• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <linux/android_kabi.h>
24 #include <asm/page.h>
25 
26 /* Free memory management - zoned buddy allocator.  */
27 #ifndef CONFIG_FORCE_MAX_ZONEORDER
28 #define MAX_ORDER 11
29 #else
30 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
31 #endif
32 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
33 
34 /*
35  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
36  * costly to service.  That is between allocation orders which should
37  * coalesce naturally under reasonable reclaim pressure and those which
38  * will not.
39  */
40 #define PAGE_ALLOC_COSTLY_ORDER 3
41 
42 enum migratetype {
43 	MIGRATE_UNMOVABLE,
44 	MIGRATE_MOVABLE,
45 	MIGRATE_RECLAIMABLE,
46 #ifdef CONFIG_CMA
47 	/*
48 	 * MIGRATE_CMA migration type is designed to mimic the way
49 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
50 	 * from MIGRATE_CMA pageblocks and page allocator never
51 	 * implicitly change migration type of MIGRATE_CMA pageblock.
52 	 *
53 	 * The way to use it is to change migratetype of a range of
54 	 * pageblocks to MIGRATE_CMA which can be done by
55 	 * __free_pageblock_cma() function.  What is important though
56 	 * is that a range of pageblocks must be aligned to
57 	 * MAX_ORDER_NR_PAGES should biggest page be bigger then
58 	 * a single pageblock.
59 	 */
60 	MIGRATE_CMA,
61 #endif
62 	MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
63 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
64 #ifdef CONFIG_MEMORY_ISOLATION
65 	MIGRATE_ISOLATE,	/* can't allocate from here */
66 #endif
67 	MIGRATE_TYPES
68 };
69 
70 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
71 extern const char * const migratetype_names[MIGRATE_TYPES];
72 
73 #ifdef CONFIG_CMA
74 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
75 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
76 #  define get_cma_migrate_type() MIGRATE_CMA
77 #else
78 #  define is_migrate_cma(migratetype) false
79 #  define is_migrate_cma_page(_page) false
80 #  define get_cma_migrate_type() MIGRATE_MOVABLE
81 #endif
82 
is_migrate_movable(int mt)83 static inline bool is_migrate_movable(int mt)
84 {
85 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
86 }
87 
88 #define for_each_migratetype_order(order, type) \
89 	for (order = 0; order < MAX_ORDER; order++) \
90 		for (type = 0; type < MIGRATE_TYPES; type++)
91 
92 extern int page_group_by_mobility_disabled;
93 
94 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
95 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
96 
97 #define get_pageblock_migratetype(page)					\
98 	get_pfnblock_flags_mask(page, page_to_pfn(page),		\
99 			PB_migrate_end, MIGRATETYPE_MASK)
100 
101 struct free_area {
102 	struct list_head	free_list[MIGRATE_TYPES];
103 	unsigned long		nr_free;
104 };
105 
106 /* Used for pages not on another list */
add_to_free_area(struct page * page,struct free_area * area,int migratetype)107 static inline void add_to_free_area(struct page *page, struct free_area *area,
108 			     int migratetype)
109 {
110 	list_add(&page->lru, &area->free_list[migratetype]);
111 	area->nr_free++;
112 }
113 
114 /* Used for pages not on another list */
add_to_free_area_tail(struct page * page,struct free_area * area,int migratetype)115 static inline void add_to_free_area_tail(struct page *page, struct free_area *area,
116 				  int migratetype)
117 {
118 	list_add_tail(&page->lru, &area->free_list[migratetype]);
119 	area->nr_free++;
120 }
121 
122 #ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR
123 /* Used to preserve page allocation order entropy */
124 void add_to_free_area_random(struct page *page, struct free_area *area,
125 		int migratetype);
126 #else
add_to_free_area_random(struct page * page,struct free_area * area,int migratetype)127 static inline void add_to_free_area_random(struct page *page,
128 		struct free_area *area, int migratetype)
129 {
130 	add_to_free_area(page, area, migratetype);
131 }
132 #endif
133 
134 /* Used for pages which are on another list */
move_to_free_area(struct page * page,struct free_area * area,int migratetype)135 static inline void move_to_free_area(struct page *page, struct free_area *area,
