1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (c) 2014-2017 Oracle. All rights reserved.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the BSD-type
10 * license below:
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 *
19 * Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials provided
22 * with the distribution.
23 *
24 * Neither the name of the Network Appliance, Inc. nor the names of
25 * its contributors may be used to endorse or promote products
26 * derived from this software without specific prior written
27 * permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*
43 * rpc_rdma.c
44 *
45 * This file contains the guts of the RPC RDMA protocol, and
46 * does marshaling/unmarshaling, etc. It is also where interfacing
47 * to the Linux RPC framework lives.
48 */
49
50 #include <linux/highmem.h>
51
52 #include <linux/sunrpc/svc_rdma.h>
53
54 #include "xprt_rdma.h"
55 #include <trace/events/rpcrdma.h>
56
57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
58 # define RPCDBG_FACILITY RPCDBG_TRANS
59 #endif
60
61 /* Returns size of largest RPC-over-RDMA header in a Call message
62 *
63 * The largest Call header contains a full-size Read list and a
64 * minimal Reply chunk.
65 */
rpcrdma_max_call_header_size(unsigned int maxsegs)66 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
67 {
68 unsigned int size;
69
70 /* Fixed header fields and list discriminators */
71 size = RPCRDMA_HDRLEN_MIN;
72
73 /* Maximum Read list size */
74 size += maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
75
76 /* Minimal Read chunk size */
77 size += sizeof(__be32); /* segment count */
78 size += rpcrdma_segment_maxsz * sizeof(__be32);
79 size += sizeof(__be32); /* list discriminator */
80
81 dprintk("RPC: %s: max call header size = %u\n",
82 __func__, size);
83 return size;
84 }
85
86 /* Returns size of largest RPC-over-RDMA header in a Reply message
87 *
88 * There is only one Write list or one Reply chunk per Reply
89 * message. The larger list is the Write list.
90 */
rpcrdma_max_reply_header_size(unsigned int maxsegs)91 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
92 {
93 unsigned int size;
94
95 /* Fixed header fields and list discriminators */
96 size = RPCRDMA_HDRLEN_MIN;
97
98 /* Maximum Write list size */
99 size += sizeof(__be32); /* segment count */
100 size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
101 size += sizeof(__be32); /* list discriminator */
102
103 dprintk("RPC: %s: max reply header size = %u\n",
104 __func__, size);
105 return size;
106 }
107
108 /**
109 * rpcrdma_set_max_header_sizes - Initialize inline payload sizes
110 * @r_xprt: transport instance to initialize
111 *
112 * The max_inline fields contain the maximum size of an RPC message
113 * so the marshaling code doesn't have to repeat this calculation
114 * for every RPC.
115 */
rpcrdma_set_max_header_sizes(struct rpcrdma_xprt * r_xprt)116 void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
117 {
118 unsigned int maxsegs = r_xprt->rx_ia.ri_max_segs;
119 struct rpcrdma_ep *ep = &r_xprt->rx_ep;
120
121 ep->rep_max_inline_send =
122 ep->rep_inline_send - rpcrdma_max_call_header_size(maxsegs);
123 ep->rep_max_inline_recv =
124 ep->rep_inline_recv - rpcrdma_max_reply_header_size(maxsegs);
125 }
126
127 /* The client can send a request inline as long as the RPCRDMA header
128 * plus the RPC call fit under the transport's inline limit. If the
129 * combined call message size exceeds that limit, the client must use
130 * a Read chunk for this operation.
131 *
132 * A Read chunk is also required if sending the RPC call inline would
133 * exceed this device's max_sge limit.
134 */
rpcrdma_args_inline(struct rpcrdma_xprt * r_xprt,struct rpc_rqst * rqst)135 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
136 struct rpc_rqst *rqst)
137 {
138 struct xdr_buf *xdr = &rqst->rq_snd_buf;
139 unsigned int count, remaining, offset;
140
141 if (xdr->len > r_xprt->rx_ep.rep_max_inline_send)
142 return false;
143
144 if (xdr->page_len) {
145 remaining = xdr->page_len;
146 offset = offset_in_page(xdr->page_base);
147 count = RPCRDMA_MIN_SEND_SGES;
148 while (remaining) {
149 remaining -= min_t(unsigned int,
150 PAGE_SIZE - offset, remaining);
151 offset = 0;
152 if (++count > r_xprt->rx_ia.ri_max_send_sges)
153 return false;
154 }
155 }
156
157 return true;
158 }
159
160 /* The client can't know how large the actual reply will be. Thus it
161 * plans for the largest possible reply for that particular ULP
162 * operation. If the maximum combined reply message size exceeds that
163 * limit, the client must provide a write list or a reply chunk for
164 * this request.
165 */
rpcrdma_results_inline(struct rpcrdma_xprt * r_xprt,struct rpc_rqst * rqst)166 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
167 struct rpc_rqst *rqst)
168 {
169 return rqst->rq_rcv_buf.buflen <= r_xprt->rx_ep.rep_max_inline_recv;
170 }
171
172 /* The client is required to provide a Reply chunk if the maximum
173 * size of the non-payload part of the RPC Reply is larger than
174 * the inline threshold.
175 */
176 static bool
rpcrdma_nonpayload_inline(const struct rpcrdma_xprt * r_xprt,const struct rpc_rqst * rqst)177 rpcrdma_nonpayload_inline(const struct rpcrdma_xprt *r_xprt,
178 const struct rpc_rqst *rqst)
179 {
180 const struct xdr_buf *buf = &rqst->rq_rcv_buf;
181
182 return (buf->head[0].iov_len + buf->tail[0].iov_len) <
183 r_xprt->rx_ep.rep_max_inline_recv;
184 }
185
186 /* ACL likes to be lazy in allocating pages. For TCP, these
187 * pages can be allocated during receive processing. Not true
188 * for RDMA, which must always provision receive buffers
189 * up front.
