws_check(rx_opt, 0))
1511 return false;
1512
1513 /* RST segments are not recommended to carry timestamp,
1514 and, if they do, it is recommended to ignore PAWS because
1515 "their cleanup function should take precedence over timestamps."
1516 Certainly, it is mistake. It is necessary to understand the reasons
1517 of this constraint to relax it: if peer reboots, clock may go
1518 out-of-sync and half-open connections will not be reset.
1519 Actually, the problem would be not existing if all
1520 the implementations followed draft about maintaining clock
1521 via reboots. Linux-2.2 DOES NOT!
1522
1523 However, we can relax time bounds for RST segments to MSL.
1524 */
1525 if (rst && !time_before32(ktime_get_seconds(),
1526 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1527 return false;
1528 return true;
1529 }
1530
1531 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1532 int mib_idx, u32 *last_oow_ack_time);
1533
tcp_mib_init(struct net * net)1534 static inline void tcp_mib_init(struct net *net)
1535 {
1536 /* See RFC 2012 */
1537 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1538 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1539 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1540 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1541 }
1542
1543 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1544 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1545 {
1546 tp->lost_skb_hint = NULL;
1547 }
1548
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1549 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1550 {
1551 tcp_clear_retrans_hints_partial(tp);
1552 tp->retransmit_skb_hint = NULL;
1553 }
1554
1555 union tcp_md5_addr {
1556 struct in_addr a4;
1557 #if IS_ENABLED(CONFIG_IPV6)
1558 struct in6_addr a6;
1559 #endif
1560 };
1561
1562 /* - key database */
1563 struct tcp_md5sig_key {
1564 struct hlist_node node;
1565 u8 keylen;
1566 u8 family; /* AF_INET or AF_INET6 */
1567 union tcp_md5_addr addr;
1568 u8 prefixlen;
1569 u8 key[TCP_MD5SIG_MAXKEYLEN];
1570 struct rcu_head rcu;
1571 };
1572
1573 /* - sock block */
1574 struct tcp_md5sig_info {
1575 struct hlist_head head;
1576 struct rcu_head rcu;
1577 };
1578
1579 /* - pseudo header */
1580 struct tcp4_pseudohdr {
1581 __be32 saddr;
1582 __be32 daddr;
1583 __u8 pad;
1584 __u8 protocol;
1585 __be16 len;
1586 };
1587
1588 struct tcp6_pseudohdr {
1589 struct in6_addr saddr;
1590 struct in6_addr daddr;
1591 __be32 len;
1592 __be32 protocol; /* including padding */
1593 };
1594
1595 union tcp_md5sum_block {
1596 struct tcp4_pseudohdr ip4;
1597 #if IS_ENABLED(CONFIG_IPV6)
1598 struct tcp6_pseudohdr ip6;
1599 #endif
1600 };
1601
1602 /* - pool: digest algorithm, hash description and scratch buffer */
1603 struct tcp_md5sig_pool {
1604 struct ahash_request *md5_req;
1605 void *scratch;
1606 };
1607
1608 /* - functions */
1609 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1610 const struct sock *sk, const struct sk_buff *skb);
1611 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1612 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1613 gfp_t gfp);
1614 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1615 int family, u8 prefixlen);
1616 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1617 const struct sock *addr_sk);
1618
1619 #ifdef CONFIG_TCP_MD5SIG
1620 #include <linux/jump_label.h>
1621 extern struct static_key_false tcp_md5_needed;
1622 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
1623 const union tcp_md5_addr *addr,
1624 int family);
1625 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,const union tcp_md5_addr * addr,int family)1626 tcp_md5_do_lookup(const struct sock *sk,
1627 const union tcp_md5_addr *addr,
1628 int family)
1629 {
1630 if (!static_branch_unlikely(&tcp_md5_needed))
1631 return NULL;
1632 return __tcp_md5_do_lookup(sk, addr, family);
