• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 
28 #include <linux/uaccess.h>
29 #include <asm/ioctls.h>
30 
31 #include "internal.h"
32 
33 /*
34  * New pipe buffers will be restricted to this size while the user is exceeding
35  * their pipe buffer quota. The general pipe use case needs at least two
36  * buffers: one for data yet to be read, and one for new data. If this is less
37  * than two, then a write to a non-empty pipe may block even if the pipe is not
38  * full. This can occur with GNU make jobserver or similar uses of pipes as
39  * semaphores: multiple processes may be waiting to write tokens back to the
40  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
41  *
42  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
43  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
44  * emptied.
45  */
46 #define PIPE_MIN_DEF_BUFFERS 2
47 
48 /*
49  * The max size that a non-root user is allowed to grow the pipe. Can
50  * be set by root in /proc/sys/fs/pipe-max-size
51  */
52 unsigned int pipe_max_size = 1048576;
53 
54 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
55  * matches default values.
56  */
57 unsigned long pipe_user_pages_hard;
58 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
59 
60 /*
61  * We use a start+len construction, which provides full use of the
62  * allocated memory.
63  * -- Florian Coosmann (FGC)
64  *
65  * Reads with count = 0 should always return 0.
66  * -- Julian Bradfield 1999-06-07.
67  *
68  * FIFOs and Pipes now generate SIGIO for both readers and writers.
69  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
70  *
71  * pipe_read & write cleanup
72  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
73  */
74 
pipe_lock_nested(struct pipe_inode_info * pipe,int subclass)75 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
76 {
77 	if (pipe->files)
78 		mutex_lock_nested(&pipe->mutex, subclass);
79 }
80 
pipe_lock(struct pipe_inode_info * pipe)81 void pipe_lock(struct pipe_inode_info *pipe)
82 {
83 	/*
84 	 * pipe_lock() nests non-pipe inode locks (for writing to a file)
85 	 */
86 	pipe_lock_nested(pipe, I_MUTEX_PARENT);
87 }
88 EXPORT_SYMBOL(pipe_lock);
89 
pipe_unlock(struct pipe_inode_info * pipe)90 void pipe_unlock(struct pipe_inode_info *pipe)
91 {
92 	if (pipe->files)
93 		mutex_unlock(&pipe->mutex);
94 }
95 EXPORT_SYMBOL(pipe_unlock);
96 
__pipe_lock(struct pipe_inode_info * pipe)97 static inline void __pipe_lock(struct pipe_inode_info *pipe)
98 {
99 	mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
100 }
101 
__pipe_unlock(struct pipe_inode_info * pipe)102 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
103 {
104 	mutex_unlock(&pipe->mutex);
105 }
106 
pipe_double_lock(struct pipe_inode_info * pipe1,struct pipe_inode_info * pipe2)107 void pipe_double_lock(struct pipe_inode_info *pipe1,
108 		      struct pipe_inode_info *pipe2)
109 {
110 	BUG_ON(pipe1 == pipe2);
111 
112 	if (pipe1 < pipe2) {
113 		pipe_lock_nested(pipe1, I_MUTEX_PARENT);
114 		pipe_lock_nested(pipe2, I_MUTEX_CHILD);
115 	} else {
116 		pipe_lock_nested(pipe2, I_MUTEX_PARENT);
117 		pipe_lock_nested(pipe1, I_MUTEX_CHILD);
118 	}
119 }
120 
121 /* Drop the inode semaphore and wait for a pipe event, atomically */
pipe_wait(struct pipe_inode_info * pipe)122 void pipe_wait(struct pipe_inode_info *pipe)
123 {
124 	DEFINE_WAIT(wait);
125 
126 	/*
127 	 * Pipes are system-local resources, so sleeping on them
128 	 * is considered a noninteractive wait:
129 	 */
130 	prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
131 	pipe_unlock(pipe);
132 	schedule();
133 	finish_wait(&pipe->wait, &wait);
134 	pipe_lock(pipe);
135 }
136 
anon_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)137 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
138 				  struct pipe_buffer *buf)
139 {
140 	struct page *page = buf->page;
141 
142 	/*
143 	 * If nobody else uses this page, and we don't already have a
144 	 * temporary page, let's keep track of it as a one-deep
145 	 * allocation cache. (Otherwise just release our reference to it)
146 	 */
147 	if (page_count(page) == 1 && !pipe->tmp_page)
148 		pipe->tmp_page = page;
149 	else
150 		put_page(page);
151 }
152 
anon_pipe_buf_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)153 static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
154 			       struct pipe_buffer *buf)
155 {
156 	struct page *page = buf->page;
157 
158 	if (page_count(page) == 1) {
159 		memcg_kmem_uncharge(page, 0);
160 		__SetPageLocked(page);
161 		return 0;
162 	}
163 	return 1;
164 }
165 
166 /**
167  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
168  * @pipe:	the pipe that the buffer belongs to
169  * @buf:	the buffer to attempt to steal
170  *
171  * Description:
172  *	This function attempts to steal the &struct page attached to
173  *	@buf. If successful, this function returns 0 and returns with
174  *	the page locked. The caller may then reuse the page for whatever
175  *	he wishes; the typical use is insertion into a different file
176  *	page cache.