190 */
191 static noinline int
rpcrdma_alloc_sparse_pages(struct xdr_buf * buf)192 rpcrdma_alloc_sparse_pages(struct xdr_buf *buf)
193 {
194 struct page **ppages;
195 int len;
196
197 len = buf->page_len;
198 ppages = buf->pages + (buf->page_base >> PAGE_SHIFT);
199 while (len > 0) {
200 if (!*ppages)
201 *ppages = alloc_page(GFP_NOWAIT | __GFP_NOWARN);
202 if (!*ppages)
203 return -ENOBUFS;
204 ppages++;
205 len -= PAGE_SIZE;
206 }
207
208 return 0;
209 }
210
211 /* Split @vec on page boundaries into SGEs. FMR registers pages, not
212 * a byte range. Other modes coalesce these SGEs into a single MR
213 * when they can.
214 *
215 * Returns pointer to next available SGE, and bumps the total number
216 * of SGEs consumed.
217 */
218 static struct rpcrdma_mr_seg *
rpcrdma_convert_kvec(struct kvec * vec,struct rpcrdma_mr_seg * seg,unsigned int * n)219 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
220 unsigned int *n)
221 {
222 u32 remaining, page_offset;
223 char *base;
224
225 base = vec->iov_base;
226 page_offset = offset_in_page(base);
227 remaining = vec->iov_len;
228 while (remaining) {
229 seg->mr_page = NULL;
230 seg->mr_offset = base;
231 seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
232 remaining -= seg->mr_len;
233 base += seg->mr_len;
234 ++seg;
235 ++(*n);
236 page_offset = 0;
237 }
238 return seg;
239 }
240
241 /* Convert @xdrbuf into SGEs no larger than a page each. As they
242 * are registered, these SGEs are then coalesced into RDMA segments
243 * when the selected memreg mode supports it.
244 *
245 * Returns positive number of SGEs consumed, or a negative errno.
246 */
247
248 static int
rpcrdma_convert_iovs(struct rpcrdma_xprt * r_xprt,struct xdr_buf * xdrbuf,unsigned int pos,enum rpcrdma_chunktype type,struct rpcrdma_mr_seg * seg)249 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
250 unsigned int pos, enum rpcrdma_chunktype type,
251 struct rpcrdma_mr_seg *seg)
252 {
253 unsigned long page_base;
254 unsigned int len, n;
255 struct page **ppages;
256
257 n = 0;
258 if (pos == 0)
259 seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
260
261 len = xdrbuf->page_len;
262 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
263 page_base = offset_in_page(xdrbuf->page_base);
264 while (len) {
265 seg->mr_page = *ppages;
266 seg->mr_offset = (char *)page_base;
267 seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
268 len -= seg->mr_len;
269 ++ppages;
270 ++seg;
271 ++n;
272 page_base = 0;
273 }
274
275 /* When encoding a Read chunk, the tail iovec contains an
276 * XDR pad and may be omitted.
277 */
278 if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup)
279 goto out;
280
281 /* When encoding a Write chunk, some servers need to see an
282 * extra segment for non-XDR-aligned Write chunks. The upper
283 * layer provides space in the tail iovec that may be used
284 * for this purpose.
285 */
286 if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup)
287 goto out;
288
289 if (xdrbuf->tail[0].iov_len)
290 seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
291
292 out:
293 if (unlikely(n > RPCRDMA_MAX_SEGS))
294 return -EIO;
295 return n;
296 }
297
298 static inline int
encode_item_present(struct xdr_stream * xdr)299 encode_item_present(struct xdr_stream *xdr)
300 {
301 __be32 *p;
302
303 p = xdr_reserve_space(xdr, sizeof(*p));
304 if (unlikely(!p))
305 return -EMSGSIZE;
306
307 *p = xdr_one;
308 return 0;
309 }
310
311 static inline int
encode_item_not_present(struct xdr_stream * xdr)312 encode_item_not_present(struct xdr_stream *xdr)
313 {
314 __be32 *p;
315
316 p = xdr_reserve_space(xdr, sizeof(*p));
317 if (unlikely(!p))
318 return -EMSGSIZE;
319
320 *p = xdr_zero;
321 return 0;
322 }
323
324 static void
xdr_encode_rdma_segment(__be32 * iptr,struct rpcrdma_mr * mr)325 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr)
326 {
327 *iptr++ = cpu_to_be32(mr->mr_handle);
328 *iptr++ = cpu_to_be32(mr->mr_length);
329 xdr_encode_hyper(iptr, mr->mr_offset);
330 }
331
332 static int
encode_rdma_segment(struct xdr_stream * xdr,struct rpcrdma_mr * mr)333 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
334 {
335 __be32 *p;
336
337 p = xdr_reserve_space(xdr, 4 * sizeof(*p));
338 if (unlikely(!p))
339 return -EMSGSIZE;
340
341 xdr_encode_rdma_segment(p, mr);
342 return 0;
343 }
344
345 static int
encode_read_segment(struct xdr_stream * xdr,struct rpcrdma_mr * mr,u32 position)346 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
347 u32 position)
348 {
349 __be32 *p;
350
351 p = xdr_reserve_space(xdr, 6 * sizeof(*p));
352 if (unlikely(!p))
353 return -EMSGSIZE;
354
355 *p++ = xdr_one; /* Item present */
356 *p++ = cpu_to_be32(position);
357 xdr_encode_rdma_segment(p, mr);
358 return 0;
359 }
360
rpcrdma_mr_prepare(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct rpcrdma_mr_seg * seg,int nsegs,bool writing,struct rpcrdma_mr ** mr)361 static struct rpcrdma_mr_seg *rpcrdma_mr_prepare(struct rpcrdma_xprt *r_xprt,
362 struct rpcrdma_req *req,
363 struct rpcrdma_mr_seg *seg,
364 int nsegs, bool writing,
365 struct rpcrdma_mr **mr)
366 {
367 *mr = rpcrdma_mr_pop(&req->rl_free_mrs);
368 if (!*mr) {
369 *mr = rpcrdma_mr_get(r_xprt);
370 if (!*mr)
371 goto out_getmr_err;
372 trace_xprtrdma_mr_get(req);
373 (*mr)->mr_req = req;
374 }
375
376 rpcrdma_mr_push(*mr, &req->rl_registered);
377 return frwr_map(r_xprt, seg, nsegs, writing, req->rl_slot.rq_xid, *mr);
378
379 out_getmr_err:
380 trace_xprtrdma_nomrs(req);
381 xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
382 if (r_xprt->rx_ep.rep_connected != -ENODEV)
383 schedule_work(&r_xprt->rx_buf.rb_refresh_worker);
384 return ERR_PTR(-EAGAIN);
385 }
386
387 /* Register and XDR encode the Read list. Supports encoding a list of read
388 * segments that belong to a single read chunk.
