1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
9 *
10 * See ../COPYING for licensing terms.
11 */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
45 #include <linux/pseudo_fs.h>
46
47 #include <asm/kmap_types.h>
48 #include <linux/uaccess.h>
49 #include <linux/nospec.h>
50
51 #include "internal.h"
52
53 #define KIOCB_KEY 0
54
55 #define AIO_RING_MAGIC 0xa10a10a1
56 #define AIO_RING_COMPAT_FEATURES 1
57 #define AIO_RING_INCOMPAT_FEATURES 0
58 struct aio_ring {
59 unsigned id; /* kernel internal index number */
60 unsigned nr; /* number of io_events */
61 unsigned head; /* Written to by userland or under ring_lock
62 * mutex by aio_read_events_ring(). */
63 unsigned tail;
64
65 unsigned magic;
66 unsigned compat_features;
67 unsigned incompat_features;
68 unsigned header_length; /* size of aio_ring */
69
70
71 struct io_event io_events[0];
72 }; /* 128 bytes + ring size */
73
74 /*
75 * Plugging is meant to work with larger batches of IOs. If we don't
76 * have more than the below, then don't bother setting up a plug.
77 */
78 #define AIO_PLUG_THRESHOLD 2
79
80 #define AIO_RING_PAGES 8
81
82 struct kioctx_table {
83 struct rcu_head rcu;
84 unsigned nr;
85 struct kioctx __rcu *table[];
86 };
87
88 struct kioctx_cpu {
89 unsigned reqs_available;
90 };
91
92 struct ctx_rq_wait {
93 struct completion comp;
94 atomic_t count;
95 };
96
97 struct kioctx {
98 struct percpu_ref users;
99 atomic_t dead;
100
101 struct percpu_ref reqs;
102
103 unsigned long user_id;
104
105 struct __percpu kioctx_cpu *cpu;
106
107 /*
108 * For percpu reqs_available, number of slots we move to/from global
109 * counter at a time:
110 */
111 unsigned req_batch;
112 /*
113 * This is what userspace passed to io_setup(), it's not used for
114 * anything but counting against the global max_reqs quota.
115 *
116 * The real limit is nr_events - 1, which will be larger (see
117 * aio_setup_ring())
118 */
119 unsigned max_reqs;
120
121 /* Size of ringbuffer, in units of struct io_event */
122 unsigned nr_events;
123
124 unsigned long mmap_base;
125 unsigned long mmap_size;
126
127 struct page **ring_pages;
128 long nr_pages;
129
130 struct rcu_work free_rwork; /* see free_ioctx() */
131
132 /*
133 * signals when all in-flight requests are done
134 */
135 struct ctx_rq_wait *rq_wait;
136
137 struct {
138 /*
139 * This counts the number of available slots in the ringbuffer,
140 * so we avoid overflowing it: it's decremented (if positive)
141 * when allocating a kiocb and incremented when the resulting
142 * io_event is pulled off the ringbuffer.
143 *
144 * We batch accesses to it with a percpu version.
145 */
146 atomic_t reqs_available;
147 } ____cacheline_aligned_in_smp;
148
149 struct {
150 spinlock_t ctx_lock;
151 struct list_head active_reqs; /* used for cancellation */
152 } ____cacheline_aligned_in_smp;
153
154 struct {
155 struct mutex ring_lock;
156 wait_queue_head_t wait;
157 } ____cacheline_aligned_in_smp;
158
159 struct {
160 unsigned tail;
161 unsigned completed_events;
162 spinlock_t completion_lock;
163 } ____cacheline_aligned_in_smp;
164
165 struct page *internal_pages[AIO_RING_PAGES];
166 struct file *aio_ring_file;
167
168 unsigned id;
169 };
170
171 /*
172 * First field must be the file pointer in all the
173 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
174 */
175 struct fsync_iocb {
176 struct file *file;
177 struct work_struct work;
178 bool datasync;
179 struct cred *creds;
180 };
181
182 struct poll_iocb {
183 struct file *file;
184 struct wait_queue_head *head;
185 __poll_t events;
186 bool cancelled;
187 bool work_scheduled;
188 bool work_need_resched;
189 struct wait_queue_entry wait;
190 struct work_struct work;
191 };
192
193 /*
194 * NOTE! Each of the iocb union members has the file pointer
195 * as the first entry in their struct definition. So you can
196 * access the file pointer through any of the sub-structs,
197 * or directly as just 'ki_filp' in this struct.
198 */
199 struct aio_kiocb {
200 union {
201 struct file *ki_filp;
202 struct kiocb rw;
203 struct fsync_iocb fsync;
204 struct poll_iocb poll;
205 };
206
207 struct kioctx *ki_ctx;
208 kiocb_cancel_fn *ki_cancel;
209
210 struct io_event ki_res;
211
212 struct list_head ki_list; /* the aio core uses this
213 * for cancellation */
214 refcount_t ki_refcnt;
215
216 /*
217 * If the aio_resfd field of the userspace iocb is not zero,
218 * this is the underlying eventfd context to deliver events to.
219 */
220 struct eventfd_ctx *ki_eventfd;
221 };
222
223 /*------ sysctl variables----*/
224 static DEFINE_SPINLOCK(aio_nr_lock);
225 unsigned long aio_nr; /* current system wide number of aio requests */
226 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
227 /*----end sysctl variables---*/
228
229 static struct kmem_cache *kiocb_cachep;
230 static struct kmem_cache *kioctx_cachep;
231
232 static struct vfsmount *aio_mnt;
233
234 static const struct file_operations aio_ring_fops;
235 static const struct address_space_operations aio_ctx_aops;
236
aio_private_file(struct kioctx * ctx,loff_t nr_pages)237 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
238 {
239 struct file *file;
240 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
241 if (IS_ERR(inode))
242 return ERR_CAST(inode);
243
244 inode->i_mapping->a_ops = &aio_ctx_aops;
245 inode->i_mapping->private_data = ctx;
246 inode->i_size = PAGE_SIZE * nr_pages;
247
248 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
249 O_RDWR, &aio_ring_fops);
250 if (IS_ERR(file))
251 iput(inode);
252 return file;
253 }
254
aio_init_fs_context(struct fs_context * fc)255 static int aio_init_fs_context(struct fs_context *fc)
256 {
257 if (!init_pseudo(fc, AIO_RING_MAGIC))
258 return -ENOMEM;
259 fc->s_iflags |= SB_I_NOEXEC;
260 return 0;
261 }
262
263 /* aio_setup
264 * Creates the slab caches used by the aio routines, panic on
265 * failure as this is done early during the boot sequence.
266 */
aio_setup(void)267 static int __init aio_setup(void)
268 {
269 static struct file_system_type aio_fs = {
270 .name = "aio",
271 .init_fs_context = aio_init_fs_context,
272 .kill_sb = kill_anon_super,
273 };
274 aio_mnt = kern_mount(&aio_fs);
275 if (IS_ERR(aio_mnt))
276 panic("Failed to create aio fs mount.");
277
278 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
279 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
280 return 0;
281 }
282 __initcall(aio_setup);
283
put_aio_ring_file(struct kioctx * ctx)284 static void put_aio_ring_file(struct kioctx *ctx)
285 {
286 struct file *aio_ring_file = ctx->aio_ring_file;
287 struct address_space *i_mapping;
288
289 if (aio_ring_file) {
290 truncate_setsize(file_inode(aio_ring_file), 0);
291
292 /* Prevent further access to the kioctx from migratepages */
293 i_mapping = aio_ring_file->f_mapping;
294 spin_lock(&i_mapping->private_lock);
295 i_mapping->private_data = NULL;
296 ctx->aio_ring_file = NULL;
297 spin_unlock(&i_mapping->private_lock);
298
299 fput(aio_ring_file);
300 }
301 }
302
aio_free_ring(struct kioctx * ctx)303 static void aio_free_ring(struct kioctx *ctx)
304 {
305 int i;
306
307 /* Disconnect the kiotx from the ring file. This prevents future
308 * accesses to the kioctx from page migration.
309 */
310 put_aio_ring_file(ctx);
311
312 for (i = 0; i < ctx->nr_pages; i++) {
313 struct page *page;
314 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
315 page_count(ctx->ring_pages[i]));
316 page = ctx->ring_pages[i];
317 if (!page)
318 continue;
319 ctx->ring_pages[i] = NULL;
320 put_page(page);
321 }
322
323 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
324 kfree(ctx->ring_pages);
325 ctx->ring_pages = NULL;
326 }
327 }
328
aio_ring_mremap(struct vm_area_struct * vma)329 static int aio_ring_mremap(struct vm_area_struct *vma)
330 {
331 struct file *file = vma->vm_file;
332 struct mm_struct *mm = vma->vm_mm;
333 struct kioctx_table *table;
334 int i, res = -EINVAL;
335
336 spin_lock(&mm->ioctx_lock);
337 rcu_read_lock();
338 table = rcu_dereference(mm->ioctx_table);
339 if (!table)
340 goto out_unlock;
341
342 for (i = 0; i < table->nr; i++) {
343 struct kioctx *ctx;
344
345 ctx = rcu_dereference(table->table[i]);
346 if (ctx && ctx->aio_ring_file == file) {
347 if (!atomic_read(&ctx->dead)) {
348 ctx->user_id = ctx->mmap_base = vma->vm_start;
349 res = 0;
350 }
351 break;
352 }
353 }
354
355 out_unlock:
356 rcu_read_unlock();
357 spin_unlock(&mm->ioctx_lock);
358 return res;
359 }
360
361 static const struct vm_operations_struct aio_ring_vm_ops = {
362 .mremap = aio_ring_mremap,
363 #if IS_ENABLED(CONFIG_MMU)
364 .fault = filemap_fault,
365 .map_pages = filemap_map_pages,
366 .page_mkwrite = filemap_page_mkwrite,
367 #endif
368 };
369
aio_ring_mmap(struct file * file,struct vm_area_struct * vma)370 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
371 {
372 vma->vm_flags |= VM_DONTEXPAND;
373 vma->vm_ops = &aio_ring_vm_ops;
374 return 0;
375 }
376
377 static const struct file_operations aio_ring_fops = {
378 .mmap = aio_ring_mmap,
379 };
380
381 #if IS_ENABLED(CONFIG_MIGRATION)
aio_migratepage(struct address_space * mapping,struct page * new,struct page * old,enum migrate_mode mode)382 static int aio_migratepage(struct address_space *mapping, struct page *new,
383 struct page *old, enum migrate_mode mode)
384 {
385 struct kioctx *ctx;
386 unsigned long flags;
387 pgoff_t idx;
388 int rc;
389
390 /*
391 * We cannot support the _NO_COPY case here, because copy needs to
392 * happen under the ctx->completion_lock. That does not work with the
393 * migration workflow of MIGRATE_SYNC_NO_COPY.
