1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30
31 int sysctl_unprivileged_userfaultfd __read_mostly = 1;
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 /*
36 * Start with fault_pending_wqh and fault_wqh so they're more likely
37 * to be in the same cacheline.
38 *
39 * Locking order:
40 * fd_wqh.lock
41 * fault_pending_wqh.lock
42 * fault_wqh.lock
43 * event_wqh.lock
44 *
45 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
46 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
47 * also taken in IRQ context.
48 */
49 struct userfaultfd_ctx {
50 /* waitqueue head for the pending (i.e. not read) userfaults */
51 wait_queue_head_t fault_pending_wqh;
52 /* waitqueue head for the userfaults */
53 wait_queue_head_t fault_wqh;
54 /* waitqueue head for the pseudo fd to wakeup poll/read */
55 wait_queue_head_t fd_wqh;
56 /* waitqueue head for events */
57 wait_queue_head_t event_wqh;
58 /* a refile sequence protected by fault_pending_wqh lock */
59 struct seqcount refile_seq;
60 /* pseudo fd refcounting */
61 refcount_t refcount;
62 /* userfaultfd syscall flags */
63 unsigned int flags;
64 /* features requested from the userspace */
65 unsigned int features;
66 /* released */
67 bool released;
68 /* memory mappings are changing because of non-cooperative event */
69 bool mmap_changing;
70 /* mm with one ore more vmas attached to this userfaultfd_ctx */
71 struct mm_struct *mm;
72 };
73
74 struct userfaultfd_fork_ctx {
75 struct userfaultfd_ctx *orig;
76 struct userfaultfd_ctx *new;
77 struct list_head list;
78 };
79
80 struct userfaultfd_unmap_ctx {
81 struct userfaultfd_ctx *ctx;
82 unsigned long start;
83 unsigned long end;
84 struct list_head list;
85 };
86
87 struct userfaultfd_wait_queue {
88 struct uffd_msg msg;
89 wait_queue_entry_t wq;
90 struct userfaultfd_ctx *ctx;
91 bool waken;
92 };
93
94 struct userfaultfd_wake_range {
95 unsigned long start;
96 unsigned long len;
97 };
98
99 /* internal indication that UFFD_API ioctl was successfully executed */
100 #define UFFD_FEATURE_INITIALIZED (1u << 31)
101
userfaultfd_is_initialized(struct userfaultfd_ctx * ctx)102 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
103 {
104 return ctx->features & UFFD_FEATURE_INITIALIZED;
105 }
106
userfaultfd_wake_function(wait_queue_entry_t * wq,unsigned mode,int wake_flags,void * key)107 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
108 int wake_flags, void *key)
109 {
110 struct userfaultfd_wake_range *range = key;
111 int ret;
112 struct userfaultfd_wait_queue *uwq;
113 unsigned long start, len;
114
115 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
116 ret = 0;
117 /* len == 0 means wake all */
118 start = range->start;
119 len = range->len;
120 if (len && (start > uwq->msg.arg.pagefault.address ||
121 start + len <= uwq->msg.arg.pagefault.address))
122 goto out;
123 WRITE_ONCE(uwq->waken, true);
124 /*
125 * The Program-Order guarantees provided by the scheduler
126 * ensure uwq->waken is visible before the task is woken.
127 */
128 ret = wake_up_state(wq->private, mode);
129 if (ret) {
130 /*
131 * Wake only once, autoremove behavior.
132 *
133 * After the effect of list_del_init is visible to the other
134 * CPUs, the waitqueue may disappear from under us, see the
135 * !list_empty_careful() in handle_userfault().
136 *
137 * try_to_wake_up() has an implicit smp_mb(), and the
138 * wq->private is read before calling the extern function
139 * "wake_up_state" (which in turns calls try_to_wake_up).
140 */
141 list_del_init(&wq->entry);
142 }
143 out:
144 return ret;
145 }
146
147 /**
148 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149 * context.
150 * @ctx: [in] Pointer to the userfaultfd context.
151 */
userfaultfd_ctx_get(struct userfaultfd_ctx * ctx)152 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153 {
154 refcount_inc(&ctx->refcount);
155 }
156
157 /**
158 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159 * context.
160 * @ctx: [in] Pointer to userfaultfd context.
161 *
162 * The userfaultfd context reference must have been previously acquired either
163 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164 */
userfaultfd_ctx_put(struct userfaultfd_ctx * ctx)165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166 {
167 if (refcount_dec_and_test(&ctx->refcount)) {
168 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
169 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
170 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
171 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
172 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
173 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
174 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
175 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
176 mmdrop(ctx->mm);
177 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
178 }
179 }
180
msg_init(struct uffd_msg * msg)181 static inline void msg_init(struct uffd_msg *msg)
182 {
183 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184 /*
185 * Must use memset to zero out the paddings or kernel data is
186 * leaked to userland.
187 */
188 memset(msg, 0, sizeof(struct uffd_msg));
189 }
190
userfault_msg(unsigned long address,unsigned int flags,unsigned long reason,unsigned int features)191 static inline struct uffd_msg userfault_msg(unsigned long address,
192 unsigned int flags,
193 unsigned long reason,
194 unsigned int features)
195 {
196 struct uffd_msg msg;
197 msg_init(&msg);
198 msg.event = UFFD_EVENT_PAGEFAULT;
199 msg.arg.pagefault.address = address;
200 if (flags & FAULT_FLAG_WRITE)
201 /*
202 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
203 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
204 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
205 * was a read fault, otherwise if set it means it's
206 * a write fault.
207 */
208 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
209 if (reason & VM_UFFD_WP)
210 /*
211 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
212 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
213 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
214 * a missing fault, otherwise if set it means it's a
215 * write protect fault.
216 */
217 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
218 if (features & UFFD_FEATURE_THREAD_ID)
219 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
220 return msg;
221 }
222
223 #ifdef CONFIG_HUGETLB_PAGE
224 /*
225 * Same functionality as userfaultfd_must_wait below with modifications for
226 * hugepmd ranges.
227 */
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_area_struct * vma,unsigned long address,unsigned long flags,unsigned long reason)228 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
229 struct vm_area_struct *vma,
230 unsigned long address,
231 unsigned long flags,
232 unsigned long reason)
233 {
234 struct mm_struct *mm = ctx->mm;
235 pte_t *ptep, pte;
236 bool ret = true;
237
238 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
239
240 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
241
242 if (!ptep)
243 goto out;
244
245 ret = false;
246 pte = huge_ptep_get(ptep);
247
248 /*
249 * Lockless access: we're in a wait_event so it's ok if it
250 * changes under us.
251 */
252 if (huge_pte_none(pte))
253 ret = true;
254 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
255 ret = true;
256 out:
257 return ret;
258 }
259 #else
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_area_struct * vma,unsigned long address,unsigned long flags,unsigned long reason)260 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
261 struct vm_area_struct *vma,
262 unsigned long address,
263 unsigned long flags,
264 unsigned long reason)
265 {
266 return false; /* should never get here */
267 }
268 #endif /* CONFIG_HUGETLB_PAGE */
269
270 /*
271 * Verify the pagetables are still not ok after having reigstered into
272 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
273 * userfault that has already been resolved, if userfaultfd_read and
274 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
275 * threads.