1633 }
1634
1635 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1636 #else
tcp_md5_do_lookup(const struct sock * sk,const union tcp_md5_addr * addr,int family)1637 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1638 const union tcp_md5_addr *addr,
1639 int family)
1640 {
1641 return NULL;
1642 }
1643 #define tcp_twsk_md5_key(twsk) NULL
1644 #endif
1645
1646 bool tcp_alloc_md5sig_pool(void);
1647
1648 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
tcp_put_md5sig_pool(void)1649 static inline void tcp_put_md5sig_pool(void)
1650 {
1651 local_bh_enable();
1652 }
1653
1654 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1655 unsigned int header_len);
1656 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1657 const struct tcp_md5sig_key *key);
1658
1659 /* From tcp_fastopen.c */
1660 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1661 struct tcp_fastopen_cookie *cookie);
1662 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1663 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1664 u16 try_exp);
1665 struct tcp_fastopen_request {
1666 /* Fast Open cookie. Size 0 means a cookie request */
1667 struct tcp_fastopen_cookie cookie;
1668 struct msghdr *data; /* data in MSG_FASTOPEN */
1669 size_t size;
1670 int copied; /* queued in tcp_connect() */
1671 struct ubuf_info *uarg;
1672 };
1673 void tcp_free_fastopen_req(struct tcp_sock *tp);
1674 void tcp_fastopen_destroy_cipher(struct sock *sk);
1675 void tcp_fastopen_ctx_destroy(struct net *net);
1676 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1677 void *primary_key, void *backup_key);
1678 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1679 u64 *key);
1680 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1681 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1682 struct request_sock *req,
1683 struct tcp_fastopen_cookie *foc,
1684 const struct dst_entry *dst);
1685 void tcp_fastopen_init_key_once(struct net *net);
1686 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1687 struct tcp_fastopen_cookie *cookie);
1688 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1689 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1690 #define TCP_FASTOPEN_KEY_MAX 2
1691 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1692 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1693
1694 /* Fastopen key context */
1695 struct tcp_fastopen_context {
1696 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1697 int num;
1698 struct rcu_head rcu;
1699 };
1700
1701 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1702 void tcp_fastopen_active_disable(struct sock *sk);
1703 bool tcp_fastopen_active_should_disable(struct sock *sk);
1704 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1705 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1706
1707 /* Caller needs to wrap with rcu_read_(un)lock() */
1708 static inline
tcp_fastopen_get_ctx(const struct sock * sk)1709 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1710 {
1711 struct tcp_fastopen_context *ctx;
1712
1713 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1714 if (!ctx)
1715 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1716 return ctx;
1717 }
1718
1719 static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)1720 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1721 const struct tcp_fastopen_cookie *orig)
1722 {
1723 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1724 orig->len == foc->len &&
1725 !memcmp(orig->val, foc->val, foc->len))
1726 return true;
1727 return false;
1728 }
1729
1730 static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)1731 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1732 {
1733 return ctx->num;
1734 }
1735
1736 /* Latencies incurred by various limits for a sender. They are
1737 * chronograph-like stats that are mutually exclusive.
