1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/bug.h>
21 #include <asm/page.h>
22
23 extern pgd_t swapper_pg_dir[];
24 extern void paging_init(void);
25
26 enum {
27 PG_DIRECT_MAP_4K = 0,
28 PG_DIRECT_MAP_1M,
29 PG_DIRECT_MAP_2G,
30 PG_DIRECT_MAP_MAX
31 };
32
33 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
34
update_page_count(int level,long count)35 static inline void update_page_count(int level, long count)
36 {
37 if (IS_ENABLED(CONFIG_PROC_FS))
38 atomic_long_add(count, &direct_pages_count[level]);
39 }
40
41 struct seq_file;
42 void arch_report_meminfo(struct seq_file *m);
43
44 /*
45 * The S390 doesn't have any external MMU info: the kernel page
46 * tables contain all the necessary information.
47 */
48 #define update_mmu_cache(vma, address, ptep) do { } while (0)
49 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
50
51 /*
52 * ZERO_PAGE is a global shared page that is always zero; used
53 * for zero-mapped memory areas etc..
54 */
55
56 extern unsigned long empty_zero_page;
57 extern unsigned long zero_page_mask;
58
59 #define ZERO_PAGE(vaddr) \
60 (virt_to_page((void *)(empty_zero_page + \
61 (((unsigned long)(vaddr)) &zero_page_mask))))
62 #define __HAVE_COLOR_ZERO_PAGE
63
64 /* TODO: s390 cannot support io_remap_pfn_range... */
65
66 #define FIRST_USER_ADDRESS 0UL
67
68 #define pte_ERROR(e) \
69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
70 #define pmd_ERROR(e) \
71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
72 #define pud_ERROR(e) \
73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
74 #define p4d_ERROR(e) \
75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
76 #define pgd_ERROR(e) \
77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
78
79 /*
80 * The vmalloc and module area will always be on the topmost area of the
81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
83 * modules will reside. That makes sure that inter module branches always
84 * happen without trampolines and in addition the placement within a 2GB frame
85 * is branch prediction unit friendly.
86 */
87 extern unsigned long VMALLOC_START;
88 extern unsigned long VMALLOC_END;
89 #define VMALLOC_DEFAULT_SIZE ((128UL << 30) - MODULES_LEN)
90 extern struct page *vmemmap;
91
92 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
93
94 extern unsigned long MODULES_VADDR;
95 extern unsigned long MODULES_END;
96 #define MODULES_VADDR MODULES_VADDR
97 #define MODULES_END MODULES_END
98 #define MODULES_LEN (1UL << 31)
99
is_module_addr(void * addr)100 static inline int is_module_addr(void *addr)
101 {
102 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 if (addr < (void *)MODULES_VADDR)
104 return 0;
105 if (addr > (void *)MODULES_END)
106 return 0;
107 return 1;
108 }
109
110 /*
111 * A 64 bit pagetable entry of S390 has following format:
112 * | PFRA |0IPC| OS |
113 * 0000000000111111111122222222223333333333444444444455555555556666
114 * 0123456789012345678901234567890123456789012345678901234567890123
115 *
116 * I Page-Invalid Bit: Page is not available for address-translation
117 * P Page-Protection Bit: Store access not possible for page
118 * C Change-bit override: HW is not required to set change bit
119 *
120 * A 64 bit segmenttable entry of S390 has following format:
121 * | P-table origin | TT
122 * 0000000000111111111122222222223333333333444444444455555555556666
123 * 0123456789012345678901234567890123456789012345678901234567890123
124 *
125 * I Segment-Invalid Bit: Segment is not available for address-translation
126 * C Common-Segment Bit: Segment is not private (PoP 3-30)
127 * P Page-Protection Bit: Store access not possible for page
128 * TT Type 00
129 *
130 * A 64 bit region table entry of S390 has following format:
131 * | S-table origin | TF TTTL
132 * 0000000000111111111122222222223333333333444444444455555555556666
133 * 0123456789012345678901234567890123456789012345678901234567890123
134 *
135 * I Segment-Invalid Bit: Segment is not available for address-translation
136 * TT Type 01
137 * TF
138 * TL Table length
139 *
140 * The 64 bit regiontable origin of S390 has following format:
141 * | region table origon | DTTL
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
144 *
145 * X Space-Switch event:
146 * G Segment-Invalid Bit:
147 * P Private-Space Bit:
148 * S Storage-Alteration:
149 * R Real space
150 * TL Table-Length:
151 *
152 * A storage key has the following format:
153 * | ACC |F|R|C|0|
154 * 0 3 4 5 6 7
155 * ACC: access key
156 * F : fetch protection bit
157 * R : referenced bit
158 * C : changed bit
159 */
160
161 /* Hardware bits in the page table entry */
162 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
163 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
164 #define _PAGE_INVALID 0x400 /* HW invalid bit */
165 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
166
167 /* Software bits in the page table entry */
168 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
169 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
170 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
171 #define _PAGE_READ 0x010 /* SW pte read bit */
172 #define _PAGE_WRITE 0x020 /* SW pte write bit */
173 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
174 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
175
176 #ifdef CONFIG_MEM_SOFT_DIRTY
177 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
178 #else
179 #define _PAGE_SOFT_DIRTY 0x000
180 #endif
181
182 /* Set of bits not changed in pte_modify */
183 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
184 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
185
186 /*
187 * handle_pte_fault uses pte_present and pte_none to find out the pte type
188 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
189 * distinguish present from not-present ptes. It is changed only with the page
190 * table lock held.