136 			     int migratetype)
137 {
138 	list_move(&page->lru, &area->free_list[migratetype]);
139 }
140 
get_page_from_free_area(struct free_area * area,int migratetype)141 static inline struct page *get_page_from_free_area(struct free_area *area,
142 					    int migratetype)
143 {
144 	return list_first_entry_or_null(&area->free_list[migratetype],
145 					struct page, lru);
146 }
147 
del_page_from_free_area(struct page * page,struct free_area * area)148 static inline void del_page_from_free_area(struct page *page,
149 		struct free_area *area)
150 {
151 	list_del(&page->lru);
152 	__ClearPageBuddy(page);
153 	set_page_private(page, 0);
154 	area->nr_free--;
155 }
156 
free_area_empty(struct free_area * area,int migratetype)157 static inline bool free_area_empty(struct free_area *area, int migratetype)
158 {
159 	return list_empty(&area->free_list[migratetype]);
160 }
161 
162 struct pglist_data;
163 
164 /*
165  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
166  * So add a wild amount of padding here to ensure that they fall into separate
167  * cachelines.  There are very few zone structures in the machine, so space
168  * consumption is not a concern here.
169  */
170 #if defined(CONFIG_SMP)
171 struct zone_padding {
172 	char x[0];
173 } ____cacheline_internodealigned_in_smp;
174 #define ZONE_PADDING(name)	struct zone_padding name;
175 #else
176 #define ZONE_PADDING(name)
177 #endif
178 
179 #ifdef CONFIG_NUMA
180 enum numa_stat_item {
181 	NUMA_HIT,		/* allocated in intended node */
182 	NUMA_MISS,		/* allocated in non intended node */
183 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
184 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
185 	NUMA_LOCAL,		/* allocation from local node */
186 	NUMA_OTHER,		/* allocation from other node */
187 	NR_VM_NUMA_STAT_ITEMS
188 };
189 #else
190 #define NR_VM_NUMA_STAT_ITEMS 0
191 #endif
192 
193 enum zone_stat_item {
194 	/* First 128 byte cacheline (assuming 64 bit words) */
195 	NR_FREE_PAGES,
196 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
197 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
198 	NR_ZONE_ACTIVE_ANON,
199 	NR_ZONE_INACTIVE_FILE,
200 	NR_ZONE_ACTIVE_FILE,
201 	NR_ZONE_UNEVICTABLE,
202 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
203 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
204 	NR_PAGETABLE,		/* used for pagetables */
205 	NR_KERNEL_STACK_KB,	/* measured in KiB */
206 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
207 	NR_KERNEL_SCS_BYTES,	/* measured in bytes */
208 #endif
209 	/* Second 128 byte cacheline */
210 	NR_BOUNCE,
211 #if IS_ENABLED(CONFIG_ZSMALLOC)
212 	NR_ZSPAGES,		/* allocated in zsmalloc */
213 #endif
214 	NR_FREE_CMA_PAGES,
215 	NR_VM_ZONE_STAT_ITEMS };
216 
217 enum node_stat_item {
218 	NR_LRU_BASE,
219 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
220 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
221 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
222 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
223 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
224 	NR_SLAB_RECLAIMABLE,
225 	NR_SLAB_UNRECLAIMABLE,
226 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
227 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
228 	WORKINGSET_NODES,
229 	WORKINGSET_REFAULT,
230 	WORKINGSET_ACTIVATE,
231 	WORKINGSET_RESTORE,
232 	WORKINGSET_NODERECLAIM,
233 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
234 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
235 			   only modified from process context */
236 	NR_FILE_PAGES,
237 	NR_FILE_DIRTY,
238 	NR_WRITEBACK,
239 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
240 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
241 	NR_SHMEM_THPS,
242 	NR_SHMEM_PMDMAPPED,
243 	NR_FILE_THPS,
244 	NR_FILE_PMDMAPPED,
245 	NR_ANON_THPS,
246 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
247 	NR_VMSCAN_WRITE,
248 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
249 	NR_DIRTIED,		/* page dirtyings since bootup */
250 	NR_WRITTEN,		/* page writings since bootup */
251 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