276 */
userfaultfd_must_wait(struct userfaultfd_ctx * ctx,unsigned long address,unsigned long flags,unsigned long reason)277 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
278 unsigned long address,
279 unsigned long flags,
280 unsigned long reason)
281 {
282 struct mm_struct *mm = ctx->mm;
283 pgd_t *pgd;
284 p4d_t *p4d;
285 pud_t *pud;
286 pmd_t *pmd, _pmd;
287 pte_t *pte;
288 bool ret = true;
289
290 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
291
292 pgd = pgd_offset(mm, address);
293 if (!pgd_present(*pgd))
294 goto out;
295 p4d = p4d_offset(pgd, address);
296 if (!p4d_present(*p4d))
297 goto out;
298 pud = pud_offset(p4d, address);
299 if (!pud_present(*pud))
300 goto out;
301 pmd = pmd_offset(pud, address);
302 /*
303 * READ_ONCE must function as a barrier with narrower scope
304 * and it must be equivalent to:
305 * _pmd = *pmd; barrier();
306 *
307 * This is to deal with the instability (as in
308 * pmd_trans_unstable) of the pmd.
309 */
310 _pmd = READ_ONCE(*pmd);
311 if (pmd_none(_pmd))
312 goto out;
313
314 ret = false;
315 if (!pmd_present(_pmd))
316 goto out;
317
318 if (pmd_trans_huge(_pmd))
319 goto out;
320
321 /*
322 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
323 * and use the standard pte_offset_map() instead of parsing _pmd.
324 */
325 pte = pte_offset_map(pmd, address);
326 /*
327 * Lockless access: we're in a wait_event so it's ok if it
328 * changes under us.
329 */
330 if (pte_none(*pte))
331 ret = true;
332 pte_unmap(pte);
333
334 out:
335 return ret;
336 }
337
338 /*
339 * The locking rules involved in returning VM_FAULT_RETRY depending on
340 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
341 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
342 * recommendation in __lock_page_or_retry is not an understatement.
343 *
344 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
345 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
346 * not set.
347 *
348 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
349 * set, VM_FAULT_RETRY can still be returned if and only if there are
350 * fatal_signal_pending()s, and the mmap_sem must be released before
351 * returning it.
352 */
handle_userfault(struct vm_fault * vmf,unsigned long reason)353 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
354 {
355 struct mm_struct *mm = vmf->vma->vm_mm;
356 struct userfaultfd_ctx *ctx;
357 struct userfaultfd_wait_queue uwq;
358 vm_fault_t ret = VM_FAULT_SIGBUS;
359 bool must_wait, return_to_userland;
360 long blocking_state;
361
362 /*
363 * We don't do userfault handling for the final child pid update.
364 *
365 * We also don't do userfault handling during
366 * coredumping. hugetlbfs has the special
367 * follow_hugetlb_page() to skip missing pages in the
368 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
369 * the no_page_table() helper in follow_page_mask(), but the
370 * shmem_vm_ops->fault method is invoked even during
371 * coredumping without mmap_sem and it ends up here.
372 */
373 if (current->flags & (PF_EXITING|PF_DUMPCORE))
374 goto out;
375
376 /*
377 * Coredumping runs without mmap_sem so we can only check that
378 * the mmap_sem is held, if PF_DUMPCORE was not set.
379 */
380 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
381
382 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
383 if (!ctx)
384 goto out;
385
386 BUG_ON(ctx->mm != mm);
387
388 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
389 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
390
391 if (ctx->features & UFFD_FEATURE_SIGBUS)
392 goto out;
393
394 /*
395 * If it's already released don't get it. This avoids to loop
396 * in __get_user_pages if userfaultfd_release waits on the
397 * caller of handle_userfault to release the mmap_sem.
398 */
399 if (unlikely(READ_ONCE(ctx->released))) {
400 /*
401 * Don't return VM_FAULT_SIGBUS in this case, so a non
402 * cooperative manager can close the uffd after the
403 * last UFFDIO_COPY, without risking to trigger an
404 * involuntary SIGBUS if the process was starting the
405 * userfaultfd while the userfaultfd was still armed
406 * (but after the last UFFDIO_COPY). If the uffd
407 * wasn't already closed when the userfault reached
408 * this point, that would normally be solved by
409 * userfaultfd_must_wait returning 'false'.
410 *
411 * If we were to return VM_FAULT_SIGBUS here, the non
412 * cooperative manager would be instead forced to
413 * always call UFFDIO_UNREGISTER before it can safely
414 * close the uffd.
415 */
416 ret = VM_FAULT_NOPAGE;
417 goto out;
418 }
419
420 /*
421 * Check that we can return VM_FAULT_RETRY.
422 *
423 * NOTE: it should become possible to return VM_FAULT_RETRY
424 * even if FAULT_FLAG_TRIED is set without leading to gup()
425 * -EBUSY failures, if the userfaultfd is to be extended for
426 * VM_UFFD_WP tracking and we intend to arm the userfault
427 * without first stopping userland access to the memory. For
428 * VM_UFFD_MISSING userfaults this is enough for now.
429 */
430 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
431 /*
432 * Validate the invariant that nowait must allow retry
433 * to be sure not to return SIGBUS erroneously on
434 * nowait invocations.
435 */
436 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
437 #ifdef CONFIG_DEBUG_VM
438 if (printk_ratelimit()) {
439 printk(KERN_WARNING
440 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
441 vmf->flags);
442 dump_stack();
443 }
444 #endif
445 goto out;
446 }
447
448 /*
449 * Handle nowait, not much to do other than tell it to retry
450 * and wait.
451 */
452 ret = VM_FAULT_RETRY;
453 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
454 goto out;
455
456 /* take the reference before dropping the mmap_sem */
457 userfaultfd_ctx_get(ctx);
458
459 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
460 uwq.wq.private = current;
461 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
462 ctx->features);
463 uwq.ctx = ctx;
464 uwq.waken = false;
465
466 return_to_userland =
467 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
468 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
469 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
470 TASK_KILLABLE;
471
472 spin_lock_irq(&ctx->fault_pending_wqh.lock);
473 /*
474 * After the __add_wait_queue the uwq is visible to userland
475 * through poll/read().
476 */
477 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
478 /*
479 * The smp_mb() after __set_current_state prevents the reads
480 * following the spin_unlock to happen before the list_add in
481 * __add_wait_queue.
482 */
483 set_current_state(blocking_state);
484 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
485
486 if (!is_vm_hugetlb_page(vmf->vma))
487 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
488 reason);
489 else
490 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
491 vmf->address,
492 vmf->flags, reason);
493 up_read(&mm->mmap_sem);
494
495 if (likely(must_wait && !READ_ONCE(ctx->released) &&
496 (return_to_userland ? !signal_pending(current) :
497 !fatal_signal_pending(current)))) {
498 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
499 schedule();
500 ret |= VM_FAULT_MAJOR;
501
502 /*
503 * False wakeups can orginate even from rwsem before
504 * up_read() however userfaults will wait either for a
505 * targeted wakeup on the specific uwq waitqueue from
506 * wake_userfault() or for signals or for uffd
507 * release.
508 */
509 while (!READ_ONCE(uwq.waken)) {
510 /*
511 * This needs the full smp_store_mb()
512 * guarantee as the state write must be
513 * visible to other CPUs before reading
514 * uwq.waken from other CPUs.
515 */
516 set_current_state(blocking_state);
517 if (READ_ONCE(uwq.waken) ||
518 READ_ONCE(ctx->released) ||
519 (return_to_userland ? signal_pending(current) :
520 fatal_signal_pending(current)))
521 break;
522 schedule();
523 }
524 }
525
526 __set_current_state(TASK_RUNNING);
527
528 if (return_to_userland) {
529 if (signal_pending(current) &&
530 !fatal_signal_pending(current)) {
531 /*
532 * If we got a SIGSTOP or SIGCONT and this is
533 * a normal userland page fault, just let
534 * userland return so the signal will be
535 * handled and gdb debugging works. The page
536 * fault code immediately after we return from
537 * this function is going to release the
538 * mmap_sem and it's not depending on it
539 * (unlike gup would if we were not to return
540 * VM_FAULT_RETRY).
