• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * arch/arm/include/asm/pgtable-3level.h
4  *
5  * Copyright (C) 2011 ARM Ltd.
6  * Author: Catalin Marinas <catalin.marinas@arm.com>
7  */
8 #ifndef _ASM_PGTABLE_3LEVEL_H
9 #define _ASM_PGTABLE_3LEVEL_H
10 
11 /*
12  * With LPAE, there are 3 levels of page tables. Each level has 512 entries of
13  * 8 bytes each, occupying a 4K page. The first level table covers a range of
14  * 512GB, each entry representing 1GB. Since we are limited to 4GB input
15  * address range, only 4 entries in the PGD are used.
16  *
17  * There are enough spare bits in a page table entry for the kernel specific
18  * state.
19  */
20 #define PTRS_PER_PTE		512
21 #define PTRS_PER_PMD		512
22 #define PTRS_PER_PGD		4
23 
24 #define PTE_HWTABLE_PTRS	(0)
25 #define PTE_HWTABLE_OFF		(0)
26 #define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u64))
27 
28 #define MAX_POSSIBLE_PHYSMEM_BITS 40
29 
30 /*
31  * PGDIR_SHIFT determines the size a top-level page table entry can map.
32  */
33 #define PGDIR_SHIFT		30
34 
35 /*
36  * PMD_SHIFT determines the size a middle-level page table entry can map.
37  */
38 #define PMD_SHIFT		21
39 
40 #define PMD_SIZE		(1UL << PMD_SHIFT)
41 #define PMD_MASK		(~((1 << PMD_SHIFT) - 1))
42 #define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
43 #define PGDIR_MASK		(~((1 << PGDIR_SHIFT) - 1))
44 
45 /*
46  * section address mask and size definitions.
47  */
48 #define SECTION_SHIFT		21
49 #define SECTION_SIZE		(1UL << SECTION_SHIFT)
50 #define SECTION_MASK		(~((1 << SECTION_SHIFT) - 1))
51 
52 #define USER_PTRS_PER_PGD	(PAGE_OFFSET / PGDIR_SIZE)
53 
54 /*
55  * Hugetlb definitions.
56  */
57 #define HPAGE_SHIFT		PMD_SHIFT
58 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
59 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
60 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
61 
62 /*
63  * "Linux" PTE definitions for LPAE.
64  *
65  * These bits overlap with the hardware bits but the naming is preserved for
66  * consistency with the classic page table format.
67  */
68 #define L_PTE_VALID		(_AT(pteval_t, 1) << 0)		/* Valid */
69 #define L_PTE_PRESENT		(_AT(pteval_t, 3) << 0)		/* Present */
70 #define L_PTE_USER		(_AT(pteval_t, 1) << 6)		/* AP[1] */
71 #define L_PTE_SHARED		(_AT(pteval_t, 3) << 8)		/* SH[1:0], inner shareable */
72 #define L_PTE_YOUNG		(_AT(pteval_t, 1) << 10)	/* AF */
73 #define L_PTE_XN		(_AT(pteval_t, 1) << 54)	/* XN */
74 #define L_PTE_DIRTY		(_AT(pteval_t, 1) << 55)
75 #define L_PTE_SPECIAL		(_AT(pteval_t, 1) << 56)
76 #define L_PTE_NONE		(_AT(pteval_t, 1) << 57)	/* PROT_NONE */
77 #define L_PTE_RDONLY		(_AT(pteval_t, 1) << 58)	/* READ ONLY */
78 
79 #define L_PMD_SECT_VALID	(_AT(pmdval_t, 1) << 0)
80 #define L_PMD_SECT_DIRTY	(_AT(pmdval_t, 1) << 55)
81 #define L_PMD_SECT_NONE		(_AT(pmdval_t, 1) << 57)
82 #define L_PMD_SECT_RDONLY	(_AT(pteval_t, 1) << 58)
83 
84 /*
85  * To be used in assembly code with the upper page attributes.
