• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Common capabilities, needed by capability.o.
3  */
4 
5 #include <linux/capability.h>
6 #include <linux/audit.h>
7 #include <linux/init.h>
8 #include <linux/kernel.h>
9 #include <linux/lsm_hooks.h>
10 #include <linux/file.h>
11 #include <linux/mm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/skbuff.h>
16 #include <linux/netlink.h>
17 #include <linux/ptrace.h>
18 #include <linux/xattr.h>
19 #include <linux/hugetlb.h>
20 #include <linux/mount.h>
21 #include <linux/sched.h>
22 #include <linux/prctl.h>
23 #include <linux/securebits.h>
24 #include <linux/user_namespace.h>
25 #include <linux/binfmts.h>
26 #include <linux/personality.h>
27 
28 /*
29  * If a non-root user executes a setuid-root binary in
30  * !secure(SECURE_NOROOT) mode, then we raise capabilities.
31  * However if fE is also set, then the intent is for only
32  * the file capabilities to be applied, and the setuid-root
33  * bit is left on either to change the uid (plausible) or
34  * to get full privilege on a kernel without file capabilities
35  * support.  So in that case we do not raise capabilities.
36  *
37  * Warn if that happens, once per boot.
38  */
warn_setuid_and_fcaps_mixed(const char * fname)39 static void warn_setuid_and_fcaps_mixed(const char *fname)
40 {
41 	static int warned;
42 	if (!warned) {
43 		printk(KERN_INFO "warning: `%s' has both setuid-root and"
44 			" effective capabilities. Therefore not raising all"
45 			" capabilities.\n", fname);
46 		warned = 1;
47 	}
48 }
49 
50 /**
51  * cap_capable - Determine whether a task has a particular effective capability
52  * @cred: The credentials to use
53  * @ns:  The user namespace in which we need the capability
54  * @cap: The capability to check for
55  * @opts: Bitmask of options defined in include/linux/security.h
56  *
57  * Determine whether the nominated task has the specified capability amongst
58  * its effective set, returning 0 if it does, -ve if it does not.
59  *
60  * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
61  * and has_capability() functions.  That is, it has the reverse semantics:
62  * cap_has_capability() returns 0 when a task has a capability, but the
63  * kernel's capable() and has_capability() returns 1 for this case.
64  */
cap_capable(const struct cred * cred,struct user_namespace * targ_ns,int cap,unsigned int opts)65 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
66 		int cap, unsigned int opts)
67 {
68 	struct user_namespace *ns = targ_ns;
69 
70 	/* See if cred has the capability in the target user namespace
71 	 * by examining the target user namespace and all of the target
72 	 * user namespace's parents.
73 	 */
74 	for (;;) {
75 		/* Do we have the necessary capabilities? */
76 		if (ns == cred->user_ns)
77 			return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
78 
79 		/*
80 		 * If we're already at a lower level than we're looking for,
81 		 * we're done searching.
82 		 */
83 		if (ns->level <= cred->user_ns->level)
84 			return -EPERM;
85 
86 		/*
87 		 * The owner of the user namespace in the parent of the
88 		 * user namespace has all caps.
89 		 */
90 		if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
91 			return 0;
92 
93 		/*
94 		 * If you have a capability in a parent user ns, then you have
95 		 * it over all children user namespaces as well.
96 		 */
97 		ns = ns->parent;
98 	}
99 
100 	/* We never get here */
101 }
102 
103 /**
104  * cap_settime - Determine whether the current process may set the system clock
105  * @ts: The time to set
106  * @tz: The timezone to set
107  *
108  * Determine whether the current process may set the system clock and timezone
109  * information, returning 0 if permission granted, -ve if denied.
110  */
cap_settime(const struct timespec64 * ts,const struct timezone * tz)111 int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
112 {
113 	if (!capable(CAP_SYS_TIME))
114 		return -EPERM;
115 	return 0;
116 }
117 
118 /**
119  * cap_ptrace_access_check - Determine whether the current process may access
120  *			   another
121  * @child: The process to be accessed
122  * @mode: The mode of attachment.
123  *
124  * If we are in the same or an ancestor user_ns and have all the target
125  * task's capabilities, then ptrace access is allowed.
126  * If we have the ptrace capability to the target user_ns, then ptrace
127  * access is allowed.
128  * Else denied.
129  *
130  * Determine whether a process may access another, returning 0 if permission
131  * granted, -ve if denied.
132  */
cap_ptrace_access_check(struct task_struct * child,unsigned int mode)133 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
134 {
135 	int ret = 0;
136 	const struct cred *cred, *child_cred;
137 	const kernel_cap_t *caller_caps;
138 
139 	rcu_read_lock();
140 	cred = current_cred();
141 	child_cred = __task_cred(child);
142 	if (mode & PTRACE_MODE_FSCREDS)
143 		caller_caps = &cred->cap_effective;
144 	else
145 		caller_caps = &cred->cap_permitted;
146 	if (cred->user_ns == child_cred->user_ns &&
147 	    cap_issubset(child_cred->cap_permitted, *caller_caps))
148 		goto out;
149 	if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
150 		goto out;
151 	ret = -EPERM;
152 out:
153 	rcu_read_unlock();
154 	return ret;
155 }
156 
157 /**
158  * cap_ptrace_traceme - Determine whether another process may trace the current
159  * @parent: The task proposed to be the tracer
160  *
161  * If parent is in the same or an ancestor user_ns and has all current's
162  * capabilities, then ptrace access is allowed.
163  * If parent has the ptrace capability to current's user_ns, then ptrace
164  * access is allowed.
165  * Else denied.
166  *
167  * Determine whether the nominated task is permitted to trace the current
168  * process, returning 0 if permission is granted, -ve if denied.
169  */
cap_ptrace_traceme(struct task_struct * parent)170 int cap_ptrace_traceme(struct task_struct *parent)
171 {
172 	int ret = 0;
173 	const struct cred *cred, *child_cred;
174 
175 	rcu_read_lock();
176 	cred = __task_cred(parent);
177 	child_cred = current_cred();
178 	if (cred->user_ns == child_cred->user_ns &&
179 	    cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
180 		goto out;
181 	if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
182 		goto out;
183 	ret = -EPERM;
184 out:
185 	rcu_read_unlock();
186 	return ret;
187 }
188 
189 /**
190  * cap_capget - Retrieve a task's capability sets
191  * @target: The task from which to retrieve the capability sets
192  * @effective: The place to record the effective set
193  * @inheritable: The place to record the inheritable set
194  * @permitted: The place to record the permitted set
195  *
196  * This function retrieves the capabilities of the nominated task and returns
197  * them to the caller.