541 *
542 * If a fatal signal is pending we still take
543 * the streamlined VM_FAULT_RETRY failure path
544 * and there's no need to retake the mmap_sem
545 * in such case.
546 */
547 down_read(&mm->mmap_sem);
548 ret = VM_FAULT_NOPAGE;
549 }
550 }
551
552 /*
553 * Here we race with the list_del; list_add in
554 * userfaultfd_ctx_read(), however because we don't ever run
555 * list_del_init() to refile across the two lists, the prev
556 * and next pointers will never point to self. list_add also
557 * would never let any of the two pointers to point to
558 * self. So list_empty_careful won't risk to see both pointers
559 * pointing to self at any time during the list refile. The
560 * only case where list_del_init() is called is the full
561 * removal in the wake function and there we don't re-list_add
562 * and it's fine not to block on the spinlock. The uwq on this
563 * kernel stack can be released after the list_del_init.
564 */
565 if (!list_empty_careful(&uwq.wq.entry)) {
566 spin_lock_irq(&ctx->fault_pending_wqh.lock);
567 /*
568 * No need of list_del_init(), the uwq on the stack
569 * will be freed shortly anyway.
570 */
571 list_del(&uwq.wq.entry);
572 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
573 }
574
575 /*
576 * ctx may go away after this if the userfault pseudo fd is
577 * already released.
578 */
579 userfaultfd_ctx_put(ctx);
580
581 out:
582 return ret;
583 }
584
userfaultfd_event_wait_completion(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)585 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
586 struct userfaultfd_wait_queue *ewq)
587 {
588 struct userfaultfd_ctx *release_new_ctx;
589
590 if (WARN_ON_ONCE(current->flags & PF_EXITING))
591 goto out;
592
593 ewq->ctx = ctx;
594 init_waitqueue_entry(&ewq->wq, current);
595 release_new_ctx = NULL;
596
597 spin_lock_irq(&ctx->event_wqh.lock);
598 /*
599 * After the __add_wait_queue the uwq is visible to userland
600 * through poll/read().
601 */
602 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
603 for (;;) {
604 set_current_state(TASK_KILLABLE);
605 if (ewq->msg.event == 0)
606 break;
607 if (READ_ONCE(ctx->released) ||
608 fatal_signal_pending(current)) {
609 /*
610 * &ewq->wq may be queued in fork_event, but
611 * __remove_wait_queue ignores the head
612 * parameter. It would be a problem if it
613 * didn't.
614 */
615 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
616 if (ewq->msg.event == UFFD_EVENT_FORK) {
617 struct userfaultfd_ctx *new;
618
619 new = (struct userfaultfd_ctx *)
620 (unsigned long)
621 ewq->msg.arg.reserved.reserved1;
622 release_new_ctx = new;
623 }
624 break;
625 }
626
627 spin_unlock_irq(&ctx->event_wqh.lock);
628
629 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
630 schedule();
631
632 spin_lock_irq(&ctx->event_wqh.lock);
633 }
634 __set_current_state(TASK_RUNNING);
635 spin_unlock_irq(&ctx->event_wqh.lock);
636
637 if (release_new_ctx) {
638 struct vm_area_struct *vma;
639 struct mm_struct *mm = release_new_ctx->mm;
640
641 /* the various vma->vm_userfaultfd_ctx still points to it */
642 down_write(&mm->mmap_sem);
643 /* no task can run (and in turn coredump) yet */
644 VM_WARN_ON(!mmget_still_valid(mm));
645 for (vma = mm->mmap; vma; vma = vma->vm_next)
646 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
647 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
648 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
649 }
650 up_write(&mm->mmap_sem);
651
652 userfaultfd_ctx_put(release_new_ctx);
653 }
654
655 /*
656 * ctx may go away after this if the userfault pseudo fd is
657 * already released.
658 */
659 out:
660 WRITE_ONCE(ctx->mmap_changing, false);
661 userfaultfd_ctx_put(ctx);
662 }
663
userfaultfd_event_complete(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)664 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
665 struct userfaultfd_wait_queue *ewq)
666 {
667 ewq->msg.event = 0;
668 wake_up_locked(&ctx->event_wqh);
669 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
670 }
671
dup_userfaultfd(struct vm_area_struct * vma,struct list_head * fcs)672 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
673 {
674 struct userfaultfd_ctx *ctx = NULL, *octx;
675 struct userfaultfd_fork_ctx *fctx;
676
677 octx = vma->vm_userfaultfd_ctx.ctx;
678 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
679 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
680 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
681 return 0;
682 }
683
684 list_for_each_entry(fctx, fcs, list)
685 if (fctx->orig == octx) {
686 ctx = fctx->new;
687 break;
688 }
689
690 if (!ctx) {
691 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
692 if (!fctx)
693 return -ENOMEM;
694
695 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
696 if (!ctx) {
697 kfree(fctx);
698 return -ENOMEM;
699 }
700
701 refcount_set(&ctx->refcount, 1);
702 ctx->flags = octx->flags;
703 ctx->features = octx->features;
704 ctx->released = false;
705 ctx->mmap_changing = false;
706 ctx->mm = vma->vm_mm;
707 mmgrab(ctx->mm);
708
709 userfaultfd_ctx_get(octx);
710 WRITE_ONCE(octx->mmap_changing, true);
711 fctx->orig = octx;
712 fctx->new = ctx;
713 list_add_tail(&fctx->list, fcs);
714 }
715
716 vma->vm_userfaultfd_ctx.ctx = ctx;
717 return 0;
718 }
719
dup_fctx(struct userfaultfd_fork_ctx * fctx)720 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
721 {
722 struct userfaultfd_ctx *ctx = fctx->orig;
723 struct userfaultfd_wait_queue ewq;
724
725 msg_init(&ewq.msg);
726
727 ewq.msg.event = UFFD_EVENT_FORK;
728 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
729
730 userfaultfd_event_wait_completion(ctx, &ewq);
731 }
732
dup_userfaultfd_complete(struct list_head * fcs)733 void dup_userfaultfd_complete(struct list_head *fcs)
734 {
735 struct userfaultfd_fork_ctx *fctx, *n;
736
737 list_for_each_entry_safe(fctx, n, fcs, list) {
738 dup_fctx(fctx);
739 list_del(&fctx->list);
740 kfree(fctx);
741 }
742 }
743
mremap_userfaultfd_prep(struct vm_area_struct * vma,struct vm_userfaultfd_ctx * vm_ctx)744 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
745 struct vm_userfaultfd_ctx *vm_ctx)
746 {
747 struct userfaultfd_ctx *ctx;
748
749 ctx = vma->vm_userfaultfd_ctx.ctx;
750
751 if (!ctx)
752 return;
753
754 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
755 vm_ctx->ctx = ctx;
756 userfaultfd_ctx_get(ctx);
757 WRITE_ONCE(ctx->mmap_changing, true);
758 } else {
759 /* Drop uffd context if remap feature not enabled */
760 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
761 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
762 }
763 }
764
mremap_userfaultfd_complete(struct vm_userfaultfd_ctx * vm_ctx,unsigned long from,unsigned long to,unsigned long len)765 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
766 unsigned long from, unsigned long to,
767 unsigned long len)
768 {
769 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
770 struct userfaultfd_wait_queue ewq;
771
772 if (!ctx)
773 return;
774
775 if (to & ~PAGE_MASK) {
776 userfaultfd_ctx_put(ctx);
777 return;
778 }
779