177  */
generic_pipe_buf_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)178 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
179 			   struct pipe_buffer *buf)
180 {
181 	struct page *page = buf->page;
182 
183 	/*
184 	 * A reference of one is golden, that means that the owner of this
185 	 * page is the only one holding a reference to it. lock the page
186 	 * and return OK.
187 	 */
188 	if (page_count(page) == 1) {
189 		lock_page(page);
190 		return 0;
191 	}
192 
193 	return 1;
194 }
195 EXPORT_SYMBOL(generic_pipe_buf_steal);
196 
197 /**
198  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
199  * @pipe:	the pipe that the buffer belongs to
200  * @buf:	the buffer to get a reference to
201  *
202  * Description:
203  *	This function grabs an extra reference to @buf. It's used in
204  *	in the tee() system call, when we duplicate the buffers in one
205  *	pipe into another.
206  */
generic_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)207 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
208 {
209 	return try_get_page(buf->page);
210 }
211 EXPORT_SYMBOL(generic_pipe_buf_get);
212 
213 /**
214  * generic_pipe_buf_confirm - verify contents of the pipe buffer
215  * @info:	the pipe that the buffer belongs to
216  * @buf:	the buffer to confirm
217  *
218  * Description:
219  *	This function does nothing, because the generic pipe code uses
220  *	pages that are always good when inserted into the pipe.
221  */
generic_pipe_buf_confirm(struct pipe_inode_info * info,struct pipe_buffer * buf)222 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
223 			     struct pipe_buffer *buf)
224 {
225 	return 0;
226 }
227 EXPORT_SYMBOL(generic_pipe_buf_confirm);
228 
229 /**
230  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
231  * @pipe:	the pipe that the buffer belongs to
232  * @buf:	the buffer to put a reference to
233  *
234  * Description:
235  *	This function releases a reference to @buf.
236  */
generic_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)237 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
238 			      struct pipe_buffer *buf)
239 {
240 	put_page(buf->page);
241 }
242 EXPORT_SYMBOL(generic_pipe_buf_release);
243 
244 /* New data written to a pipe may be appended to a buffer with this type. */
245 static const struct pipe_buf_operations anon_pipe_buf_ops = {
246 	.confirm = generic_pipe_buf_confirm,
247 	.release = anon_pipe_buf_release,
248 	.steal = anon_pipe_buf_steal,
249 	.get = generic_pipe_buf_get,
250 };
251 
252 static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = {
253 	.confirm = generic_pipe_buf_confirm,
254 	.release = anon_pipe_buf_release,
255 	.steal = anon_pipe_buf_steal,
256 	.get = generic_pipe_buf_get,
257 };
258 
259 static const struct pipe_buf_operations packet_pipe_buf_ops = {
260 	.confirm = generic_pipe_buf_confirm,
261 	.release = anon_pipe_buf_release,
262 	.steal = anon_pipe_buf_steal,
263 	.get = generic_pipe_buf_get,
264 };
265 
266 /**
267  * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable
268  * @buf:	the buffer to mark
269  *
270  * Description:
271  *	This function ensures that no future writes will be merged into the
272  *	given &struct pipe_buffer. This is necessary when multiple pipe buffers
273  *	share the same backing page.
274  */
pipe_buf_mark_unmergeable(struct pipe_buffer * buf)275 void pipe_buf_mark_unmergeable(struct pipe_buffer *buf)
276 {
277 	if (buf->ops == &anon_pipe_buf_ops)
278 		buf->ops = &anon_pipe_buf_nomerge_ops;
279 }
280 
pipe_buf_can_merge(struct pipe_buffer * buf)281 static bool pipe_buf_can_merge(struct pipe_buffer *buf)
282 {
283 	return buf->ops == &anon_pipe_buf_ops;
284 }
285 
286 static ssize_t
pipe_read(struct kiocb * iocb,struct iov_iter * to)287 pipe_read(struct kiocb *iocb, struct iov_iter *to)
288 {
289 	size_t total_len = iov_iter_count(to);
290 	struct file *filp = iocb->ki_filp;
291 	struct pipe_inode_info *pipe = filp->private_data;
292 	int do_wakeup;
293 	ssize_t ret;
294 
295 	/* Null read succeeds. */
296 	if (unlikely(total_len == 0))
297 		return 0;
298 
299 	do_wakeup = 0;
300 	ret = 0;
301 	__pipe_lock(pipe);
302 	for (;;) {
303 		int bufs = pipe->nrbufs;
304 		if (bufs) {
305 			int curbuf = pipe->curbuf;
306 			struct pipe_buffer *buf = pipe->bufs + curbuf;
307 			size_t chars = buf->len;
308 			size_t written;
309 			int error;
310 
311 			if (chars > total_len)
312 				chars = total_len;
313 
314 			error = pipe_buf_confirm(pipe, buf);
315 			if (error) {
316 				if (!ret)
317 					ret = error;
318 				break;
319 			}
320 
321 			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
322 			if (unlikely(written < chars)) {
323 				if (!ret)
324 					ret = -EFAULT;
325 				break;
326 			}
327 			ret += chars;
328 			buf->offset += chars;
329 			buf->len -= chars;
330 
331 			/* Was it a packet buffer? Clean up and exit */
332 			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
333 				total_len = chars;
334 				buf->len = 0;
335 			}
336 
337 			if (!buf->len) {
338 				pipe_buf_release(pipe, buf);
339 				curbuf = (curbuf + 1) & (pipe->buffers - 1);
340 				pipe->curbuf = curbuf;
341 				pipe->nrbufs = --bufs;
342 				do_wakeup = 1;
343 			}
344 			total_len -= chars;
345 			if (!total_len)
346 				break;	/* common path: read succeeded */
347 		}
348 		if (bufs)	/* More to do? */
349 			continue;
350 		if (!pipe->writers)
351 			break;
352 		if (!pipe->waiting_writers) {
353 			/* syscall merging: Usually we must not sleep
354 			 * if O_NONBLOCK is set, or if we got some data.