252 	NR_VM_NODE_STAT_ITEMS
253 };
254 
255 /*
256  * We do arithmetic on the LRU lists in various places in the code,
257  * so it is important to keep the active lists LRU_ACTIVE higher in
258  * the array than the corresponding inactive lists, and to keep
259  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
260  *
261  * This has to be kept in sync with the statistics in zone_stat_item
262  * above and the descriptions in vmstat_text in mm/vmstat.c
263  */
264 #define LRU_BASE 0
265 #define LRU_ACTIVE 1
266 #define LRU_FILE 2
267 
268 enum lru_list {
269 	LRU_INACTIVE_ANON = LRU_BASE,
270 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
271 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
272 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
273 	LRU_UNEVICTABLE,
274 	NR_LRU_LISTS
275 };
276 
277 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
278 
279 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
280 
is_file_lru(enum lru_list lru)281 static inline int is_file_lru(enum lru_list lru)
282 {
283 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
284 }
285 
is_active_lru(enum lru_list lru)286 static inline int is_active_lru(enum lru_list lru)
287 {
288 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
289 }
290 
291 struct zone_reclaim_stat {
292 	/*
293 	 * The pageout code in vmscan.c keeps track of how many of the
294 	 * mem/swap backed and file backed pages are referenced.
295 	 * The higher the rotated/scanned ratio, the more valuable
296 	 * that cache is.
297 	 *
298 	 * The anon LRU stats live in [0], file LRU stats in [1]
299 	 */
300 	unsigned long		recent_rotated[2];
301 	unsigned long		recent_scanned[2];
302 };
303 
304 struct lruvec {
305 	struct list_head		lists[NR_LRU_LISTS];
306 	struct zone_reclaim_stat	reclaim_stat;
307 	/* Evictions & activations on the inactive file list */
308 	atomic_long_t			inactive_age;
309 	/* Refaults at the time of last reclaim cycle */
310 	unsigned long			refaults;
311 #ifdef CONFIG_MEMCG
312 	struct pglist_data *pgdat;
313 #endif
314 };
315 
316 /* Isolate unmapped file */
317 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
318 /* Isolate for asynchronous migration */
319 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
320 /* Isolate unevictable pages */
321 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
322 
323 /* LRU Isolation modes. */
324 typedef unsigned __bitwise isolate_mode_t;
325 
326 enum zone_watermarks {
327 	WMARK_MIN,
328 	WMARK_LOW,
329 	WMARK_HIGH,
330 	NR_WMARK
331 };
332 
333 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
334 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
335 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
336 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
337 
338 struct per_cpu_pages {
339 	int count;		/* number of pages in the list */
340 	int high;		/* high watermark, emptying needed */
341 	int batch;		/* chunk size for buddy add/remove */
342 
343 	/* Lists of pages, one per migrate type stored on the pcp-lists */
344 	struct list_head lists[MIGRATE_PCPTYPES];
345 };
346 
347 struct per_cpu_pageset {
348 	struct per_cpu_pages pcp;
349 #ifdef CONFIG_NUMA
350 	s8 expire;
351 	u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
352 #endif
353 #ifdef CONFIG_SMP
354 	s8 stat_threshold;
355 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
356 #endif
357 };
358 
359 struct per_cpu_nodestat {
360 	s8 stat_threshold;
361 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
362 };
363 
364 #endif /* !__GENERATING_BOUNDS.H */
365 
366 enum zone_type {
367 #ifdef CONFIG_ZONE_DMA
368 	/*
369 	 * ZONE_DMA is used when there are devices that are not able
370 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
371 	 * carve out the portion of memory that is needed for these devices.
372 	 * The range is arch specific.
373 	 *
374 	 * Some examples
375 	 *
376 	 * Architecture		Limit
377 	 * ---------------------------
378 	 * parisc, ia64, sparc	<4G
379 	 * s390, powerpc	<2G
380 	 * arm			Various
381 	 * alpha		Unlimited or 0-16MB.
382 	 *
383 	 * i386, x86_64 and multiple other arches
384 	 * 			<16M.