389 *
390 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
391 *
392 * Read chunklist (a linked list):
393 * N elements, position P (same P for all chunks of same arg!):
394 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
395 *
396 * Returns zero on success, or a negative errno if a failure occurred.
397 * @xdr is advanced to the next position in the stream.
398 *
399 * Only a single @pos value is currently supported.
400 */
rpcrdma_encode_read_list(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct rpc_rqst * rqst,enum rpcrdma_chunktype rtype)401 static int rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
402 struct rpcrdma_req *req,
403 struct rpc_rqst *rqst,
404 enum rpcrdma_chunktype rtype)
405 {
406 struct xdr_stream *xdr = &req->rl_stream;
407 struct rpcrdma_mr_seg *seg;
408 struct rpcrdma_mr *mr;
409 unsigned int pos;
410 int nsegs;
411
412 if (rtype == rpcrdma_noch)
413 goto done;
414
415 pos = rqst->rq_snd_buf.head[0].iov_len;
416 if (rtype == rpcrdma_areadch)
417 pos = 0;
418 seg = req->rl_segments;
419 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
420 rtype, seg);
421 if (nsegs < 0)
422 return nsegs;
423
424 do {
425 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, false, &mr);
426 if (IS_ERR(seg))
427 return PTR_ERR(seg);
428
429 if (encode_read_segment(xdr, mr, pos) < 0)
430 return -EMSGSIZE;
431
432 trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs);
433 r_xprt->rx_stats.read_chunk_count++;
434 nsegs -= mr->mr_nents;
435 } while (nsegs);
436
437 done:
438 return encode_item_not_present(xdr);
439 }
440
441 /* Register and XDR encode the Write list. Supports encoding a list
442 * containing one array of plain segments that belong to a single
443 * write chunk.
444 *
445 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
446 *
447 * Write chunklist (a list of (one) counted array):
448 * N elements:
449 * 1 - N - HLOO - HLOO - ... - HLOO - 0
450 *
451 * Returns zero on success, or a negative errno if a failure occurred.
452 * @xdr is advanced to the next position in the stream.
453 *
454 * Only a single Write chunk is currently supported.
455 */
rpcrdma_encode_write_list(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct rpc_rqst * rqst,enum rpcrdma_chunktype wtype)456 static int rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt,
457 struct rpcrdma_req *req,
458 struct rpc_rqst *rqst,
459 enum rpcrdma_chunktype wtype)
460 {
461 struct xdr_stream *xdr = &req->rl_stream;
462 struct rpcrdma_mr_seg *seg;
463 struct rpcrdma_mr *mr;
464 int nsegs, nchunks;
465 __be32 *segcount;
466
467 if (wtype != rpcrdma_writech)
468 goto done;
469
470 seg = req->rl_segments;
471 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
472 rqst->rq_rcv_buf.head[0].iov_len,
473 wtype, seg);
474 if (nsegs < 0)
475 return nsegs;
476
477 if (encode_item_present(xdr) < 0)
478 return -EMSGSIZE;
479 segcount = xdr_reserve_space(xdr, sizeof(*segcount));
480 if (unlikely(!segcount))
481 return -EMSGSIZE;
482 /* Actual value encoded below */
483
484 nchunks = 0;
485 do {
486 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
487 if (IS_ERR(seg))
488 return PTR_ERR(seg);
489
490 if (encode_rdma_segment(xdr, mr) < 0)
491 return -EMSGSIZE;
492
493 trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs);
494 r_xprt->rx_stats.write_chunk_count++;
495 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
496 nchunks++;
497 nsegs -= mr->mr_nents;
498 } while (nsegs);
499
500 /* Update count of segments in this Write chunk */
501 *segcount = cpu_to_be32(nchunks);
502
503 done:
504 return encode_item_not_present(xdr);
505 }
506
507 /* Register and XDR encode the Reply chunk. Supports encoding an array
508 * of plain segments that belong to a single write (reply) chunk.
509 *
510 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
511 *
512 * Reply chunk (a counted array):
513 * N elements:
514 * 1 - N - HLOO - HLOO - ... - HLOO
515 *
516 * Returns zero on success, or a negative errno if a failure occurred.
517 * @xdr is advanced to the next position in the stream.
518 */
rpcrdma_encode_reply_chunk(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct rpc_rqst * rqst,enum rpcrdma_chunktype wtype)519 static int rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
520 struct rpcrdma_req *req,
521 struct rpc_rqst *rqst,
522 enum rpcrdma_chunktype wtype)
523 {
524 struct xdr_stream *xdr = &req->rl_stream;
525 struct rpcrdma_mr_seg *seg;
526 struct rpcrdma_mr *mr;
527 int nsegs, nchunks;
528 __be32 *segcount;
529
530 if (wtype != rpcrdma_replych)
531 return encode_item_not_present(xdr);
532
533 seg = req->rl_segments;
534 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
535 if (nsegs < 0)
536 return nsegs;
537
538 if (encode_item_present(xdr) < 0)
539 return -EMSGSIZE;
540 segcount = xdr_reserve_space(xdr, sizeof(*segcount));
541 if (unlikely(!segcount))
542 return -EMSGSIZE;
543 /* Actual value encoded below */
544
545 nchunks = 0;
546 do {
547 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
548 if (IS_ERR(seg))
549 return PTR_ERR(seg);
550
551 if (encode_rdma_segment(xdr, mr) < 0)
552 return -EMSGSIZE;
553
554 trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs);
555 r_xprt->rx_stats.reply_chunk_count++;
556 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
557 nchunks++;
558 nsegs -= mr->mr_nents;
559 } while (nsegs);
560
561 /* Update count of segments in the Reply chunk */
562 *segcount = cpu_to_be32(nchunks);
563
564 return 0;
565 }
566
rpcrdma_sendctx_done(struct kref * kref)567 static void rpcrdma_sendctx_done(struct kref *kref)
568 {
569 struct rpcrdma_req *req =
570 container_of(kref, struct rpcrdma_req, rl_kref);
571 struct rpcrdma_rep *rep = req->rl_reply;
572
573 rpcrdma_complete_rqst(rep);
574 rep->rr_rxprt->rx_stats.reply_waits_for_send++;
575 }
576
577 /**
578 * rpcrdma_sendctx_unmap - DMA-unmap Send buffer
579 * @sc: sendctx containing SGEs to unmap
580 *
581 */
rpcrdma_sendctx_unmap(struct rpcrdma_sendctx * sc)582 void rpcrdma_sendctx_unmap(struct rpcrdma_sendctx *sc)
583 {
584 struct ib_sge *sge;
585
586 if (!sc->sc_unmap_count)
587 return;
588
589 /* The first two SGEs contain the transport header and
590 * the inline buffer. These are always left mapped so
591 * they can be cheaply re-used.