198  */
cap_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)199 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
200 	       kernel_cap_t *inheritable, kernel_cap_t *permitted)
201 {
202 	const struct cred *cred;
203 
204 	/* Derived from kernel/capability.c:sys_capget. */
205 	rcu_read_lock();
206 	cred = __task_cred(target);
207 	*effective   = cred->cap_effective;
208 	*inheritable = cred->cap_inheritable;
209 	*permitted   = cred->cap_permitted;
210 	rcu_read_unlock();
211 	return 0;
212 }
213 
214 /*
215  * Determine whether the inheritable capabilities are limited to the old
216  * permitted set.  Returns 1 if they are limited, 0 if they are not.
217  */
cap_inh_is_capped(void)218 static inline int cap_inh_is_capped(void)
219 {
220 	/* they are so limited unless the current task has the CAP_SETPCAP
221 	 * capability
222 	 */
223 	if (cap_capable(current_cred(), current_cred()->user_ns,
224 			CAP_SETPCAP, CAP_OPT_NONE) == 0)
225 		return 0;
226 	return 1;
227 }
228 
229 /**
230  * cap_capset - Validate and apply proposed changes to current's capabilities
231  * @new: The proposed new credentials; alterations should be made here
232  * @old: The current task's current credentials
233  * @effective: A pointer to the proposed new effective capabilities set
234  * @inheritable: A pointer to the proposed new inheritable capabilities set
235  * @permitted: A pointer to the proposed new permitted capabilities set
236  *
237  * This function validates and applies a proposed mass change to the current
238  * process's capability sets.  The changes are made to the proposed new
239  * credentials, and assuming no error, will be committed by the caller of LSM.
240  */
cap_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)241 int cap_capset(struct cred *new,
242 	       const struct cred *old,
243 	       const kernel_cap_t *effective,
244 	       const kernel_cap_t *inheritable,
245 	       const kernel_cap_t *permitted)
246 {
247 	if (cap_inh_is_capped() &&
248 	    !cap_issubset(*inheritable,
249 			  cap_combine(old->cap_inheritable,
250 				      old->cap_permitted)))
251 		/* incapable of using this inheritable set */
252 		return -EPERM;
253 
254 	if (!cap_issubset(*inheritable,
255 			  cap_combine(old->cap_inheritable,
256 				      old->cap_bset)))
257 		/* no new pI capabilities outside bounding set */
258 		return -EPERM;
259 
260 	/* verify restrictions on target's new Permitted set */
261 	if (!cap_issubset(*permitted, old->cap_permitted))
262 		return -EPERM;
263 
264 	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
265 	if (!cap_issubset(*effective, *permitted))
266 		return -EPERM;
267 
268 	new->cap_effective   = *effective;
269 	new->cap_inheritable = *inheritable;
270 	new->cap_permitted   = *permitted;
271 
272 	/*
273 	 * Mask off ambient bits that are no longer both permitted and
274 	 * inheritable.
275 	 */
276 	new->cap_ambient = cap_intersect(new->cap_ambient,
277 					 cap_intersect(*permitted,
278 						       *inheritable));
279 	if (WARN_ON(!cap_ambient_invariant_ok(new)))
280 		return -EINVAL;
281 	return 0;
282 }
283 
284 /**
285  * cap_inode_need_killpriv - Determine if inode change affects privileges
286  * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
287  *
288  * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
289  * affects the security markings on that inode, and if it is, should
290  * inode_killpriv() be invoked or the change rejected.
291  *
292  * Returns 1 if security.capability has a value, meaning inode_killpriv()
293  * is required, 0 otherwise, meaning inode_killpriv() is not required.
294  */
cap_inode_need_killpriv(struct dentry * dentry)295 int cap_inode_need_killpriv(struct dentry *dentry)
296 {
297 	struct inode *inode = d_backing_inode(dentry);
298 	int error;
299 
300 	error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0,
301 			       XATTR_NOSECURITY);
302 	return error > 0;
303 }
304 
305 /**
306  * cap_inode_killpriv - Erase the security markings on an inode
307  * @dentry: The inode/dentry to alter
308  *
309  * Erase the privilege-enhancing security markings on an inode.
310  *
311  * Returns 0 if successful, -ve on error.
312  */
cap_inode_killpriv(struct dentry * dentry)313 int cap_inode_killpriv(struct dentry *dentry)
314 {
315 	int error;
316 
317 	error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
318 	if (error == -EOPNOTSUPP)
319 		error = 0;
320 	return error;
321 }
322 
rootid_owns_currentns(kuid_t kroot)323 static bool rootid_owns_currentns(kuid_t kroot)
324 {
325 	struct user_namespace *ns;
326 
327 	if (!uid_valid(kroot))
328 		return false;
329 
330 	for (ns = current_user_ns(); ; ns = ns->parent) {
331 		if (from_kuid(ns, kroot) == 0)
332 			return true;
333 		if (ns == &init_user_ns)
334 			break;
335 	}
336 
337 	return false;
338 }
339 
sansflags(__u32 m)340 static __u32 sansflags(__u32 m)
341 {
342 	return m & ~VFS_CAP_FLAGS_EFFECTIVE;
343 }
344 
is_v2header(size_t size,const struct vfs_cap_data * cap)345 static bool is_v2header(size_t size, const struct vfs_cap_data *cap)
346 {
347 	if (size != XATTR_CAPS_SZ_2)
348 		return false;
349 	return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
350 }
351 
is_v3header(size_t size,const struct vfs_cap_data * cap)352 static bool is_v3header(size_t size, const struct vfs_cap_data *cap)
353 {
354 	if (size != XATTR_CAPS_SZ_3)
355 		return false;
356 	return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
357 }
358 
359 /*
360  * getsecurity: We are called for security.* before any attempt to read the
361  * xattr from the inode itself.