385 	 */
386 	ZONE_DMA,
387 #endif
388 #ifdef CONFIG_ZONE_DMA32
389 	/*
390 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
391 	 * only able to do DMA to the lower 16M but also 32 bit devices that
392 	 * can only do DMA areas below 4G.
393 	 */
394 	ZONE_DMA32,
395 #endif
396 	/*
397 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
398 	 * performed on pages in ZONE_NORMAL if the DMA devices support
399 	 * transfers to all addressable memory.
400 	 */
401 	ZONE_NORMAL,
402 #ifdef CONFIG_HIGHMEM
403 	/*
404 	 * A memory area that is only addressable by the kernel through
405 	 * mapping portions into its own address space. This is for example
406 	 * used by i386 to allow the kernel to address the memory beyond
407 	 * 900MB. The kernel will set up special mappings (page
408 	 * table entries on i386) for each page that the kernel needs to
409 	 * access.
410 	 */
411 	ZONE_HIGHMEM,
412 #endif
413 	ZONE_MOVABLE,
414 #ifdef CONFIG_ZONE_DEVICE
415 	ZONE_DEVICE,
416 #endif
417 	__MAX_NR_ZONES
418 
419 };
420 
421 #ifndef __GENERATING_BOUNDS_H
422 
423 struct zone {
424 	/* Read-mostly fields */
425 
426 	/* zone watermarks, access with *_wmark_pages(zone) macros */
427 	unsigned long _watermark[NR_WMARK];
428 	unsigned long watermark_boost;
429 
430 	unsigned long nr_reserved_highatomic;
431 
432 	/*
433 	 * We don't know if the memory that we're going to allocate will be
434 	 * freeable or/and it will be released eventually, so to avoid totally
435 	 * wasting several GB of ram we must reserve some of the lower zone
436 	 * memory (otherwise we risk to run OOM on the lower zones despite
437 	 * there being tons of freeable ram on the higher zones).  This array is
438 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
439 	 * changes.
440 	 */
441 	long lowmem_reserve[MAX_NR_ZONES];
442 
443 #ifdef CONFIG_NUMA
444 	int node;
445 #endif
446 	struct pglist_data	*zone_pgdat;
447 	struct per_cpu_pageset __percpu *pageset;
448 
449 #ifdef CONFIG_CMA
450 	bool			cma_alloc;
451 #endif
452 
453 #ifndef CONFIG_SPARSEMEM
454 	/*
455 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
456 	 * In SPARSEMEM, this map is stored in struct mem_section
457 	 */
458 	unsigned long		*pageblock_flags;
459 #endif /* CONFIG_SPARSEMEM */
460 
461 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
462 	unsigned long		zone_start_pfn;
463 
464 	/*
465 	 * spanned_pages is the total pages spanned by the zone, including
466 	 * holes, which is calculated as:
467 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
468 	 *
469 	 * present_pages is physical pages existing within the zone, which
470 	 * is calculated as:
471 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
472 	 *
473 	 * managed_pages is present pages managed by the buddy system, which
474 	 * is calculated as (reserved_pages includes pages allocated by the
475 	 * bootmem allocator):
476 	 *	managed_pages = present_pages - reserved_pages;
477 	 *
478 	 * So present_pages may be used by memory hotplug or memory power
479 	 * management logic to figure out unmanaged pages by checking
480 	 * (present_pages - managed_pages). And managed_pages should be used
481 	 * by page allocator and vm scanner to calculate all kinds of watermarks
482 	 * and thresholds.
483 	 *
484 	 * Locking rules:
485 	 *
486 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
487 	 * It is a seqlock because it has to be read outside of zone->lock,
488 	 * and it is done in the main allocator path.  But, it is written
489 	 * quite infrequently.
490 	 *
491 	 * The span_seq lock is declared along with zone->lock because it is
492 	 * frequently read in proximity to zone->lock.  It's good to
493 	 * give them a chance of being in the same cacheline.
494 	 *
495 	 * Write access to present_pages at runtime should be protected by
496 	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
497 	 * present_pages should get_online_mems() to get a stable value.