592 */
593 for (sge = &sc->sc_sges[2]; sc->sc_unmap_count;
594 ++sge, --sc->sc_unmap_count)
595 ib_dma_unmap_page(sc->sc_device, sge->addr, sge->length,
596 DMA_TO_DEVICE);
597
598 kref_put(&sc->sc_req->rl_kref, rpcrdma_sendctx_done);
599 }
600
601 /* Prepare an SGE for the RPC-over-RDMA transport header.
602 */
rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,u32 len)603 static bool rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt *r_xprt,
604 struct rpcrdma_req *req, u32 len)
605 {
606 struct rpcrdma_sendctx *sc = req->rl_sendctx;
607 struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
608 struct ib_sge *sge = sc->sc_sges;
609
610 if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
611 goto out_regbuf;
612 sge->addr = rdmab_addr(rb);
613 sge->length = len;
614 sge->lkey = rdmab_lkey(rb);
615
616 ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
617 DMA_TO_DEVICE);
618 sc->sc_wr.num_sge++;
619 return true;
620
621 out_regbuf:
622 pr_err("rpcrdma: failed to DMA map a Send buffer\n");
623 return false;
624 }
625
626 /* Prepare the Send SGEs. The head and tail iovec, and each entry
627 * in the page list, gets its own SGE.
628 */
rpcrdma_prepare_msg_sges(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,struct xdr_buf * xdr,enum rpcrdma_chunktype rtype)629 static bool rpcrdma_prepare_msg_sges(struct rpcrdma_xprt *r_xprt,
630 struct rpcrdma_req *req,
631 struct xdr_buf *xdr,
632 enum rpcrdma_chunktype rtype)
633 {
634 struct rpcrdma_sendctx *sc = req->rl_sendctx;
635 unsigned int sge_no, page_base, len, remaining;
636 struct rpcrdma_regbuf *rb = req->rl_sendbuf;
637 struct ib_sge *sge = sc->sc_sges;
638 struct page *page, **ppages;
639
640 /* The head iovec is straightforward, as it is already
641 * DMA-mapped. Sync the content that has changed.
642 */
643 if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
644 goto out_regbuf;
645 sc->sc_device = rdmab_device(rb);
646 sge_no = 1;
647 sge[sge_no].addr = rdmab_addr(rb);
648 sge[sge_no].length = xdr->head[0].iov_len;
649 sge[sge_no].lkey = rdmab_lkey(rb);
650 ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr,
651 sge[sge_no].length, DMA_TO_DEVICE);
652
653 /* If there is a Read chunk, the page list is being handled
654 * via explicit RDMA, and thus is skipped here. However, the
655 * tail iovec may include an XDR pad for the page list, as
656 * well as additional content, and may not reside in the
657 * same page as the head iovec.
658 */
659 if (rtype == rpcrdma_readch) {
660 len = xdr->tail[0].iov_len;
661
662 /* Do not include the tail if it is only an XDR pad */
663 if (len < 4)
664 goto out;
665
666 page = virt_to_page(xdr->tail[0].iov_base);
667 page_base = offset_in_page(xdr->tail[0].iov_base);
668
669 /* If the content in the page list is an odd length,
670 * xdr_write_pages() has added a pad at the beginning
671 * of the tail iovec. Force the tail's non-pad content
672 * to land at the next XDR position in the Send message.
673 */
674 page_base += len & 3;
675 len -= len & 3;
676 goto map_tail;
677 }
678
679 /* If there is a page list present, temporarily DMA map
680 * and prepare an SGE for each page to be sent.
681 */
682 if (xdr->page_len) {
683 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
684 page_base = offset_in_page(xdr->page_base);
685 remaining = xdr->page_len;
686 while (remaining) {
687 sge_no++;
688 if (sge_no > RPCRDMA_MAX_SEND_SGES - 2)
689 goto out_mapping_overflow;
690
691 len = min_t(u32, PAGE_SIZE - page_base, remaining);
692 sge[sge_no].addr =
693 ib_dma_map_page(rdmab_device(rb), *ppages,
694 page_base, len, DMA_TO_DEVICE);
695 if (ib_dma_mapping_error(rdmab_device(rb),
696 sge[sge_no].addr))
697 goto out_mapping_err;
698 sge[sge_no].length = len;
699 sge[sge_no].lkey = rdmab_lkey(rb);
700
701 sc->sc_unmap_count++;
702 ppages++;
703 remaining -= len;
704 page_base = 0;
705 }
706 }
707
708 /* The tail iovec is not always constructed in the same
709 * page where the head iovec resides (see, for example,
710 * gss_wrap_req_priv). To neatly accommodate that case,
711 * DMA map it separately.