86  */
87 #define L_PTE_XN_HIGH		(1 << (54 - 32))
88 #define L_PTE_DIRTY_HIGH	(1 << (55 - 32))
89 
90 /*
91  * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
92  */
93 #define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0) << 2)	/* strongly ordered */
94 #define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
95 #define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 2) << 2)	/* normal inner write-through */
96 #define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
97 #define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 7) << 2)	/* normal inner write-alloc */
98 #define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 4) << 2)	/* device */
99 #define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 4) << 2)	/* device */
100 #define L_PTE_MT_DEV_WC		(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
101 #define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
102 #define L_PTE_MT_MASK		(_AT(pteval_t, 7) << 2)
103 
104 /*
105  * Software PGD flags.
106  */
107 #define L_PGD_SWAPPER		(_AT(pgdval_t, 1) << 55)	/* swapper_pg_dir entry */
108 
109 /*
110  * 2nd stage PTE definitions for LPAE.
111  */
112 #define L_PTE_S2_MT_UNCACHED		(_AT(pteval_t, 0x0) << 2) /* strongly ordered */
113 #define L_PTE_S2_MT_WRITETHROUGH	(_AT(pteval_t, 0xa) << 2) /* normal inner write-through */
114 #define L_PTE_S2_MT_WRITEBACK		(_AT(pteval_t, 0xf) << 2) /* normal inner write-back */
115 #define L_PTE_S2_MT_DEV_SHARED		(_AT(pteval_t, 0x1) << 2) /* device */
116 #define L_PTE_S2_MT_MASK		(_AT(pteval_t, 0xf) << 2)
117 
118 #define L_PTE_S2_RDONLY			(_AT(pteval_t, 1) << 6)   /* HAP[1]   */
119 #define L_PTE_S2_RDWR			(_AT(pteval_t, 3) << 6)   /* HAP[2:1] */
120 
121 #define L_PMD_S2_RDONLY			(_AT(pmdval_t, 1) << 6)   /* HAP[1]   */
122 #define L_PMD_S2_RDWR			(_AT(pmdval_t, 3) << 6)   /* HAP[2:1] */
123 
124 /*
125  * Hyp-mode PL2 PTE definitions for LPAE.
126  */
127 #define L_PTE_HYP		L_PTE_USER
128 
129 #ifndef __ASSEMBLY__
130 
131 #define pud_none(pud)		(!pud_val(pud))
132 #define pud_bad(pud)		(!(pud_val(pud) & 2))
133 #define pud_present(pud)	(pud_val(pud))
134 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
135 						 PMD_TYPE_TABLE)
136 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
137 						 PMD_TYPE_SECT)
138 #define pmd_large(pmd)		pmd_sect(pmd)
139 
140 #define pud_clear(pudp)			\
141 	do {				\
142 		*pudp = __pud(0);	\
143 		clean_pmd_entry(pudp);	\
144 	} while (0)
145 
146 #define set_pud(pudp, pud)		\
147 	do {				\
148 		*pudp = pud;		\
149 		flush_pmd_entry(pudp);	\
150 	} while (0)
151 
pud_page_vaddr(pud_t pud)152 static inline pmd_t *pud_page_vaddr(pud_t pud)
153 {
154 	return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
155 }
156 
157 /* Find an entry in the second-level page table.. */
158 #define pmd_index(addr)		(((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
pmd_offset(pud_t * pud,unsigned long addr)159 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
160 {
161 	return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(addr);
162 }
163 
164 #define pmd_bad(pmd)		(!(pmd_val(pmd) & 2))
165 
166 #define copy_pmd(pmdpd,pmdps)		\
167 	do {				\
168 		*pmdpd = *pmdps;	\
169 		flush_pmd_entry(pmdpd);	\
170 	} while (0)
171 
172 #define pmd_clear(pmdp)			\
173 	do {				\
174 		*pmdp = __pmd(0);	\
175 		clean_pmd_entry(pmdp);	\
176 	} while (0)
177 
178 /*
179  * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes
180  * that are written to a page table but not for ptes created with mk_pte.
181  *
182  * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to
183  * hugetlb_cow, where it is compared with an entry in a page table.
184  * This comparison test fails erroneously leading ultimately to a memory leak.
185  *
186  * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is
187  * present before running the comparison.