394 */
395 if (mode == MIGRATE_SYNC_NO_COPY)
396 return -EINVAL;
397
398 rc = 0;
399
400 /* mapping->private_lock here protects against the kioctx teardown. */
401 spin_lock(&mapping->private_lock);
402 ctx = mapping->private_data;
403 if (!ctx) {
404 rc = -EINVAL;
405 goto out;
406 }
407
408 /* The ring_lock mutex. The prevents aio_read_events() from writing
409 * to the ring's head, and prevents page migration from mucking in
410 * a partially initialized kiotx.
411 */
412 if (!mutex_trylock(&ctx->ring_lock)) {
413 rc = -EAGAIN;
414 goto out;
415 }
416
417 idx = old->index;
418 if (idx < (pgoff_t)ctx->nr_pages) {
419 /* Make sure the old page hasn't already been changed */
420 if (ctx->ring_pages[idx] != old)
421 rc = -EAGAIN;
422 } else
423 rc = -EINVAL;
424
425 if (rc != 0)
426 goto out_unlock;
427
428 /* Writeback must be complete */
429 BUG_ON(PageWriteback(old));
430 get_page(new);
431
432 rc = migrate_page_move_mapping(mapping, new, old, 1);
433 if (rc != MIGRATEPAGE_SUCCESS) {
434 put_page(new);
435 goto out_unlock;
436 }
437
438 /* Take completion_lock to prevent other writes to the ring buffer
439 * while the old page is copied to the new. This prevents new
440 * events from being lost.
441 */
442 spin_lock_irqsave(&ctx->completion_lock, flags);
443 migrate_page_copy(new, old);
444 BUG_ON(ctx->ring_pages[idx] != old);
445 ctx->ring_pages[idx] = new;
446 spin_unlock_irqrestore(&ctx->completion_lock, flags);
447
448 /* The old page is no longer accessible. */
449 put_page(old);
450
451 out_unlock:
452 mutex_unlock(&ctx->ring_lock);
453 out:
454 spin_unlock(&mapping->private_lock);
455 return rc;
456 }
457 #endif
458
459 static const struct address_space_operations aio_ctx_aops = {
460 .set_page_dirty = __set_page_dirty_no_writeback,
461 #if IS_ENABLED(CONFIG_MIGRATION)
462 .migratepage = aio_migratepage,
463 #endif
464 };
465
aio_setup_ring(struct kioctx * ctx,unsigned int nr_events)466 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
467 {
468 struct aio_ring *ring;
469 struct mm_struct *mm = current->mm;
470 unsigned long size, unused;
471 int nr_pages;
472 int i;
473 struct file *file;
474
475 /* Compensate for the ring buffer's head/tail overlap entry */
476 nr_events += 2; /* 1 is required, 2 for good luck */
477
478 size = sizeof(struct aio_ring);
479 size += sizeof(struct io_event) * nr_events;
480
481 nr_pages = PFN_UP(size);
482 if (nr_pages < 0)
483 return -EINVAL;
484
485 file = aio_private_file(ctx, nr_pages);
486 if (IS_ERR(file)) {
487 ctx->aio_ring_file = NULL;
488 return -ENOMEM;
489 }
490
491 ctx->aio_ring_file = file;
492 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
493 / sizeof(struct io_event);
494
495 ctx->ring_pages = ctx->internal_pages;
496 if (nr_pages > AIO_RING_PAGES) {
497 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
498 GFP_KERNEL);
499 if (!ctx->ring_pages) {
500 put_aio_ring_file(ctx);
501 return -ENOMEM;
502 }
503 }
504
505 for (i = 0; i < nr_pages; i++) {
506 struct page *page;
507 page = find_or_create_page(file->f_mapping,
508 i, GFP_HIGHUSER | __GFP_ZERO);
509 if (!page)
510 break;
511 pr_debug("pid(%d) page[%d]->count=%d\n",
512 current->pid, i, page_count(page));
513 SetPageUptodate(page);
514 unlock_page(page);
515
516 ctx->ring_pages[i] = page;
517 }
518 ctx->nr_pages = i;
519
520 if (unlikely(i != nr_pages)) {
521 aio_free_ring(ctx);
522 return -ENOMEM;
523 }
524
525 ctx->mmap_size = nr_pages * PAGE_SIZE;
526 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
527
528 if (down_write_killable(&mm->mmap_sem)) {
529 ctx->mmap_size = 0;
530 aio_free_ring(ctx);
531 return -EINTR;
532 }
533
534 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
535 PROT_READ | PROT_WRITE,
536 MAP_SHARED, 0, &unused, NULL);
537 up_write(&mm->mmap_sem);
538 if (IS_ERR((void *)ctx->mmap_base)) {
539 ctx->mmap_size = 0;
540 aio_free_ring(ctx);
541 return -ENOMEM;
542 }
543
544 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
545
546 ctx->user_id = ctx->mmap_base;
547 ctx->nr_events = nr_events; /* trusted copy */
548
549 ring = kmap_atomic(ctx->ring_pages[0]);
550 ring->nr = nr_events; /* user copy */
551 ring->id = ~0U;
552 ring->head = ring->tail = 0;
553 ring->magic = AIO_RING_MAGIC;
554 ring->compat_features = AIO_RING_COMPAT_FEATURES;
555 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
556 ring->header_length = sizeof(struct aio_ring);
557 kunmap_atomic(ring);
558 flush_dcache_page(ctx->ring_pages[0]);
559
560 return 0;
561 }
562
563 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
564 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
565 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
566
kiocb_set_cancel_fn(struct kiocb * iocb,kiocb_cancel_fn * cancel)567 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
568 {
569 struct aio_kiocb *req;
570 struct kioctx *ctx;
571 unsigned long flags;
572
573 /*
574 * kiocb didn't come from aio or is neither a read nor a write, hence
575 * ignore it.
576 */
577 if (!(iocb->ki_flags & IOCB_AIO_RW))
578 return;
579
580 req = container_of(iocb, struct aio_kiocb, rw);
581
582 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
583 return;
584
585 ctx = req->ki_ctx;
586
587 spin_lock_irqsave(&ctx->ctx_lock, flags);
588 list_add_tail(&req->ki_list, &ctx->active_reqs);
589 req->ki_cancel = cancel;
590 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
591 }
592 EXPORT_SYMBOL(kiocb_set_cancel_fn);
593
594 /*
595 * free_ioctx() should be RCU delayed to synchronize against the RCU
596 * protected lookup_ioctx() and also needs process context to call
597 * aio_free_ring(). Use rcu_work.
598 */
free_ioctx(struct work_struct * work)599 static void free_ioctx(struct work_struct *work)
600 {
601 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
602 free_rwork);
603 pr_debug("freeing %p\n", ctx);
604
605 aio_free_ring(ctx);
606 free_percpu(ctx->cpu);
607 percpu_ref_exit(&ctx->reqs);
608 percpu_ref_exit(&ctx->users);
609 kmem_cache_free(kioctx_cachep, ctx);
610 }
611
free_ioctx_reqs(struct percpu_ref * ref)612 static void free_ioctx_reqs(struct percpu_ref *ref)
613 {
614 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
615
616 /* At this point we know that there are no any in-flight requests */
617 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
618 complete(&ctx->rq_wait->comp);
619
620 /* Synchronize against RCU protected table->table[] dereferences */
621 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
622 queue_rcu_work(system_wq, &ctx->free_rwork);
623 }
624
625 /*
626 * When this function runs, the kioctx has been removed from the "hash table"
627 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
628 * now it's safe to cancel any that need to be.
629 */
free_ioctx_users(struct percpu_ref * ref)630 static void free_ioctx_users(struct percpu_ref *ref)
631 {
632 struct kioctx *ctx = container_of(ref, struct kioctx, users);
633 struct aio_kiocb *req;
634
635 spin_lock_irq(&ctx->ctx_lock);
636
637 while (!list_empty(&ctx->active_reqs)) {
638 req = list_first_entry(&ctx->active_reqs,
639 struct aio_kiocb, ki_list);
640 req->ki_cancel(&req->rw);
641 list_del_init(&req->ki_list);
642 }
643
644 spin_unlock_irq(&ctx->ctx_lock);
645
646 percpu_ref_kill(&ctx->reqs);
647 percpu_ref_put(&ctx->reqs);
648 }
649
ioctx_add_table(struct kioctx * ctx,struct mm_struct * mm)650 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
651 {
652 unsigned i, new_nr;
653 struct kioctx_table *table, *old;
654 struct aio_ring *ring;
655
656 spin_lock(&mm->ioctx_lock);
657 table = rcu_dereference_raw(mm->ioctx_table);
658
659 while (1) {
660 if (table)
661 for (i = 0; i < table->nr; i++)
662 if (!rcu_access_pointer(table->table[i])) {
663 ctx->id = i;
664 rcu_assign_pointer(table->table[i], ctx);
665 spin_unlock(&mm->ioctx_lock);
666
667 /* While kioctx setup is in progress,
668 * we are protected from page migration
669 * changes ring_pages by ->ring_lock.