191 *
192 * The following table gives the different possible bit combinations for
193 * the pte hardware and software bits in the last 12 bits of a pte
194 * (. unassigned bit, x don't care, t swap type):
195 *
196 * 842100000000
197 * 000084210000
198 * 000000008421
199 * .IR.uswrdy.p
200 * empty .10.00000000
201 * swap .11..ttttt.0
202 * prot-none, clean, old .11.xx0000.1
203 * prot-none, clean, young .11.xx0001.1
204 * prot-none, dirty, old .11.xx0010.1
205 * prot-none, dirty, young .11.xx0011.1
206 * read-only, clean, old .11.xx0100.1
207 * read-only, clean, young .01.xx0101.1
208 * read-only, dirty, old .11.xx0110.1
209 * read-only, dirty, young .01.xx0111.1
210 * read-write, clean, old .11.xx1100.1
211 * read-write, clean, young .01.xx1101.1
212 * read-write, dirty, old .10.xx1110.1
213 * read-write, dirty, young .00.xx1111.1
214 * HW-bits: R read-only, I invalid
215 * SW-bits: p present, y young, d dirty, r read, w write, s special,
216 * u unused, l large
217 *
218 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
219 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
220 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
221 */
222
223 /* Bits in the segment/region table address-space-control-element */
224 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
225 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
226 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
227 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
228 #define _ASCE_REAL_SPACE 0x20 /* real space control */
229 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
230 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
231 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
232 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
233 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
234 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
235
236 /* Bits in the region table entry */
237 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
238 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
239 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
240 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
241 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
242 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
243 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
244 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
245 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
246 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
247
248 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
249 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
250 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
251 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
252 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
253 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
254
255 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
256 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
257 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
258 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
259 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
260 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
261
262 #ifdef CONFIG_MEM_SOFT_DIRTY
263 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
264 #else
265 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
266 #endif
267
268 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
269 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
270
271 /* Bits in the segment table entry */
272 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
273 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
274 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
275 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
276 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
277 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
278 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
279 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
280 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
281 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
282
283 #define _SEGMENT_ENTRY (0)
284 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
285
286 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
287 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
288 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
289 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
290 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
291
292 #ifdef CONFIG_MEM_SOFT_DIRTY
293 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
294 #else
295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
296 #endif
297
298 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
299 #define _PAGE_ENTRIES 256 /* number of page table entries */
300
301 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
302 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
303
304 #define _REGION1_SHIFT 53
305 #define _REGION2_SHIFT 42
306 #define _REGION3_SHIFT 31
307 #define _SEGMENT_SHIFT 20
308
309 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
310 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
311 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
312 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
313 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
314
315 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
316 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
317 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
318 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
319
320 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
321 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
322 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
323 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
324
325 #define PMD_SHIFT _SEGMENT_SHIFT
326 #define PUD_SHIFT _REGION3_SHIFT
327 #define P4D_SHIFT _REGION2_SHIFT
328 #define PGDIR_SHIFT _REGION1_SHIFT
329
330 #define PMD_SIZE _SEGMENT_SIZE
331 #define PUD_SIZE _REGION3_SIZE
332 #define P4D_SIZE _REGION2_SIZE
333 #define PGDIR_SIZE _REGION1_SIZE
334
335 #define PMD_MASK _SEGMENT_MASK
336 #define PUD_MASK _REGION3_MASK
337 #define P4D_MASK _REGION2_MASK
338 #define PGDIR_MASK _REGION1_MASK
339
340 #define PTRS_PER_PTE _PAGE_ENTRIES
341 #define PTRS_PER_PMD _CRST_ENTRIES
342 #define PTRS_PER_PUD _CRST_ENTRIES
343 #define PTRS_PER_P4D _CRST_ENTRIES
344 #define PTRS_PER_PGD _CRST_ENTRIES
345
346 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
347
348 /*
349 * Segment table and region3 table entry encoding
350 * (R = read-only, I = invalid, y = young bit):
351 * dy..R...I...wr
352 * prot-none, clean, old 00..1...1...00
353 * prot-none, clean, young 01..1...1...00
354 * prot-none, dirty, old 10..1...1...00
355 * prot-none, dirty, young 11..1...1...00
356 * read-only, clean, old 00..1...1...01
357 * read-only, clean, young 01..1...0...01
358 * read-only, dirty, old 10..1...1...01
359 * read-only, dirty, young 11..1...0...01
360 * read-write, clean, old 00..1...1...11
361 * read-write, clean, young 01..1...0...11
362 * read-write, dirty, old 10..0...1...11
363 * read-write, dirty, young 11..0...0...11
364 * The segment table origin is used to distinguish empty (origin==0) from
365 * read-write, old segment table entries (origin!=0)
366 * HW-bits: R read-only, I invalid
367 * SW-bits: y young, d dirty, r read, w write
368 */
369
370 /* Page status table bits for virtualization */
371 #define PGSTE_ACC_BITS 0xf000000000000000UL
372 #define PGSTE_FP_BIT 0x0800000000000000UL
373 #define PGSTE_PCL_BIT 0x0080000000000000UL
374 #define PGSTE_HR_BIT 0x0040000000000000UL
375 #define PGSTE_HC_BIT 0x0020000000000000UL
376 #define PGSTE_GR_BIT 0x0004000000000000UL
377 #define PGSTE_GC_BIT 0x0002000000000000UL
378 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
379 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
380 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
381
382 /* Guest Page State used for virtualization */
383 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
384 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
385 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
386 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
387 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
388 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
389 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
390
391 /*
392 * A user page table pointer has the space-switch-event bit, the
393 * private-space-control bit and the storage-alteration-event-control
394 * bit set. A kernel page table pointer doesn't need them.
395 */
396 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
397 _ASCE_ALT_EVENT)
398
399 /*
400 * Page protection definitions.
401 */
402 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
406 _PAGE_INVALID | _PAGE_PROTECT)
407 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
409 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410 _PAGE_INVALID | _PAGE_PROTECT)
411
412 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
416 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
417 _PAGE_PROTECT | _PAGE_NOEXEC)
418 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419 _PAGE_YOUNG | _PAGE_DIRTY)
420
421 /*
422 * On s390 the page table entry has an invalid bit and a read-only bit.
423 * Read permission implies execute permission and write permission
424 * implies read permission.