712 */
713 if (xdr->tail[0].iov_len) {
714 page = virt_to_page(xdr->tail[0].iov_base);
715 page_base = offset_in_page(xdr->tail[0].iov_base);
716 len = xdr->tail[0].iov_len;
717
718 map_tail:
719 sge_no++;
720 sge[sge_no].addr =
721 ib_dma_map_page(rdmab_device(rb), page, page_base, len,
722 DMA_TO_DEVICE);
723 if (ib_dma_mapping_error(rdmab_device(rb), sge[sge_no].addr))
724 goto out_mapping_err;
725 sge[sge_no].length = len;
726 sge[sge_no].lkey = rdmab_lkey(rb);
727 sc->sc_unmap_count++;
728 }
729
730 out:
731 sc->sc_wr.num_sge += sge_no;
732 if (sc->sc_unmap_count)
733 kref_get(&req->rl_kref);
734 return true;
735
736 out_regbuf:
737 pr_err("rpcrdma: failed to DMA map a Send buffer\n");
738 return false;
739
740 out_mapping_overflow:
741 rpcrdma_sendctx_unmap(sc);
742 pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no);
743 return false;
744
745 out_mapping_err:
746 rpcrdma_sendctx_unmap(sc);
747 trace_xprtrdma_dma_maperr(sge[sge_no].addr);
748 return false;
749 }
750
751 /**
752 * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
753 * @r_xprt: controlling transport
754 * @req: context of RPC Call being marshalled
755 * @hdrlen: size of transport header, in bytes
756 * @xdr: xdr_buf containing RPC Call
757 * @rtype: chunk type being encoded
758 *
759 * Returns 0 on success; otherwise a negative errno is returned.
760 */
761 int
rpcrdma_prepare_send_sges(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req,u32 hdrlen,struct xdr_buf * xdr,enum rpcrdma_chunktype rtype)762 rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
763 struct rpcrdma_req *req, u32 hdrlen,
764 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
765 {
766 int ret;
767
768 ret = -EAGAIN;
769 req->rl_sendctx = rpcrdma_sendctx_get_locked(r_xprt);
770 if (!req->rl_sendctx)
771 goto err;
772 req->rl_sendctx->sc_wr.num_sge = 0;
773 req->rl_sendctx->sc_unmap_count = 0;
774 req->rl_sendctx->sc_req = req;
775 kref_init(&req->rl_kref);
776
777 ret = -EIO;
778 if (!rpcrdma_prepare_hdr_sge(r_xprt, req, hdrlen))
779 goto err;
780 if (rtype != rpcrdma_areadch)
781 if (!rpcrdma_prepare_msg_sges(r_xprt, req, xdr, rtype))
782 goto err;
783 return 0;
784
785 err:
786 trace_xprtrdma_prepsend_failed(&req->rl_slot, ret);
787 return ret;
788 }
789
790 /**
791 * rpcrdma_marshal_req - Marshal and send one RPC request
792 * @r_xprt: controlling transport
793 * @rqst: RPC request to be marshaled
794 *
795 * For the RPC in "rqst", this function:
796 * - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
797 * - Registers Read, Write, and Reply chunks
798 * - Constructs the transport header
799 * - Posts a Send WR to send the transport header and request
800 *
801 * Returns:
802 * %0 if the RPC was sent successfully,
803 * %-ENOTCONN if the connection was lost,
804 * %-EAGAIN if the caller should call again with the same arguments,
805 * %-ENOBUFS if the caller should call again after a delay,
806 * %-EMSGSIZE if the transport header is too small,
807 * %-EIO if a permanent problem occurred while marshaling.
808 */
809 int
rpcrdma_marshal_req(struct rpcrdma_xprt * r_xprt,struct rpc_rqst * rqst)810 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
811 {
812 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
813 struct xdr_stream *xdr = &req->rl_stream;
814 enum rpcrdma_chunktype rtype, wtype;
815 bool ddp_allowed;
816 __be32 *p;
817 int ret;
818
819 if (unlikely(rqst->rq_rcv_buf.flags & XDRBUF_SPARSE_PAGES)) {
820 ret = rpcrdma_alloc_sparse_pages(&rqst->rq_rcv_buf);
821 if (ret)
822 return ret;
823 }
824
825 rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
826 xdr_init_encode(xdr, &req->rl_hdrbuf, rdmab_data(req->rl_rdmabuf),
827 rqst);
828
829 /* Fixed header fields */
830 ret = -EMSGSIZE;
831 p = xdr_reserve_space(xdr, 4 * sizeof(*p));
832 if (!p)
833 goto out_err;
834 *p++ = rqst->rq_xid;
835 *p++ = rpcrdma_version;
836 *p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
837
838 /* When the ULP employs a GSS flavor that guarantees integrity
839 * or privacy, direct data placement of individual data items
840 * is not allowed.
841 */
842 ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
843 RPCAUTH_AUTH_DATATOUCH);
844
845 /*
846 * Chunks needed for results?
847 *
848 * o If the expected result is under the inline threshold, all ops
849 * return as inline.
850 * o Large read ops return data as write chunk(s), header as
851 * inline.
852 * o Large non-read ops return as a single reply chunk.
853 */
854 if (rpcrdma_results_inline(r_xprt, rqst))
855 wtype = rpcrdma_noch;
856 else if ((ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) &&
857 rpcrdma_nonpayload_inline(r_xprt, rqst))
858 wtype = rpcrdma_writech;
859 else
860 wtype = rpcrdma_replych;
861
862 /*
863 * Chunks needed for arguments?
864 *
865 * o If the total request is under the inline threshold, all ops
866 * are sent as inline.
867 * o Large write ops transmit data as read chunk(s), header as
868 * inline.
869 * o Large non-write ops are sent with the entire message as a
870 * single read chunk (protocol 0-position special case).
871 *
872 * This assumes that the upper layer does not present a request
873 * that both has a data payload, and whose non-data arguments
874 * by themselves are larger than the inline threshold.
875 */
876 if (rpcrdma_args_inline(r_xprt, rqst)) {
877 *p++ = rdma_msg;
878 rtype = rpcrdma_noch;
879 } else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
880 *p++ = rdma_msg;
881 rtype = rpcrdma_readch;
882 } else {
883 r_xprt->rx_stats.nomsg_call_count++;
884 *p++ = rdma_nomsg;
885 rtype = rpcrdma_areadch;
886 }
887
888 /* If this is a retransmit, discard previously registered
889 * chunks. Very likely the connection has been replaced,
890 * so these registrations are invalid and unusable.