355 			 * But if a writer sleeps in kernel space, then
356 			 * we can wait for that data without violating POSIX.
357 			 */
358 			if (ret)
359 				break;
360 			if (filp->f_flags & O_NONBLOCK) {
361 				ret = -EAGAIN;
362 				break;
363 			}
364 		}
365 		if (signal_pending(current)) {
366 			if (!ret)
367 				ret = -ERESTARTSYS;
368 			break;
369 		}
370 		if (do_wakeup) {
371 			wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
372  			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
373 		}
374 		pipe_wait(pipe);
375 	}
376 	__pipe_unlock(pipe);
377 
378 	/* Signal writers asynchronously that there is more room. */
379 	if (do_wakeup) {
380 		wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
381 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
382 	}
383 	if (ret > 0)
384 		file_accessed(filp);
385 	return ret;
386 }
387 
is_packetized(struct file * file)388 static inline int is_packetized(struct file *file)
389 {
390 	return (file->f_flags & O_DIRECT) != 0;
391 }
392 
393 static ssize_t
pipe_write(struct kiocb * iocb,struct iov_iter * from)394 pipe_write(struct kiocb *iocb, struct iov_iter *from)
395 {
396 	struct file *filp = iocb->ki_filp;
397 	struct pipe_inode_info *pipe = filp->private_data;
398 	ssize_t ret = 0;
399 	int do_wakeup = 0;
400 	size_t total_len = iov_iter_count(from);
401 	ssize_t chars;
402 
403 	/* Null write succeeds. */
404 	if (unlikely(total_len == 0))
405 		return 0;
406 
407 	__pipe_lock(pipe);
408 
409 	if (!pipe->readers) {
410 		send_sig(SIGPIPE, current, 0);
411 		ret = -EPIPE;
412 		goto out;
413 	}
414 
415 	/* We try to merge small writes */
416 	chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
417 	if (pipe->nrbufs && chars != 0) {
418 		int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
419 							(pipe->buffers - 1);
420 		struct pipe_buffer *buf = pipe->bufs + lastbuf;
421 		int offset = buf->offset + buf->len;
422 
423 		if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) {
424 			ret = pipe_buf_confirm(pipe, buf);
425 			if (ret)
426 				goto out;
427 
428 			ret = copy_page_from_iter(buf->page, offset, chars, from);
429 			if (unlikely(ret < chars)) {
430 				ret = -EFAULT;
431 				goto out;
432 			}
433 			do_wakeup = 1;
434 			buf->len += ret;
435 			if (!iov_iter_count(from))
436 				goto out;
437 		}
438 	}
439 
440 	for (;;) {
441 		int bufs;
442 
443 		if (!pipe->readers) {
444 			send_sig(SIGPIPE, current, 0);
445 			if (!ret)
446 				ret = -EPIPE;
447 			break;
448 		}
449 		bufs = pipe->nrbufs;
450 		if (bufs < pipe->buffers) {
451 			int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
452 			struct pipe_buffer *buf = pipe->bufs + newbuf;
453 			struct page *page = pipe->tmp_page;
454 			int copied;
455 
456 			if (!page) {
457 				page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
458 				if (unlikely(!page)) {
459 					ret = ret ? : -ENOMEM;
460 					break;
461 				}
462 				pipe->tmp_page = page;
463 			}
464 			/* Always wake up, even if the copy fails. Otherwise
465 			 * we lock up (O_NONBLOCK-)readers that sleep due to
466 			 * syscall merging.
467 			 * FIXME! Is this really true?