780 msg_init(&ewq.msg);
781
782 ewq.msg.event = UFFD_EVENT_REMAP;
783 ewq.msg.arg.remap.from = from;
784 ewq.msg.arg.remap.to = to;
785 ewq.msg.arg.remap.len = len;
786
787 userfaultfd_event_wait_completion(ctx, &ewq);
788 }
789
userfaultfd_remove(struct vm_area_struct * vma,unsigned long start,unsigned long end)790 bool userfaultfd_remove(struct vm_area_struct *vma,
791 unsigned long start, unsigned long end)
792 {
793 struct mm_struct *mm = vma->vm_mm;
794 struct userfaultfd_ctx *ctx;
795 struct userfaultfd_wait_queue ewq;
796
797 ctx = vma->vm_userfaultfd_ctx.ctx;
798 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
799 return true;
800
801 userfaultfd_ctx_get(ctx);
802 WRITE_ONCE(ctx->mmap_changing, true);
803 up_read(&mm->mmap_sem);
804
805 msg_init(&ewq.msg);
806
807 ewq.msg.event = UFFD_EVENT_REMOVE;
808 ewq.msg.arg.remove.start = start;
809 ewq.msg.arg.remove.end = end;
810
811 userfaultfd_event_wait_completion(ctx, &ewq);
812
813 return false;
814 }
815
has_unmap_ctx(struct userfaultfd_ctx * ctx,struct list_head * unmaps,unsigned long start,unsigned long end)816 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
817 unsigned long start, unsigned long end)
818 {
819 struct userfaultfd_unmap_ctx *unmap_ctx;
820
821 list_for_each_entry(unmap_ctx, unmaps, list)
822 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
823 unmap_ctx->end == end)
824 return true;
825
826 return false;
827 }
828
userfaultfd_unmap_prep(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * unmaps)829 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
830 unsigned long start, unsigned long end,
831 struct list_head *unmaps)
832 {
833 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
834 struct userfaultfd_unmap_ctx *unmap_ctx;
835 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
836
837 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
838 has_unmap_ctx(ctx, unmaps, start, end))
839 continue;
840
841 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
842 if (!unmap_ctx)
843 return -ENOMEM;
844
845 userfaultfd_ctx_get(ctx);
846 WRITE_ONCE(ctx->mmap_changing, true);
847 unmap_ctx->ctx = ctx;
848 unmap_ctx->start = start;
849 unmap_ctx->end = end;
850 list_add_tail(&unmap_ctx->list, unmaps);
851 }
852
853 return 0;
854 }
855
userfaultfd_unmap_complete(struct mm_struct * mm,struct list_head * uf)856 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
857 {
858 struct userfaultfd_unmap_ctx *ctx, *n;
859 struct userfaultfd_wait_queue ewq;
860
861 list_for_each_entry_safe(ctx, n, uf, list) {
862 msg_init(&ewq.msg);
863
864 ewq.msg.event = UFFD_EVENT_UNMAP;
865 ewq.msg.arg.remove.start = ctx->start;
866 ewq.msg.arg.remove.end = ctx->end;
867
868 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
869
870 list_del(&ctx->list);
871 kfree(ctx);
872 }
873 }
874
userfaultfd_release(struct inode * inode,struct file * file)875 static int userfaultfd_release(struct inode *inode, struct file *file)
876 {
877 struct userfaultfd_ctx *ctx = file->private_data;
878 struct mm_struct *mm = ctx->mm;
879 struct vm_area_struct *vma, *prev;
880 /* len == 0 means wake all */
881 struct userfaultfd_wake_range range = { .len = 0, };
882 unsigned long new_flags;
883 bool still_valid;
884
885 WRITE_ONCE(ctx->released, true);
886
887 if (!mmget_not_zero(mm))
888 goto wakeup;
889
890 /*
891 * Flush page faults out of all CPUs. NOTE: all page faults
892 * must be retried without returning VM_FAULT_SIGBUS if
893 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
894 * changes while handle_userfault released the mmap_sem. So
895 * it's critical that released is set to true (above), before
896 * taking the mmap_sem for writing.
897 */
898 down_write(&mm->mmap_sem);
899 still_valid = mmget_still_valid(mm);
900 prev = NULL;
901 for (vma = mm->mmap; vma; vma = vma->vm_next) {
902 cond_resched();
903 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
904 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
905 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
906 prev = vma;
907 continue;
908 }
909 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
910 if (still_valid) {
911 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
912 new_flags, vma->anon_vma,
913 vma->vm_file, vma->vm_pgoff,
914 vma_policy(vma),
915 NULL_VM_UFFD_CTX,
916 vma_get_anon_name(vma));
917 if (prev)
918 vma = prev;
919 else
920 prev = vma;
921 }
922 vma->vm_flags = new_flags;
923 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
924 }
925 up_write(&mm->mmap_sem);
926 mmput(mm);
927 wakeup:
928 /*
929 * After no new page faults can wait on this fault_*wqh, flush
930 * the last page faults that may have been already waiting on
931 * the fault_*wqh.
932 */
933 spin_lock_irq(&ctx->fault_pending_wqh.lock);
934 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
935 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
936 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
937
938 /* Flush pending events that may still wait on event_wqh */
939 wake_up_all(&ctx->event_wqh);
940
941 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
942 userfaultfd_ctx_put(ctx);
943 return 0;
944 }
945
946 /* fault_pending_wqh.lock must be hold by the caller */
find_userfault_in(wait_queue_head_t * wqh)947 static inline struct userfaultfd_wait_queue *find_userfault_in(
948 wait_queue_head_t *wqh)
949 {
950 wait_queue_entry_t *wq;
951 struct userfaultfd_wait_queue *uwq;
952
953 lockdep_assert_held(&wqh->lock);
954
955 uwq = NULL;
956 if (!waitqueue_active(wqh))
957 goto out;
958 /* walk in reverse to provide FIFO behavior to read userfaults */
959 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
960 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
961 out:
962 return uwq;
963 }
964
find_userfault(struct userfaultfd_ctx * ctx)965 static inline struct userfaultfd_wait_queue *find_userfault(
966 struct userfaultfd_ctx *ctx)
967 {
968 return find_userfault_in(&ctx->fault_pending_wqh);
969 }
970
find_userfault_evt(struct userfaultfd_ctx * ctx)971 static inline struct userfaultfd_wait_queue *find_userfault_evt(
972 struct userfaultfd_ctx *ctx)
973 {
974 return find_userfault_in(&ctx->event_wqh);
975 }
976
userfaultfd_poll(struct file * file,poll_table * wait)977 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
978 {
979 struct userfaultfd_ctx *ctx = file->private_data;
980 __poll_t ret;
981
982 poll_wait(file, &ctx->fd_wqh, wait);
983
984 if (!userfaultfd_is_initialized(ctx))
985 return EPOLLERR;
986
987 /*
988 * poll() never guarantees that read won't block.
989 * userfaults can be waken before they're read().
990 */
991 if (unlikely(!(file->f_flags & O_NONBLOCK)))
992 return EPOLLERR;
993 /*
994 * lockless access to see if there are pending faults
995 * __pollwait last action is the add_wait_queue but
996 * the spin_unlock would allow the waitqueue_active to
997 * pass above the actual list_add inside
998 * add_wait_queue critical section. So use a full
999 * memory barrier to serialize the list_add write of
1000 * add_wait_queue() with the waitqueue_active read
1001 * below.