425 */
426 /*xwr*/
427 #define __P000 PAGE_NONE
428 #define __P001 PAGE_RO
429 #define __P010 PAGE_RO
430 #define __P011 PAGE_RO
431 #define __P100 PAGE_RX
432 #define __P101 PAGE_RX
433 #define __P110 PAGE_RX
434 #define __P111 PAGE_RX
435
436 #define __S000 PAGE_NONE
437 #define __S001 PAGE_RO
438 #define __S010 PAGE_RW
439 #define __S011 PAGE_RW
440 #define __S100 PAGE_RX
441 #define __S101 PAGE_RX
442 #define __S110 PAGE_RWX
443 #define __S111 PAGE_RWX
444
445 /*
446 * Segment entry (large page) protection definitions.
447 */
448 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
449 _SEGMENT_ENTRY_PROTECT)
450 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
451 _SEGMENT_ENTRY_READ | \
452 _SEGMENT_ENTRY_NOEXEC)
453 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
454 _SEGMENT_ENTRY_READ)
455 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
456 _SEGMENT_ENTRY_WRITE | \
457 _SEGMENT_ENTRY_NOEXEC)
458 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
459 _SEGMENT_ENTRY_WRITE)
460 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
461 _SEGMENT_ENTRY_LARGE | \
462 _SEGMENT_ENTRY_READ | \
463 _SEGMENT_ENTRY_WRITE | \
464 _SEGMENT_ENTRY_YOUNG | \
465 _SEGMENT_ENTRY_DIRTY | \
466 _SEGMENT_ENTRY_NOEXEC)
467 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
468 _SEGMENT_ENTRY_LARGE | \
469 _SEGMENT_ENTRY_READ | \
470 _SEGMENT_ENTRY_YOUNG | \
471 _SEGMENT_ENTRY_PROTECT | \
472 _SEGMENT_ENTRY_NOEXEC)
473 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
474 _SEGMENT_ENTRY_LARGE | \
475 _SEGMENT_ENTRY_READ | \
476 _SEGMENT_ENTRY_WRITE | \
477 _SEGMENT_ENTRY_YOUNG | \
478 _SEGMENT_ENTRY_DIRTY)
479
480 /*
481 * Region3 entry (large page) protection definitions.
482 */
483
484 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
485 _REGION3_ENTRY_LARGE | \
486 _REGION3_ENTRY_READ | \
487 _REGION3_ENTRY_WRITE | \
488 _REGION3_ENTRY_YOUNG | \
489 _REGION3_ENTRY_DIRTY | \
490 _REGION_ENTRY_NOEXEC)
491 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
492 _REGION3_ENTRY_LARGE | \
493 _REGION3_ENTRY_READ | \
494 _REGION3_ENTRY_YOUNG | \
495 _REGION_ENTRY_PROTECT | \
496 _REGION_ENTRY_NOEXEC)
497
mm_p4d_folded(struct mm_struct * mm)498 static inline bool mm_p4d_folded(struct mm_struct *mm)
499 {
500 return mm->context.asce_limit <= _REGION1_SIZE;
501 }
502 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
503
mm_pud_folded(struct mm_struct * mm)504 static inline bool mm_pud_folded(struct mm_struct *mm)
505 {
506 return mm->context.asce_limit <= _REGION2_SIZE;
507 }
508 #define mm_pud_folded(mm) mm_pud_folded(mm)
509
mm_pmd_folded(struct mm_struct * mm)510 static inline bool mm_pmd_folded(struct mm_struct *mm)
511 {
512 return mm->context.asce_limit <= _REGION3_SIZE;
513 }
514 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
515
mm_has_pgste(struct mm_struct * mm)516 static inline int mm_has_pgste(struct mm_struct *mm)
517 {
518 #ifdef CONFIG_PGSTE
519 if (unlikely(mm->context.has_pgste))
520 return 1;
521 #endif
522 return 0;
523 }
524
mm_alloc_pgste(struct mm_struct * mm)525 static inline int mm_alloc_pgste(struct mm_struct *mm)
526 {
527 #ifdef CONFIG_PGSTE
528 if (unlikely(mm->context.alloc_pgste))
529 return 1;
530 #endif
531 return 0;
532 }
533
534 /*
535 * In the case that a guest uses storage keys
536 * faults should no longer be backed by zero pages
537 */
538 #define mm_forbids_zeropage mm_has_pgste
mm_uses_skeys(struct mm_struct * mm)539 static inline int mm_uses_skeys(struct mm_struct *mm)
540 {
541 #ifdef CONFIG_PGSTE
542 if (mm->context.uses_skeys)
543 return 1;
544 #endif
545 return 0;
546 }
547
csp(unsigned int * ptr,unsigned int old,unsigned int new)548 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
549 {
550 register unsigned long reg2 asm("2") = old;
551 register unsigned long reg3 asm("3") = new;
552 unsigned long address = (unsigned long)ptr | 1;
553
554 asm volatile(
555 " csp %0,%3"
556 : "+d" (reg2), "+m" (*ptr)
557 : "d" (reg3), "d" (address)
558 : "cc");
559 }
560
cspg(unsigned long * ptr,unsigned long old,unsigned long new)561 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
562 {
563 register unsigned long reg2 asm("2") = old;
564 register unsigned long reg3 asm("3") = new;
565 unsigned long address = (unsigned long)ptr | 1;
566
567 asm volatile(
568 " .insn rre,0xb98a0000,%0,%3"
569 : "+d" (reg2), "+m" (*ptr)
570 : "d" (reg3), "d" (address)
571 : "cc");
572 }
573
574 #define CRDTE_DTT_PAGE 0x00UL
575 #define CRDTE_DTT_SEGMENT 0x10UL
576 #define CRDTE_DTT_REGION3 0x14UL
577 #define CRDTE_DTT_REGION2 0x18UL
578 #define CRDTE_DTT_REGION1 0x1cUL
579
crdte(unsigned long old,unsigned long new,unsigned long table,unsigned long dtt,unsigned long address,unsigned long asce)580 static inline void crdte(unsigned long old, unsigned long new,
581 unsigned long table, unsigned long dtt,
582 unsigned long address, unsigned long asce)
583 {
584 register unsigned long reg2 asm("2") = old;
585 register unsigned long reg3 asm("3") = new;
586 register unsigned long reg4 asm("4") = table | dtt;
587 register unsigned long reg5 asm("5") = address;
588
589 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
590 : "+d" (reg2)
591 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
592 : "memory", "cc");
593 }
594
595 /*
596 * pgd/p4d/pud/pmd/pte query functions
597 */
pgd_folded(pgd_t pgd)598 static inline int pgd_folded(pgd_t pgd)
599 {
600 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
601 }
602
pgd_present(pgd_t pgd)603 static inline int pgd_present(pgd_t pgd)
604 {
605 if (pgd_folded(pgd))
606 return 1;
607 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
608 }
609
pgd_none(pgd_t pgd)610 static inline int pgd_none(pgd_t pgd)
611 {
612 if (pgd_folded(pgd))
613 return 0;
614 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
615 }
616
pgd_bad(pgd_t pgd)617 static inline int pgd_bad(pgd_t pgd)
618 {
619 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
620 return 0;
621 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
622 }
623
pgd_pfn(pgd_t pgd)624 static inline unsigned long pgd_pfn(pgd_t pgd)
625 {
626 unsigned long origin_mask;
627
628 origin_mask = _REGION_ENTRY_ORIGIN;
629 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
630 }
631
p4d_folded(p4d_t p4d)632 static inline int p4d_folded(p4d_t p4d)
633 {
634 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
635 }
636