498 	 */
499 	atomic_long_t		managed_pages;
500 	unsigned long		spanned_pages;
501 	unsigned long		present_pages;
502 
503 	const char		*name;
504 
505 #ifdef CONFIG_MEMORY_ISOLATION
506 	/*
507 	 * Number of isolated pageblock. It is used to solve incorrect
508 	 * freepage counting problem due to racy retrieving migratetype
509 	 * of pageblock. Protected by zone->lock.
510 	 */
511 	unsigned long		nr_isolate_pageblock;
512 #endif
513 
514 #ifdef CONFIG_MEMORY_HOTPLUG
515 	/* see spanned/present_pages for more description */
516 	seqlock_t		span_seqlock;
517 #endif
518 
519 	int initialized;
520 
521 	/* Write-intensive fields used from the page allocator */
522 	ZONE_PADDING(_pad1_)
523 
524 	/* free areas of different sizes */
525 	struct free_area	free_area[MAX_ORDER];
526 
527 	/* zone flags, see below */
528 	unsigned long		flags;
529 
530 	/* Primarily protects free_area */
531 	spinlock_t		lock;
532 
533 	/* Write-intensive fields used by compaction and vmstats. */
534 	ZONE_PADDING(_pad2_)
535 
536 	/*
537 	 * When free pages are below this point, additional steps are taken
538 	 * when reading the number of free pages to avoid per-cpu counter
539 	 * drift allowing watermarks to be breached
540 	 */
541 	unsigned long percpu_drift_mark;
542 
543 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
544 	/* pfn where compaction free scanner should start */
545 	unsigned long		compact_cached_free_pfn;
546 	/* pfn where async and sync compaction migration scanner should start */
547 	unsigned long		compact_cached_migrate_pfn[2];
548 	unsigned long		compact_init_migrate_pfn;
549 	unsigned long		compact_init_free_pfn;
550 #endif
551 
552 #ifdef CONFIG_COMPACTION
553 	/*
554 	 * On compaction failure, 1<<compact_defer_shift compactions
555 	 * are skipped before trying again. The number attempted since
556 	 * last failure is tracked with compact_considered.
557 	 */
558 	unsigned int		compact_considered;
559 	unsigned int		compact_defer_shift;
560 	int			compact_order_failed;
561 #endif
562 
563 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
564 	/* Set to true when the PG_migrate_skip bits should be cleared */
565 	bool			compact_blockskip_flush;
566 #endif
567 
568 	bool			contiguous;
569 
570 	ZONE_PADDING(_pad3_)
571 	/* Zone statistics */
572 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
573 	atomic_long_t		vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
574 
575 	ANDROID_KABI_RESERVE(1);
576 	ANDROID_KABI_RESERVE(2);
577 	ANDROID_KABI_RESERVE(3);
578 	ANDROID_KABI_RESERVE(4);
579 } ____cacheline_internodealigned_in_smp;
580 
581 enum pgdat_flags {
582 	PGDAT_CONGESTED,		/* pgdat has many dirty pages backed by
583 					 * a congested BDI
584 					 */
585 	PGDAT_DIRTY,			/* reclaim scanning has recently found
586 					 * many dirty file pages at the tail
587 					 * of the LRU.
588 					 */
589 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
590 					 * many pages under writeback
591 					 */
592 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
593 };
594 
595 enum zone_flags {
596 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
597 					 * Cleared when kswapd is woken.