468 			 */
469 			do_wakeup = 1;
470 			copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
471 			if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
472 				if (!ret)
473 					ret = -EFAULT;
474 				break;
475 			}
476 			ret += copied;
477 
478 			/* Insert it into the buffer array */
479 			buf->page = page;
480 			buf->ops = &anon_pipe_buf_ops;
481 			buf->offset = 0;
482 			buf->len = copied;
483 			buf->flags = 0;
484 			if (is_packetized(filp)) {
485 				buf->ops = &packet_pipe_buf_ops;
486 				buf->flags = PIPE_BUF_FLAG_PACKET;
487 			}
488 			pipe->nrbufs = ++bufs;
489 			pipe->tmp_page = NULL;
490 
491 			if (!iov_iter_count(from))
492 				break;
493 		}
494 		if (bufs < pipe->buffers)
495 			continue;
496 		if (filp->f_flags & O_NONBLOCK) {
497 			if (!ret)
498 				ret = -EAGAIN;
499 			break;
500 		}
501 		if (signal_pending(current)) {
502 			if (!ret)
503 				ret = -ERESTARTSYS;
504 			break;
505 		}
506 		if (do_wakeup) {
507 			wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
508 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
509 			do_wakeup = 0;
510 		}
511 		pipe->waiting_writers++;
512 		pipe_wait(pipe);
513 		pipe->waiting_writers--;
514 	}
515 out:
516 	__pipe_unlock(pipe);
517 	if (do_wakeup) {
518 		wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
519 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
520 	}
521 	if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
522 		int err = file_update_time(filp);
523 		if (err)
524 			ret = err;
525 		sb_end_write(file_inode(filp)->i_sb);
526 	}
527 	return ret;
528 }
529 
pipe_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)530 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
531 {
532 	struct pipe_inode_info *pipe = filp->private_data;
533 	int count, buf, nrbufs;
534 
535 	switch (cmd) {
536 		case FIONREAD:
537 			__pipe_lock(pipe);
538 			count = 0;
539 			buf = pipe->curbuf;
540 			nrbufs = pipe->nrbufs;
541 			while (--nrbufs >= 0) {
542 				count += pipe->bufs[buf].len;
543 				buf = (buf+1) & (pipe->buffers - 1);
544 			}
545 			__pipe_unlock(pipe);
546 
547 			return put_user(count, (int __user *)arg);
548 		default:
549 			return -ENOIOCTLCMD;
550 	}
551 }
552 
553 /* No kernel lock held - fine */
554 static __poll_t
pipe_poll(struct file * filp,poll_table * wait)555 pipe_poll(struct file *filp, poll_table *wait)
556 {
557 	__poll_t mask;
558 	struct pipe_inode_info *pipe = filp->private_data;
559 	int nrbufs;
560 
561 	poll_wait(filp, &pipe->wait, wait);
562 
563 	/* Reading only -- no need for acquiring the semaphore.  */
564 	nrbufs = pipe->nrbufs;
565 	mask = 0;
566 	if (filp->f_mode & FMODE_READ) {
567 		mask = (nrbufs > 0) ? EPOLLIN | EPOLLRDNORM : 0;
568 		if (!pipe->writers && filp->f_version != pipe->w_counter)
569 			mask |= EPOLLHUP;
570 	}
571 
572 	if (filp->f_mode & FMODE_WRITE) {
573 		mask |= (nrbufs < pipe->buffers) ? EPOLLOUT | EPOLLWRNORM : 0;
574 		/*
575 		 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
576 		 * behave exactly like pipes for poll().
577 		 */
578 		if (!pipe->readers)
579 			mask |= EPOLLERR;
580 	}
581 
582 	return mask;
583 }
584 
put_pipe_info(struct inode * inode,struct pipe_inode_info * pipe)585 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
586 {
587 	int kill = 0;
588 
589 	spin_lock(&inode->i_lock);
590 	if (!--pipe->files) {
591 		inode->i_pipe = NULL;
592 		kill = 1;
593 	}
594 	spin_unlock(&inode->i_lock);
595 
596 	if (kill)
597 		free_pipe_info(pipe);
598 }
599 
600 static int
pipe_release(struct inode * inode,struct file * file)601 pipe_release(struct inode *inode, struct file *file)
602 {
603 	struct pipe_inode_info *pipe = file->private_data;
604 
605 	__pipe_lock(pipe);
606 	if (file->f_mode & FMODE_READ)
607 		pipe->readers--;
608 	if (file->f_mode & FMODE_WRITE)
609 		pipe->writers--;
610 
611 	if (pipe->readers || pipe->writers) {
612 		wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM | EPOLLERR | EPOLLHUP);
613 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
614 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
615 	}
616 	__pipe_unlock(pipe);
617 
618 	put_pipe_info(inode, pipe);
619 	return 0;
620 }
621 
622 static int
pipe_fasync(int fd,struct file * filp,int on)623 pipe_fasync(int fd, struct file *filp, int on)
624 {
625 	struct pipe_inode_info *pipe = filp->private_data;
626 	int retval = 0;
627 
628 	__pipe_lock(pipe);