1002 */
1003 ret = 0;
1004 smp_mb();
1005 if (waitqueue_active(&ctx->fault_pending_wqh))
1006 ret = EPOLLIN;
1007 else if (waitqueue_active(&ctx->event_wqh))
1008 ret = EPOLLIN;
1009
1010 return ret;
1011 }
1012
1013 static const struct file_operations userfaultfd_fops;
1014
resolve_userfault_fork(struct userfaultfd_ctx * ctx,struct userfaultfd_ctx * new,struct uffd_msg * msg)1015 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1016 struct userfaultfd_ctx *new,
1017 struct uffd_msg *msg)
1018 {
1019 int fd;
1020
1021 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1022 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1023 if (fd < 0)
1024 return fd;
1025
1026 msg->arg.reserved.reserved1 = 0;
1027 msg->arg.fork.ufd = fd;
1028 return 0;
1029 }
1030
userfaultfd_ctx_read(struct userfaultfd_ctx * ctx,int no_wait,struct uffd_msg * msg)1031 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1032 struct uffd_msg *msg)
1033 {
1034 ssize_t ret;
1035 DECLARE_WAITQUEUE(wait, current);
1036 struct userfaultfd_wait_queue *uwq;
1037 /*
1038 * Handling fork event requires sleeping operations, so
1039 * we drop the event_wqh lock, then do these ops, then
1040 * lock it back and wake up the waiter. While the lock is
1041 * dropped the ewq may go away so we keep track of it
1042 * carefully.
1043 */
1044 LIST_HEAD(fork_event);
1045 struct userfaultfd_ctx *fork_nctx = NULL;
1046
1047 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1048 spin_lock_irq(&ctx->fd_wqh.lock);
1049 __add_wait_queue(&ctx->fd_wqh, &wait);
1050 for (;;) {
1051 set_current_state(TASK_INTERRUPTIBLE);
1052 spin_lock(&ctx->fault_pending_wqh.lock);
1053 uwq = find_userfault(ctx);
1054 if (uwq) {
1055 /*
1056 * Use a seqcount to repeat the lockless check
1057 * in wake_userfault() to avoid missing
1058 * wakeups because during the refile both
1059 * waitqueue could become empty if this is the
1060 * only userfault.
1061 */
1062 write_seqcount_begin(&ctx->refile_seq);
1063
1064 /*
1065 * The fault_pending_wqh.lock prevents the uwq
1066 * to disappear from under us.
1067 *
1068 * Refile this userfault from
1069 * fault_pending_wqh to fault_wqh, it's not
1070 * pending anymore after we read it.
1071 *
1072 * Use list_del() by hand (as
1073 * userfaultfd_wake_function also uses
1074 * list_del_init() by hand) to be sure nobody
1075 * changes __remove_wait_queue() to use
1076 * list_del_init() in turn breaking the
1077 * !list_empty_careful() check in
1078 * handle_userfault(). The uwq->wq.head list
1079 * must never be empty at any time during the
1080 * refile, or the waitqueue could disappear
1081 * from under us. The "wait_queue_head_t"
1082 * parameter of __remove_wait_queue() is unused
1083 * anyway.
1084 */
1085 list_del(&uwq->wq.entry);
1086 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1087
1088 write_seqcount_end(&ctx->refile_seq);
1089
1090 /* careful to always initialize msg if ret == 0 */
1091 *msg = uwq->msg;
1092 spin_unlock(&ctx->fault_pending_wqh.lock);
1093 ret = 0;
1094 break;
1095 }
1096 spin_unlock(&ctx->fault_pending_wqh.lock);
1097
1098 spin_lock(&ctx->event_wqh.lock);
1099 uwq = find_userfault_evt(ctx);
1100 if (uwq) {
1101 *msg = uwq->msg;
1102
1103 if (uwq->msg.event == UFFD_EVENT_FORK) {
1104 fork_nctx = (struct userfaultfd_ctx *)
1105 (unsigned long)
1106 uwq->msg.arg.reserved.reserved1;
1107 list_move(&uwq->wq.entry, &fork_event);
1108 /*
1109 * fork_nctx can be freed as soon as
1110 * we drop the lock, unless we take a
1111 * reference on it.
1112 */
1113 userfaultfd_ctx_get(fork_nctx);
1114 spin_unlock(&ctx->event_wqh.lock);
1115 ret = 0;
1116 break;
1117 }
1118
1119 userfaultfd_event_complete(ctx, uwq);
1120 spin_unlock(&ctx->event_wqh.lock);
1121 ret = 0;
1122 break;
1123 }
1124 spin_unlock(&ctx->event_wqh.lock);
1125
1126 if (signal_pending(current)) {
1127 ret = -ERESTARTSYS;
1128 break;
1129 }
1130 if (no_wait) {
1131 ret = -EAGAIN;
1132 break;
1133 }
1134 spin_unlock_irq(&ctx->fd_wqh.lock);
1135 schedule();
1136 spin_lock_irq(&ctx->fd_wqh.lock);
1137 }
1138 __remove_wait_queue(&ctx->fd_wqh, &wait);
1139 __set_current_state(TASK_RUNNING);
1140 spin_unlock_irq(&ctx->fd_wqh.lock);
1141
1142 if (!ret && msg->event == UFFD_EVENT_FORK) {
1143 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1144 spin_lock_irq(&ctx->event_wqh.lock);
1145 if (!list_empty(&fork_event)) {
1146 /*
1147 * The fork thread didn't abort, so we can
1148 * drop the temporary refcount.
1149 */
1150 userfaultfd_ctx_put(fork_nctx);
1151
1152 uwq = list_first_entry(&fork_event,
1153 typeof(*uwq),
1154 wq.entry);
1155 /*
1156 * If fork_event list wasn't empty and in turn
1157 * the event wasn't already released by fork
1158 * (the event is allocated on fork kernel
1159 * stack), put the event back to its place in
1160 * the event_wq. fork_event head will be freed
1161 * as soon as we return so the event cannot
1162 * stay queued there no matter the current
1163 * "ret" value.
1164 */
1165 list_del(&uwq->wq.entry);
1166 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1167
1168 /*
1169 * Leave the event in the waitqueue and report
1170 * error to userland if we failed to resolve
1171 * the userfault fork.
1172 */
1173 if (likely(!ret))
1174 userfaultfd_event_complete(ctx, uwq);
1175 } else {
1176 /*
1177 * Here the fork thread aborted and the
1178 * refcount from the fork thread on fork_nctx
1179 * has already been released. We still hold
1180 * the reference we took before releasing the
1181 * lock above. If resolve_userfault_fork
1182 * failed we've to drop it because the
1183 * fork_nctx has to be freed in such case. If
1184 * it succeeded we'll hold it because the new
1185 * uffd references it.
1186 */
1187 if (ret)
1188 userfaultfd_ctx_put(fork_nctx);
1189 }
1190 spin_unlock_irq(&ctx->event_wqh.lock);
1191 }
1192
1193 return ret;
1194 }
1195
userfaultfd_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1196 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1197 size_t count, loff_t *ppos)
1198 {
1199 struct userfaultfd_ctx *ctx = file->private_data;
1200 ssize_t _ret, ret = 0;
1201 struct uffd_msg msg;
1202 int no_wait = file->f_flags & O_NONBLOCK;
1203
1204 if (!userfaultfd_is_initialized(ctx))
1205 return -EINVAL;
1206
1207 for (;;) {
1208 if (count < sizeof(msg))
1209 return ret ? ret : -EINVAL;
1210 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1211 if (_ret < 0)
1212 return ret ? ret : _ret;
1213 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1214 return ret ? ret : -EFAULT;
1215 ret += sizeof(msg);
1216 buf += sizeof(msg);
1217 count -= sizeof(msg);
1218 /*
1219 * Allow to read more than one fault at time but only
1220 * block if waiting for the very first one.