p4d_present(p4d_t p4d)637 static inline int p4d_present(p4d_t p4d)
638 {
639 if (p4d_folded(p4d))
640 return 1;
641 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
642 }
643
p4d_none(p4d_t p4d)644 static inline int p4d_none(p4d_t p4d)
645 {
646 if (p4d_folded(p4d))
647 return 0;
648 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
649 }
650
p4d_pfn(p4d_t p4d)651 static inline unsigned long p4d_pfn(p4d_t p4d)
652 {
653 unsigned long origin_mask;
654
655 origin_mask = _REGION_ENTRY_ORIGIN;
656 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
657 }
658
pud_folded(pud_t pud)659 static inline int pud_folded(pud_t pud)
660 {
661 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
662 }
663
pud_present(pud_t pud)664 static inline int pud_present(pud_t pud)
665 {
666 if (pud_folded(pud))
667 return 1;
668 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
669 }
670
pud_none(pud_t pud)671 static inline int pud_none(pud_t pud)
672 {
673 if (pud_folded(pud))
674 return 0;
675 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
676 }
677
pud_large(pud_t pud)678 static inline int pud_large(pud_t pud)
679 {
680 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
681 return 0;
682 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
683 }
684
pud_pfn(pud_t pud)685 static inline unsigned long pud_pfn(pud_t pud)
686 {
687 unsigned long origin_mask;
688
689 origin_mask = _REGION_ENTRY_ORIGIN;
690 if (pud_large(pud))
691 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
692 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
693 }
694
pmd_large(pmd_t pmd)695 static inline int pmd_large(pmd_t pmd)
696 {
697 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
698 }
699
pmd_bad(pmd_t pmd)700 static inline int pmd_bad(pmd_t pmd)
701 {
702 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0)
703 return 1;
704 if (pmd_large(pmd))
705 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
706 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
707 }
708
pud_bad(pud_t pud)709 static inline int pud_bad(pud_t pud)
710 {
711 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
712
713 if (type > _REGION_ENTRY_TYPE_R3)
714 return 1;
715 if (type < _REGION_ENTRY_TYPE_R3)
716 return 0;
717 if (pud_large(pud))
718 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
719 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
720 }
721
p4d_bad(p4d_t p4d)722 static inline int p4d_bad(p4d_t p4d)
723 {
724 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
725
726 if (type > _REGION_ENTRY_TYPE_R2)
727 return 1;
728 if (type < _REGION_ENTRY_TYPE_R2)
729 return 0;
730 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
731 }
732
pmd_present(pmd_t pmd)733 static inline int pmd_present(pmd_t pmd)
734 {
735 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
736 }
737
pmd_none(pmd_t pmd)738 static inline int pmd_none(pmd_t pmd)
739 {
740 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
741 }
742
pmd_pfn(pmd_t pmd)743 static inline unsigned long pmd_pfn(pmd_t pmd)
744 {
745 unsigned long origin_mask;
746
747 origin_mask = _SEGMENT_ENTRY_ORIGIN;
748 if (pmd_large(pmd))
749 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
750 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
751 }
752
753 #define pmd_write pmd_write
pmd_write(pmd_t pmd)754 static inline int pmd_write(pmd_t pmd)
755 {
756 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
757 }
758
759 #define pud_write pud_write
pud_write(pud_t pud)760 static inline int pud_write(pud_t pud)
761 {
762 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
763 }
764
pmd_dirty(pmd_t pmd)765 static inline int pmd_dirty(pmd_t pmd)
766 {
767 int dirty = 1;
768 if (pmd_large(pmd))
769 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
770 return dirty;
771 }
772
pmd_young(pmd_t pmd)773 static inline int pmd_young(pmd_t pmd)
774 {
775 int young = 1;
776 if (pmd_large(pmd))
777 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
778 return young;
779 }
780
pte_present(pte_t pte)781 static inline int pte_present(pte_t pte)
782 {
783 /* Bit pattern: (pte & 0x001) == 0x001 */
784 return (pte_val(pte) & _PAGE_PRESENT) != 0;
785 }
786
pte_none(pte_t pte)787 static inline int pte_none(pte_t pte)
788 {
789 /* Bit pattern: pte == 0x400 */
790 return pte_val(pte) == _PAGE_INVALID;
791 }
792
pte_swap(pte_t pte)793 static inline int pte_swap(pte_t pte)
794 {
795 /* Bit pattern: (pte & 0x201) == 0x200 */
796 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
797 == _PAGE_PROTECT;
798 }
799
pte_special(pte_t pte)800 static inline int pte_special(pte_t pte)
801 {
802 return (pte_val(pte) & _PAGE_SPECIAL);
803 }
804
805 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)806 static inline int pte_same(pte_t a, pte_t b)
807 {
808 return pte_val(a) == pte_val(b);
809 }
810
811 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)812 static inline int pte_protnone(pte_t pte)
813 {
814 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
815 }
816
pmd_protnone(pmd_t pmd)817 static inline int pmd_protnone(pmd_t pmd)
818 {
819 /* pmd_large(pmd) implies pmd_present(pmd) */
820 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
821 }
822 #endif
823
pte_soft_dirty(pte_t pte)824 static inline int pte_soft_dirty(pte_t pte)
825 {
826 return pte_val(pte) & _PAGE_SOFT_DIRTY;
827 }
828 #define pte_swp_soft_dirty pte_soft_dirty
829
pte_mksoft_dirty(pte_t pte)830 static inline pte_t pte_mksoft_dirty(pte_t pte)
831 {
832 pte_val(pte) |= _PAGE_SOFT_DIRTY;
833 return pte;
834 }
835 #define pte_swp_mksoft_dirty pte_mksoft_dirty
836
pte_clear_soft_dirty(pte_t pte)837 static inline pte_t pte_clear_soft_dirty(pte_t pte)
838 {
839 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
840 return pte;
841 }
842 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
843
pmd_soft_dirty(pmd_t pmd)844 static inline int pmd_soft_dirty(pmd_t pmd)
845 {
846 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
847 }
848
pmd_mksoft_dirty(pmd_t pmd)849 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
850 {
851 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
852 return pmd;
853 }
854
pmd_clear_soft_dirty(pmd_t pmd)855 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
856 {
857 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
858 return pmd;
859 }
860
861 /*
862 * query functions pte_write/pte_dirty/pte_young only work if
863 * pte_present() is true. Undefined behaviour if not..