629 	if (filp->f_mode & FMODE_READ)
630 		retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
631 	if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
632 		retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
633 		if (retval < 0 && (filp->f_mode & FMODE_READ))
634 			/* this can happen only if on == T */
635 			fasync_helper(-1, filp, 0, &pipe->fasync_readers);
636 	}
637 	__pipe_unlock(pipe);
638 	return retval;
639 }
640 
account_pipe_buffers(struct user_struct * user,unsigned long old,unsigned long new)641 static unsigned long account_pipe_buffers(struct user_struct *user,
642                                  unsigned long old, unsigned long new)
643 {
644 	return atomic_long_add_return(new - old, &user->pipe_bufs);
645 }
646 
too_many_pipe_buffers_soft(unsigned long user_bufs)647 static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
648 {
649 	unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
650 
651 	return soft_limit && user_bufs > soft_limit;
652 }
653 
too_many_pipe_buffers_hard(unsigned long user_bufs)654 static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
655 {
656 	unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
657 
658 	return hard_limit && user_bufs > hard_limit;
659 }
660 
is_unprivileged_user(void)661 static bool is_unprivileged_user(void)
662 {
663 	return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
664 }
665 
alloc_pipe_info(void)666 struct pipe_inode_info *alloc_pipe_info(void)
667 {
668 	struct pipe_inode_info *pipe;
669 	unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
670 	struct user_struct *user = get_current_user();
671 	unsigned long user_bufs;
672 	unsigned int max_size = READ_ONCE(pipe_max_size);
673 
674 	pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
675 	if (pipe == NULL)
676 		goto out_free_uid;
677 
678 	if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
679 		pipe_bufs = max_size >> PAGE_SHIFT;
680 
681 	user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
682 
683 	if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) {
684 		user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
685 		pipe_bufs = PIPE_MIN_DEF_BUFFERS;
686 	}
687 
688 	if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user())
689 		goto out_revert_acct;
690 
691 	pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
692 			     GFP_KERNEL_ACCOUNT);
693 
694 	if (pipe->bufs) {
695 		init_waitqueue_head(&pipe->wait);
696 		pipe->r_counter = pipe->w_counter = 1;
697 		pipe->buffers = pipe_bufs;
698 		pipe->user = user;
699 		mutex_init(&pipe->mutex);
700 		return pipe;
701 	}
702 
703 out_revert_acct:
704 	(void) account_pipe_buffers(user, pipe_bufs, 0);
705 	kfree(pipe);
706 out_free_uid:
707 	free_uid(user);
708 	return NULL;
709 }
710 
free_pipe_info(struct pipe_inode_info * pipe)711 void free_pipe_info(struct pipe_inode_info *pipe)
712 {
713 	int i;
714 
715 	(void) account_pipe_buffers(pipe->user, pipe->buffers, 0);
716 	free_uid(pipe->user);
717 	for (i = 0; i < pipe->buffers; i++) {
718 		struct pipe_buffer *buf = pipe->bufs + i;
719 		if (buf->ops)
720 			pipe_buf_release(pipe, buf);
721 	}
722 	if (pipe->tmp_page)
723 		__free_page(pipe->tmp_page);
724 	kfree(pipe->bufs);
725 	kfree(pipe);
726 }
727 
728 static struct vfsmount *pipe_mnt __read_mostly;
729 
730 /*
731  * pipefs_dname() is called from d_path().
732  */
pipefs_dname(struct dentry * dentry,char * buffer,int buflen)733 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
734 {
735 	return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
736 				d_inode(dentry)->i_ino);
737 }
738 
739 static const struct dentry_operations pipefs_dentry_operations = {
740 	.d_dname	= pipefs_dname,
741 };
742 
get_pipe_inode(void)743 static struct inode * get_pipe_inode(void)
744 {
745 	struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
746 	struct pipe_inode_info *pipe;
747 
748 	if (!inode)
749 		goto fail_inode;
750 
751 	inode->i_ino = get_next_ino();
752 
753 	pipe = alloc_pipe_info();
754 	if (!pipe)
755 		goto fail_iput;
756 
757 	inode->i_pipe = pipe;
758 	pipe->files = 2;
759 	pipe->readers = pipe->writers = 1;
760 	inode->i_fop = &pipefifo_fops;
761 
762 	/*
763 	 * Mark the inode dirty from the very beginning,
764 	 * that way it will never be moved to the dirty
765 	 * list because "mark_inode_dirty()" will think
766 	 * that it already _is_ on the dirty list.