362  *
363  * This gives us a chance to read the on-disk value and convert it.  If we
364  * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
365  *
366  * Note we are not called by vfs_getxattr_alloc(), but that is only called
367  * by the integrity subsystem, which really wants the unconverted values -
368  * so that's good.
369  */
cap_inode_getsecurity(struct inode * inode,const char * name,void ** buffer,bool alloc)370 int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
371 			  bool alloc)
372 {
373 	int size, ret;
374 	kuid_t kroot;
375 	u32 nsmagic, magic;
376 	uid_t root, mappedroot;
377 	char *tmpbuf = NULL;
378 	struct vfs_cap_data *cap;
379 	struct vfs_ns_cap_data *nscap = NULL;
380 	struct dentry *dentry;
381 	struct user_namespace *fs_ns;
382 
383 	if (strcmp(name, "capability") != 0)
384 		return -EOPNOTSUPP;
385 
386 	dentry = d_find_any_alias(inode);
387 	if (!dentry)
388 		return -EINVAL;
389 
390 	size = sizeof(struct vfs_ns_cap_data);
391 	ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
392 				 &tmpbuf, size, GFP_NOFS);
393 	dput(dentry);
394 
395 	if (ret < 0 || !tmpbuf) {
396 		size = ret;
397 		goto out_free;
398 	}
399 
400 	fs_ns = inode->i_sb->s_user_ns;
401 	cap = (struct vfs_cap_data *) tmpbuf;
402 	if (is_v2header((size_t) ret, cap)) {
403 		root = 0;
404 	} else if (is_v3header((size_t) ret, cap)) {
405 		nscap = (struct vfs_ns_cap_data *) tmpbuf;
406 		root = le32_to_cpu(nscap->rootid);
407 	} else {
408 		size = -EINVAL;
409 		goto out_free;
410 	}
411 
412 	kroot = make_kuid(fs_ns, root);
413 
414 	/* If the root kuid maps to a valid uid in current ns, then return
415 	 * this as a nscap. */
416 	mappedroot = from_kuid(current_user_ns(), kroot);
417 	if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
418 		size = sizeof(struct vfs_ns_cap_data);
419 		if (alloc) {
420 			if (!nscap) {
421 				/* v2 -> v3 conversion */
422 				nscap = kzalloc(size, GFP_ATOMIC);
423 				if (!nscap) {
424 					size = -ENOMEM;
425 					goto out_free;
426 				}
427 				nsmagic = VFS_CAP_REVISION_3;
428 				magic = le32_to_cpu(cap->magic_etc);
429 				if (magic & VFS_CAP_FLAGS_EFFECTIVE)
430 					nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
431 				memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
432 				nscap->magic_etc = cpu_to_le32(nsmagic);
433 			} else {
434 				/* use allocated v3 buffer */
435 				tmpbuf = NULL;
436 			}
437 			nscap->rootid = cpu_to_le32(mappedroot);
438 			*buffer = nscap;
439 		}
440 		goto out_free;
441 	}
442 
443 	if (!rootid_owns_currentns(kroot)) {
444 		size = -EOVERFLOW;
445 		goto out_free;
446 	}
447 
448 	/* This comes from a parent namespace.  Return as a v2 capability */
449 	size = sizeof(struct vfs_cap_data);
450 	if (alloc) {
451 		if (nscap) {
452 			/* v3 -> v2 conversion */
453 			cap = kzalloc(size, GFP_ATOMIC);
454 			if (!cap) {
455 				size = -ENOMEM;
456 				goto out_free;
457 			}
458 			magic = VFS_CAP_REVISION_2;
459 			nsmagic = le32_to_cpu(nscap->magic_etc);
460 			if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
461 				magic |= VFS_CAP_FLAGS_EFFECTIVE;
462 			memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
463 			cap->magic_etc = cpu_to_le32(magic);
464 		} else {
465 			/* use unconverted v2 */
466 			tmpbuf = NULL;
467 		}
468 		*buffer = cap;
469 	}
470 out_free:
471 	kfree(tmpbuf);
472 	return size;
473 }
474 
rootid_from_xattr(const void * value,size_t size,struct user_namespace * task_ns)475 static kuid_t rootid_from_xattr(const void *value, size_t size,
476 				struct user_namespace *task_ns)
477 {
478 	const struct vfs_ns_cap_data *nscap = value;
479 	uid_t rootid = 0;
480 
481 	if (size == XATTR_CAPS_SZ_3)
482 		rootid = le32_to_cpu(nscap->rootid);
483 
484 	return make_kuid(task_ns, rootid);
485 }
486 
validheader(size_t size,const struct vfs_cap_data * cap)487 static bool validheader(size_t size, const struct vfs_cap_data *cap)
488 {
489 	return is_v2header(size, cap) || is_v3header(size, cap);
490 }
491 
492 /*
493  * User requested a write of security.capability.  If needed, update the
494  * xattr to change from v2 to v3, or to fixup the v3 rootid.
495  *
496  * If all is ok, we return the new size, on error return < 0.
497  */
cap_convert_nscap(struct dentry * dentry,void ** ivalue,size_t size)498 int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size)
499 {
500 	struct vfs_ns_cap_data *nscap;
501 	uid_t nsrootid;
502 	const struct vfs_cap_data *cap = *ivalue;
503 	__u32 magic, nsmagic;
504 	struct inode *inode = d_backing_inode(dentry);
505 	struct user_namespace *task_ns = current_user_ns(),
506 		*fs_ns = inode->i_sb->s_user_ns;
507 	kuid_t rootid;
508 	size_t newsize;
509 
510 	if (!*ivalue)
511 		return -EINVAL;
512 	if (!validheader(size, cap))
513 		return -EINVAL;
514 	if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
515 		return -EPERM;
516 	if (size == XATTR_CAPS_SZ_2)
517 		if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
518 			/* user is privileged, just write the v2 */
519 			return size;
520 
521 	rootid = rootid_from_xattr(*ivalue, size, task_ns);
522 	if (!uid_valid(rootid))
523 		return -EINVAL;
524 
525 	nsrootid = from_kuid(fs_ns, rootid);
526 	if (nsrootid == -1)
527 		return -EINVAL;
528 
529 	newsize = sizeof(struct vfs_ns_cap_data);
530 	nscap = kmalloc(newsize, GFP_ATOMIC);
531 	if (!nscap)
532 		return -ENOMEM;
533 	nscap->rootid = cpu_to_le32(nsrootid);
534 	nsmagic = VFS_CAP_REVISION_3;
535 	magic = le32_to_cpu(cap->magic_etc);
536 	if (magic & VFS_CAP_FLAGS_EFFECTIVE)
537 		nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
538 	nscap->magic_etc = cpu_to_le32(nsmagic);
539 	memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
540 
541 	kvfree(*ivalue);
542 	*ivalue = nscap;
543 	return newsize;
544 }
545 
546 /*
547  * Calculate the new process capability sets from the capability sets attached
548  * to a file.