891 */
892 frwr_recycle(req);
893
894 /* This implementation supports the following combinations
895 * of chunk lists in one RPC-over-RDMA Call message:
896 *
897 * - Read list
898 * - Write list
899 * - Reply chunk
900 * - Read list + Reply chunk
901 *
902 * It might not yet support the following combinations:
903 *
904 * - Read list + Write list
905 *
906 * It does not support the following combinations:
907 *
908 * - Write list + Reply chunk
909 * - Read list + Write list + Reply chunk
910 *
911 * This implementation supports only a single chunk in each
912 * Read or Write list. Thus for example the client cannot
913 * send a Call message with a Position Zero Read chunk and a
914 * regular Read chunk at the same time.
915 */
916 ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
917 if (ret)
918 goto out_err;
919 ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
920 if (ret)
921 goto out_err;
922 ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
923 if (ret)
924 goto out_err;
925
926 ret = rpcrdma_prepare_send_sges(r_xprt, req, req->rl_hdrbuf.len,
927 &rqst->rq_snd_buf, rtype);
928 if (ret)
929 goto out_err;
930
931 trace_xprtrdma_marshal(req, rtype, wtype);
932 return 0;
933
934 out_err:
935 trace_xprtrdma_marshal_failed(rqst, ret);
936 r_xprt->rx_stats.failed_marshal_count++;
937 frwr_reset(req);
938 return ret;
939 }
940
941 /**
942 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
943 * @rqst: controlling RPC request
944 * @srcp: points to RPC message payload in receive buffer
945 * @copy_len: remaining length of receive buffer content
946 * @pad: Write chunk pad bytes needed (zero for pure inline)
947 *
948 * The upper layer has set the maximum number of bytes it can
949 * receive in each component of rq_rcv_buf. These values are set in
950 * the head.iov_len, page_len, tail.iov_len, and buflen fields.
951 *
952 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
953 * many cases this function simply updates iov_base pointers in
954 * rq_rcv_buf to point directly to the received reply data, to
955 * avoid copying reply data.
956 *
957 * Returns the count of bytes which had to be memcopied.
958 */
959 static unsigned long
rpcrdma_inline_fixup(struct rpc_rqst * rqst,char * srcp,int copy_len,int pad)960 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
961 {
962 unsigned long fixup_copy_count;
963 int i, npages, curlen;
964 char *destp;
965 struct page **ppages;
966 int page_base;
967
968 /* The head iovec is redirected to the RPC reply message
969 * in the receive buffer, to avoid a memcopy.
970 */
971 rqst->rq_rcv_buf.head[0].iov_base = srcp;
972 rqst->rq_private_buf.head[0].iov_base = srcp;
973
974 /* The contents of the receive buffer that follow
975 * head.iov_len bytes are copied into the page list.
976 */
977 curlen = rqst->rq_rcv_buf.head[0].iov_len;
978 if (curlen > copy_len)
979 curlen = copy_len;
980 trace_xprtrdma_fixup(rqst, copy_len, curlen);
981 srcp += curlen;
982 copy_len -= curlen;
983
984 ppages = rqst->rq_rcv_buf.pages +
985 (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
986 page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
987 fixup_copy_count = 0;
988 if (copy_len && rqst->rq_rcv_buf.page_len) {
989 int pagelist_len;
990
991 pagelist_len = rqst->rq_rcv_buf.page_len;
992 if (pagelist_len > copy_len)
993 pagelist_len = copy_len;
994 npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
995 for (i = 0; i < npages; i++) {
996 curlen = PAGE_SIZE - page_base;
997 if (curlen > pagelist_len)
998 curlen = pagelist_len;
999
1000 trace_xprtrdma_fixup_pg(rqst, i, srcp,
1001 copy_len, curlen);
1002 destp = kmap_atomic(ppages[i]);
1003 memcpy(destp + page_base, srcp, curlen);
1004 flush_dcache_page(ppages[i]);
1005 kunmap_atomic(destp);
1006 srcp += curlen;
1007 copy_len -= curlen;
1008 fixup_copy_count += curlen;
1009 pagelist_len -= curlen;
1010 if (!pagelist_len)
1011 break;
1012 page_base = 0;
1013 }
1014
1015 /* Implicit padding for the last segment in a Write
1016 * chunk is inserted inline at the front of the tail
1017 * iovec. The upper layer ignores the content of
1018 * the pad. Simply ensure inline content in the tail
1019 * that follows the Write chunk is properly aligned.
1020 */
1021 if (pad)
1022 srcp -= pad;
1023 }
1024
1025 /* The tail iovec is redirected to the remaining data
1026 * in the receive buffer, to avoid a memcopy.
1027 */
1028 if (copy_len || pad) {
1029 rqst->rq_rcv_buf.tail[0].iov_base = srcp;
1030 rqst->rq_private_buf.tail[0].iov_base = srcp;
1031 }
1032
1033 return fixup_copy_count;
1034 }
1035
1036 /* By convention, backchannel calls arrive via rdma_msg type
1037 * messages, and never populate the chunk lists. This makes
1038 * the RPC/RDMA header small and fixed in size, so it is
1039 * straightforward to check the RPC header's direction field.
1040 */
1041 static bool
rpcrdma_is_bcall(struct rpcrdma_xprt * r_xprt,struct rpcrdma_rep * rep)1042 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1043 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1044 {
1045 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1046 struct xdr_stream *xdr = &rep->rr_stream;
1047 __be32 *p;
1048
1049 if (rep->rr_proc != rdma_msg)
1050 return false;
1051
1052 /* Peek at stream contents without advancing. */
1053 p = xdr_inline_decode(xdr, 0);
1054
1055 /* Chunk lists */
1056 if (*p++ != xdr_zero)
1057 return false;
1058 if (*p++ != xdr_zero)
1059 return false;
1060 if (*p++ != xdr_zero)
1061 return false;
1062
1063 /* RPC header */
1064 if (*p++ != rep->rr_xid)
1065 return false;
1066 if (*p != cpu_to_be32(RPC_CALL))
1067 return false;
1068
1069 /* No bc service. */
1070 if (xprt->bc_serv == NULL)
1071 return false;
1072
1073 /* Now that we are sure this is a backchannel call,
1074 * advance to the RPC header.