670 */
671 ring = kmap_atomic(ctx->ring_pages[0]);
672 ring->id = ctx->id;
673 kunmap_atomic(ring);
674 return 0;
675 }
676
677 new_nr = (table ? table->nr : 1) * 4;
678 spin_unlock(&mm->ioctx_lock);
679
680 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
681 new_nr, GFP_KERNEL);
682 if (!table)
683 return -ENOMEM;
684
685 table->nr = new_nr;
686
687 spin_lock(&mm->ioctx_lock);
688 old = rcu_dereference_raw(mm->ioctx_table);
689
690 if (!old) {
691 rcu_assign_pointer(mm->ioctx_table, table);
692 } else if (table->nr > old->nr) {
693 memcpy(table->table, old->table,
694 old->nr * sizeof(struct kioctx *));
695
696 rcu_assign_pointer(mm->ioctx_table, table);
697 kfree_rcu(old, rcu);
698 } else {
699 kfree(table);
700 table = old;
701 }
702 }
703 }
704
aio_nr_sub(unsigned nr)705 static void aio_nr_sub(unsigned nr)
706 {
707 spin_lock(&aio_nr_lock);
708 if (WARN_ON(aio_nr - nr > aio_nr))
709 aio_nr = 0;
710 else
711 aio_nr -= nr;
712 spin_unlock(&aio_nr_lock);
713 }
714
715 /* ioctx_alloc
716 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
717 */
ioctx_alloc(unsigned nr_events)718 static struct kioctx *ioctx_alloc(unsigned nr_events)
719 {
720 struct mm_struct *mm = current->mm;
721 struct kioctx *ctx;
722 int err = -ENOMEM;
723
724 /*
725 * Store the original nr_events -- what userspace passed to io_setup(),
726 * for counting against the global limit -- before it changes.
727 */
728 unsigned int max_reqs = nr_events;
729
730 /*
731 * We keep track of the number of available ringbuffer slots, to prevent
732 * overflow (reqs_available), and we also use percpu counters for this.
733 *
734 * So since up to half the slots might be on other cpu's percpu counters
735 * and unavailable, double nr_events so userspace sees what they
736 * expected: additionally, we move req_batch slots to/from percpu
737 * counters at a time, so make sure that isn't 0:
738 */
739 nr_events = max(nr_events, num_possible_cpus() * 4);
740 nr_events *= 2;
741
742 /* Prevent overflows */
743 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
744 pr_debug("ENOMEM: nr_events too high\n");
745 return ERR_PTR(-EINVAL);
746 }
747
748 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
749 return ERR_PTR(-EAGAIN);
750
751 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
752 if (!ctx)
753 return ERR_PTR(-ENOMEM);
754
755 ctx->max_reqs = max_reqs;
756
757 spin_lock_init(&ctx->ctx_lock);
758 spin_lock_init(&ctx->completion_lock);
759 mutex_init(&ctx->ring_lock);
760 /* Protect against page migration throughout kiotx setup by keeping
761 * the ring_lock mutex held until setup is complete. */
762 mutex_lock(&ctx->ring_lock);
763 init_waitqueue_head(&ctx->wait);
764
765 INIT_LIST_HEAD(&ctx->active_reqs);
766
767 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
768 goto err;
769
770 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
771 goto err;
772
773 ctx->cpu = alloc_percpu(struct kioctx_cpu);
774 if (!ctx->cpu)
775 goto err;
776
777 err = aio_setup_ring(ctx, nr_events);
778 if (err < 0)
779 goto err;
780
781 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
782 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
783 if (ctx->req_batch < 1)
784 ctx->req_batch = 1;
785
786 /* limit the number of system wide aios */
787 spin_lock(&aio_nr_lock);
788 if (aio_nr + ctx->max_reqs > aio_max_nr ||
789 aio_nr + ctx->max_reqs < aio_nr) {
790 spin_unlock(&aio_nr_lock);
791 err = -EAGAIN;
792 goto err_ctx;
793 }
794 aio_nr += ctx->max_reqs;
795 spin_unlock(&aio_nr_lock);
796
797 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
798 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
799
800 err = ioctx_add_table(ctx, mm);
801 if (err)
802 goto err_cleanup;
803
804 /* Release the ring_lock mutex now that all setup is complete. */
805 mutex_unlock(&ctx->ring_lock);
806
807 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
808 ctx, ctx->user_id, mm, ctx->nr_events);
809 return ctx;
810
811 err_cleanup:
812 aio_nr_sub(ctx->max_reqs);
813 err_ctx:
814 atomic_set(&ctx->dead, 1);
815 if (ctx->mmap_size)
816 vm_munmap(ctx->mmap_base, ctx->mmap_size);
817 aio_free_ring(ctx);
818 err:
819 mutex_unlock(&ctx->ring_lock);
820 free_percpu(ctx->cpu);
821 percpu_ref_exit(&ctx->reqs);
822 percpu_ref_exit(&ctx->users);
823 kmem_cache_free(kioctx_cachep, ctx);
824 pr_debug("error allocating ioctx %d\n", err);
825 return ERR_PTR(err);
826 }
827
828 /* kill_ioctx
829 * Cancels all outstanding aio requests on an aio context. Used
830 * when the processes owning a context have all exited to encourage
831 * the rapid destruction of the kioctx.
832 */
kill_ioctx(struct mm_struct * mm,struct kioctx * ctx,struct ctx_rq_wait * wait)833 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
834 struct ctx_rq_wait *wait)
835 {
836 struct kioctx_table *table;
837
838 spin_lock(&mm->ioctx_lock);
839 if (atomic_xchg(&ctx->dead, 1)) {
840 spin_unlock(&mm->ioctx_lock);
841 return -EINVAL;
842 }
843
844 table = rcu_dereference_raw(mm->ioctx_table);
845 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
846 RCU_INIT_POINTER(table->table[ctx->id], NULL);
847 spin_unlock(&mm->ioctx_lock);
848
849 /* free_ioctx_reqs() will do the necessary RCU synchronization */
850 wake_up_all(&ctx->wait);
851
852 /*
853 * It'd be more correct to do this in free_ioctx(), after all
854 * the outstanding kiocbs have finished - but by then io_destroy
855 * has already returned, so io_setup() could potentially return
856 * -EAGAIN with no ioctxs actually in use (as far as userspace
857 * could tell).
858 */
859 aio_nr_sub(ctx->max_reqs);
860
861 if (ctx->mmap_size)
862 vm_munmap(ctx->mmap_base, ctx->mmap_size);
863
864 ctx->rq_wait = wait;
865 percpu_ref_kill(&ctx->users);
866 return 0;
867 }
868
869 /*
870 * exit_aio: called when the last user of mm goes away. At this point, there is
871 * no way for any new requests to be submited or any of the io_* syscalls to be
872 * called on the context.
873 *
874 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
875 * them.
876 */
exit_aio(struct mm_struct * mm)877 void exit_aio(struct mm_struct *mm)
878 {
879 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
880 struct ctx_rq_wait wait;
881 int i, skipped;
882
883 if (!table)
884 return;
885
886 atomic_set(&wait.count, table->nr);
887 init_completion(&wait.comp);
888
889 skipped = 0;
890 for (i = 0; i < table->nr; ++i) {
891 struct kioctx *ctx =
892 rcu_dereference_protected(table->table[i], true);
893
894 if (!ctx) {
895 skipped++;
896 continue;
897 }
898
899 /*
900 * We don't need to bother with munmap() here - exit_mmap(mm)
901 * is coming and it'll unmap everything. And we simply can't,
902 * this is not necessarily our ->mm.
903 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
904 * that it needs to unmap the area, just set it to 0.
905 */
906 ctx->mmap_size = 0;
907 kill_ioctx(mm, ctx, &wait);
908 }
909
910 if (!atomic_sub_and_test(skipped, &wait.count)) {
911 /* Wait until all IO for the context are done. */
912 wait_for_completion(&wait.comp);
913 }
914
915 RCU_INIT_POINTER(mm->ioctx_table, NULL);
916 kfree(table);
917 }
918
put_reqs_available(struct kioctx * ctx,unsigned nr)919 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
920 {
921 struct kioctx_cpu *kcpu;
922 unsigned long flags;
923
924 local_irq_save(flags);
925 kcpu = this_cpu_ptr(ctx->cpu);
926 kcpu->reqs_available += nr;
927
928 while (kcpu->reqs_available >= ctx->req_batch * 2) {
929 kcpu->reqs_available -= ctx->req_batch;
930 atomic_add(ctx->req_batch, &ctx->reqs_available);
931 }
932
933 local_irq_restore(flags);
934 }
935
__get_reqs_available(struct kioctx * ctx)936 static bool __get_reqs_available(struct kioctx *ctx)
937 {
938 struct kioctx_cpu *kcpu;
939 bool ret = false;
940 unsigned long flags;
941
942 local_irq_save(flags);
943 kcpu = this_cpu_ptr(ctx->cpu);
944 if (!kcpu->reqs_available) {
945 int old, avail = atomic_read(&ctx->reqs_available);
946
947 do {
948 if (avail < ctx->req_batch)
949 goto out;
950
951 old = avail;
952 avail = atomic_cmpxchg(&ctx->reqs_available,
953 avail, avail - ctx->req_batch);
954 } while (avail != old);
955
956 kcpu->reqs_available += ctx->req_batch;
957 }
958
959 ret = true;
960 kcpu->reqs_available--;
961 out:
962 local_irq_restore(flags);
963 return ret;
964 }
965
966 /* refill_reqs_available
967 * Updates the reqs_available reference counts used for tracking the
968 * number of free slots in the completion ring. This can be called
969 * from aio_complete() (to optimistically update reqs_available) or
970 * from aio_get_req() (the we're out of events case). It must be
971 * called holding ctx->completion_lock.