598 					 */
599 };
600 
zone_managed_pages(struct zone * zone)601 static inline unsigned long zone_managed_pages(struct zone *zone)
602 {
603 	return (unsigned long)atomic_long_read(&zone->managed_pages);
604 }
605 
zone_end_pfn(const struct zone * zone)606 static inline unsigned long zone_end_pfn(const struct zone *zone)
607 {
608 	return zone->zone_start_pfn + zone->spanned_pages;
609 }
610 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)611 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
612 {
613 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
614 }
615 
zone_is_initialized(struct zone * zone)616 static inline bool zone_is_initialized(struct zone *zone)
617 {
618 	return zone->initialized;
619 }
620 
zone_is_empty(struct zone * zone)621 static inline bool zone_is_empty(struct zone *zone)
622 {
623 	return zone->spanned_pages == 0;
624 }
625 
626 /*
627  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
628  * intersection with the given zone
629  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)630 static inline bool zone_intersects(struct zone *zone,
631 		unsigned long start_pfn, unsigned long nr_pages)
632 {
633 	if (zone_is_empty(zone))
634 		return false;
635 	if (start_pfn >= zone_end_pfn(zone) ||
636 	    start_pfn + nr_pages <= zone->zone_start_pfn)
637 		return false;
638 
639 	return true;
640 }
641 
642 /*
643  * The "priority" of VM scanning is how much of the queues we will scan in one
644  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
645  * queues ("queue_length >> 12") during an aging round.
646  */
647 #define DEF_PRIORITY 12
648 
649 /* Maximum number of zones on a zonelist */
650 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
651 
652 enum {
653 	ZONELIST_FALLBACK,	/* zonelist with fallback */
654 #ifdef CONFIG_NUMA
655 	/*
656 	 * The NUMA zonelists are doubled because we need zonelists that
657 	 * restrict the allocations to a single node for __GFP_THISNODE.
658 	 */
659 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
660 #endif
661 	MAX_ZONELISTS
662 };
663 
664 /*
665  * This struct contains information about a zone in a zonelist. It is stored
666  * here to avoid dereferences into large structures and lookups of tables
667  */
668 struct zoneref {
669 	struct zone *zone;	/* Pointer to actual zone */
670 	int zone_idx;		/* zone_idx(zoneref->zone) */
671 };
672 
673 /*
674  * One allocation request operates on a zonelist. A zonelist
675  * is a list of zones, the first one is the 'goal' of the
676  * allocation, the other zones are fallback zones, in decreasing
677  * priority.
678  *
679  * To speed the reading of the zonelist, the zonerefs contain the zone index
680  * of the entry being read. Helper functions to access information given
681  * a struct zoneref are
682  *
683  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
684  * zonelist_zone_idx()	- Return the index of the zone for an entry
685  * zonelist_node_idx()	- Return the index of the node for an entry
686  */
687 struct zonelist {
688 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
689 };
690 
691 #ifndef CONFIG_DISCONTIGMEM
692 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
693 extern struct page *mem_map;
694 #endif
695 
696 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_GKI_OPT_FEATURES)
697 struct deferred_split {
698 	spinlock_t split_queue_lock;
699 	struct list_head split_queue;
700 	unsigned long split_queue_len;
701 };
702 #endif
703 
704 /*
705  * On NUMA machines, each NUMA node would have a pg_data_t to describe
706  * it's memory layout. On UMA machines there is a single pglist_data which
707  * describes the whole memory.
708  *
709  * Memory statistics and page replacement data structures are maintained on a
710  * per-zone basis.
711  */
712 struct bootmem_data;
713 typedef struct pglist_data {
714 	struct zone node_zones[MAX_NR_ZONES];
715 	struct zonelist node_zonelists[MAX_ZONELISTS];
716 	int nr_zones;
717 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
718 	struct page *node_mem_map;
719 #ifdef CONFIG_PAGE_EXTENSION
720 	struct page_ext *node_page_ext;
721 #endif
722 #endif
723 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
724 	/*
725 	 * Must be held any time you expect node_start_pfn,
726 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
727 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
728 	 * init.
729 	 *
730 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
731 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
732 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
733 	 *
734 	 * Nests above zone->lock and zone->span_seqlock
735 	 */
736 	spinlock_t node_size_lock;
737 #endif
738 	unsigned long node_start_pfn;
739 	unsigned long node_present_pages; /* total number of physical pages */
740 	unsigned long node_spanned_pages; /* total size of physical page
741 					     range, including holes */
742 	int node_id;
743 	wait_queue_head_t kswapd_wait;
744 	wait_queue_head_t pfmemalloc_wait;
745 	struct task_struct *kswapd;	/* Protected by
746 					   mem_hotplug_begin/end() */
747 	int kswapd_order;
748 	enum zone_type kswapd_classzone_idx;
749 
750 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
751 
752 #ifdef CONFIG_COMPACTION
753 	int kcompactd_max_order;
754 	enum zone_type kcompactd_classzone_idx;
755 	wait_queue_head_t kcompactd_wait;
756 	struct task_struct *kcompactd;
757 #endif
758 	/*
759 	 * This is a per-node reserve of pages that are not available
760 	 * to userspace allocations.