1075 */
1076 p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1077 if (unlikely(!p))
1078 goto out_short;
1079
1080 rpcrdma_bc_receive_call(r_xprt, rep);
1081 return true;
1082
1083 out_short:
1084 pr_warn("RPC/RDMA short backward direction call\n");
1085 return true;
1086 }
1087 #else /* CONFIG_SUNRPC_BACKCHANNEL */
1088 {
1089 return false;
1090 }
1091 #endif /* CONFIG_SUNRPC_BACKCHANNEL */
1092
decode_rdma_segment(struct xdr_stream * xdr,u32 * length)1093 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1094 {
1095 u32 handle;
1096 u64 offset;
1097 __be32 *p;
1098
1099 p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1100 if (unlikely(!p))
1101 return -EIO;
1102
1103 handle = be32_to_cpup(p++);
1104 *length = be32_to_cpup(p++);
1105 xdr_decode_hyper(p, &offset);
1106
1107 trace_xprtrdma_decode_seg(handle, *length, offset);
1108 return 0;
1109 }
1110
decode_write_chunk(struct xdr_stream * xdr,u32 * length)1111 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1112 {
1113 u32 segcount, seglength;
1114 __be32 *p;
1115
1116 p = xdr_inline_decode(xdr, sizeof(*p));
1117 if (unlikely(!p))
1118 return -EIO;
1119
1120 *length = 0;
1121 segcount = be32_to_cpup(p);
1122 while (segcount--) {
1123 if (decode_rdma_segment(xdr, &seglength))
1124 return -EIO;
1125 *length += seglength;
1126 }
1127
1128 return 0;
1129 }
1130
1131 /* In RPC-over-RDMA Version One replies, a Read list is never
1132 * expected. This decoder is a stub that returns an error if
1133 * a Read list is present.
1134 */
decode_read_list(struct xdr_stream * xdr)1135 static int decode_read_list(struct xdr_stream *xdr)
1136 {
1137 __be32 *p;
1138
1139 p = xdr_inline_decode(xdr, sizeof(*p));
1140 if (unlikely(!p))
1141 return -EIO;
1142 if (unlikely(*p != xdr_zero))
1143 return -EIO;
1144 return 0;
1145 }
1146
1147 /* Supports only one Write chunk in the Write list
1148 */
decode_write_list(struct xdr_stream * xdr,u32 * length)1149 static int decode_write_list(struct xdr_stream *xdr, u32 *length)
1150 {
1151 u32 chunklen;
1152 bool first;
1153 __be32 *p;
1154
1155 *length = 0;
1156 first = true;
1157 do {
1158 p = xdr_inline_decode(xdr, sizeof(*p));
1159 if (unlikely(!p))
1160 return -EIO;
1161 if (*p == xdr_zero)
1162 break;
1163 if (!first)
1164 return -EIO;
1165
1166 if (decode_write_chunk(xdr, &chunklen))
1167 return -EIO;
1168 *length += chunklen;
1169 first = false;
1170 } while (true);
1171 return 0;
1172 }
1173
decode_reply_chunk(struct xdr_stream * xdr,u32 * length)1174 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1175 {
1176 __be32 *p;
1177
1178 p = xdr_inline_decode(xdr, sizeof(*p));
1179 if (unlikely(!p))
1180 return -EIO;
1181
1182 *length = 0;
1183 if (*p != xdr_zero)
1184 if (decode_write_chunk(xdr, length))
1185 return -EIO;
1186 return 0;
1187 }
1188
1189 static int
rpcrdma_decode_msg(struct rpcrdma_xprt * r_xprt,struct rpcrdma_rep * rep,struct rpc_rqst * rqst)1190 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1191 struct rpc_rqst *rqst)
1192 {
1193 struct xdr_stream *xdr = &rep->rr_stream;
1194 u32 writelist, replychunk, rpclen;
1195 char *base;
1196
1197 /* Decode the chunk lists */
1198 if (decode_read_list(xdr))
1199 return -EIO;
1200 if (decode_write_list(xdr, &writelist))
1201 return -EIO;
1202 if (decode_reply_chunk(xdr, &replychunk))
1203 return -EIO;
1204
1205 /* RDMA_MSG sanity checks */
1206 if (unlikely(replychunk))
1207 return -EIO;
1208
1209 /* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1210 base = (char *)xdr_inline_decode(xdr, 0);
1211 rpclen = xdr_stream_remaining(xdr);
1212 r_xprt->rx_stats.fixup_copy_count +=
1213 rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1214
1215 r_xprt->rx_stats.total_rdma_reply += writelist;
1216 return rpclen + xdr_align_size(writelist);
1217 }
1218
1219 static noinline int
rpcrdma_decode_nomsg(struct rpcrdma_xprt * r_xprt,struct rpcrdma_rep * rep)1220 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1221 {
1222 struct xdr_stream *xdr = &rep->rr_stream;
1223 u32 writelist, replychunk;
1224
1225 /* Decode the chunk lists */
1226 if (decode_read_list(xdr))
1227 return -EIO;
1228 if (decode_write_list(xdr, &writelist))
1229 return -EIO;
1230 if (decode_reply_chunk(xdr, &replychunk))
1231 return -EIO;
1232
1233 /* RDMA_NOMSG sanity checks */
1234 if (unlikely(writelist))
1235 return -EIO;
1236 if (unlikely(!replychunk))
1237 return -EIO;
1238
1239 /* Reply chunk buffer already is the reply vector */
1240 r_xprt->rx_stats.total_rdma_reply += replychunk;
1241 return replychunk;
1242 }
1243
1244 static noinline int
rpcrdma_decode_error(struct rpcrdma_xprt * r_xprt,struct rpcrdma_rep * rep,struct rpc_rqst * rqst)1245 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1246 struct rpc_rqst *rqst)
1247 {
1248 struct xdr_stream *xdr = &rep->rr_stream;
1249 __be32 *p;
1250
1251 p = xdr_inline_decode(xdr, sizeof(*p));
1252 if (unlikely(!p))
1253 return -EIO;
1254
1255 switch (*p) {
1256 case err_vers:
1257 p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1258 if (!p)
1259 break;
1260 dprintk("RPC: %s: server reports "
1261 "version error (%u-%u), xid %08x\n", __func__,
1262 be32_to_cpup(p), be32_to_cpu(*(p + 1)),
1263 be32_to_cpu(rep->rr_xid));
1264 break;
1265 case err_chunk:
1266 dprintk("RPC: %s: server reports "
1267 "header decoding error, xid %08x\n", __func__,
1268 be32_to_cpu(rep->rr_xid));
1269 break;
1270 default:
1271 dprintk("RPC: %s: server reports "
1272 "unrecognized error %d, xid %08x\n", __func__,
1273 be32_to_cpup(p), be32_to_cpu(rep->rr_xid));
1274 }
1275
1276 return -EIO;
1277 }
1278
1279 /* Perform XID lookup, reconstruction of the RPC reply, and
1280 * RPC completion while holding the transport lock to ensure
1281 * the rep, rqst, and rq_task pointers remain stable.