1738 */
1739 enum tcp_chrono {
1740 TCP_CHRONO_UNSPEC,
1741 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1742 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1743 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1744 __TCP_CHRONO_MAX,
1745 };
1746
1747 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1748 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1749
1750 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1751 * the same memory storage than skb->destructor/_skb_refdst
1752 */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)1753 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1754 {
1755 skb->destructor = NULL;
1756 skb->_skb_refdst = 0UL;
1757 }
1758
1759 #define tcp_skb_tsorted_save(skb) { \
1760 unsigned long _save = skb->_skb_refdst; \
1761 skb->_skb_refdst = 0UL;
1762
1763 #define tcp_skb_tsorted_restore(skb) \
1764 skb->_skb_refdst = _save; \
1765 }
1766
1767 void tcp_write_queue_purge(struct sock *sk);
1768
tcp_rtx_queue_head(const struct sock * sk)1769 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1770 {
1771 return skb_rb_first(&sk->tcp_rtx_queue);
1772 }
1773
tcp_rtx_queue_tail(const struct sock * sk)1774 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1775 {
1776 return skb_rb_last(&sk->tcp_rtx_queue);
1777 }
1778
tcp_write_queue_head(const struct sock * sk)1779 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1780 {
1781 return skb_peek(&sk->sk_write_queue);
1782 }
1783
tcp_write_queue_tail(const struct sock * sk)1784 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1785 {
1786 return skb_peek_tail(&sk->sk_write_queue);
1787 }
1788
1789 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1790 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1791
tcp_send_head(const struct sock * sk)1792 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1793 {
1794 return skb_peek(&sk->sk_write_queue);
1795 }
1796
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1797 static inline bool tcp_skb_is_last(const struct sock *sk,
1798 const struct sk_buff *skb)
1799 {
1800 return skb_queue_is_last(&sk->sk_write_queue, skb);
1801 }
1802
tcp_write_queue_empty(const struct sock * sk)1803 static inline bool tcp_write_queue_empty(const struct sock *sk)
1804 {
1805 return skb_queue_empty(&sk->sk_write_queue);
1806 }
1807
tcp_rtx_queue_empty(const struct sock * sk)1808 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1809 {
1810 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1811 }
1812
tcp_rtx_and_write_queues_empty(const struct sock * sk)1813 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1814 {
1815 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1816 }
1817
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1818 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1819 {
1820 __skb_queue_tail(&sk->sk_write_queue, skb);
1821
1822 /* Queue it, remembering where we must start sending. */
1823 if (sk->sk_write_queue.next == skb)
1824 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1825 }
1826
1827 /* Insert new before skb on the write queue of sk. */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1828 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1829 struct sk_buff *skb,
1830 struct sock *sk)
1831 {
1832 __skb_queue_before(&sk->sk_write_queue, skb, new);
1833 }
1834
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1835 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1836 {
1837 tcp_skb_tsorted_anchor_cleanup(skb);
1838 __skb_unlink(skb, &sk->sk_write_queue);
1839 }
1840
1841 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1842
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)1843 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1844 {
1845 tcp_skb_tsorted_anchor_cleanup(skb);
1846 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1847 }
1848
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)1849 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1850 {
1851 list_del(&skb->tcp_tsorted_anchor);
1852 tcp_rtx_queue_unlink(skb, sk);
1853 sk_wmem_free_skb(sk, skb);
1854 }
1855
tcp_push_pending_frames(struct sock * sk)1856 static inline void tcp_push_pending_frames(struct sock *sk)
1857 {
1858 if (tcp_send_head(sk)) {
1859 struct tcp_sock *tp = tcp_sk(sk);
1860
1861 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1862 }
1863 }
1864
1865 /* Start sequence of the skb just after the highest skb with SACKed
1866 * bit, valid only if sacked_out > 0 or when the caller has ensured
1867 * validity by itself.
1868 */
tcp_highest_sack_seq(struct tcp_sock * tp)1869 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1870 {
1871 if (!tp->sacked_out)
1872 return tp->snd_una;
1873
1874 if (tp->highest_sack == NULL)
1875 return tp->snd_nxt;
1876
1877 return TCP_SKB_CB(tp->highest_sack)->seq;
1878 }
1879
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1880 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1881 {
1882 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1883 }
1884
tcp_highest_sack(struct sock * sk)1885 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1886 {
1887 return tcp_sk(sk)->highest_sack;
1888 }
1889
tcp_highest_sack_reset(struct sock * sk)1890 static inline void tcp_highest_sack_reset(struct sock *sk)
1891 {
1892 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1893 }
1894
1895 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1896 static inline void tcp_highest_sack_replace(struct sock *sk,
1897 struct sk_buff *old,
1898 struct sk_buff *new)
1899 {
1900 if (old == tcp_highest_sack(sk))
1901 tcp_sk(sk)->highest_sack = new;
1902 }
1903
1904 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)1905 static inline bool inet_sk_transparent(const struct sock *sk)
1906 {
1907 switch (sk->sk_state) {
1908 case TCP_TIME_WAIT:
1909 return inet_twsk(sk)->tw_transparent;
1910 case TCP_NEW_SYN_RECV:
1911 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1912 }
1913 return inet_sk(sk)->transparent;
1914 }
1915
1916 /* Determines whether this is a thin stream (which may suffer from
1917 * increased latency). Used to trigger latency-reducing mechanisms.