549  */
bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data * caps,struct linux_binprm * bprm,bool * effective,bool * has_fcap)550 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
551 					  struct linux_binprm *bprm,
552 					  bool *effective,
553 					  bool *has_fcap)
554 {
555 	struct cred *new = bprm->cred;
556 	unsigned i;
557 	int ret = 0;
558 
559 	if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
560 		*effective = true;
561 
562 	if (caps->magic_etc & VFS_CAP_REVISION_MASK)
563 		*has_fcap = true;
564 
565 	CAP_FOR_EACH_U32(i) {
566 		__u32 permitted = caps->permitted.cap[i];
567 		__u32 inheritable = caps->inheritable.cap[i];
568 
569 		/*
570 		 * pP' = (X & fP) | (pI & fI)
571 		 * The addition of pA' is handled later.
572 		 */
573 		new->cap_permitted.cap[i] =
574 			(new->cap_bset.cap[i] & permitted) |
575 			(new->cap_inheritable.cap[i] & inheritable);
576 
577 		if (permitted & ~new->cap_permitted.cap[i])
578 			/* insufficient to execute correctly */
579 			ret = -EPERM;
580 	}
581 
582 	/*
583 	 * For legacy apps, with no internal support for recognizing they
584 	 * do not have enough capabilities, we return an error if they are
585 	 * missing some "forced" (aka file-permitted) capabilities.
586 	 */
587 	return *effective ? ret : 0;
588 }
589 
590 /*
591  * Extract the on-exec-apply capability sets for an executable file.
592  */
get_vfs_caps_from_disk(const struct dentry * dentry,struct cpu_vfs_cap_data * cpu_caps)593 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
594 {
595 	struct inode *inode = d_backing_inode(dentry);
596 	__u32 magic_etc;
597 	unsigned tocopy, i;
598 	int size;
599 	struct vfs_ns_cap_data data, *nscaps = &data;
600 	struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
601 	kuid_t rootkuid;
602 	struct user_namespace *fs_ns;
603 
604 	memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
605 
606 	if (!inode)
607 		return -ENODATA;
608 
609 	fs_ns = inode->i_sb->s_user_ns;
610 	size = __vfs_getxattr((struct dentry *)dentry, inode,
611 			      XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ,
612 			      XATTR_NOSECURITY);
613 	if (size == -ENODATA || size == -EOPNOTSUPP)
614 		/* no data, that's ok */
615 		return -ENODATA;
616 
617 	if (size < 0)
618 		return size;
619 
620 	if (size < sizeof(magic_etc))
621 		return -EINVAL;
622 
623 	cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
624 
625 	rootkuid = make_kuid(fs_ns, 0);
626 	switch (magic_etc & VFS_CAP_REVISION_MASK) {
627 	case VFS_CAP_REVISION_1:
628 		if (size != XATTR_CAPS_SZ_1)
629 			return -EINVAL;
630 		tocopy = VFS_CAP_U32_1;
631 		break;
632 	case VFS_CAP_REVISION_2:
633 		if (size != XATTR_CAPS_SZ_2)
634 			return -EINVAL;
635 		tocopy = VFS_CAP_U32_2;
636 		break;
637 	case VFS_CAP_REVISION_3:
638 		if (size != XATTR_CAPS_SZ_3)
639 			return -EINVAL;
640 		tocopy = VFS_CAP_U32_3;
641 		rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
642 		break;
643 
644 	default:
645 		return -EINVAL;
646 	}
647 	/* Limit the caps to the mounter of the filesystem
648 	 * or the more limited uid specified in the xattr.
649 	 */
650 	if (!rootid_owns_currentns(rootkuid))
651 		return -ENODATA;
652 
653 	CAP_FOR_EACH_U32(i) {
654 		if (i >= tocopy)
655 			break;
656 		cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
657 		cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
658 	}
659 
660 	cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
661 	cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
662 
663 	cpu_caps->rootid = rootkuid;
664 
665 	return 0;
666 }
667 
668 /*
669  * Attempt to get the on-exec apply capability sets for an executable file from
670  * its xattrs and, if present, apply them to the proposed credentials being
671  * constructed by execve().
672  */
get_file_caps(struct linux_binprm * bprm,bool * effective,bool * has_fcap)673 static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_fcap)
674 {
675 	int rc = 0;
676 	struct cpu_vfs_cap_data vcaps;
677 
678 	cap_clear(bprm->cred->cap_permitted);
679 
680 	if (!file_caps_enabled)
681 		return 0;
682 
683 	if (!mnt_may_suid(bprm->file->f_path.mnt))
684 		return 0;
685 
686 	/*
687 	 * This check is redundant with mnt_may_suid() but is kept to make
688 	 * explicit that capability bits are limited to s_user_ns and its
689 	 * descendants.
690 	 */
691 	if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns))
692 		return 0;
693 
694 	rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
695 	if (rc < 0) {
696 		if (rc == -EINVAL)
697 			printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
698 					bprm->filename);
699 		else if (rc == -ENODATA)
700 			rc = 0;
701 		goto out;
702 	}
703 
704 	rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
705 
706 out:
707 	if (rc)
708 		cap_clear(bprm->cred->cap_permitted);
709 
710 	return rc;
711 }
712 
root_privileged(void)713 static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
714 
__is_real(kuid_t uid,struct cred * cred)715 static inline bool __is_real(kuid_t uid, struct cred *cred)
716 { return uid_eq(cred->uid, uid); }
717 
__is_eff(kuid_t uid,struct cred * cred)718 static inline bool __is_eff(kuid_t uid, struct cred *cred)
719 { return uid_eq(cred->euid, uid); }
720 
__is_suid(kuid_t uid,struct cred * cred)721 static inline bool __is_suid(kuid_t uid, struct cred *cred)
722 { return !__is_real(uid, cred) && __is_eff(uid, cred); }
723 
724 /*
725  * handle_privileged_root - Handle case of privileged root
726  * @bprm: The execution parameters, including the proposed creds
727  * @has_fcap: Are any file capabilities set?