767 	 */
768 	inode->i_state = I_DIRTY;
769 	inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
770 	inode->i_uid = current_fsuid();
771 	inode->i_gid = current_fsgid();
772 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
773 
774 	return inode;
775 
776 fail_iput:
777 	iput(inode);
778 
779 fail_inode:
780 	return NULL;
781 }
782 
create_pipe_files(struct file ** res,int flags)783 int create_pipe_files(struct file **res, int flags)
784 {
785 	struct inode *inode = get_pipe_inode();
786 	struct file *f;
787 
788 	if (!inode)
789 		return -ENFILE;
790 
791 	f = alloc_file_pseudo(inode, pipe_mnt, "",
792 				O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
793 				&pipefifo_fops);
794 	if (IS_ERR(f)) {
795 		free_pipe_info(inode->i_pipe);
796 		iput(inode);
797 		return PTR_ERR(f);
798 	}
799 
800 	f->private_data = inode->i_pipe;
801 
802 	res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
803 				  &pipefifo_fops);
804 	if (IS_ERR(res[0])) {
805 		put_pipe_info(inode, inode->i_pipe);
806 		fput(f);
807 		return PTR_ERR(res[0]);
808 	}
809 	res[0]->private_data = inode->i_pipe;
810 	res[1] = f;
811 	return 0;
812 }
813 
__do_pipe_flags(int * fd,struct file ** files,int flags)814 static int __do_pipe_flags(int *fd, struct file **files, int flags)
815 {
816 	int error;
817 	int fdw, fdr;
818 
819 	if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
820 		return -EINVAL;
821 
822 	error = create_pipe_files(files, flags);
823 	if (error)
824 		return error;
825 
826 	error = get_unused_fd_flags(flags);
827 	if (error < 0)
828 		goto err_read_pipe;
829 	fdr = error;
830 
831 	error = get_unused_fd_flags(flags);
832 	if (error < 0)
833 		goto err_fdr;
834 	fdw = error;
835 
836 	audit_fd_pair(fdr, fdw);
837 	fd[0] = fdr;
838 	fd[1] = fdw;
839 	return 0;
840 
841  err_fdr:
842 	put_unused_fd(fdr);
843  err_read_pipe:
844 	fput(files[0]);
845 	fput(files[1]);
846 	return error;
847 }
848 
do_pipe_flags(int * fd,int flags)849 int do_pipe_flags(int *fd, int flags)
850 {
851 	struct file *files[2];
852 	int error = __do_pipe_flags(fd, files, flags);
853 	if (!error) {
854 		fd_install(fd[0], files[0]);
855 		fd_install(fd[1], files[1]);
856 	}
857 	return error;
858 }
859 
860 /*
861  * sys_pipe() is the normal C calling standard for creating
862  * a pipe. It's not the way Unix traditionally does this, though.
863  */
do_pipe2(int __user * fildes,int flags)864 static int do_pipe2(int __user *fildes, int flags)
865 {
866 	struct file *files[2];
867 	int fd[2];
868 	int error;
869 
870 	error = __do_pipe_flags(fd, files, flags);
871 	if (!error) {
872 		if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
873 			fput(files[0]);
874 			fput(files[1]);
875 			put_unused_fd(fd[0]);
876 			put_unused_fd(fd[1]);
877 			error = -EFAULT;
878 		} else {
879 			fd_install(fd[0], files[0]);
880 			fd_install(fd[1], files[1]);
881 		}
882 	}
883 	return error;
884 }
885 
SYSCALL_DEFINE2(pipe2,int __user *,fildes,int,flags)886 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
887 {
888 	return do_pipe2(fildes, flags);
889 }
890 
SYSCALL_DEFINE1(pipe,int __user *,fildes)891 SYSCALL_DEFINE1(pipe, int __user *, fildes)
892 {
893 	return do_pipe2(fildes, 0);
894 }
895 
wait_for_partner(struct pipe_inode_info * pipe,unsigned int * cnt)896 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
897 {
898 	int cur = *cnt;
899 
900 	while (cur == *cnt) {
901 		pipe_wait(pipe);
902 		if (signal_pending(current))
903 			break;
904 	}
905 	return cur == *cnt ? -ERESTARTSYS : 0;
906 }
907 
wake_up_partner(struct pipe_inode_info * pipe)908 static void wake_up_partner(struct pipe_inode_info *pipe)
909 {
910 	wake_up_interruptible(&pipe->wait);
911 }
912 
fifo_open(struct inode * inode,struct file * filp)913 static int fifo_open(struct inode *inode, struct file *filp)
914 {
915 	struct pipe_inode_info *pipe;
916 	bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
917 	int ret;
918 
919 	filp->f_version = 0;
920 
921 	spin_lock(&inode->i_lock);
922 	if (inode->i_pipe) {
923 		pipe = inode->i_pipe;
924 		pipe->files++;
925 		spin_unlock(&inode->i_lock);
926 	} else {
927 		spin_unlock(&inode->i_lock);
928 		pipe = alloc_pipe_info();
929 		if (!pipe)
930 			return -ENOMEM;
931 		pipe->files = 1;
932 		spin_lock(&inode->i_lock);
933 		if (unlikely(inode->i_pipe)) {
934 			inode->i_pipe->files++;
935 			spin_unlock(&inode->i_lock);
936 			free_pipe_info(pipe);
937 			pipe = inode->i_pipe;
938 		} else {
939 			inode->i_pipe = pipe;
940 			spin_unlock(&inode->i_lock);
941 		}
942 	}
943 	filp->private_data = pipe;
944 	/* OK, we have a pipe and it's pinned down */
945 
946 	__pipe_lock(pipe);
947 
948 	/* We can only do regular read/write on fifos */
949 	filp->f_mode &= (FMODE_READ | FMODE_WRITE);
950 
951 	switch (filp->f_mode) {
952 	case FMODE_READ:
953 	/*
954 	 *  O_RDONLY
955 	 *  POSIX.1 says that O_NONBLOCK means return with the FIFO
956 	 *  opened, even when there is no process writing the FIFO.