1918 */
tcp_stream_is_thin(struct tcp_sock * tp)1919 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1920 {
1921 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1922 }
1923
1924 /* /proc */
1925 enum tcp_seq_states {
1926 TCP_SEQ_STATE_LISTENING,
1927 TCP_SEQ_STATE_ESTABLISHED,
1928 };
1929
1930 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1931 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1932 void tcp_seq_stop(struct seq_file *seq, void *v);
1933
1934 struct tcp_seq_afinfo {
1935 sa_family_t family;
1936 };
1937
1938 struct tcp_iter_state {
1939 struct seq_net_private p;
1940 enum tcp_seq_states state;
1941 struct sock *syn_wait_sk;
1942 int bucket, offset, sbucket, num;
1943 loff_t last_pos;
1944 };
1945
1946 extern struct request_sock_ops tcp_request_sock_ops;
1947 extern struct request_sock_ops tcp6_request_sock_ops;
1948
1949 void tcp_v4_destroy_sock(struct sock *sk);
1950
1951 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1952 netdev_features_t features);
1953 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1954 int tcp_gro_complete(struct sk_buff *skb);
1955
1956 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1957
tcp_notsent_lowat(const struct tcp_sock * tp)1958 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1959 {
1960 struct net *net = sock_net((struct sock *)tp);
1961 u32 val;
1962
1963 val = READ_ONCE(tp->notsent_lowat);
1964
1965 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
1966 }
1967
1968 /* @wake is one when sk_stream_write_space() calls us.
1969 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1970 * This mimics the strategy used in sock_def_write_space().
1971 */
tcp_stream_memory_free(const struct sock * sk,int wake)1972 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1973 {
1974 const struct tcp_sock *tp = tcp_sk(sk);
1975 u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1976 READ_ONCE(tp->snd_nxt);
1977
1978 return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1979 }
1980
1981 #ifdef CONFIG_PROC_FS
1982 int tcp4_proc_init(void);
1983 void tcp4_proc_exit(void);
1984 #endif
1985
1986 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1987 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1988 const struct tcp_request_sock_ops *af_ops,
1989 struct sock *sk, struct sk_buff *skb);
1990
1991 /* TCP af-specific functions */
1992 struct tcp_sock_af_ops {
1993 #ifdef CONFIG_TCP_MD5SIG
1994 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
1995 const struct sock *addr_sk);
1996 int (*calc_md5_hash)(char *location,
1997 const struct tcp_md5sig_key *md5,
1998 const struct sock *sk,
1999 const struct sk_buff *skb);
2000 int (*md5_parse)(struct sock *sk,
2001 int optname,
2002 char __user *optval,
2003 int optlen);
2004 #endif
2005 };
2006
2007 struct tcp_request_sock_ops {
2008 u16 mss_clamp;
2009 #ifdef CONFIG_TCP_MD5SIG
2010 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2011 const struct sock *addr_sk);
2012 int (*calc_md5_hash) (char *location,
2013 const struct tcp_md5sig_key *md5,
2014 const struct sock *sk,
2015 const struct sk_buff *skb);
2016 #endif
2017 void (*init_req)(struct request_sock *req,
2018 const struct sock *sk_listener,
2019 struct sk_buff *skb);
2020 #ifdef CONFIG_SYN_COOKIES
2021 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2022 __u16 *mss);
2023 #endif
2024 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2025 const struct request_sock *req);
2026 u32 (*init_seq)(const struct sk_buff *skb);
2027 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2028 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2029 struct flowi *fl, struct request_sock *req,
2030 struct tcp_fastopen_cookie *foc,
2031 enum tcp_synack_type synack_type);
2032 };
2033
2034 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2035 #if IS_ENABLED(CONFIG_IPV6)
2036 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2037 #endif