972 */
refill_reqs_available(struct kioctx * ctx,unsigned head,unsigned tail)973 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
974 unsigned tail)
975 {
976 unsigned events_in_ring, completed;
977
978 /* Clamp head since userland can write to it. */
979 head %= ctx->nr_events;
980 if (head <= tail)
981 events_in_ring = tail - head;
982 else
983 events_in_ring = ctx->nr_events - (head - tail);
984
985 completed = ctx->completed_events;
986 if (events_in_ring < completed)
987 completed -= events_in_ring;
988 else
989 completed = 0;
990
991 if (!completed)
992 return;
993
994 ctx->completed_events -= completed;
995 put_reqs_available(ctx, completed);
996 }
997
998 /* user_refill_reqs_available
999 * Called to refill reqs_available when aio_get_req() encounters an
1000 * out of space in the completion ring.
1001 */
user_refill_reqs_available(struct kioctx * ctx)1002 static void user_refill_reqs_available(struct kioctx *ctx)
1003 {
1004 spin_lock_irq(&ctx->completion_lock);
1005 if (ctx->completed_events) {
1006 struct aio_ring *ring;
1007 unsigned head;
1008
1009 /* Access of ring->head may race with aio_read_events_ring()
1010 * here, but that's okay since whether we read the old version
1011 * or the new version, and either will be valid. The important
1012 * part is that head cannot pass tail since we prevent
1013 * aio_complete() from updating tail by holding
1014 * ctx->completion_lock. Even if head is invalid, the check
1015 * against ctx->completed_events below will make sure we do the
1016 * safe/right thing.
1017 */
1018 ring = kmap_atomic(ctx->ring_pages[0]);
1019 head = ring->head;
1020 kunmap_atomic(ring);
1021
1022 refill_reqs_available(ctx, head, ctx->tail);
1023 }
1024
1025 spin_unlock_irq(&ctx->completion_lock);
1026 }
1027
get_reqs_available(struct kioctx * ctx)1028 static bool get_reqs_available(struct kioctx *ctx)
1029 {
1030 if (__get_reqs_available(ctx))
1031 return true;
1032 user_refill_reqs_available(ctx);
1033 return __get_reqs_available(ctx);
1034 }
1035
1036 /* aio_get_req
1037 * Allocate a slot for an aio request.
1038 * Returns NULL if no requests are free.
1039 *
1040 * The refcount is initialized to 2 - one for the async op completion,
1041 * one for the synchronous code that does this.
1042 */
aio_get_req(struct kioctx * ctx)1043 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1044 {
1045 struct aio_kiocb *req;
1046
1047 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1048 if (unlikely(!req))
1049 return NULL;
1050
1051 if (unlikely(!get_reqs_available(ctx))) {
1052 kmem_cache_free(kiocb_cachep, req);
1053 return NULL;
1054 }
1055
1056 percpu_ref_get(&ctx->reqs);
1057 req->ki_ctx = ctx;
1058 INIT_LIST_HEAD(&req->ki_list);
1059 refcount_set(&req->ki_refcnt, 2);
1060 req->ki_eventfd = NULL;
1061 return req;
1062 }
1063
lookup_ioctx(unsigned long ctx_id)1064 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1065 {
1066 struct aio_ring __user *ring = (void __user *)ctx_id;
1067 struct mm_struct *mm = current->mm;
1068 struct kioctx *ctx, *ret = NULL;
1069 struct kioctx_table *table;
1070 unsigned id;
1071
1072 if (get_user(id, &ring->id))
1073 return NULL;
1074
1075 rcu_read_lock();
1076 table = rcu_dereference(mm->ioctx_table);
1077
1078 if (!table || id >= table->nr)
1079 goto out;
1080
1081 id = array_index_nospec(id, table->nr);
1082 ctx = rcu_dereference(table->table[id]);
1083 if (ctx && ctx->user_id == ctx_id) {
1084 if (percpu_ref_tryget_live(&ctx->users))
1085 ret = ctx;
1086 }
1087 out:
1088 rcu_read_unlock();
1089 return ret;
1090 }
1091
iocb_destroy(struct aio_kiocb * iocb)1092 static inline void iocb_destroy(struct aio_kiocb *iocb)
1093 {
1094 if (iocb->ki_eventfd)
1095 eventfd_ctx_put(iocb->ki_eventfd);
1096 if (iocb->ki_filp)
1097 fput(iocb->ki_filp);
1098 percpu_ref_put(&iocb->ki_ctx->reqs);
1099 kmem_cache_free(kiocb_cachep, iocb);
1100 }
1101
1102 /* aio_complete
1103 * Called when the io request on the given iocb is complete.
1104 */
aio_complete(struct aio_kiocb * iocb)1105 static void aio_complete(struct aio_kiocb *iocb)
1106 {
1107 struct kioctx *ctx = iocb->ki_ctx;
1108 struct aio_ring *ring;
1109 struct io_event *ev_page, *event;
1110 unsigned tail, pos, head;
1111 unsigned long flags;
1112
1113 /*
1114 * Add a completion event to the ring buffer. Must be done holding
1115 * ctx->completion_lock to prevent other code from messing with the tail
1116 * pointer since we might be called from irq context.
1117 */
1118 spin_lock_irqsave(&ctx->completion_lock, flags);
1119
1120 tail = ctx->tail;
1121 pos = tail + AIO_EVENTS_OFFSET;
1122
1123 if (++tail >= ctx->nr_events)
1124 tail = 0;
1125
1126 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1127 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1128
1129 *event = iocb->ki_res;
1130
1131 kunmap_atomic(ev_page);
1132 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1133
1134 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1135 (void __user *)(unsigned long)iocb->ki_res.obj,
1136 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1137
1138 /* after flagging the request as done, we
1139 * must never even look at it again
1140 */
1141 smp_wmb(); /* make event visible before updating tail */
1142
1143 ctx->tail = tail;
1144
1145 ring = kmap_atomic(ctx->ring_pages[0]);
1146 head = ring->head;
1147 ring->tail = tail;
1148 kunmap_atomic(ring);
1149 flush_dcache_page(ctx->ring_pages[0]);
1150
1151 ctx->completed_events++;
1152 if (ctx->completed_events > 1)
1153 refill_reqs_available(ctx, head, tail);
1154 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1155
1156 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1157
1158 /*
1159 * Check if the user asked us to deliver the result through an
1160 * eventfd. The eventfd_signal() function is safe to be called
1161 * from IRQ context.
1162 */
1163 if (iocb->ki_eventfd)
1164 eventfd_signal(iocb->ki_eventfd, 1);
1165
1166 /*
1167 * We have to order our ring_info tail store above and test
1168 * of the wait list below outside the wait lock. This is
1169 * like in wake_up_bit() where clearing a bit has to be
1170 * ordered with the unlocked test.
1171 */
1172 smp_mb();
1173
1174 if (waitqueue_active(&ctx->wait))
1175 wake_up(&ctx->wait);
1176 }
1177
iocb_put(struct aio_kiocb * iocb)1178 static inline void iocb_put(struct aio_kiocb *iocb)
1179 {
1180 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1181 aio_complete(iocb);
1182 iocb_destroy(iocb);
1183 }
1184 }
1185
1186 /* aio_read_events_ring
1187 * Pull an event off of the ioctx's event ring. Returns the number of
1188 * events fetched
1189 */
aio_read_events_ring(struct kioctx * ctx,struct io_event __user * event,long nr)1190 static long aio_read_events_ring(struct kioctx *ctx,
1191 struct io_event __user *event, long nr)
1192 {
1193 struct aio_ring *ring;
1194 unsigned head, tail, pos;
1195 long ret = 0;
1196 int copy_ret;
1197
1198 /*
1199 * The mutex can block and wake us up and that will cause
1200 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1201 * and repeat. This should be rare enough that it doesn't cause
1202 * peformance issues. See the comment in read_events() for more detail.
1203 */
1204 sched_annotate_sleep();
1205 mutex_lock(&ctx->ring_lock);
1206
1207 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1208 ring = kmap_atomic(ctx->ring_pages[0]);
1209 head = ring->head;
1210 tail = ring->tail;
1211 kunmap_atomic(ring);
1212
1213 /*
1214 * Ensure that once we've read the current tail pointer, that
1215 * we also see the events that were stored up to the tail.