728  * @effective: Do we have effective root privilege?
729  * @root_uid: This namespace' root UID WRT initial USER namespace
730  *
731  * Handle the case where root is privileged and hasn't been neutered by
732  * SECURE_NOROOT.  If file capabilities are set, they won't be combined with
733  * set UID root and nothing is changed.  If we are root, cap_permitted is
734  * updated.  If we have become set UID root, the effective bit is set.
735  */
handle_privileged_root(struct linux_binprm * bprm,bool has_fcap,bool * effective,kuid_t root_uid)736 static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
737 				   bool *effective, kuid_t root_uid)
738 {
739 	const struct cred *old = current_cred();
740 	struct cred *new = bprm->cred;
741 
742 	if (!root_privileged())
743 		return;
744 	/*
745 	 * If the legacy file capability is set, then don't set privs
746 	 * for a setuid root binary run by a non-root user.  Do set it
747 	 * for a root user just to cause least surprise to an admin.
748 	 */
749 	if (has_fcap && __is_suid(root_uid, new)) {
750 		warn_setuid_and_fcaps_mixed(bprm->filename);
751 		return;
752 	}
753 	/*
754 	 * To support inheritance of root-permissions and suid-root
755 	 * executables under compatibility mode, we override the
756 	 * capability sets for the file.
757 	 */
758 	if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
759 		/* pP' = (cap_bset & ~0) | (pI & ~0) */
760 		new->cap_permitted = cap_combine(old->cap_bset,
761 						 old->cap_inheritable);
762 	}
763 	/*
764 	 * If only the real uid is 0, we do not set the effective bit.
765 	 */
766 	if (__is_eff(root_uid, new))
767 		*effective = true;
768 }
769 
770 #define __cap_gained(field, target, source) \
771 	!cap_issubset(target->cap_##field, source->cap_##field)
772 #define __cap_grew(target, source, cred) \
773 	!cap_issubset(cred->cap_##target, cred->cap_##source)
774 #define __cap_full(field, cred) \
775 	cap_issubset(CAP_FULL_SET, cred->cap_##field)
776 
__is_setuid(struct cred * new,const struct cred * old)777 static inline bool __is_setuid(struct cred *new, const struct cred *old)
778 { return !uid_eq(new->euid, old->uid); }
779 
__is_setgid(struct cred * new,const struct cred * old)780 static inline bool __is_setgid(struct cred *new, const struct cred *old)
781 { return !gid_eq(new->egid, old->gid); }
782 
783 /*
784  * 1) Audit candidate if current->cap_effective is set
785  *
786  * We do not bother to audit if 3 things are true:
787  *   1) cap_effective has all caps
788  *   2) we became root *OR* are were already root
789  *   3) root is supposed to have all caps (SECURE_NOROOT)
790  * Since this is just a normal root execing a process.
791  *
792  * Number 1 above might fail if you don't have a full bset, but I think
793  * that is interesting information to audit.
794  *
795  * A number of other conditions require logging:
796  * 2) something prevented setuid root getting all caps
797  * 3) non-setuid root gets fcaps
798  * 4) non-setuid root gets ambient
799  */
nonroot_raised_pE(struct cred * new,const struct cred * old,kuid_t root,bool has_fcap)800 static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
801 				     kuid_t root, bool has_fcap)
802 {
803 	bool ret = false;
804 
805 	if ((__cap_grew(effective, ambient, new) &&
806 	     !(__cap_full(effective, new) &&
807 	       (__is_eff(root, new) || __is_real(root, new)) &&
808 	       root_privileged())) ||
809 	    (root_privileged() &&
810 	     __is_suid(root, new) &&
811 	     !__cap_full(effective, new)) ||
812 	    (!__is_setuid(new, old) &&
813 	     ((has_fcap &&
814 	       __cap_gained(permitted, new, old)) ||
815 	      __cap_gained(ambient, new, old))))
816 
817 		ret = true;
818 
819 	return ret;
820 }
821 
822 /**
823  * cap_bprm_set_creds - Set up the proposed credentials for execve().
824  * @bprm: The execution parameters, including the proposed creds
825  *
826  * Set up the proposed credentials for a new execution context being
827  * constructed by execve().  The proposed creds in @bprm->cred is altered,
828  * which won't take effect immediately.  Returns 0 if successful, -ve on error.
829  */
cap_bprm_set_creds(struct linux_binprm * bprm)830 int cap_bprm_set_creds(struct linux_binprm *bprm)
831 {
832 	const struct cred *old = current_cred();
833 	struct cred *new = bprm->cred;
834 	bool effective = false, has_fcap = false, is_setid;
835 	int ret;
836 	kuid_t root_uid;
837 
838 	new->cap_ambient = old->cap_ambient;
839 	if (WARN_ON(!cap_ambient_invariant_ok(old)))
840 		return -EPERM;
841 
842 	ret = get_file_caps(bprm, &effective, &has_fcap);
843 	if (ret < 0)
844 		return ret;
845 
846 	root_uid = make_kuid(new->user_ns, 0);
847 
848 	handle_privileged_root(bprm, has_fcap, &effective, root_uid);
849 
850 	/* if we have fs caps, clear dangerous personality flags */
851 	if (__cap_gained(permitted, new, old))
852 		bprm->per_clear |= PER_CLEAR_ON_SETID;
853 
854 	/* Don't let someone trace a set[ug]id/setpcap binary with the revised
855 	 * credentials unless they have the appropriate permit.