2038
2039 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2040 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2041 const struct sock *sk, struct sk_buff *skb,
2042 __u16 *mss)
2043 {
2044 tcp_synq_overflow(sk);
2045 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2046 return ops->cookie_init_seq(skb, mss);
2047 }
2048 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2049 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2050 const struct sock *sk, struct sk_buff *skb,
2051 __u16 *mss)
2052 {
2053 return 0;
2054 }
2055 #endif
2056
2057 int tcpv4_offload_init(void);
2058
2059 void tcp_v4_init(void);
2060 void tcp_init(void);
2061
2062 /* tcp_recovery.c */
2063 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2064 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2065 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2066 u32 reo_wnd);
2067 extern bool tcp_rack_mark_lost(struct sock *sk);
2068 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2069 u64 xmit_time);
2070 extern void tcp_rack_reo_timeout(struct sock *sk);
2071 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2072
2073 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2074 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2075 {
2076 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2077 u32 rto = inet_csk(sk)->icsk_rto;
2078 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2079
2080 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2081 }
2082
2083 /*
2084 * Save and compile IPv4 options, return a pointer to it
2085 */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2086 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2087 struct sk_buff *skb)
2088 {
2089 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2090 struct ip_options_rcu *dopt = NULL;
2091
2092 if (opt->optlen) {
2093 int opt_size = sizeof(*dopt) + opt->optlen;
2094
2095 dopt = kmalloc(opt_size, GFP_ATOMIC);
2096 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2097 kfree(dopt);
2098 dopt = NULL;
2099 }
2100 }
2101 return dopt;
2102 }
2103
2104 /* locally generated TCP pure ACKs have skb->truesize == 2
2105 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2106 * This is much faster than dissecting the packet to find out.
2107 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2108 */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2109 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2110 {
2111 return skb->truesize == 2;
2112 }
2113
skb_set_tcp_pure_ack(struct sk_buff * skb)2114 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2115 {
2116 skb->truesize = 2;
2117 }
2118
tcp_inq(struct sock * sk)2119 static inline int tcp_inq(struct sock *sk)
2120 {
2121 struct tcp_sock *tp = tcp_sk(sk);
2122 int answ;
2123
2124 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2125 answ = 0;
2126 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2127 !tp->urg_data ||
2128 before(tp->urg_seq, tp->copied_seq) ||
2129 !before(tp->urg_seq, tp->rcv_nxt)) {
2130
2131 answ = tp->rcv_nxt - tp->copied_seq;
2132
2133 /* Subtract 1, if FIN was received */
2134 if (answ && sock_flag(sk, SOCK_DONE))
2135 answ--;
2136 } else {
2137 answ = tp->urg_seq - tp->copied_seq;
2138 }
2139
2140 return answ;
2141 }
2142
2143 int tcp_peek_len(struct socket *sock);
2144
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2145 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2146 {
2147 u16 segs_in;
2148
2149 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2150 tp->segs_in += segs_in;
2151 if (skb->len > tcp_hdrlen(skb))
2152 tp->data_segs_in += segs_in;
2153 }
2154
2155 /*
2156 * TCP listen path runs lockless.
2157 * We forced "struct sock" to be const qualified to make sure
2158 * we don't modify one of its field by mistake.
2159 * Here, we increment sk_drops which is an atomic_t, so we can safely
2160 * make sock writable again.