1221 */
1222 no_wait = O_NONBLOCK;
1223 }
1224 }
1225
__wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1226 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1227 struct userfaultfd_wake_range *range)
1228 {
1229 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1230 /* wake all in the range and autoremove */
1231 if (waitqueue_active(&ctx->fault_pending_wqh))
1232 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1233 range);
1234 if (waitqueue_active(&ctx->fault_wqh))
1235 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1236 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1237 }
1238
wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1239 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1240 struct userfaultfd_wake_range *range)
1241 {
1242 unsigned seq;
1243 bool need_wakeup;
1244
1245 /*
1246 * To be sure waitqueue_active() is not reordered by the CPU
1247 * before the pagetable update, use an explicit SMP memory
1248 * barrier here. PT lock release or up_read(mmap_sem) still
1249 * have release semantics that can allow the
1250 * waitqueue_active() to be reordered before the pte update.
1251 */
1252 smp_mb();
1253
1254 /*
1255 * Use waitqueue_active because it's very frequent to
1256 * change the address space atomically even if there are no
1257 * userfaults yet. So we take the spinlock only when we're
1258 * sure we've userfaults to wake.
1259 */
1260 do {
1261 seq = read_seqcount_begin(&ctx->refile_seq);
1262 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1263 waitqueue_active(&ctx->fault_wqh);
1264 cond_resched();
1265 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1266 if (need_wakeup)
1267 __wake_userfault(ctx, range);
1268 }
1269
validate_range(struct mm_struct * mm,__u64 start,__u64 len)1270 static __always_inline int validate_range(struct mm_struct *mm,
1271 __u64 start, __u64 len)
1272 {
1273 __u64 task_size = mm->task_size;
1274
1275 if (start & ~PAGE_MASK)
1276 return -EINVAL;
1277 if (len & ~PAGE_MASK)
1278 return -EINVAL;
1279 if (!len)
1280 return -EINVAL;
1281 if (start < mmap_min_addr)
1282 return -EINVAL;
1283 if (start >= task_size)
1284 return -EINVAL;
1285 if (len > task_size - start)
1286 return -EINVAL;
1287 return 0;
1288 }
1289
vma_can_userfault(struct vm_area_struct * vma)1290 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1291 {
1292 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1293 vma_is_shmem(vma);
1294 }
1295
userfaultfd_register(struct userfaultfd_ctx * ctx,unsigned long arg)1296 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1297 unsigned long arg)
1298 {
1299 struct mm_struct *mm = ctx->mm;
1300 struct vm_area_struct *vma, *prev, *cur;
1301 int ret;
1302 struct uffdio_register uffdio_register;
1303 struct uffdio_register __user *user_uffdio_register;
1304 unsigned long vm_flags, new_flags;
1305 bool found;
1306 bool basic_ioctls;
1307 unsigned long start, end, vma_end;
1308
1309 user_uffdio_register = (struct uffdio_register __user *) arg;
1310
1311 ret = -EFAULT;
1312 if (copy_from_user(&uffdio_register, user_uffdio_register,
1313 sizeof(uffdio_register)-sizeof(__u64)))
1314 goto out;
1315
1316 ret = -EINVAL;
1317 if (!uffdio_register.mode)
1318 goto out;
1319 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1320 UFFDIO_REGISTER_MODE_WP))
1321 goto out;
1322 vm_flags = 0;
1323 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1324 vm_flags |= VM_UFFD_MISSING;
1325 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1326 vm_flags |= VM_UFFD_WP;
1327 /*
1328 * FIXME: remove the below error constraint by
1329 * implementing the wprotect tracking mode.
1330 */
1331 ret = -EINVAL;
1332 goto out;
1333 }
1334
1335 ret = validate_range(mm, uffdio_register.range.start,
1336 uffdio_register.range.len);
1337 if (ret)
1338 goto out;
1339
1340 start = uffdio_register.range.start;
1341 end = start + uffdio_register.range.len;
1342
1343 ret = -ENOMEM;
1344 if (!mmget_not_zero(mm))
1345 goto out;
1346
1347 down_write(&mm->mmap_sem);
1348 if (!mmget_still_valid(mm))
1349 goto out_unlock;
1350 vma = find_vma_prev(mm, start, &prev);
1351 if (!vma)
1352 goto out_unlock;
1353
1354 /* check that there's at least one vma in the range */
1355 ret = -EINVAL;
1356 if (vma->vm_start >= end)
1357 goto out_unlock;
1358
1359 /*
1360 * If the first vma contains huge pages, make sure start address
1361 * is aligned to huge page size.
1362 */
1363 if (is_vm_hugetlb_page(vma)) {
1364 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1365
1366 if (start & (vma_hpagesize - 1))
1367 goto out_unlock;
1368 }
1369
1370 /*
1371 * Search for not compatible vmas.
1372 */
1373 found = false;
1374 basic_ioctls = false;
1375 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1376 cond_resched();
1377
1378 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1379 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1380
1381 /* check not compatible vmas */
1382 ret = -EINVAL;
1383 if (!vma_can_userfault(cur))
1384 goto out_unlock;
1385
1386 /*
1387 * UFFDIO_COPY will fill file holes even without
1388 * PROT_WRITE. This check enforces that if this is a
1389 * MAP_SHARED, the process has write permission to the backing
1390 * file. If VM_MAYWRITE is set it also enforces that on a
1391 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1392 * F_WRITE_SEAL can be taken until the vma is destroyed.
1393 */
1394 ret = -EPERM;
1395 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1396 goto out_unlock;
1397
1398 /*
1399 * If this vma contains ending address, and huge pages
1400 * check alignment.
1401 */
1402 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1403 end > cur->vm_start) {
1404 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1405
1406 ret = -EINVAL;
1407
1408 if (end & (vma_hpagesize - 1))
1409 goto out_unlock;
1410 }
1411
1412 /*
1413 * Check that this vma isn't already owned by a
1414 * different userfaultfd. We can't allow more than one
1415 * userfaultfd to own a single vma simultaneously or we
1416 * wouldn't know which one to deliver the userfaults to.
1417 */
1418 ret = -EBUSY;
1419 if (cur->vm_userfaultfd_ctx.ctx &&
1420 cur->vm_userfaultfd_ctx.ctx != ctx)
1421 goto out_unlock;
1422
1423 /*
1424 * Note vmas containing huge pages
1425 */
1426 if (is_vm_hugetlb_page(cur))
1427 basic_ioctls = true;
1428
1429 found = true;
1430 }
1431 BUG_ON(!found);
1432
1433 if (vma->vm_start < start)
1434 prev = vma;
1435
1436 ret = 0;
1437 do {
1438 cond_resched();
1439
1440 BUG_ON(!vma_can_userfault(vma));
1441 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1442 vma->vm_userfaultfd_ctx.ctx != ctx);
1443 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1444
1445 /*
1446 * Nothing to do: this vma is already registered into this
1447 * userfaultfd and with the right tracking mode too.
1448 */
1449 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1450 (vma->vm_flags & vm_flags) == vm_flags)
1451 goto skip;
1452
1453 if (vma->vm_start > start)
1454 start = vma->vm_start;
1455 vma_end = min(end, vma->vm_end);
1456
1457 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1458 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1459 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1460 vma_policy(vma),
1461 ((struct vm_userfaultfd_ctx){ ctx }),
1462 vma_get_anon_name(vma));
1463 if (prev) {
1464 vma = prev;
1465 goto next;
1466 }
1467 if (vma->vm_start < start) {
1468 ret = split_vma(mm, vma, start, 1);
1469 if (ret)
1470 break;
1471 }
1472 if (vma->vm_end > end) {
1473 ret = split_vma(mm, vma, end, 0);
1474 if (ret)
1475 break;
1476 }
1477 next:
1478 /*
1479 * In the vma_merge() successful mprotect-like case 8:
1480 * the next vma was merged into the current one and
1481 * the current one has not been updated yet.