856 	 *
857 	 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
858 	 */
859 	is_setid = __is_setuid(new, old) || __is_setgid(new, old);
860 
861 	if ((is_setid || __cap_gained(permitted, new, old)) &&
862 	    ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
863 	     !ptracer_capable(current, new->user_ns))) {
864 		/* downgrade; they get no more than they had, and maybe less */
865 		if (!ns_capable(new->user_ns, CAP_SETUID) ||
866 		    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
867 			new->euid = new->uid;
868 			new->egid = new->gid;
869 		}
870 		new->cap_permitted = cap_intersect(new->cap_permitted,
871 						   old->cap_permitted);
872 	}
873 
874 	new->suid = new->fsuid = new->euid;
875 	new->sgid = new->fsgid = new->egid;
876 
877 	/* File caps or setid cancels ambient. */
878 	if (has_fcap || is_setid)
879 		cap_clear(new->cap_ambient);
880 
881 	/*
882 	 * Now that we've computed pA', update pP' to give:
883 	 *   pP' = (X & fP) | (pI & fI) | pA'
884 	 */
885 	new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
886 
887 	/*
888 	 * Set pE' = (fE ? pP' : pA').  Because pA' is zero if fE is set,
889 	 * this is the same as pE' = (fE ? pP' : 0) | pA'.
890 	 */
891 	if (effective)
892 		new->cap_effective = new->cap_permitted;
893 	else
894 		new->cap_effective = new->cap_ambient;
895 
896 	if (WARN_ON(!cap_ambient_invariant_ok(new)))
897 		return -EPERM;
898 
899 	if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
900 		ret = audit_log_bprm_fcaps(bprm, new, old);
901 		if (ret < 0)
902 			return ret;
903 	}
904 
905 	new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
906 
907 	if (WARN_ON(!cap_ambient_invariant_ok(new)))
908 		return -EPERM;
909 
910 	/* Check for privilege-elevated exec. */
911 	bprm->cap_elevated = 0;
912 	if (is_setid ||
913 	    (!__is_real(root_uid, new) &&
914 	     (effective ||
915 	      __cap_grew(permitted, ambient, new))))
916 		bprm->cap_elevated = 1;
917 
918 	return 0;
919 }
920 
921 /**
922  * cap_inode_setxattr - Determine whether an xattr may be altered
923  * @dentry: The inode/dentry being altered
924  * @name: The name of the xattr to be changed
925  * @value: The value that the xattr will be changed to
926  * @size: The size of value
927  * @flags: The replacement flag
928  *
929  * Determine whether an xattr may be altered or set on an inode, returning 0 if
930  * permission is granted, -ve if denied.
931  *
932  * This is used to make sure security xattrs don't get updated or set by those
933  * who aren't privileged to do so.
934  */
cap_inode_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)935 int cap_inode_setxattr(struct dentry *dentry, const char *name,
936 		       const void *value, size_t size, int flags)
937 {
938 	struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
939 
940 	/* Ignore non-security xattrs */
941 	if (strncmp(name, XATTR_SECURITY_PREFIX,
942 			XATTR_SECURITY_PREFIX_LEN) != 0)
943 		return 0;
944 
945 	/*
946 	 * For XATTR_NAME_CAPS the check will be done in
947 	 * cap_convert_nscap(), called by setxattr()
948 	 */
949 	if (strcmp(name, XATTR_NAME_CAPS) == 0)
950 		return 0;
951 
952 	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
953 		return -EPERM;
954 	return 0;
955 }
956 
957 /**
958  * cap_inode_removexattr - Determine whether an xattr may be removed
959  * @dentry: The inode/dentry being altered
960  * @name: The name of the xattr to be changed
961  *
962  * Determine whether an xattr may be removed from an inode, returning 0 if
963  * permission is granted, -ve if denied.
964  *
965  * This is used to make sure security xattrs don't get removed by those who
966  * aren't privileged to remove them.
967  */
cap_inode_removexattr(struct dentry * dentry,const char * name)968 int cap_inode_removexattr(struct dentry *dentry, const char *name)
969 {
970 	struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
971 
972 	/* Ignore non-security xattrs */
973 	if (strncmp(name, XATTR_SECURITY_PREFIX,
974 			XATTR_SECURITY_PREFIX_LEN) != 0)
975 		return 0;
976 
977 	if (strcmp(name, XATTR_NAME_CAPS) == 0) {
978 		/* security.capability gets namespaced */
979 		struct inode *inode = d_backing_inode(dentry);
980 		if (!inode)
981 			return -EINVAL;
982 		if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
983 			return -EPERM;
984 		return 0;
985 	}
986 
987 	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
988 		return -EPERM;
989 	return 0;
990 }
991 
992 /*
993  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
994  * a process after a call to setuid, setreuid, or setresuid.
995  *
996  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
997  *  {r,e,s}uid != 0, the permitted and effective capabilities are
998  *  cleared.
999  *
1000  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
1001  *  capabilities of the process are cleared.
1002  *
1003  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
1004  *  capabilities are set to the permitted capabilities.
1005  *
1006  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
1007  *  never happen.
1008  *
1009  *  -astor
1010  *
1011  * cevans - New behaviour, Oct '99
1012  * A process may, via prctl(), elect to keep its capabilities when it
1013  * calls setuid() and switches away from uid==0. Both permitted and
1014  * effective sets will be retained.
1015  * Without this change, it was impossible for a daemon to drop only some
1016  * of its privilege. The call to setuid(!=0) would drop all privileges!
1017  * Keeping uid 0 is not an option because uid 0 owns too many vital
1018  * files..
1019  * Thanks to Olaf Kirch and Peter Benie for spotting this.
1020  */
cap_emulate_setxuid(struct cred * new,const struct cred * old)1021 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1022 {
1023 	kuid_t root_uid = make_kuid(old->user_ns, 0);
1024 
1025 	if ((uid_eq(old->uid, root_uid) ||
1026 	     uid_eq(old->euid, root_uid) ||
1027 	     uid_eq(old->suid, root_uid)) &&
1028 	    (!uid_eq(new->uid, root_uid) &&
1029 	     !uid_eq(new->euid, root_uid) &&
1030 	     !uid_eq(new->suid, root_uid))) {
1031 		if (!issecure(SECURE_KEEP_CAPS)) {
1032 			cap_clear(new->cap_permitted);
1033 			cap_clear(new->cap_effective);
1034 		}
1035 
1036 		/*
1037 		 * Pre-ambient programs expect setresuid to nonroot followed
1038 		 * by exec to drop capabilities.  We should make sure that
1039 		 * this remains the case.