188  */
189 #define __HAVE_ARCH_PTE_SAME
190 #define pte_same(pte_a,pte_b)	((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG	\
191 					: pte_val(pte_a))				\
192 				== (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG	\
193 					: pte_val(pte_b)))
194 
195 #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext)))
196 
197 #define pte_huge(pte)		(pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT))
198 #define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
199 
200 #define pmd_isset(pmd, val)	((u32)(val) == (val) ? pmd_val(pmd) & (val) \
201 						: !!(pmd_val(pmd) & (val)))
202 #define pmd_isclear(pmd, val)	(!(pmd_val(pmd) & (val)))
203 
204 #define pmd_present(pmd)	(pmd_isset((pmd), L_PMD_SECT_VALID))
205 #define pmd_young(pmd)		(pmd_isset((pmd), PMD_SECT_AF))
206 #define pte_special(pte)	(pte_isset((pte), L_PTE_SPECIAL))
pte_mkspecial(pte_t pte)207 static inline pte_t pte_mkspecial(pte_t pte)
208 {
209 	pte_val(pte) |= L_PTE_SPECIAL;
210 	return pte;
211 }
212 
213 #define pmd_write(pmd)		(pmd_isclear((pmd), L_PMD_SECT_RDONLY))
214 #define pmd_dirty(pmd)		(pmd_isset((pmd), L_PMD_SECT_DIRTY))
215 #define pud_page(pud)		pmd_page(__pmd(pud_val(pud)))
216 #define pud_write(pud)		pmd_write(__pmd(pud_val(pud)))
217 
218 #define pmd_hugewillfault(pmd)	(!pmd_young(pmd) || !pmd_write(pmd))
219 #define pmd_thp_or_huge(pmd)	(pmd_huge(pmd) || pmd_trans_huge(pmd))
220 
221 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
222 #define pmd_trans_huge(pmd)	(pmd_val(pmd) && !pmd_table(pmd))
223 #endif
224 
225 #define PMD_BIT_FUNC(fn,op) \
226 static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; }
227 
228 PMD_BIT_FUNC(wrprotect,	|= L_PMD_SECT_RDONLY);
229 PMD_BIT_FUNC(mkold,	&= ~PMD_SECT_AF);
230 PMD_BIT_FUNC(mkwrite,   &= ~L_PMD_SECT_RDONLY);
231 PMD_BIT_FUNC(mkdirty,   |= L_PMD_SECT_DIRTY);
232 PMD_BIT_FUNC(mkclean,   &= ~L_PMD_SECT_DIRTY);
233 PMD_BIT_FUNC(mkyoung,   |= PMD_SECT_AF);
234 
235 #define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
236 
237 #define pmd_pfn(pmd)		(((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
238 #define pfn_pmd(pfn,prot)	(__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
239 #define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
240 
241 /* No hardware dirty/accessed bits -- generic_pmdp_establish() fits */
242 #define pmdp_establish generic_pmdp_establish
243 
244 /* represent a notpresent pmd by faulting entry, this is used by pmdp_invalidate */
pmd_mknotpresent(pmd_t pmd)245 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
246 {
247 	return __pmd(pmd_val(pmd) & ~L_PMD_SECT_VALID);
248 }
249 
pmd_modify(pmd_t pmd,pgprot_t newprot)250 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
251 {
252 	const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | L_PMD_SECT_RDONLY |
253 				L_PMD_SECT_VALID | L_PMD_SECT_NONE;
254 	pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask);
255 	return pmd;
256 }
257 
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)258 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
259 			      pmd_t *pmdp, pmd_t pmd)
260 {
261 	BUG_ON(addr >= TASK_SIZE);
262 
263 	/* create a faulting entry if PROT_NONE protected */
264 	if (pmd_val(pmd) & L_PMD_SECT_NONE)
265 		pmd_val(pmd) &= ~L_PMD_SECT_VALID;
266 
267 	if (pmd_write(pmd) && pmd_dirty(pmd))
268 		pmd_val(pmd) &= ~PMD_SECT_AP2;
269 	else
270 		pmd_val(pmd) |= PMD_SECT_AP2;
271 
272 	*pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG);
273 	flush_pmd_entry(pmdp);
274 }
275 
276 #endif /* __ASSEMBLY__ */
277 
278 #endif /* _ASM_PGTABLE_3LEVEL_H */
279