1482 */
1483 vma->vm_flags = new_flags;
1484 vma->vm_userfaultfd_ctx.ctx = ctx;
1485
1486 skip:
1487 prev = vma;
1488 start = vma->vm_end;
1489 vma = vma->vm_next;
1490 } while (vma && vma->vm_start < end);
1491 out_unlock:
1492 up_write(&mm->mmap_sem);
1493 mmput(mm);
1494 if (!ret) {
1495 /*
1496 * Now that we scanned all vmas we can already tell
1497 * userland which ioctls methods are guaranteed to
1498 * succeed on this range.
1499 */
1500 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1501 UFFD_API_RANGE_IOCTLS,
1502 &user_uffdio_register->ioctls))
1503 ret = -EFAULT;
1504 }
1505 out:
1506 return ret;
1507 }
1508
userfaultfd_unregister(struct userfaultfd_ctx * ctx,unsigned long arg)1509 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1510 unsigned long arg)
1511 {
1512 struct mm_struct *mm = ctx->mm;
1513 struct vm_area_struct *vma, *prev, *cur;
1514 int ret;
1515 struct uffdio_range uffdio_unregister;
1516 unsigned long new_flags;
1517 bool found;
1518 unsigned long start, end, vma_end;
1519 const void __user *buf = (void __user *)arg;
1520
1521 ret = -EFAULT;
1522 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1523 goto out;
1524
1525 ret = validate_range(mm, uffdio_unregister.start,
1526 uffdio_unregister.len);
1527 if (ret)
1528 goto out;
1529
1530 start = uffdio_unregister.start;
1531 end = start + uffdio_unregister.len;
1532
1533 ret = -ENOMEM;
1534 if (!mmget_not_zero(mm))
1535 goto out;
1536
1537 down_write(&mm->mmap_sem);
1538 if (!mmget_still_valid(mm))
1539 goto out_unlock;
1540 vma = find_vma_prev(mm, start, &prev);
1541 if (!vma)
1542 goto out_unlock;
1543
1544 /* check that there's at least one vma in the range */
1545 ret = -EINVAL;
1546 if (vma->vm_start >= end)
1547 goto out_unlock;
1548
1549 /*
1550 * If the first vma contains huge pages, make sure start address
1551 * is aligned to huge page size.
1552 */
1553 if (is_vm_hugetlb_page(vma)) {
1554 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1555
1556 if (start & (vma_hpagesize - 1))
1557 goto out_unlock;
1558 }
1559
1560 /*
1561 * Search for not compatible vmas.
1562 */
1563 found = false;
1564 ret = -EINVAL;
1565 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1566 cond_resched();
1567
1568 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1569 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1570
1571 /*
1572 * Check not compatible vmas, not strictly required
1573 * here as not compatible vmas cannot have an
1574 * userfaultfd_ctx registered on them, but this
1575 * provides for more strict behavior to notice
1576 * unregistration errors.
1577 */
1578 if (!vma_can_userfault(cur))
1579 goto out_unlock;
1580
1581 found = true;
1582 }
1583 BUG_ON(!found);
1584
1585 if (vma->vm_start < start)
1586 prev = vma;
1587
1588 ret = 0;
1589 do {
1590 cond_resched();
1591
1592 BUG_ON(!vma_can_userfault(vma));
1593
1594 /*
1595 * Nothing to do: this vma is already registered into this
1596 * userfaultfd and with the right tracking mode too.
1597 */
1598 if (!vma->vm_userfaultfd_ctx.ctx)
1599 goto skip;
1600
1601 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1602
1603 if (vma->vm_start > start)
1604 start = vma->vm_start;
1605 vma_end = min(end, vma->vm_end);
1606
1607 if (userfaultfd_missing(vma)) {
1608 /*
1609 * Wake any concurrent pending userfault while
1610 * we unregister, so they will not hang
1611 * permanently and it avoids userland to call
1612 * UFFDIO_WAKE explicitly.
1613 */
1614 struct userfaultfd_wake_range range;
1615 range.start = start;
1616 range.len = vma_end - start;
1617 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1618 }
1619
1620 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1621 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1622 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1623 vma_policy(vma),
1624 NULL_VM_UFFD_CTX,
1625 vma_get_anon_name(vma));
1626 if (prev) {
1627 vma = prev;
1628 goto next;
1629 }
1630 if (vma->vm_start < start) {
1631 ret = split_vma(mm, vma, start, 1);
1632 if (ret)
1633 break;
1634 }
1635 if (vma->vm_end > end) {
1636 ret = split_vma(mm, vma, end, 0);
1637 if (ret)
1638 break;
1639 }
1640 next:
1641 /*
1642 * In the vma_merge() successful mprotect-like case 8:
1643 * the next vma was merged into the current one and
1644 * the current one has not been updated yet.
1645 */
1646 vma->vm_flags = new_flags;
1647 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1648
1649 skip:
1650 prev = vma;
1651 start = vma->vm_end;
1652 vma = vma->vm_next;
1653 } while (vma && vma->vm_start < end);
1654 out_unlock:
1655 up_write(&mm->mmap_sem);
1656 mmput(mm);
1657 out:
1658 return ret;
1659 }
1660
1661 /*
1662 * userfaultfd_wake may be used in combination with the
1663 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1664 */
userfaultfd_wake(struct userfaultfd_ctx * ctx,unsigned long arg)1665 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1666 unsigned long arg)
1667 {
1668 int ret;
1669 struct uffdio_range uffdio_wake;
1670 struct userfaultfd_wake_range range;
1671 const void __user *buf = (void __user *)arg;
1672
1673 ret = -EFAULT;
1674 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1675 goto out;
1676
1677 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1678 if (ret)
1679 goto out;
1680
1681 range.start = uffdio_wake.start;
1682 range.len = uffdio_wake.len;
1683
1684 /*
1685 * len == 0 means wake all and we don't want to wake all here,
1686 * so check it again to be sure.
1687 */
1688 VM_BUG_ON(!range.len);
1689
1690 wake_userfault(ctx, &range);
1691 ret = 0;
1692
1693 out:
1694 return ret;
1695 }
1696
userfaultfd_copy(struct userfaultfd_ctx * ctx,unsigned long arg)1697 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1698 unsigned long arg)
1699 {
1700 __s64 ret;
1701 struct uffdio_copy uffdio_copy;
1702 struct uffdio_copy __user *user_uffdio_copy;
1703 struct userfaultfd_wake_range range;
1704
1705 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1706
1707 ret = -EAGAIN;
1708 if (READ_ONCE(ctx->mmap_changing))
1709 goto out;
1710
1711 ret = -EFAULT;
1712 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1713 /* don't copy "copy" last field */
1714 sizeof(uffdio_copy)-sizeof(__s64)))
1715 goto out;
1716
1717 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1718 if (ret)
1719 goto out;
1720 /*
1721 * double check for wraparound just in case. copy_from_user()
1722 * will later check uffdio_copy.src + uffdio_copy.len to fit
1723 * in the userland range.