1040 		 */
1041 		cap_clear(new->cap_ambient);
1042 	}
1043 	if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1044 		cap_clear(new->cap_effective);
1045 	if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1046 		new->cap_effective = new->cap_permitted;
1047 }
1048 
1049 /**
1050  * cap_task_fix_setuid - Fix up the results of setuid() call
1051  * @new: The proposed credentials
1052  * @old: The current task's current credentials
1053  * @flags: Indications of what has changed
1054  *
1055  * Fix up the results of setuid() call before the credential changes are
1056  * actually applied, returning 0 to grant the changes, -ve to deny them.
1057  */
cap_task_fix_setuid(struct cred * new,const struct cred * old,int flags)1058 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1059 {
1060 	switch (flags) {
1061 	case LSM_SETID_RE:
1062 	case LSM_SETID_ID:
1063 	case LSM_SETID_RES:
1064 		/* juggle the capabilities to follow [RES]UID changes unless
1065 		 * otherwise suppressed */
1066 		if (!issecure(SECURE_NO_SETUID_FIXUP))
1067 			cap_emulate_setxuid(new, old);
1068 		break;
1069 
1070 	case LSM_SETID_FS:
1071 		/* juggle the capabilties to follow FSUID changes, unless
1072 		 * otherwise suppressed
1073 		 *
1074 		 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1075 		 *          if not, we might be a bit too harsh here.
1076 		 */
1077 		if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1078 			kuid_t root_uid = make_kuid(old->user_ns, 0);
1079 			if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1080 				new->cap_effective =
1081 					cap_drop_fs_set(new->cap_effective);
1082 
1083 			if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1084 				new->cap_effective =
1085 					cap_raise_fs_set(new->cap_effective,
1086 							 new->cap_permitted);
1087 		}
1088 		break;
1089 
1090 	default:
1091 		return -EINVAL;
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 /*
1098  * Rationale: code calling task_setscheduler, task_setioprio, and
1099  * task_setnice, assumes that
1100  *   . if capable(cap_sys_nice), then those actions should be allowed
1101  *   . if not capable(cap_sys_nice), but acting on your own processes,
1102  *   	then those actions should be allowed
1103  * This is insufficient now since you can call code without suid, but
1104  * yet with increased caps.
1105  * So we check for increased caps on the target process.
1106  */
cap_safe_nice(struct task_struct * p)1107 static int cap_safe_nice(struct task_struct *p)
1108 {
1109 	int is_subset, ret = 0;
1110 
1111 	rcu_read_lock();
1112 	is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1113 				 current_cred()->cap_permitted);
1114 	if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1115 		ret = -EPERM;
1116 	rcu_read_unlock();
1117 
1118 	return ret;
1119 }
1120 
1121 /**
1122  * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1123  * @p: The task to affect
1124  *
1125  * Detemine if the requested scheduler policy change is permitted for the
1126  * specified task, returning 0 if permission is granted, -ve if denied.
1127  */
cap_task_setscheduler(struct task_struct * p)1128 int cap_task_setscheduler(struct task_struct *p)
1129 {
1130 	return cap_safe_nice(p);
1131 }
1132 
1133 /**
1134  * cap_task_ioprio - Detemine if I/O priority change is permitted
1135  * @p: The task to affect
1136  * @ioprio: The I/O priority to set
1137  *
1138  * Detemine if the requested I/O priority change is permitted for the specified
1139  * task, returning 0 if permission is granted, -ve if denied.
1140  */
cap_task_setioprio(struct task_struct * p,int ioprio)1141 int cap_task_setioprio(struct task_struct *p, int ioprio)
1142 {
1143 	return cap_safe_nice(p);
1144 }
1145 
1146 /**
1147  * cap_task_ioprio - Detemine if task priority change is permitted
1148  * @p: The task to affect
1149  * @nice: The nice value to set
1150  *
1151  * Detemine if the requested task priority change is permitted for the
1152  * specified task, returning 0 if permission is granted, -ve if denied.
1153  */
cap_task_setnice(struct task_struct * p,int nice)1154 int cap_task_setnice(struct task_struct *p, int nice)
1155 {
1156 	return cap_safe_nice(p);
1157 }
1158 
1159 /*
1160  * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
1161  * the current task's bounding set.  Returns 0 on success, -ve on error.
1162  */
cap_prctl_drop(unsigned long cap)1163 static int cap_prctl_drop(unsigned long cap)
1164 {
1165 	struct cred *new;
1166 
1167 	if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1168 		return -EPERM;
1169 	if (!cap_valid(cap))
1170 		return -EINVAL;
1171 
1172 	new = prepare_creds();
1173 	if (!new)
1174 		return -ENOMEM;
1175 	cap_lower(new->cap_bset, cap);
1176 	return commit_creds(new);
1177 }
1178 
1179 /**
1180  * cap_task_prctl - Implement process control functions for this security module
1181  * @option: The process control function requested
1182  * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1183  *
1184  * Allow process control functions (sys_prctl()) to alter capabilities; may
1185  * also deny access to other functions not otherwise implemented here.
1186  *
1187  * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1188  * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
1189  * modules will consider performing the function.
1190  */
cap_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)1191 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1192 		   unsigned long arg4, unsigned long arg5)
1193 {
1194 	const struct cred *old = current_cred();
1195 	struct cred *new;
1196 
1197 	switch (option) {
1198 	case PR_CAPBSET_READ:
1199 		if (!cap_valid(arg2))
1200 			return -EINVAL;
1201 		return !!cap_raised(old->cap_bset, arg2);
1202 
1203 	case PR_CAPBSET_DROP:
1204 		return cap_prctl_drop(arg2);
1205 
1206 	/*
1207 	 * The next four prctl's remain to assist with transitioning a
1208 	 * system from legacy UID=0 based privilege (when filesystem
1209 	 * capabilities are not in use) to a system using filesystem
1210 	 * capabilities only - as the POSIX.1e draft intended.
1211 	 *
1212 	 * Note:
1213 	 *
1214 	 *  PR_SET_SECUREBITS =
1215 	 *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1216 	 *    | issecure_mask(SECURE_NOROOT)
1217 	 *    | issecure_mask(SECURE_NOROOT_LOCKED)
1218 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
1219 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1220 	 *
1221 	 * will ensure that the current process and all of its
1222 	 * children will be locked into a pure
1223 	 * capability-based-privilege environment.