864 */
pte_write(pte_t pte)865 static inline int pte_write(pte_t pte)
866 {
867 return (pte_val(pte) & _PAGE_WRITE) != 0;
868 }
869
pte_dirty(pte_t pte)870 static inline int pte_dirty(pte_t pte)
871 {
872 return (pte_val(pte) & _PAGE_DIRTY) != 0;
873 }
874
pte_young(pte_t pte)875 static inline int pte_young(pte_t pte)
876 {
877 return (pte_val(pte) & _PAGE_YOUNG) != 0;
878 }
879
880 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)881 static inline int pte_unused(pte_t pte)
882 {
883 return pte_val(pte) & _PAGE_UNUSED;
884 }
885
886 /*
887 * pgd/pmd/pte modification functions
888 */
889
pgd_clear(pgd_t * pgd)890 static inline void pgd_clear(pgd_t *pgd)
891 {
892 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
893 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
894 }
895
p4d_clear(p4d_t * p4d)896 static inline void p4d_clear(p4d_t *p4d)
897 {
898 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
899 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
900 }
901
pud_clear(pud_t * pud)902 static inline void pud_clear(pud_t *pud)
903 {
904 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
905 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
906 }
907
pmd_clear(pmd_t * pmdp)908 static inline void pmd_clear(pmd_t *pmdp)
909 {
910 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
911 }
912
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)913 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
914 {
915 pte_val(*ptep) = _PAGE_INVALID;
916 }
917
918 /*
919 * The following pte modification functions only work if
920 * pte_present() is true. Undefined behaviour if not..
921 */
pte_modify(pte_t pte,pgprot_t newprot)922 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
923 {
924 pte_val(pte) &= _PAGE_CHG_MASK;
925 pte_val(pte) |= pgprot_val(newprot);
926 /*
927 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
928 * has the invalid bit set, clear it again for readable, young pages
929 */
930 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
931 pte_val(pte) &= ~_PAGE_INVALID;
932 /*
933 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
934 * protection bit set, clear it again for writable, dirty pages
935 */
936 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
937 pte_val(pte) &= ~_PAGE_PROTECT;
938 return pte;
939 }
940
pte_wrprotect(pte_t pte)941 static inline pte_t pte_wrprotect(pte_t pte)
942 {
943 pte_val(pte) &= ~_PAGE_WRITE;
944 pte_val(pte) |= _PAGE_PROTECT;
945 return pte;
946 }
947
pte_mkwrite(pte_t pte)948 static inline pte_t pte_mkwrite(pte_t pte)
949 {
950 pte_val(pte) |= _PAGE_WRITE;
951 if (pte_val(pte) & _PAGE_DIRTY)
952 pte_val(pte) &= ~_PAGE_PROTECT;
953 return pte;
954 }
955
pte_mkclean(pte_t pte)956 static inline pte_t pte_mkclean(pte_t pte)
957 {
958 pte_val(pte) &= ~_PAGE_DIRTY;
959 pte_val(pte) |= _PAGE_PROTECT;
960 return pte;
961 }
962
pte_mkdirty(pte_t pte)963 static inline pte_t pte_mkdirty(pte_t pte)
964 {
965 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
966 if (pte_val(pte) & _PAGE_WRITE)
967 pte_val(pte) &= ~_PAGE_PROTECT;
968 return pte;
969 }
970
pte_mkold(pte_t pte)971 static inline pte_t pte_mkold(pte_t pte)
972 {
973 pte_val(pte) &= ~_PAGE_YOUNG;
974 pte_val(pte) |= _PAGE_INVALID;
975 return pte;
976 }
977
pte_mkyoung(pte_t pte)978 static inline pte_t pte_mkyoung(pte_t pte)
979 {
980 pte_val(pte) |= _PAGE_YOUNG;
981 if (pte_val(pte) & _PAGE_READ)
982 pte_val(pte) &= ~_PAGE_INVALID;
983 return pte;
984 }
985
pte_mkspecial(pte_t pte)986 static inline pte_t pte_mkspecial(pte_t pte)
987 {
988 pte_val(pte) |= _PAGE_SPECIAL;
989 return pte;
990 }
991
992 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)993 static inline pte_t pte_mkhuge(pte_t pte)
994 {
995 pte_val(pte) |= _PAGE_LARGE;
996 return pte;
997 }
998 #endif
999
1000 #define IPTE_GLOBAL 0
1001 #define IPTE_LOCAL 1
1002
1003 #define IPTE_NODAT 0x400
1004 #define IPTE_GUEST_ASCE 0x800
1005
__ptep_ipte(unsigned long address,pte_t * ptep,unsigned long opt,unsigned long asce,int local)1006 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1007 unsigned long opt, unsigned long asce,
1008 int local)
1009 {
1010 unsigned long pto = (unsigned long) ptep;
1011
1012 if (__builtin_constant_p(opt) && opt == 0) {
1013 /* Invalidation + TLB flush for the pte */
1014 asm volatile(
1015 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1016 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1017 [m4] "i" (local));
1018 return;
1019 }
1020
1021 /* Invalidate ptes with options + TLB flush of the ptes */
1022 opt = opt | (asce & _ASCE_ORIGIN);
1023 asm volatile(
1024 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1025 : [r2] "+a" (address), [r3] "+a" (opt)
1026 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1027 }
1028
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)1029 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1030 pte_t *ptep, int local)
1031 {
1032 unsigned long pto = (unsigned long) ptep;
1033
1034 /* Invalidate a range of ptes + TLB flush of the ptes */
1035 do {
1036 asm volatile(
1037 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1038 : [r2] "+a" (address), [r3] "+a" (nr)
1039 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1040 } while (nr != 255);
1041 }
1042
1043 /*
1044 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1045 * both clear the TLB for the unmapped pte. The reason is that
1046 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1047 * to modify an active pte. The sequence is
1048 * 1) ptep_get_and_clear
1049 * 2) set_pte_at
1050 * 3) flush_tlb_range
1051 * On s390 the tlb needs to get flushed with the modification of the pte
1052 * if the pte is active. The only way how this can be implemented is to
1053 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1054 * is a nop.