1216 */
1217 smp_rmb();
1218
1219 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1220
1221 if (head == tail)
1222 goto out;
1223
1224 head %= ctx->nr_events;
1225 tail %= ctx->nr_events;
1226
1227 while (ret < nr) {
1228 long avail;
1229 struct io_event *ev;
1230 struct page *page;
1231
1232 avail = (head <= tail ? tail : ctx->nr_events) - head;
1233 if (head == tail)
1234 break;
1235
1236 pos = head + AIO_EVENTS_OFFSET;
1237 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1238 pos %= AIO_EVENTS_PER_PAGE;
1239
1240 avail = min(avail, nr - ret);
1241 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1242
1243 ev = kmap(page);
1244 copy_ret = copy_to_user(event + ret, ev + pos,
1245 sizeof(*ev) * avail);
1246 kunmap(page);
1247
1248 if (unlikely(copy_ret)) {
1249 ret = -EFAULT;
1250 goto out;
1251 }
1252
1253 ret += avail;
1254 head += avail;
1255 head %= ctx->nr_events;
1256 }
1257
1258 ring = kmap_atomic(ctx->ring_pages[0]);
1259 ring->head = head;
1260 kunmap_atomic(ring);
1261 flush_dcache_page(ctx->ring_pages[0]);
1262
1263 pr_debug("%li h%u t%u\n", ret, head, tail);
1264 out:
1265 mutex_unlock(&ctx->ring_lock);
1266
1267 return ret;
1268 }
1269
aio_read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,long * i)1270 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1271 struct io_event __user *event, long *i)
1272 {
1273 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1274
1275 if (ret > 0)
1276 *i += ret;
1277
1278 if (unlikely(atomic_read(&ctx->dead)))
1279 ret = -EINVAL;
1280
1281 if (!*i)
1282 *i = ret;
1283
1284 return ret < 0 || *i >= min_nr;
1285 }
1286
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,ktime_t until)1287 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1288 struct io_event __user *event,
1289 ktime_t until)
1290 {
1291 long ret = 0;
1292
1293 /*
1294 * Note that aio_read_events() is being called as the conditional - i.e.
1295 * we're calling it after prepare_to_wait() has set task state to
1296 * TASK_INTERRUPTIBLE.
1297 *
1298 * But aio_read_events() can block, and if it blocks it's going to flip
1299 * the task state back to TASK_RUNNING.
1300 *
1301 * This should be ok, provided it doesn't flip the state back to
1302 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1303 * will only happen if the mutex_lock() call blocks, and we then find
1304 * the ringbuffer empty. So in practice we should be ok, but it's
1305 * something to be aware of when touching this code.
1306 */
1307 if (until == 0)
1308 aio_read_events(ctx, min_nr, nr, event, &ret);
1309 else
1310 wait_event_interruptible_hrtimeout(ctx->wait,
1311 aio_read_events(ctx, min_nr, nr, event, &ret),
1312 until);
1313 return ret;
1314 }
1315
1316 /* sys_io_setup:
1317 * Create an aio_context capable of receiving at least nr_events.
1318 * ctxp must not point to an aio_context that already exists, and
1319 * must be initialized to 0 prior to the call. On successful
1320 * creation of the aio_context, *ctxp is filled in with the resulting
1321 * handle. May fail with -EINVAL if *ctxp is not initialized,
1322 * if the specified nr_events exceeds internal limits. May fail
1323 * with -EAGAIN if the specified nr_events exceeds the user's limit
1324 * of available events. May fail with -ENOMEM if insufficient kernel
1325 * resources are available. May fail with -EFAULT if an invalid
1326 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1327 * implemented.
1328 */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1329 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1330 {
1331 struct kioctx *ioctx = NULL;
1332 unsigned long ctx;
1333 long ret;
1334
1335 ret = get_user(ctx, ctxp);
1336 if (unlikely(ret))
1337 goto out;
1338
1339 ret = -EINVAL;
1340 if (unlikely(ctx || nr_events == 0)) {
1341 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1342 ctx, nr_events);
1343 goto out;
1344 }
1345
1346 ioctx = ioctx_alloc(nr_events);
1347 ret = PTR_ERR(ioctx);
1348 if (!IS_ERR(ioctx)) {
1349 ret = put_user(ioctx->user_id, ctxp);
1350 if (ret)
1351 kill_ioctx(current->mm, ioctx, NULL);
1352 percpu_ref_put(&ioctx->users);
1353 }
1354
1355 out:
1356 return ret;
1357 }
1358
1359 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(io_setup,unsigned,nr_events,u32 __user *,ctx32p)1360 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1361 {
1362 struct kioctx *ioctx = NULL;
1363 unsigned long ctx;
1364 long ret;
1365
1366 ret = get_user(ctx, ctx32p);
1367 if (unlikely(ret))
1368 goto out;
1369
1370 ret = -EINVAL;
1371 if (unlikely(ctx || nr_events == 0)) {
1372 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1373 ctx, nr_events);
1374 goto out;
1375 }
1376
1377 ioctx = ioctx_alloc(nr_events);
1378 ret = PTR_ERR(ioctx);
1379 if (!IS_ERR(ioctx)) {
1380 /* truncating is ok because it's a user address */
1381 ret = put_user((u32)ioctx->user_id, ctx32p);
1382 if (ret)
1383 kill_ioctx(current->mm, ioctx, NULL);
1384 percpu_ref_put(&ioctx->users);
1385 }
1386
1387 out:
1388 return ret;
1389 }
1390 #endif
1391
1392 /* sys_io_destroy:
1393 * Destroy the aio_context specified. May cancel any outstanding
1394 * AIOs and block on completion. Will fail with -ENOSYS if not
1395 * implemented. May fail with -EINVAL if the context pointed to
1396 * is invalid.
1397 */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1398 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1399 {
1400 struct kioctx *ioctx = lookup_ioctx(ctx);
1401 if (likely(NULL != ioctx)) {
1402 struct ctx_rq_wait wait;
1403 int ret;
1404
1405 init_completion(&wait.comp);
1406 atomic_set(&wait.count, 1);
1407
1408 /* Pass requests_done to kill_ioctx() where it can be set
1409 * in a thread-safe way. If we try to set it here then we have
1410 * a race condition if two io_destroy() called simultaneously.
1411 */
1412 ret = kill_ioctx(current->mm, ioctx, &wait);
1413 percpu_ref_put(&ioctx->users);
1414
1415 /* Wait until all IO for the context are done. Otherwise kernel
1416 * keep using user-space buffers even if user thinks the context
1417 * is destroyed.
1418 */
1419 if (!ret)
1420 wait_for_completion(&wait.comp);
1421
1422 return ret;
1423 }
1424 pr_debug("EINVAL: invalid context id\n");
1425 return -EINVAL;
1426 }
1427
aio_remove_iocb(struct aio_kiocb * iocb)1428 static void aio_remove_iocb(struct aio_kiocb *iocb)
1429 {
1430 struct kioctx *ctx = iocb->ki_ctx;
1431 unsigned long flags;
1432
1433 spin_lock_irqsave(&ctx->ctx_lock, flags);
1434 list_del(&iocb->ki_list);
1435 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1436 }
1437
aio_complete_rw(struct kiocb * kiocb,long res,long res2)1438 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1439 {
1440 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1441
1442 if (!list_empty_careful(&iocb->ki_list))
1443 aio_remove_iocb(iocb);
1444
1445 if (kiocb->ki_flags & IOCB_WRITE) {
1446 struct inode *inode = file_inode(kiocb->ki_filp);
1447
1448 /*
1449 * Tell lockdep we inherited freeze protection from submission
1450 * thread.
1451 */
1452 if (S_ISREG(inode->i_mode))
1453 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1454 file_end_write(kiocb->ki_filp);
1455 }
1456
1457 iocb->ki_res.res = res;
1458 iocb->ki_res.res2 = res2;
1459 iocb_put(iocb);
1460 }
1461
aio_prep_rw(struct kiocb * req,const struct iocb * iocb)1462 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1463 {
1464 int ret;
1465
1466 req->ki_complete = aio_complete_rw;
1467 req->private = NULL;
1468 req->ki_pos = iocb->aio_offset;
1469 req->ki_flags = iocb_flags(req->ki_filp) | IOCB_AIO_RW;
1470 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1471 req->ki_flags |= IOCB_EVENTFD;
1472 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1473 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1474 /*
1475 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1476 * aio_reqprio is interpreted as an I/O scheduling
1477 * class and priority.
1478 */
1479 ret = ioprio_check_cap(iocb->aio_reqprio);
1480 if (ret) {
1481 pr_debug("aio ioprio check cap error: %d\n", ret);
1482 return ret;
1483 }
1484
1485 req->ki_ioprio = iocb->aio_reqprio;
1486 } else
1487 req->ki_ioprio = get_current_ioprio();
1488
1489 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1490 if (unlikely(ret))
1491 return ret;
1492
1493 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1494 return 0;
1495 }
1496
aio_setup_rw(int rw,const struct iocb * iocb,struct iovec ** iovec,bool vectored,bool compat,struct iov_iter * iter)1497 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1498 struct iovec **iovec, bool vectored, bool compat,
1499 struct iov_iter *iter)
1500 {
1501 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1502 size_t len = iocb->aio_nbytes;
1503
1504 if (!vectored) {
1505 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1506 *iovec = NULL;
1507 return ret;
1508 }
1509 #ifdef CONFIG_COMPAT
1510 if (compat)
1511 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1512 iter);
1513 #endif
1514 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1515 }
1516
aio_rw_done(struct kiocb * req,ssize_t ret)1517 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1518 {
1519 switch (ret) {
1520 case -EIOCBQUEUED:
1521 break;
1522 case -ERESTARTSYS:
1523 case -ERESTARTNOINTR:
1524 case -ERESTARTNOHAND:
1525 case -ERESTART_RESTARTBLOCK:
1526 /*
1527 * There's no easy way to restart the syscall since other AIO's
1528 * may be already running. Just fail this IO with EINTR.