957 	 */
958 		pipe->r_counter++;
959 		if (pipe->readers++ == 0)
960 			wake_up_partner(pipe);
961 
962 		if (!is_pipe && !pipe->writers) {
963 			if ((filp->f_flags & O_NONBLOCK)) {
964 				/* suppress EPOLLHUP until we have
965 				 * seen a writer */
966 				filp->f_version = pipe->w_counter;
967 			} else {
968 				if (wait_for_partner(pipe, &pipe->w_counter))
969 					goto err_rd;
970 			}
971 		}
972 		break;
973 
974 	case FMODE_WRITE:
975 	/*
976 	 *  O_WRONLY
977 	 *  POSIX.1 says that O_NONBLOCK means return -1 with
978 	 *  errno=ENXIO when there is no process reading the FIFO.
979 	 */
980 		ret = -ENXIO;
981 		if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
982 			goto err;
983 
984 		pipe->w_counter++;
985 		if (!pipe->writers++)
986 			wake_up_partner(pipe);
987 
988 		if (!is_pipe && !pipe->readers) {
989 			if (wait_for_partner(pipe, &pipe->r_counter))
990 				goto err_wr;
991 		}
992 		break;
993 
994 	case FMODE_READ | FMODE_WRITE:
995 	/*
996 	 *  O_RDWR
997 	 *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
998 	 *  This implementation will NEVER block on a O_RDWR open, since
999 	 *  the process can at least talk to itself.
1000 	 */
1001 
1002 		pipe->readers++;
1003 		pipe->writers++;
1004 		pipe->r_counter++;
1005 		pipe->w_counter++;
1006 		if (pipe->readers == 1 || pipe->writers == 1)
1007 			wake_up_partner(pipe);
1008 		break;
1009 
1010 	default:
1011 		ret = -EINVAL;
1012 		goto err;
1013 	}
1014 
1015 	/* Ok! */
1016 	__pipe_unlock(pipe);
1017 	return 0;
1018 
1019 err_rd:
1020 	if (!--pipe->readers)
1021 		wake_up_interruptible(&pipe->wait);
1022 	ret = -ERESTARTSYS;
1023 	goto err;
1024 
1025 err_wr:
1026 	if (!--pipe->writers)
1027 		wake_up_interruptible(&pipe->wait);
1028 	ret = -ERESTARTSYS;
1029 	goto err;
1030 
1031 err:
1032 	__pipe_unlock(pipe);
1033 
1034 	put_pipe_info(inode, pipe);
1035 	return ret;
1036 }
1037 
1038 const struct file_operations pipefifo_fops = {
1039 	.open		= fifo_open,
1040 	.llseek		= no_llseek,
1041 	.read_iter	= pipe_read,
1042 	.write_iter	= pipe_write,
1043 	.poll		= pipe_poll,
1044 	.unlocked_ioctl	= pipe_ioctl,
1045 	.release	= pipe_release,
1046 	.fasync		= pipe_fasync,
1047 };
1048 
1049 /*
1050  * Currently we rely on the pipe array holding a power-of-2 number
1051  * of pages. Returns 0 on error.
1052  */
round_pipe_size(unsigned long size)1053 unsigned int round_pipe_size(unsigned long size)
1054 {
1055 	if (size > (1U << 31))
1056 		return 0;
1057 
1058 	/* Minimum pipe size, as required by POSIX */
1059 	if (size < PAGE_SIZE)
1060 		return PAGE_SIZE;
1061 
1062 	return roundup_pow_of_two(size);
1063 }
1064 
1065 /*
1066  * Allocate a new array of pipe buffers and copy the info over. Returns the
1067  * pipe size if successful, or return -ERROR on error.
1068  */
pipe_set_size(struct pipe_inode_info * pipe,unsigned long arg)1069 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1070 {
1071 	struct pipe_buffer *bufs;
1072 	unsigned int size, nr_pages;
1073 	unsigned long user_bufs;
1074 	long ret = 0;
1075 
1076 	size = round_pipe_size(arg);
1077 	nr_pages = size >> PAGE_SHIFT;
1078 
1079 	if (!nr_pages)
1080 		return -EINVAL;
1081 
1082 	/*
1083 	 * If trying to increase the pipe capacity, check that an
1084 	 * unprivileged user is not trying to exceed various limits
1085 	 * (soft limit check here, hard limit check just below).
1086 	 * Decreasing the pipe capacity is always permitted, even
1087 	 * if the user is currently over a limit.