1055 */
1056 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1057 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1058
1059 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1060 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1061 unsigned long addr, pte_t *ptep)
1062 {
1063 pte_t pte = *ptep;
1064
1065 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1066 return pte_young(pte);
1067 }
1068
1069 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1070 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1071 unsigned long address, pte_t *ptep)
1072 {
1073 return ptep_test_and_clear_young(vma, address, ptep);
1074 }
1075
1076 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1077 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1078 unsigned long addr, pte_t *ptep)
1079 {
1080 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1081 }
1082
1083 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1084 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1085 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1086 pte_t *, pte_t, pte_t);
1087
1088 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1089 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1090 unsigned long addr, pte_t *ptep)
1091 {
1092 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1093 }
1094
1095 /*
1096 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1097 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1098 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1099 * cannot be accessed while the batched unmap is running. In this case
1100 * full==1 and a simple pte_clear is enough. See tlb.h.
1101 */
1102 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1103 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1104 unsigned long addr,
1105 pte_t *ptep, int full)
1106 {
1107 if (full) {
1108 pte_t pte = *ptep;
1109 *ptep = __pte(_PAGE_INVALID);
1110 return pte;
1111 }
1112 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1113 }
1114
1115 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1116 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1117 unsigned long addr, pte_t *ptep)
1118 {
1119 pte_t pte = *ptep;
1120
1121 if (pte_write(pte))
1122 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1123 }
1124
1125 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1126 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1127 unsigned long addr, pte_t *ptep,
1128 pte_t entry, int dirty)
1129 {
1130 if (pte_same(*ptep, entry))
1131 return 0;
1132 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1133 return 1;
1134 }
1135
1136 /*
1137 * Additional functions to handle KVM guest page tables
1138 */
1139 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1140 pte_t *ptep, pte_t entry);
1141 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1142 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1143 pte_t *ptep, unsigned long bits);
1144 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1145 pte_t *ptep, int prot, unsigned long bit);
1146 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1147 pte_t *ptep , int reset);
1148 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1149 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1150 pte_t *sptep, pte_t *tptep, pte_t pte);
1151 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1152
1153 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1154 pte_t *ptep);
1155 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1156 unsigned char key, bool nq);
1157 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1158 unsigned char key, unsigned char *oldkey,
1159 bool nq, bool mr, bool mc);
1160 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1161 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1162 unsigned char *key);
1163
1164 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1165 unsigned long bits, unsigned long value);
1166 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1167 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1168 unsigned long *oldpte, unsigned long *oldpgste);
1169 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1170 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1171 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1172 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1173
1174 /*
1175 * Certain architectures need to do special things when PTEs
1176 * within a page table are directly modified. Thus, the following
1177 * hook is made available.
1178 */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)1179 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1180 pte_t *ptep, pte_t entry)
1181 {
1182 if (pte_present(entry))
1183 pte_val(entry) &= ~_PAGE_UNUSED;
1184 if (mm_has_pgste(mm))
1185 ptep_set_pte_at(mm, addr, ptep, entry);
1186 else
1187 *ptep = entry;
1188 }
1189
1190 /*
1191 * Conversion functions: convert a page and protection to a page entry,
1192 * and a page entry and page directory to the page they refer to.
1193 */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1194 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1195 {
1196 pte_t __pte;
1197 pte_val(__pte) = physpage + pgprot_val(pgprot);
1198 if (!MACHINE_HAS_NX)
1199 pte_val(__pte) &= ~_PAGE_NOEXEC;
1200 return pte_mkyoung(__pte);
1201 }
1202
mk_pte(struct page * page,pgprot_t pgprot)1203 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1204 {
1205 unsigned long physpage = page_to_phys(page);
1206 pte_t __pte = mk_pte_phys(physpage, pgprot);
1207
1208 if (pte_write(__pte) && PageDirty(page))
1209 __pte = pte_mkdirty(__pte);
1210 return __pte;
1211 }
1212
1213 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1214 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1215 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1216 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1217 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1218
1219 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1220 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1221 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1222 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1223
1224 /*
1225 * The pgd_offset function *always* adds the index for the top-level
1226 * region/segment table. This is done to get a sequence like the
1227 * following to work:
1228 * pgdp = pgd_offset(current->mm, addr);
1229 * pgd = READ_ONCE(*pgdp);
1230 * p4dp = p4d_offset(&pgd, addr);
1231 * ...