1529 */
1530 ret = -EINTR;
1531 /*FALLTHRU*/
1532 default:
1533 req->ki_complete(req, ret, 0);
1534 }
1535 }
1536
aio_read(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1537 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1538 bool vectored, bool compat)
1539 {
1540 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1541 struct iov_iter iter;
1542 struct file *file;
1543 int ret;
1544
1545 ret = aio_prep_rw(req, iocb);
1546 if (ret)
1547 return ret;
1548 file = req->ki_filp;
1549 if (unlikely(!(file->f_mode & FMODE_READ)))
1550 return -EBADF;
1551 ret = -EINVAL;
1552 if (unlikely(!file->f_op->read_iter))
1553 return -EINVAL;
1554
1555 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1556 if (ret < 0)
1557 return ret;
1558 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1559 if (!ret)
1560 aio_rw_done(req, call_read_iter(file, req, &iter));
1561 kfree(iovec);
1562 return ret;
1563 }
1564
aio_write(struct kiocb * req,const struct iocb * iocb,bool vectored,bool compat)1565 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1566 bool vectored, bool compat)
1567 {
1568 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1569 struct iov_iter iter;
1570 struct file *file;
1571 int ret;
1572
1573 ret = aio_prep_rw(req, iocb);
1574 if (ret)
1575 return ret;
1576 file = req->ki_filp;
1577
1578 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1579 return -EBADF;
1580 if (unlikely(!file->f_op->write_iter))
1581 return -EINVAL;
1582
1583 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1584 if (ret < 0)
1585 return ret;
1586 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1587 if (!ret) {
1588 /*
1589 * Open-code file_start_write here to grab freeze protection,
1590 * which will be released by another thread in
1591 * aio_complete_rw(). Fool lockdep by telling it the lock got
1592 * released so that it doesn't complain about the held lock when
1593 * we return to userspace.
1594 */
1595 if (S_ISREG(file_inode(file)->i_mode)) {
1596 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1597 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1598 }
1599 req->ki_flags |= IOCB_WRITE;
1600 aio_rw_done(req, call_write_iter(file, req, &iter));
1601 }
1602 kfree(iovec);
1603 return ret;
1604 }
1605
aio_fsync_work(struct work_struct * work)1606 static void aio_fsync_work(struct work_struct *work)
1607 {
1608 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1609 const struct cred *old_cred = override_creds(iocb->fsync.creds);
1610
1611 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1612 revert_creds(old_cred);
1613 put_cred(iocb->fsync.creds);
1614 iocb_put(iocb);
1615 }
1616
aio_fsync(struct fsync_iocb * req,const struct iocb * iocb,bool datasync)1617 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1618 bool datasync)
1619 {
1620 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1621 iocb->aio_rw_flags))
1622 return -EINVAL;
1623
1624 if (unlikely(!req->file->f_op->fsync))
1625 return -EINVAL;
1626
1627 req->creds = prepare_creds();
1628 if (!req->creds)
1629 return -ENOMEM;
1630
1631 req->datasync = datasync;
1632 INIT_WORK(&req->work, aio_fsync_work);
1633 schedule_work(&req->work);
1634 return 0;
1635 }
1636
aio_poll_put_work(struct work_struct * work)1637 static void aio_poll_put_work(struct work_struct *work)
1638 {
1639 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1640 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1641
1642 iocb_put(iocb);
1643 }
1644
1645 /*
1646 * Safely lock the waitqueue which the request is on, synchronizing with the
1647 * case where the ->poll() provider decides to free its waitqueue early.
1648 *
1649 * Returns true on success, meaning that req->head->lock was locked, req->wait
1650 * is on req->head, and an RCU read lock was taken. Returns false if the
1651 * request was already removed from its waitqueue (which might no longer exist).
1652 */
poll_iocb_lock_wq(struct poll_iocb * req)1653 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1654 {
1655 wait_queue_head_t *head;
1656
1657 /*
1658 * While we hold the waitqueue lock and the waitqueue is nonempty,
1659 * wake_up_pollfree() will wait for us. However, taking the waitqueue
1660 * lock in the first place can race with the waitqueue being freed.
1661 *
1662 * We solve this as eventpoll does: by taking advantage of the fact that
1663 * all users of wake_up_pollfree() will RCU-delay the actual free. If
1664 * we enter rcu_read_lock() and see that the pointer to the queue is
1665 * non-NULL, we can then lock it without the memory being freed out from
1666 * under us, then check whether the request is still on the queue.
1667 *
1668 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1669 * case the caller deletes the entry from the queue, leaving it empty.
1670 * In that case, only RCU prevents the queue memory from being freed.
1671 */
1672 rcu_read_lock();
1673 head = smp_load_acquire(&req->head);
1674 if (head) {
1675 spin_lock(&head->lock);
1676 if (!list_empty(&req->wait.entry))
1677 return true;
1678 spin_unlock(&head->lock);
1679 }
1680 rcu_read_unlock();
1681 return false;
1682 }
1683
poll_iocb_unlock_wq(struct poll_iocb * req)1684 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1685 {
1686 spin_unlock(&req->head->lock);
1687 rcu_read_unlock();
1688 }
1689
aio_poll_complete_work(struct work_struct * work)1690 static void aio_poll_complete_work(struct work_struct *work)
1691 {
1692 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1693 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1694 struct poll_table_struct pt = { ._key = req->events };
1695 struct kioctx *ctx = iocb->ki_ctx;
1696 __poll_t mask = 0;
1697
1698 if (!READ_ONCE(req->cancelled))
1699 mask = vfs_poll(req->file, &pt) & req->events;
1700
1701 /*
1702 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1703 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1704 * synchronize with them. In the cancellation case the list_del_init
1705 * itself is not actually needed, but harmless so we keep it in to
1706 * avoid further branches in the fast path.
1707 */
1708 spin_lock_irq(&ctx->ctx_lock);
1709 if (poll_iocb_lock_wq(req)) {
1710 if (!mask && !READ_ONCE(req->cancelled)) {
1711 /*
1712 * The request isn't actually ready to be completed yet.
1713 * Reschedule completion if another wakeup came in.
1714 */
1715 if (req->work_need_resched) {
1716 schedule_work(&req->work);
1717 req->work_need_resched = false;
1718 } else {
1719 req->work_scheduled = false;
1720 }
1721 poll_iocb_unlock_wq(req);
1722 spin_unlock_irq(&ctx->ctx_lock);
1723 return;
1724 }
1725 list_del_init(&req->wait.entry);
1726 poll_iocb_unlock_wq(req);
1727 } /* else, POLLFREE has freed the waitqueue, so we must complete */
1728 list_del_init(&iocb->ki_list);
1729 iocb->ki_res.res = mangle_poll(mask);
1730 spin_unlock_irq(&ctx->ctx_lock);
1731
1732 iocb_put(iocb);
1733 }
1734
1735 /* assumes we are called with irqs disabled */
aio_poll_cancel(struct kiocb * iocb)1736 static int aio_poll_cancel(struct kiocb *iocb)
1737 {
1738 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1739 struct poll_iocb *req = &aiocb->poll;
1740
1741 if (poll_iocb_lock_wq(req)) {
1742 WRITE_ONCE(req->cancelled, true);
1743 if (!req->work_scheduled) {
1744 schedule_work(&aiocb->poll.work);
1745 req->work_scheduled = true;
1746 }
1747 poll_iocb_unlock_wq(req);
1748 } /* else, the request was force-cancelled by POLLFREE already */
1749
1750 return 0;
1751 }
1752
aio_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)1753 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1754 void *key)
1755 {
1756 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1757 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1758 __poll_t mask = key_to_poll(key);
1759 unsigned long flags;
1760
1761 /* for instances that support it check for an event match first: */
1762 if (mask && !(mask & req->events))
1763 return 0;
1764
1765 /*
1766 * Complete the request inline if possible. This requires that three
1767 * conditions be met:
1768 * 1. An event mask must have been passed. If a plain wakeup was done
1769 * instead, then mask == 0 and we have to call vfs_poll() to get
1770 * the events, so inline completion isn't possible.
1771 * 2. The completion work must not have already been scheduled.
1772 * 3. ctx_lock must not be busy. We have to use trylock because we
1773 * already hold the waitqueue lock, so this inverts the normal
1774 * locking order. Use irqsave/irqrestore because not all
1775 * filesystems (e.g. fuse) call this function with IRQs disabled,
1776 * yet IRQs have to be disabled before ctx_lock is obtained.
1777 */
1778 if (mask && !req->work_scheduled &&
1779 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1780 struct kioctx *ctx = iocb->ki_ctx;
1781
1782 list_del_init(&req->wait.entry);
1783 list_del(&iocb->ki_list);
1784 iocb->ki_res.res = mangle_poll(mask);
1785 if (iocb->ki_eventfd && eventfd_signal_count()) {
1786 iocb = NULL;
1787 INIT_WORK(&req->work, aio_poll_put_work);
1788 schedule_work(&req->work);
1789 }
1790 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1791 if (iocb)
1792 iocb_put(iocb);
1793 } else {
1794 /*
1795 * Schedule the completion work if needed. If it was already
1796 * scheduled, record that another wakeup came in.
1797 *
1798 * Don't remove the request from the waitqueue here, as it might
1799 * not actually be complete yet (we won't know until vfs_poll()
1800 * is called), and we must not miss any wakeups. POLLFREE is an
1801 * exception to this; see below.
1802 */
1803 if (req->work_scheduled) {
1804 req->work_need_resched = true;
1805 } else {
1806 schedule_work(&req->work);
1807 req->work_scheduled = true;
1808 }
1809
1810 /*
1811 * If the waitqueue is being freed early but we can't complete
1812 * the request inline, we have to tear down the request as best
1813 * we can. That means immediately removing the request from its
1814 * waitqueue and preventing all further accesses to the
1815 * waitqueue via the request. We also need to schedule the
1816 * completion work (done above). Also mark the request as
1817 * cancelled, to potentially skip an unneeded call to ->poll().