1724 */
1725 ret = -EINVAL;
1726 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1727 goto out;
1728 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1729 goto out;
1730 if (mmget_not_zero(ctx->mm)) {
1731 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1732 uffdio_copy.len, &ctx->mmap_changing);
1733 mmput(ctx->mm);
1734 } else {
1735 return -ESRCH;
1736 }
1737 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1738 return -EFAULT;
1739 if (ret < 0)
1740 goto out;
1741 BUG_ON(!ret);
1742 /* len == 0 would wake all */
1743 range.len = ret;
1744 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1745 range.start = uffdio_copy.dst;
1746 wake_userfault(ctx, &range);
1747 }
1748 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1749 out:
1750 return ret;
1751 }
1752
userfaultfd_zeropage(struct userfaultfd_ctx * ctx,unsigned long arg)1753 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1754 unsigned long arg)
1755 {
1756 __s64 ret;
1757 struct uffdio_zeropage uffdio_zeropage;
1758 struct uffdio_zeropage __user *user_uffdio_zeropage;
1759 struct userfaultfd_wake_range range;
1760
1761 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1762
1763 ret = -EAGAIN;
1764 if (READ_ONCE(ctx->mmap_changing))
1765 goto out;
1766
1767 ret = -EFAULT;
1768 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1769 /* don't copy "zeropage" last field */
1770 sizeof(uffdio_zeropage)-sizeof(__s64)))
1771 goto out;
1772
1773 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1774 uffdio_zeropage.range.len);
1775 if (ret)
1776 goto out;
1777 ret = -EINVAL;
1778 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1779 goto out;
1780
1781 if (mmget_not_zero(ctx->mm)) {
1782 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1783 uffdio_zeropage.range.len,
1784 &ctx->mmap_changing);
1785 mmput(ctx->mm);
1786 } else {
1787 return -ESRCH;
1788 }
1789 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1790 return -EFAULT;
1791 if (ret < 0)
1792 goto out;
1793 /* len == 0 would wake all */
1794 BUG_ON(!ret);
1795 range.len = ret;
1796 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1797 range.start = uffdio_zeropage.range.start;
1798 wake_userfault(ctx, &range);
1799 }
1800 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1801 out:
1802 return ret;
1803 }
1804
uffd_ctx_features(__u64 user_features)1805 static inline unsigned int uffd_ctx_features(__u64 user_features)
1806 {
1807 /*
1808 * For the current set of features the bits just coincide. Set
1809 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1810 */
1811 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1812 }
1813
1814 /*
1815 * userland asks for a certain API version and we return which bits
1816 * and ioctl commands are implemented in this kernel for such API
1817 * version or -EINVAL if unknown.
1818 */
userfaultfd_api(struct userfaultfd_ctx * ctx,unsigned long arg)1819 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1820 unsigned long arg)
1821 {
1822 struct uffdio_api uffdio_api;
1823 void __user *buf = (void __user *)arg;
1824 unsigned int ctx_features;
1825 int ret;
1826 __u64 features;
1827
1828 ret = -EFAULT;
1829 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1830 goto out;
1831 features = uffdio_api.features;
1832 ret = -EINVAL;
1833 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1834 goto err_out;
1835 ret = -EPERM;
1836 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1837 goto err_out;
1838 /* report all available features and ioctls to userland */
1839 uffdio_api.features = UFFD_API_FEATURES;
1840 uffdio_api.ioctls = UFFD_API_IOCTLS;
1841 ret = -EFAULT;
1842 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1843 goto out;
1844
1845 /* only enable the requested features for this uffd context */
1846 ctx_features = uffd_ctx_features(features);
1847 ret = -EINVAL;
1848 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1849 goto err_out;
1850
1851 ret = 0;
1852 out:
1853 return ret;
1854 err_out:
1855 memset(&uffdio_api, 0, sizeof(uffdio_api));
1856 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1857 ret = -EFAULT;
1858 goto out;
1859 }
1860
userfaultfd_ioctl(struct file * file,unsigned cmd,unsigned long arg)1861 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1862 unsigned long arg)
1863 {
1864 int ret = -EINVAL;
1865 struct userfaultfd_ctx *ctx = file->private_data;
1866
1867 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1868 return -EINVAL;
1869
1870 switch(cmd) {
1871 case UFFDIO_API:
1872 ret = userfaultfd_api(ctx, arg);
1873 break;
1874 case UFFDIO_REGISTER:
1875 ret = userfaultfd_register(ctx, arg);
1876 break;
1877 case UFFDIO_UNREGISTER:
1878 ret = userfaultfd_unregister(ctx, arg);
1879 break;
1880 case UFFDIO_WAKE:
1881 ret = userfaultfd_wake(ctx, arg);
1882 break;
1883 case UFFDIO_COPY:
1884 ret = userfaultfd_copy(ctx, arg);
1885 break;
1886 case UFFDIO_ZEROPAGE:
1887 ret = userfaultfd_zeropage(ctx, arg);
1888 break;
1889 }
1890 return ret;
1891 }
1892
1893 #ifdef CONFIG_PROC_FS
userfaultfd_show_fdinfo(struct seq_file * m,struct file * f)1894 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1895 {
1896 struct userfaultfd_ctx *ctx = f->private_data;
1897 wait_queue_entry_t *wq;
1898 unsigned long pending = 0, total = 0;
1899
1900 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1901 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1902 pending++;
1903 total++;
1904 }
1905 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1906 total++;
1907 }
1908 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1909
1910 /*
1911 * If more protocols will be added, there will be all shown
1912 * separated by a space. Like this:
1913 * protocols: aa:... bb:...
1914 */
1915 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1916 pending, total, UFFD_API, ctx->features,
1917 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1918 }
1919 #endif
1920
1921 static const struct file_operations userfaultfd_fops = {
1922 #ifdef CONFIG_PROC_FS
1923 .show_fdinfo = userfaultfd_show_fdinfo,
1924 #endif
1925 .release = userfaultfd_release,
1926 .poll = userfaultfd_poll,
1927 .read = userfaultfd_read,
1928 .unlocked_ioctl = userfaultfd_ioctl,
1929 .compat_ioctl = userfaultfd_ioctl,
1930 .llseek = noop_llseek,
1931 };
1932
init_once_userfaultfd_ctx(void * mem)1933 static void init_once_userfaultfd_ctx(void *mem)
1934 {
1935 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1936
1937 init_waitqueue_head(&ctx->fault_pending_wqh);
1938 init_waitqueue_head(&ctx->fault_wqh);
1939 init_waitqueue_head(&ctx->event_wqh);
1940 init_waitqueue_head(&ctx->fd_wqh);
1941 seqcount_init(&ctx->refile_seq);
1942 }
1943
SYSCALL_DEFINE1(userfaultfd,int,flags)1944 SYSCALL_DEFINE1(userfaultfd, int, flags)
1945 {
1946 struct userfaultfd_ctx *ctx;
1947 int fd;
1948
1949 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1950 return -EPERM;
1951
1952 BUG_ON(!current->mm);
1953
1954 /* Check the UFFD_* constants for consistency. */
1955 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1956 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1957
1958 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1959 return -EINVAL;
1960
1961 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1962 if (!ctx)
1963 return -ENOMEM;
1964
1965 refcount_set(&ctx->refcount, 1);
1966 ctx->flags = flags;
1967 ctx->features = 0;
1968 ctx->released = false;
1969 ctx->mmap_changing = false;
1970 ctx->mm = current->mm;
1971 /* prevent the mm struct to be freed */
1972 mmgrab(ctx->mm);
1973
1974 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1975 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS));
1976 if (fd < 0) {
1977 mmdrop(ctx->mm);
1978 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1979 }
1980 return fd;
1981 }
1982
userfaultfd_init(void)1983 static int __init userfaultfd_init(void)
1984 {
1985 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1986 sizeof(struct userfaultfd_ctx),
1987 0,
1988 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1989 init_once_userfaultfd_ctx);
1990 return 0;
1991 }
1992 __initcall(userfaultfd_init);
1993