1282 */
rpcrdma_complete_rqst(struct rpcrdma_rep * rep)1283 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1284 {
1285 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1286 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1287 struct rpc_rqst *rqst = rep->rr_rqst;
1288 int status;
1289
1290 switch (rep->rr_proc) {
1291 case rdma_msg:
1292 status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1293 break;
1294 case rdma_nomsg:
1295 status = rpcrdma_decode_nomsg(r_xprt, rep);
1296 break;
1297 case rdma_error:
1298 status = rpcrdma_decode_error(r_xprt, rep, rqst);
1299 break;
1300 default:
1301 status = -EIO;
1302 }
1303 if (status < 0)
1304 goto out_badheader;
1305
1306 out:
1307 spin_lock(&xprt->queue_lock);
1308 xprt_complete_rqst(rqst->rq_task, status);
1309 xprt_unpin_rqst(rqst);
1310 spin_unlock(&xprt->queue_lock);
1311 return;
1312
1313 out_badheader:
1314 trace_xprtrdma_reply_hdr(rep);
1315 r_xprt->rx_stats.bad_reply_count++;
1316 rqst->rq_task->tk_status = status;
1317 status = 0;
1318 goto out;
1319 }
1320
rpcrdma_reply_done(struct kref * kref)1321 static void rpcrdma_reply_done(struct kref *kref)
1322 {
1323 struct rpcrdma_req *req =
1324 container_of(kref, struct rpcrdma_req, rl_kref);
1325
1326 rpcrdma_complete_rqst(req->rl_reply);
1327 }
1328
1329 /**
1330 * rpcrdma_reply_handler - Process received RPC/RDMA messages
1331 * @rep: Incoming rpcrdma_rep object to process
1332 *
1333 * Errors must result in the RPC task either being awakened, or
1334 * allowed to timeout, to discover the errors at that time.
1335 */
rpcrdma_reply_handler(struct rpcrdma_rep * rep)1336 void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1337 {
1338 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1339 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1340 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1341 struct rpcrdma_req *req;
1342 struct rpc_rqst *rqst;
1343 u32 credits;
1344 __be32 *p;
1345
1346 /* Any data means we had a useful conversation, so
1347 * then we don't need to delay the next reconnect.
1348 */
1349 if (xprt->reestablish_timeout)
1350 xprt->reestablish_timeout = 0;
1351
1352 /* Fixed transport header fields */
1353 xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1354 rep->rr_hdrbuf.head[0].iov_base, NULL);
1355 p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1356 if (unlikely(!p))
1357 goto out_shortreply;
1358 rep->rr_xid = *p++;
1359 rep->rr_vers = *p++;
1360 credits = be32_to_cpu(*p++);
1361 rep->rr_proc = *p++;
1362
1363 if (rep->rr_vers != rpcrdma_version)
1364 goto out_badversion;
1365
1366 if (rpcrdma_is_bcall(r_xprt, rep))
1367 return;
1368
1369 /* Match incoming rpcrdma_rep to an rpcrdma_req to
1370 * get context for handling any incoming chunks.
1371 */
1372 spin_lock(&xprt->queue_lock);
1373 rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1374 if (!rqst)
1375 goto out_norqst;
1376 xprt_pin_rqst(rqst);
1377 spin_unlock(&xprt->queue_lock);
1378
1379 if (credits == 0)
1380 credits = 1; /* don't deadlock */
1381 else if (credits > buf->rb_max_requests)
1382 credits = buf->rb_max_requests;
1383 if (buf->rb_credits != credits) {
1384 spin_lock(&xprt->transport_lock);
1385 buf->rb_credits = credits;
1386 xprt->cwnd = credits << RPC_CWNDSHIFT;
1387 spin_unlock(&xprt->transport_lock);
1388 }
1389 rpcrdma_post_recvs(r_xprt, false);
1390
1391 req = rpcr_to_rdmar(rqst);
1392 if (req->rl_reply) {
1393 trace_xprtrdma_leaked_rep(rqst, req->rl_reply);
1394 rpcrdma_recv_buffer_put(req->rl_reply);
1395 }
1396 req->rl_reply = rep;
1397 rep->rr_rqst = rqst;
1398
1399 trace_xprtrdma_reply(rqst->rq_task, rep, req, credits);
1400
1401 if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
1402 frwr_reminv(rep, &req->rl_registered);
1403 if (!list_empty(&req->rl_registered))
1404 frwr_unmap_async(r_xprt, req);
1405 /* LocalInv completion will complete the RPC */
1406 else
1407 kref_put(&req->rl_kref, rpcrdma_reply_done);
1408 return;
1409
1410 out_badversion:
1411 trace_xprtrdma_reply_vers(rep);
1412 goto out;
1413
1414 out_norqst:
1415 spin_unlock(&xprt->queue_lock);
1416 trace_xprtrdma_reply_rqst(rep);
1417 goto out;
1418
1419 out_shortreply:
1420 trace_xprtrdma_reply_short(rep);
1421
1422 out:
1423 rpcrdma_recv_buffer_put(rep);
1424 }
1425