1818 */
1819 if (mask & POLLFREE) {
1820 WRITE_ONCE(req->cancelled, true);
1821 list_del_init(&req->wait.entry);
1822
1823 /*
1824 * Careful: this *must* be the last step, since as soon
1825 * as req->head is NULL'ed out, the request can be
1826 * completed and freed, since aio_poll_complete_work()
1827 * will no longer need to take the waitqueue lock.
1828 */
1829 smp_store_release(&req->head, NULL);
1830 }
1831 }
1832 return 1;
1833 }
1834
1835 struct aio_poll_table {
1836 struct poll_table_struct pt;
1837 struct aio_kiocb *iocb;
1838 bool queued;
1839 int error;
1840 };
1841
1842 static void
aio_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)1843 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1844 struct poll_table_struct *p)
1845 {
1846 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1847
1848 /* multiple wait queues per file are not supported */
1849 if (unlikely(pt->queued)) {
1850 pt->error = -EINVAL;
1851 return;
1852 }
1853
1854 pt->queued = true;
1855 pt->error = 0;
1856 pt->iocb->poll.head = head;
1857 add_wait_queue(head, &pt->iocb->poll.wait);
1858 }
1859
aio_poll(struct aio_kiocb * aiocb,const struct iocb * iocb)1860 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1861 {
1862 struct kioctx *ctx = aiocb->ki_ctx;
1863 struct poll_iocb *req = &aiocb->poll;
1864 struct aio_poll_table apt;
1865 bool cancel = false;
1866 __poll_t mask;
1867
1868 /* reject any unknown events outside the normal event mask. */
1869 if ((u16)iocb->aio_buf != iocb->aio_buf)
1870 return -EINVAL;
1871 /* reject fields that are not defined for poll */
1872 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1873 return -EINVAL;
1874
1875 INIT_WORK(&req->work, aio_poll_complete_work);
1876 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1877
1878 req->head = NULL;
1879 req->cancelled = false;
1880 req->work_scheduled = false;
1881 req->work_need_resched = false;
1882
1883 apt.pt._qproc = aio_poll_queue_proc;
1884 apt.pt._key = req->events;
1885 apt.iocb = aiocb;
1886 apt.queued = false;
1887 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1888
1889 /* initialized the list so that we can do list_empty checks */
1890 INIT_LIST_HEAD(&req->wait.entry);
1891 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1892
1893 mask = vfs_poll(req->file, &apt.pt) & req->events;
1894 spin_lock_irq(&ctx->ctx_lock);
1895 if (likely(apt.queued)) {
1896 bool on_queue = poll_iocb_lock_wq(req);
1897
1898 if (!on_queue || req->work_scheduled) {
1899 /*
1900 * aio_poll_wake() already either scheduled the async
1901 * completion work, or completed the request inline.
1902 */
1903 if (apt.error) /* unsupported case: multiple queues */
1904 cancel = true;
1905 apt.error = 0;
1906 mask = 0;
1907 }
1908 if (mask || apt.error) {
1909 /* Steal to complete synchronously. */
1910 list_del_init(&req->wait.entry);
1911 } else if (cancel) {
1912 /* Cancel if possible (may be too late though). */
1913 WRITE_ONCE(req->cancelled, true);
1914 } else if (on_queue) {
1915 /*
1916 * Actually waiting for an event, so add the request to
1917 * active_reqs so that it can be cancelled if needed.
1918 */
1919 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1920 aiocb->ki_cancel = aio_poll_cancel;
1921 }
1922 if (on_queue)
1923 poll_iocb_unlock_wq(req);
1924 }
1925 if (mask) { /* no async, we'd stolen it */
1926 aiocb->ki_res.res = mangle_poll(mask);
1927 apt.error = 0;
1928 }
1929 spin_unlock_irq(&ctx->ctx_lock);
1930 if (mask)
1931 iocb_put(aiocb);
1932 return apt.error;
1933 }
1934
__io_submit_one(struct kioctx * ctx,const struct iocb * iocb,struct iocb __user * user_iocb,struct aio_kiocb * req,bool compat)1935 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1936 struct iocb __user *user_iocb, struct aio_kiocb *req,
1937 bool compat)
1938 {
1939 req->ki_filp = fget(iocb->aio_fildes);
1940 if (unlikely(!req->ki_filp))
1941 return -EBADF;
1942
1943 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1944 struct eventfd_ctx *eventfd;
1945 /*
1946 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1947 * instance of the file* now. The file descriptor must be
1948 * an eventfd() fd, and will be signaled for each completed
1949 * event using the eventfd_signal() function.
1950 */
1951 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1952 if (IS_ERR(eventfd))
1953 return PTR_ERR(eventfd);
1954
1955 req->ki_eventfd = eventfd;
1956 }
1957
1958 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1959 pr_debug("EFAULT: aio_key\n");
1960 return -EFAULT;
1961 }
1962
1963 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1964 req->ki_res.data = iocb->aio_data;
1965 req->ki_res.res = 0;
1966 req->ki_res.res2 = 0;
1967
1968 switch (iocb->aio_lio_opcode) {
1969 case IOCB_CMD_PREAD:
1970 return aio_read(&req->rw, iocb, false, compat);
1971 case IOCB_CMD_PWRITE:
1972 return aio_write(&req->rw, iocb, false, compat);
1973 case IOCB_CMD_PREADV:
1974 return aio_read(&req->rw, iocb, true, compat);
1975 case IOCB_CMD_PWRITEV:
1976 return aio_write(&req->rw, iocb, true, compat);
1977 case IOCB_CMD_FSYNC:
1978 return aio_fsync(&req->fsync, iocb, false);
1979 case IOCB_CMD_FDSYNC:
1980 return aio_fsync(&req->fsync, iocb, true);
1981 case IOCB_CMD_POLL:
1982 return aio_poll(req, iocb);
1983 default:
1984 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1985 return -EINVAL;
1986 }
1987 }
1988
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,bool compat)1989 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1990 bool compat)
1991 {
1992 struct aio_kiocb *req;
1993 struct iocb iocb;
1994 int err;
1995
1996 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1997 return -EFAULT;
1998
1999 /* enforce forwards compatibility on users */
2000 if (unlikely(iocb.aio_reserved2)) {
2001 pr_debug("EINVAL: reserve field set\n");
2002 return -EINVAL;
2003 }
2004
2005 /* prevent overflows */
2006 if (unlikely(
2007 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2008 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2009 ((ssize_t)iocb.aio_nbytes < 0)
2010 )) {
2011 pr_debug("EINVAL: overflow check\n");
2012 return -EINVAL;
2013 }
2014
2015 req = aio_get_req(ctx);
2016 if (unlikely(!req))
2017 return -EAGAIN;
2018
2019 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2020
2021 /* Done with the synchronous reference */
2022 iocb_put(req);
2023
2024 /*
2025 * If err is 0, we'd either done aio_complete() ourselves or have
2026 * arranged for that to be done asynchronously. Anything non-zero
2027 * means that we need to destroy req ourselves.
2028 */
2029 if (unlikely(err)) {
2030 iocb_destroy(req);
2031 put_reqs_available(ctx, 1);
2032 }
2033 return err;
2034 }
2035
2036 /* sys_io_submit:
2037 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
2038 * the number of iocbs queued. May return -EINVAL if the aio_context
2039 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
2040 * *iocbpp[0] is not properly initialized, if the operation specified
2041 * is invalid for the file descriptor in the iocb. May fail with
2042 * -EFAULT if any of the data structures point to invalid data. May
2043 * fail with -EBADF if the file descriptor specified in the first
2044 * iocb is invalid. May fail with -EAGAIN if insufficient resources
2045 * are available to queue any iocbs. Will return 0 if nr is 0. Will
2046 * fail with -ENOSYS if not implemented.
2047 */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)2048 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2049 struct iocb __user * __user *, iocbpp)
2050 {
2051 struct kioctx *ctx;
2052 long ret = 0;
2053 int i = 0;
2054 struct blk_plug plug;
2055
2056 if (unlikely(nr < 0))
2057 return -EINVAL;
2058
2059 ctx = lookup_ioctx(ctx_id);
2060 if (unlikely(!ctx)) {
2061 pr_debug("EINVAL: invalid context id\n");
2062 return -EINVAL;
2063 }
2064
2065 if (nr > ctx->nr_events)
2066 nr = ctx->nr_events;
2067
2068 if (nr > AIO_PLUG_THRESHOLD)
2069 blk_start_plug(&plug);
2070 for (i = 0; i < nr; i++) {
2071 struct iocb __user *user_iocb;
2072
2073 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2074 ret = -EFAULT;
2075 break;
2076 }
2077
2078 ret = io_submit_one(ctx, user_iocb, false);
2079 if (ret)
2080 break;
2081 }
2082 if (nr > AIO_PLUG_THRESHOLD)
2083 blk_finish_plug(&plug);
2084
2085 percpu_ref_put(&ctx->users);
2086 return i ? i : ret;
2087 }
2088
2089 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(io_submit,compat_aio_context_t,ctx_id,int,nr,compat_uptr_t __user *,iocbpp)2090 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2091 int, nr, compat_uptr_t __user *, iocbpp)
2092 {
2093 struct kioctx *ctx;
2094 long ret = 0;
2095 int i = 0;
2096 struct blk_plug plug;
2097
2098 if (unlikely(nr < 0))
2099 return -EINVAL;
2100
2101 ctx = lookup_ioctx(ctx_id);
2102 if (unlikely(!ctx)) {
2103 pr_debug("EINVAL: invalid context id\n");
2104 return -EINVAL;
2105 }
2106
2107 if (nr > ctx->nr_events)
2108 nr = ctx->nr_events;
2109
2110 if (nr > AIO_PLUG_THRESHOLD)
2111 blk_start_plug(&plug);
2112 for (i = 0; i < nr; i++) {
2113 compat_uptr_t user_iocb;
2114
2115 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2116 ret = -EFAULT;
2117 break;
2118 }
2119
2120 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2121 if (ret)
2122 break;
2123 }
2124 if (nr > AIO_PLUG_THRESHOLD)
2125 blk_finish_plug(&plug);
2126
2127 percpu_ref_put(&ctx->users);
2128 return i ? i : ret;
2129 }
2130 #endif
2131
2132 /* sys_io_cancel:
2133 * Attempts to cancel an iocb previously passed to io_submit. If
2134 * the operation is successfully cancelled, the resulting event is
2135 * copied into the memory pointed to by result without being placed
2136 * into the completion queue and 0 is returned. May fail with
2137 * -EFAULT if any of the data structures pointed to are invalid.