2161 */
tcp_listendrop(const struct sock * sk)2162 static inline void tcp_listendrop(const struct sock *sk)
2163 {
2164 atomic_inc(&((struct sock *)sk)->sk_drops);
2165 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2166 }
2167
2168 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2169
2170 /*
2171 * Interface for adding Upper Level Protocols over TCP
2172 */
2173
2174 #define TCP_ULP_NAME_MAX 16
2175 #define TCP_ULP_MAX 128
2176 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2177
2178 struct tcp_ulp_ops {
2179 struct list_head list;
2180
2181 /* initialize ulp */
2182 int (*init)(struct sock *sk);
2183 /* update ulp */
2184 void (*update)(struct sock *sk, struct proto *p,
2185 void (*write_space)(struct sock *sk));
2186 /* cleanup ulp */
2187 void (*release)(struct sock *sk);
2188 /* diagnostic */
2189 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2190 size_t (*get_info_size)(const struct sock *sk);
2191
2192 char name[TCP_ULP_NAME_MAX];
2193 struct module *owner;
2194 };
2195 int tcp_register_ulp(struct tcp_ulp_ops *type);
2196 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2197 int tcp_set_ulp(struct sock *sk, const char *name);
2198 void tcp_get_available_ulp(char *buf, size_t len);
2199 void tcp_cleanup_ulp(struct sock *sk);
2200 void tcp_update_ulp(struct sock *sk, struct proto *p,
2201 void (*write_space)(struct sock *sk));
2202
2203 #define MODULE_ALIAS_TCP_ULP(name) \
2204 __MODULE_INFO(alias, alias_userspace, name); \
2205 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2206
2207 struct sk_msg;
2208 struct sk_psock;
2209
2210 int tcp_bpf_init(struct sock *sk);
2211 void tcp_bpf_reinit(struct sock *sk);
2212 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2213 int flags);
2214 int tcp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2215 int nonblock, int flags, int *addr_len);
2216 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2217 struct msghdr *msg, int len, int flags);
2218
2219 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2220 * is < 0, then the BPF op failed (for example if the loaded BPF
2221 * program does not support the chosen operation or there is no BPF
2222 * program loaded).
2223 */
2224 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2225 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2226 {
2227 struct bpf_sock_ops_kern sock_ops;
2228 int ret;
2229
2230 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2231 if (sk_fullsock(sk)) {
2232 sock_ops.is_fullsock = 1;
2233 sock_owned_by_me(sk);
2234 }
2235
2236 sock_ops.sk = sk;
2237 sock_ops.op = op;
2238 if (nargs > 0)
2239 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2240
2241 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2242 if (ret == 0)
2243 ret = sock_ops.reply;
2244 else
2245 ret = -1;
2246 return ret;
2247 }
2248
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2249 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2250 {
2251 u32 args[2] = {arg1, arg2};
2252
2253 return tcp_call_bpf(sk, op, 2, args);
2254 }
2255
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2256 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2257 u32 arg3)
2258 {
2259 u32 args[3] = {arg1, arg2, arg3};
2260
2261 return tcp_call_bpf(sk, op, 3, args);
2262 }
2263
2264 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2265 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2266 {
2267 return -EPERM;
2268 }
2269
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2270 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2271 {
2272 return -EPERM;
2273 }
2274
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2275 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2276 u32 arg3)
2277 {
2278 return -EPERM;
2279 }
2280
2281 #endif
2282
tcp_timeout_init(struct sock * sk)2283 static inline u32 tcp_timeout_init(struct sock *sk)
2284 {
2285 int timeout;
2286
2287 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2288
2289 if (timeout <= 0)
2290 timeout = TCP_TIMEOUT_INIT;
2291 return timeout;
2292 }
2293
tcp_rwnd_init_bpf(struct sock * sk)2294 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2295 {
2296 int rwnd;
2297
2298 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2299
2300 if (rwnd < 0)
2301 rwnd = 0;
2302 return rwnd;
2303 }
2304
tcp_bpf_ca_needs_ecn(struct sock * sk)2305 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2306 {
2307 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2308 }
2309
tcp_bpf_rtt(struct sock * sk)2310 static inline void tcp_bpf_rtt(struct sock *sk)
2311 {
2312 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2313 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2314 }
2315
2316 #if IS_ENABLED(CONFIG_SMC)
2317 extern struct static_key_false tcp_have_smc;
2318 #endif
2319
2320 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2321 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2322 void (*cad)(struct sock *sk, u32 ack_seq));
2323 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2324 void clean_acked_data_flush(void);
2325 #endif
2326
2327 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2328 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2329 const struct tcp_sock *tp)
2330 {
2331 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2332 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2333 }
2334
2335 /* Compute Earliest Departure Time for some control packets
2336 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2337 */
tcp_transmit_time(const struct sock * sk)2338 static inline u64 tcp_transmit_time(const struct sock *sk)
2339 {
2340 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2341 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2342 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2343
2344 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2345 }
2346 return 0;
2347 }
2348
2349 #endif /* _TCP_H */
2350