1232 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1233 * only add an index if they dereferenced the pointer.
1234 */
pgd_offset_raw(pgd_t * pgd,unsigned long address)1235 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1236 {
1237 unsigned long rste;
1238 unsigned int shift;
1239
1240 /* Get the first entry of the top level table */
1241 rste = pgd_val(*pgd);
1242 /* Pick up the shift from the table type of the first entry */
1243 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1244 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1245 }
1246
1247 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1248 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1249
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long address)1250 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1251 {
1252 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1253 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1254 return (p4d_t *) pgdp;
1255 }
1256 #define p4d_offset_lockless p4d_offset_lockless
1257
p4d_offset(pgd_t * pgdp,unsigned long address)1258 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1259 {
1260 return p4d_offset_lockless(pgdp, *pgdp, address);
1261 }
1262
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long address)1263 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1264 {
1265 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1266 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1267 return (pud_t *) p4dp;
1268 }
1269 #define pud_offset_lockless pud_offset_lockless
1270
pud_offset(p4d_t * p4dp,unsigned long address)1271 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1272 {
1273 return pud_offset_lockless(p4dp, *p4dp, address);
1274 }
1275 #define pud_offset pud_offset
1276
pmd_offset_lockless(pud_t * pudp,pud_t pud,unsigned long address)1277 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1278 {
1279 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1280 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1281 return (pmd_t *) pudp;
1282 }
1283 #define pmd_offset_lockless pmd_offset_lockless
1284
pmd_offset(pud_t * pudp,unsigned long address)1285 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1286 {
1287 return pmd_offset_lockless(pudp, *pudp, address);
1288 }
1289 #define pmd_offset pmd_offset
1290
pte_offset(pmd_t * pmd,unsigned long address)1291 static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address)
1292 {
1293 return (pte_t *) pmd_deref(*pmd) + pte_index(address);
1294 }
1295
1296 #define pte_offset_kernel(pmd, address) pte_offset(pmd, address)
1297 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1298
pte_unmap(pte_t * pte)1299 static inline void pte_unmap(pte_t *pte) { }
1300
gup_fast_permitted(unsigned long start,unsigned long end)1301 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1302 {
1303 return end <= current->mm->context.asce_limit;
1304 }
1305 #define gup_fast_permitted gup_fast_permitted
1306
1307 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1308 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1309 #define pte_page(x) pfn_to_page(pte_pfn(x))
1310
1311 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1312 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1313 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1314 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1315
pmd_wrprotect(pmd_t pmd)1316 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1317 {
1318 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1319 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1320 return pmd;
1321 }
1322
pmd_mkwrite(pmd_t pmd)1323 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1324 {
1325 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1326 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1327 return pmd;
1328 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1329 return pmd;
1330 }
1331
pmd_mkclean(pmd_t pmd)1332 static inline pmd_t pmd_mkclean(pmd_t pmd)
1333 {
1334 if (pmd_large(pmd)) {
1335 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1336 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1337 }
1338 return pmd;
1339 }
1340
pmd_mkdirty(pmd_t pmd)1341 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1342 {
1343 if (pmd_large(pmd)) {
1344 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1345 _SEGMENT_ENTRY_SOFT_DIRTY;
1346 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1347 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1348 }
1349 return pmd;
1350 }
1351
pud_wrprotect(pud_t pud)1352 static inline pud_t pud_wrprotect(pud_t pud)
1353 {
1354 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1355 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1356 return pud;
1357 }
1358
pud_mkwrite(pud_t pud)1359 static inline pud_t pud_mkwrite(pud_t pud)
1360 {
1361 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1362 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1363 return pud;
1364 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1365 return pud;
1366 }
1367
pud_mkclean(pud_t pud)1368 static inline pud_t pud_mkclean(pud_t pud)
1369 {
1370 if (pud_large(pud)) {
1371 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1372 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1373 }
1374 return pud;
1375 }
1376
pud_mkdirty(pud_t pud)1377 static inline pud_t pud_mkdirty(pud_t pud)
1378 {
1379 if (pud_large(pud)) {
1380 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1381 _REGION3_ENTRY_SOFT_DIRTY;
1382 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1383 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1384 }
1385 return pud;
1386 }
1387
1388 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1389 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1390 {
1391 /*
1392 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1393 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1394 */
1395 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1396 return pgprot_val(SEGMENT_NONE);
1397 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1398 return pgprot_val(SEGMENT_RO);
1399 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1400 return pgprot_val(SEGMENT_RX);
1401 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1402 return pgprot_val(SEGMENT_RW);
1403 return pgprot_val(SEGMENT_RWX);
1404 }
1405
pmd_mkyoung(pmd_t pmd)1406 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1407 {
1408 if (pmd_large(pmd)) {
1409 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1410 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1411 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1412 }
1413 return pmd;
1414 }
1415
pmd_mkold(pmd_t pmd)1416 static inline pmd_t pmd_mkold(pmd_t pmd)
1417 {
1418 if (pmd_large(pmd)) {
1419 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1420 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1421 }
1422 return pmd;
1423 }
1424
pmd_modify(pmd_t pmd,pgprot_t newprot)1425 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1426 {
1427 if (pmd_large(pmd)) {
1428 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1429 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1430 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1431 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1432 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1433 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1434 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1435 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1436 return pmd;
1437 }
1438 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1439 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1440 return pmd;
1441 }
1442
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1443 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1444 {
1445 pmd_t __pmd;
1446 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1447 return __pmd;
1448 }
1449
1450 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1451
__pmdp_csp(pmd_t * pmdp)1452 static inline void __pmdp_csp(pmd_t *pmdp)
1453 {
1454 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1455 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1456 }
1457
1458 #define IDTE_GLOBAL 0
1459 #define IDTE_LOCAL 1
1460
1461 #define IDTE_PTOA 0x0800
1462 #define IDTE_NODAT 0x1000
1463 #define IDTE_GUEST_ASCE 0x2000
1464