2138 * May fail with -EINVAL if aio_context specified by ctx_id is
2139 * invalid. May fail with -EAGAIN if the iocb specified was not
2140 * cancelled. Will fail with -ENOSYS if not implemented.
2141 */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)2142 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2143 struct io_event __user *, result)
2144 {
2145 struct kioctx *ctx;
2146 struct aio_kiocb *kiocb;
2147 int ret = -EINVAL;
2148 u32 key;
2149 u64 obj = (u64)(unsigned long)iocb;
2150
2151 if (unlikely(get_user(key, &iocb->aio_key)))
2152 return -EFAULT;
2153 if (unlikely(key != KIOCB_KEY))
2154 return -EINVAL;
2155
2156 ctx = lookup_ioctx(ctx_id);
2157 if (unlikely(!ctx))
2158 return -EINVAL;
2159
2160 spin_lock_irq(&ctx->ctx_lock);
2161 /* TODO: use a hash or array, this sucks. */
2162 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2163 if (kiocb->ki_res.obj == obj) {
2164 ret = kiocb->ki_cancel(&kiocb->rw);
2165 list_del_init(&kiocb->ki_list);
2166 break;
2167 }
2168 }
2169 spin_unlock_irq(&ctx->ctx_lock);
2170
2171 if (!ret) {
2172 /*
2173 * The result argument is no longer used - the io_event is
2174 * always delivered via the ring buffer. -EINPROGRESS indicates
2175 * cancellation is progress:
2176 */
2177 ret = -EINPROGRESS;
2178 }
2179
2180 percpu_ref_put(&ctx->users);
2181
2182 return ret;
2183 }
2184
do_io_getevents(aio_context_t ctx_id,long min_nr,long nr,struct io_event __user * events,struct timespec64 * ts)2185 static long do_io_getevents(aio_context_t ctx_id,
2186 long min_nr,
2187 long nr,
2188 struct io_event __user *events,
2189 struct timespec64 *ts)
2190 {
2191 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2192 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2193 long ret = -EINVAL;
2194
2195 if (likely(ioctx)) {
2196 if (likely(min_nr <= nr && min_nr >= 0))
2197 ret = read_events(ioctx, min_nr, nr, events, until);
2198 percpu_ref_put(&ioctx->users);
2199 }
2200
2201 return ret;
2202 }
2203
2204 /* io_getevents:
2205 * Attempts to read at least min_nr events and up to nr events from
2206 * the completion queue for the aio_context specified by ctx_id. If
2207 * it succeeds, the number of read events is returned. May fail with
2208 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2209 * out of range, if timeout is out of range. May fail with -EFAULT
2210 * if any of the memory specified is invalid. May return 0 or
2211 * < min_nr if the timeout specified by timeout has elapsed
2212 * before sufficient events are available, where timeout == NULL
2213 * specifies an infinite timeout. Note that the timeout pointed to by
2214 * timeout is relative. Will fail with -ENOSYS if not implemented.
2215 */
2216 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
2217
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout)2218 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2219 long, min_nr,
2220 long, nr,
2221 struct io_event __user *, events,
2222 struct __kernel_timespec __user *, timeout)
2223 {
2224 struct timespec64 ts;
2225 int ret;
2226
2227 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2228 return -EFAULT;
2229
2230 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2231 if (!ret && signal_pending(current))
2232 ret = -EINTR;
2233 return ret;
2234 }
2235
2236 #endif
2237
2238 struct __aio_sigset {
2239 const sigset_t __user *sigmask;
2240 size_t sigsetsize;
2241 };
2242
SYSCALL_DEFINE6(io_pgetevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __aio_sigset __user *,usig)2243 SYSCALL_DEFINE6(io_pgetevents,
2244 aio_context_t, ctx_id,
2245 long, min_nr,
2246 long, nr,
2247 struct io_event __user *, events,
2248 struct __kernel_timespec __user *, timeout,
2249 const struct __aio_sigset __user *, usig)
2250 {
2251 struct __aio_sigset ksig = { NULL, };
2252 struct timespec64 ts;
2253 bool interrupted;
2254 int ret;
2255
2256 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2257 return -EFAULT;
2258
2259 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2260 return -EFAULT;
2261
2262 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2263 if (ret)
2264 return ret;
2265
2266 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2267
2268 interrupted = signal_pending(current);
2269 restore_saved_sigmask_unless(interrupted);
2270 if (interrupted && !ret)
2271 ret = -ERESTARTNOHAND;
2272
2273 return ret;
2274 }
2275
2276 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2277
SYSCALL_DEFINE6(io_pgetevents_time32,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __aio_sigset __user *,usig)2278 SYSCALL_DEFINE6(io_pgetevents_time32,
2279 aio_context_t, ctx_id,
2280 long, min_nr,
2281 long, nr,
2282 struct io_event __user *, events,
2283 struct old_timespec32 __user *, timeout,
2284 const struct __aio_sigset __user *, usig)
2285 {
2286 struct __aio_sigset ksig = { NULL, };
2287 struct timespec64 ts;
2288 bool interrupted;
2289 int ret;
2290
2291 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2292 return -EFAULT;
2293
2294 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2295 return -EFAULT;
2296
2297
2298 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2299 if (ret)
2300 return ret;
2301
2302 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2303
2304 interrupted = signal_pending(current);
2305 restore_saved_sigmask_unless(interrupted);
2306 if (interrupted && !ret)
2307 ret = -ERESTARTNOHAND;
2308
2309 return ret;
2310 }
2311
2312 #endif
2313
2314 #if defined(CONFIG_COMPAT_32BIT_TIME)
2315
SYSCALL_DEFINE5(io_getevents_time32,__u32,ctx_id,__s32,min_nr,__s32,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout)2316 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2317 __s32, min_nr,
2318 __s32, nr,
2319 struct io_event __user *, events,
2320 struct old_timespec32 __user *, timeout)
2321 {
2322 struct timespec64 t;
2323 int ret;
2324
2325 if (timeout && get_old_timespec32(&t, timeout))
2326 return -EFAULT;
2327
2328 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2329 if (!ret && signal_pending(current))
2330 ret = -EINTR;
2331 return ret;
2332 }
2333
2334 #endif
2335
2336 #ifdef CONFIG_COMPAT
2337
2338 struct __compat_aio_sigset {
2339 compat_uptr_t sigmask;
2340 compat_size_t sigsetsize;
2341 };
2342
2343 #if defined(CONFIG_COMPAT_32BIT_TIME)
2344
COMPAT_SYSCALL_DEFINE6(io_pgetevents,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct old_timespec32 __user *,timeout,const struct __compat_aio_sigset __user *,usig)2345 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2346 compat_aio_context_t, ctx_id,
2347 compat_long_t, min_nr,
2348 compat_long_t, nr,
2349 struct io_event __user *, events,
2350 struct old_timespec32 __user *, timeout,
2351 const struct __compat_aio_sigset __user *, usig)
2352 {
2353 struct __compat_aio_sigset ksig = { 0, };
2354 struct timespec64 t;
2355 bool interrupted;
2356 int ret;
2357
2358 if (timeout && get_old_timespec32(&t, timeout))
2359 return -EFAULT;
2360
2361 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2362 return -EFAULT;
2363
2364 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2365 if (ret)
2366 return ret;
2367
2368 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2369
2370 interrupted = signal_pending(current);
2371 restore_saved_sigmask_unless(interrupted);
2372 if (interrupted && !ret)
2373 ret = -ERESTARTNOHAND;
2374
2375 return ret;
2376 }
2377
2378 #endif
2379
COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct __kernel_timespec __user *,timeout,const struct __compat_aio_sigset __user *,usig)2380 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2381 compat_aio_context_t, ctx_id,
2382 compat_long_t, min_nr,
2383 compat_long_t, nr,
2384 struct io_event __user *, events,
2385 struct __kernel_timespec __user *, timeout,
2386 const struct __compat_aio_sigset __user *, usig)
2387 {
2388 struct __compat_aio_sigset ksig = { 0, };
2389 struct timespec64 t;
2390 bool interrupted;
2391 int ret;
2392
2393 if (timeout && get_timespec64(&t, timeout))
2394 return -EFAULT;
2395
2396 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2397 return -EFAULT;
2398
2399 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2400 if (ret)
2401 return ret;
2402
2403 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2404
2405 interrupted = signal_pending(current);
2406 restore_saved_sigmask_unless(interrupted);
2407 if (interrupted && !ret)
2408 ret = -ERESTARTNOHAND;
2409
2410 return ret;
2411 }
2412 #endif
2413