1088 	 */
1089 	if (nr_pages > pipe->buffers &&
1090 			size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1091 		return -EPERM;
1092 
1093 	user_bufs = account_pipe_buffers(pipe->user, pipe->buffers, nr_pages);
1094 
1095 	if (nr_pages > pipe->buffers &&
1096 			(too_many_pipe_buffers_hard(user_bufs) ||
1097 			 too_many_pipe_buffers_soft(user_bufs)) &&
1098 			is_unprivileged_user()) {
1099 		ret = -EPERM;
1100 		goto out_revert_acct;
1101 	}
1102 
1103 	/*
1104 	 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1105 	 * expect a lot of shrink+grow operations, just free and allocate
1106 	 * again like we would do for growing. If the pipe currently
1107 	 * contains more buffers than arg, then return busy.
1108 	 */
1109 	if (nr_pages < pipe->nrbufs) {
1110 		ret = -EBUSY;
1111 		goto out_revert_acct;
1112 	}
1113 
1114 	bufs = kcalloc(nr_pages, sizeof(*bufs),
1115 		       GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1116 	if (unlikely(!bufs)) {
1117 		ret = -ENOMEM;
1118 		goto out_revert_acct;
1119 	}
1120 
1121 	/*
1122 	 * The pipe array wraps around, so just start the new one at zero
1123 	 * and adjust the indexes.
1124 	 */
1125 	if (pipe->nrbufs) {
1126 		unsigned int tail;
1127 		unsigned int head;
1128 
1129 		tail = pipe->curbuf + pipe->nrbufs;
1130 		if (tail < pipe->buffers)
1131 			tail = 0;
1132 		else
1133 			tail &= (pipe->buffers - 1);
1134 
1135 		head = pipe->nrbufs - tail;
1136 		if (head)
1137 			memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1138 		if (tail)
1139 			memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1140 	}
1141 
1142 	pipe->curbuf = 0;
1143 	kfree(pipe->bufs);
1144 	pipe->bufs = bufs;
1145 	pipe->buffers = nr_pages;
1146 	return nr_pages * PAGE_SIZE;
1147 
1148 out_revert_acct:
1149 	(void) account_pipe_buffers(pipe->user, nr_pages, pipe->buffers);
1150 	return ret;
1151 }
1152 
1153 /*
1154  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1155  * location, so checking ->i_pipe is not enough to verify that this is a
1156  * pipe.
1157  */
get_pipe_info(struct file * file)1158 struct pipe_inode_info *get_pipe_info(struct file *file)
1159 {
1160 	return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1161 }
1162 
pipe_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1163 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1164 {
1165 	struct pipe_inode_info *pipe;
1166 	long ret;
1167 
1168 	pipe = get_pipe_info(file);
1169 	if (!pipe)
1170 		return -EBADF;
1171 
1172 	__pipe_lock(pipe);
1173 
1174 	switch (cmd) {
1175 	case F_SETPIPE_SZ:
1176 		ret = pipe_set_size(pipe, arg);
1177 		break;
1178 	case F_GETPIPE_SZ:
1179 		ret = pipe->buffers * PAGE_SIZE;
1180 		break;
1181 	default:
1182 		ret = -EINVAL;
1183 		break;
1184 	}
1185 
1186 	__pipe_unlock(pipe);
1187 	return ret;
1188 }
1189 
1190 static const struct super_operations pipefs_ops = {
1191 	.destroy_inode = free_inode_nonrcu,
1192 	.statfs = simple_statfs,
1193 };
1194 
1195 /*
1196  * pipefs should _never_ be mounted by userland - too much of security hassle,
1197  * no real gain from having the whole whorehouse mounted. So we don't need
1198  * any operations on the root directory. However, we need a non-trivial
1199  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1200  */
1201 
pipefs_init_fs_context(struct fs_context * fc)1202 static int pipefs_init_fs_context(struct fs_context *fc)
1203 {
1204 	struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1205 	if (!ctx)
1206 		return -ENOMEM;
1207 	ctx->ops = &pipefs_ops;
1208 	ctx->dops = &pipefs_dentry_operations;
1209 	return 0;
1210 }
1211 
1212 static struct file_system_type pipe_fs_type = {
1213 	.name		= "pipefs",
1214 	.init_fs_context = pipefs_init_fs_context,
1215 	.kill_sb	= kill_anon_super,
1216 };
1217 
init_pipe_fs(void)1218 static int __init init_pipe_fs(void)
1219 {
1220 	int err = register_filesystem(&pipe_fs_type);
1221 
1222 	if (!err) {
1223 		pipe_mnt = kern_mount(&pipe_fs_type);
1224 		if (IS_ERR(pipe_mnt)) {
1225 			err = PTR_ERR(pipe_mnt);
1226 			unregister_filesystem(&pipe_fs_type);
1227 		}
1228 	}
1229 	return err;
1230 }
1231 
1232 fs_initcall(init_pipe_fs);
1233