1224 	 */
1225 	case PR_SET_SECUREBITS:
1226 		if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1227 		     & (old->securebits ^ arg2))			/*[1]*/
1228 		    || ((old->securebits & SECURE_ALL_LOCKS & ~arg2))	/*[2]*/
1229 		    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))	/*[3]*/
1230 		    || (cap_capable(current_cred(),
1231 				    current_cred()->user_ns,
1232 				    CAP_SETPCAP,
1233 				    CAP_OPT_NONE) != 0)			/*[4]*/
1234 			/*
1235 			 * [1] no changing of bits that are locked
1236 			 * [2] no unlocking of locks
1237 			 * [3] no setting of unsupported bits
1238 			 * [4] doing anything requires privilege (go read about
1239 			 *     the "sendmail capabilities bug")
1240 			 */
1241 		    )
1242 			/* cannot change a locked bit */
1243 			return -EPERM;
1244 
1245 		new = prepare_creds();
1246 		if (!new)
1247 			return -ENOMEM;
1248 		new->securebits = arg2;
1249 		return commit_creds(new);
1250 
1251 	case PR_GET_SECUREBITS:
1252 		return old->securebits;
1253 
1254 	case PR_GET_KEEPCAPS:
1255 		return !!issecure(SECURE_KEEP_CAPS);
1256 
1257 	case PR_SET_KEEPCAPS:
1258 		if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1259 			return -EINVAL;
1260 		if (issecure(SECURE_KEEP_CAPS_LOCKED))
1261 			return -EPERM;
1262 
1263 		new = prepare_creds();
1264 		if (!new)
1265 			return -ENOMEM;
1266 		if (arg2)
1267 			new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1268 		else
1269 			new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1270 		return commit_creds(new);
1271 
1272 	case PR_CAP_AMBIENT:
1273 		if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1274 			if (arg3 | arg4 | arg5)
1275 				return -EINVAL;
1276 
1277 			new = prepare_creds();
1278 			if (!new)
1279 				return -ENOMEM;
1280 			cap_clear(new->cap_ambient);
1281 			return commit_creds(new);
1282 		}
1283 
1284 		if (((!cap_valid(arg3)) | arg4 | arg5))
1285 			return -EINVAL;
1286 
1287 		if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1288 			return !!cap_raised(current_cred()->cap_ambient, arg3);
1289 		} else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1290 			   arg2 != PR_CAP_AMBIENT_LOWER) {
1291 			return -EINVAL;
1292 		} else {
1293 			if (arg2 == PR_CAP_AMBIENT_RAISE &&
1294 			    (!cap_raised(current_cred()->cap_permitted, arg3) ||
1295 			     !cap_raised(current_cred()->cap_inheritable,
1296 					 arg3) ||
1297 			     issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1298 				return -EPERM;
1299 
1300 			new = prepare_creds();
1301 			if (!new)
1302 				return -ENOMEM;
1303 			if (arg2 == PR_CAP_AMBIENT_RAISE)
1304 				cap_raise(new->cap_ambient, arg3);
1305 			else
1306 				cap_lower(new->cap_ambient, arg3);
1307 			return commit_creds(new);
1308 		}
1309 
1310 	default:
1311 		/* No functionality available - continue with default */
1312 		return -ENOSYS;
1313 	}
1314 }
1315 
1316 /**
1317  * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1318  * @mm: The VM space in which the new mapping is to be made
1319  * @pages: The size of the mapping
1320  *
1321  * Determine whether the allocation of a new virtual mapping by the current
1322  * task is permitted, returning 1 if permission is granted, 0 if not.
1323  */
cap_vm_enough_memory(struct mm_struct * mm,long pages)1324 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1325 {
1326 	int cap_sys_admin = 0;
1327 
1328 	if (cap_capable(current_cred(), &init_user_ns,
1329 				CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
1330 		cap_sys_admin = 1;
1331 
1332 	return cap_sys_admin;
1333 }
1334 
1335 /*
1336  * cap_mmap_addr - check if able to map given addr
1337  * @addr: address attempting to be mapped
1338  *
1339  * If the process is attempting to map memory below dac_mmap_min_addr they need
1340  * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
1341  * capability security module.  Returns 0 if this mapping should be allowed
1342  * -EPERM if not.
1343  */
cap_mmap_addr(unsigned long addr)1344 int cap_mmap_addr(unsigned long addr)
1345 {
1346 	int ret = 0;
1347 
1348 	if (addr < dac_mmap_min_addr) {
1349 		ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1350 				  CAP_OPT_NONE);
1351 		/* set PF_SUPERPRIV if it turns out we allow the low mmap */
1352 		if (ret == 0)
1353 			current->flags |= PF_SUPERPRIV;
1354 	}
1355 	return ret;
1356 }
1357 
cap_mmap_file(struct file * file,unsigned long reqprot,unsigned long prot,unsigned long flags)1358 int cap_mmap_file(struct file *file, unsigned long reqprot,
1359 		  unsigned long prot, unsigned long flags)
1360 {
1361 	return 0;
1362 }
1363 
1364 #ifdef CONFIG_SECURITY
1365 
1366 static struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
1367 	LSM_HOOK_INIT(capable, cap_capable),
1368 	LSM_HOOK_INIT(settime, cap_settime),
1369 	LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1370 	LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1371 	LSM_HOOK_INIT(capget, cap_capget),
1372 	LSM_HOOK_INIT(capset, cap_capset),
1373 	LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds),
1374 	LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1375 	LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1376 	LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1377 	LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1378 	LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1379 	LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1380 	LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1381 	LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1382 	LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1383 	LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1384 	LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1385 };
1386 
capability_init(void)1387 static int __init capability_init(void)
1388 {
1389 	security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1390 				"capability");
1391 	return 0;
1392 }
1393 
1394 DEFINE_LSM(capability) = {
1395 	.name = "capability",
1396 	.order = LSM_ORDER_FIRST,
1397 	.init = capability_init,
1398 };
1399 
1400 #endif /* CONFIG_SECURITY */
1401