__pmdp_idte(unsigned long addr,pmd_t * pmdp,unsigned long opt,unsigned long asce,int local)1465 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1466 unsigned long opt, unsigned long asce,
1467 int local)
1468 {
1469 unsigned long sto;
1470
1471 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1472 if (__builtin_constant_p(opt) && opt == 0) {
1473 /* flush without guest asce */
1474 asm volatile(
1475 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1476 : "+m" (*pmdp)
1477 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1478 [m4] "i" (local)
1479 : "cc" );
1480 } else {
1481 /* flush with guest asce */
1482 asm volatile(
1483 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1484 : "+m" (*pmdp)
1485 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1486 [r3] "a" (asce), [m4] "i" (local)
1487 : "cc" );
1488 }
1489 }
1490
__pudp_idte(unsigned long addr,pud_t * pudp,unsigned long opt,unsigned long asce,int local)1491 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1492 unsigned long opt, unsigned long asce,
1493 int local)
1494 {
1495 unsigned long r3o;
1496
1497 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1498 r3o |= _ASCE_TYPE_REGION3;
1499 if (__builtin_constant_p(opt) && opt == 0) {
1500 /* flush without guest asce */
1501 asm volatile(
1502 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1503 : "+m" (*pudp)
1504 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1505 [m4] "i" (local)
1506 : "cc");
1507 } else {
1508 /* flush with guest asce */
1509 asm volatile(
1510 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1511 : "+m" (*pudp)
1512 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1513 [r3] "a" (asce), [m4] "i" (local)
1514 : "cc" );
1515 }
1516 }
1517
1518 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1519 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1520 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1521
1522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1523
1524 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1525 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1526 pgtable_t pgtable);
1527
1528 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1529 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1530
1531 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1532 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1533 unsigned long addr, pmd_t *pmdp,
1534 pmd_t entry, int dirty)
1535 {
1536 VM_BUG_ON(addr & ~HPAGE_MASK);
1537
1538 entry = pmd_mkyoung(entry);
1539 if (dirty)
1540 entry = pmd_mkdirty(entry);
1541 if (pmd_val(*pmdp) == pmd_val(entry))
1542 return 0;
1543 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1544 return 1;
1545 }
1546
1547 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1548 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1549 unsigned long addr, pmd_t *pmdp)
1550 {
1551 pmd_t pmd = *pmdp;
1552
1553 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1554 return pmd_young(pmd);
1555 }
1556
1557 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1558 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1559 unsigned long addr, pmd_t *pmdp)
1560 {
1561 VM_BUG_ON(addr & ~HPAGE_MASK);
1562 return pmdp_test_and_clear_young(vma, addr, pmdp);
1563 }
1564
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1565 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1566 pmd_t *pmdp, pmd_t entry)
1567 {
1568 if (!MACHINE_HAS_NX)
1569 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1570 *pmdp = entry;
1571 }
1572
pmd_mkhuge(pmd_t pmd)1573 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1574 {
1575 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1576 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1577 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1578 return pmd;
1579 }
1580
1581 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1582 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1583 unsigned long addr, pmd_t *pmdp)
1584 {
1585 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1586 }
1587
1588 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,int full)1589 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1590 unsigned long addr,
1591 pmd_t *pmdp, int full)
1592 {
1593 if (full) {
1594 pmd_t pmd = *pmdp;
1595 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1596 return pmd;
1597 }
1598 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1599 }
1600
1601 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1602 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1603 unsigned long addr, pmd_t *pmdp)
1604 {
1605 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1606 }
1607
1608 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1609 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1610 unsigned long addr, pmd_t *pmdp)
1611 {
1612 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1613
1614 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1615 }
1616
1617 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1618 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1619 unsigned long addr, pmd_t *pmdp)
1620 {
1621 pmd_t pmd = *pmdp;
1622
1623 if (pmd_write(pmd))
1624 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1625 }
1626
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1627 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1628 unsigned long address,
1629 pmd_t *pmdp)
1630 {
1631 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1632 }
1633 #define pmdp_collapse_flush pmdp_collapse_flush
1634
1635 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1636 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1637
pmd_trans_huge(pmd_t pmd)1638 static inline int pmd_trans_huge(pmd_t pmd)
1639 {
1640 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1641 }
1642
1643 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1644 static inline int has_transparent_hugepage(void)
1645 {
1646 return MACHINE_HAS_EDAT1 ? 1 : 0;
1647 }
1648 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1649
1650 /*
1651 * 64 bit swap entry format:
1652 * A page-table entry has some bits we have to treat in a special way.
1653 * Bits 52 and bit 55 have to be zero, otherwise a specification
1654 * exception will occur instead of a page translation exception. The
1655 * specification exception has the bad habit not to store necessary
1656 * information in the lowcore.
1657 * Bits 54 and 63 are used to indicate the page type.
1658 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1659 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1660 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1661 * for the offset.
1662 * | offset |01100|type |00|
1663 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1664 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1665 */
1666
1667 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1668 #define __SWP_OFFSET_SHIFT 12
1669 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1670 #define __SWP_TYPE_SHIFT 2
1671
mk_swap_pte(unsigned long type,unsigned long offset)1672 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1673 {
1674 pte_t pte;
1675
1676 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1677 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1678 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1679 return pte;
1680 }
1681
__swp_type(swp_entry_t entry)1682 static inline unsigned long __swp_type(swp_entry_t entry)
1683 {
1684 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1685 }
1686
__swp_offset(swp_entry_t entry)1687 static inline unsigned long __swp_offset(swp_entry_t entry)
1688 {
1689 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1690 }
1691
__swp_entry(unsigned long type,unsigned long offset)1692 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1693 {
1694 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1695 }
1696
1697 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1698 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1699
1700 #define kern_addr_valid(addr) (1)
1701
1702 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1703 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1704 extern int s390_enable_sie(void);
1705 extern int s390_enable_skey(void);
1706 extern void s390_reset_cmma(struct mm_struct *mm);
1707
1708 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1709 #define HAVE_ARCH_UNMAPPED_AREA
1710 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1711
1712 #include <asm-generic/pgtable.h>
1713
1714 #endif /* _S390_PAGE_H */
1715