761 	 */
762 	unsigned long		totalreserve_pages;
763 
764 #ifdef CONFIG_NUMA
765 	/*
766 	 * zone reclaim becomes active if more unmapped pages exist.
767 	 */
768 	unsigned long		min_unmapped_pages;
769 	unsigned long		min_slab_pages;
770 #endif /* CONFIG_NUMA */
771 
772 	/* Write-intensive fields used by page reclaim */
773 	ZONE_PADDING(_pad1_)
774 	spinlock_t		lru_lock;
775 
776 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
777 	/*
778 	 * If memory initialisation on large machines is deferred then this
779 	 * is the first PFN that needs to be initialised.
780 	 */
781 	unsigned long first_deferred_pfn;
782 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
783 
784 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_GKI_OPT_FEATURES)
785 	struct deferred_split deferred_split_queue;
786 #endif
787 
788 	/* Fields commonly accessed by the page reclaim scanner */
789 	struct lruvec		lruvec;
790 
791 	unsigned long		flags;
792 
793 	ZONE_PADDING(_pad2_)
794 
795 	/* Per-node vmstats */
796 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
797 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
798 } pg_data_t;
799 
800 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
801 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
802 #ifdef CONFIG_FLAT_NODE_MEM_MAP
803 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
804 #else
805 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
806 #endif
807 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
808 
809 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
810 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
811 
node_lruvec(struct pglist_data * pgdat)812 static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
813 {
814 	return &pgdat->lruvec;
815 }
816 
pgdat_end_pfn(pg_data_t * pgdat)817 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
818 {
819 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
820 }
821 
pgdat_is_empty(pg_data_t * pgdat)822 static inline bool pgdat_is_empty(pg_data_t *pgdat)
823 {
824 	return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
825 }
826 
827 #include <linux/memory_hotplug.h>
828 
829 void build_all_zonelists(pg_data_t *pgdat);
830 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
831 		   enum zone_type classzone_idx);
832 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
833 			 int classzone_idx, unsigned int alloc_flags,
834 			 long free_pages);
835 bool zone_watermark_ok(struct zone *z, unsigned int order,
836 		unsigned long mark, int classzone_idx,
837 		unsigned int alloc_flags);
838 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
839 		unsigned long mark, int classzone_idx);
840 /*
841  * Memory initialization context, use to differentiate memory added by
842  * the platform statically or via memory hotplug interface.
843  */
844 enum meminit_context {
845 	MEMINIT_EARLY,
846 	MEMINIT_HOTPLUG,
847 };
848 
849 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
850 				     unsigned long size);
851 
852 extern void lruvec_init(struct lruvec *lruvec);
853 
lruvec_pgdat(struct lruvec * lruvec)854 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
855 {
856 #ifdef CONFIG_MEMCG
857 	return lruvec->pgdat;
858 #else
859 	return container_of(lruvec, struct pglist_data, lruvec);
860 #endif
861 }
862 
863 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
864 
865 #ifdef CONFIG_HAVE_MEMORY_PRESENT
866 void memory_present(int nid, unsigned long start, unsigned long end);
867 #else
memory_present(int nid,unsigned long start,unsigned long end)868 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
869 #endif
870 
871 #if defined(CONFIG_SPARSEMEM)
872 void memblocks_present(void);
873 #else
memblocks_present(void)874 static inline void memblocks_present(void) {}
875 #endif
876 
877 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
878 int local_memory_node(int node_id);
879 #else
local_memory_node(int node_id)880 static inline int local_memory_node(int node_id) { return node_id; };
881 #endif
882 
883 /*
884  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
885  */
886 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
887 
888 /*
889  * Returns true if a zone has pages managed by the buddy allocator.
890  * All the reclaim decisions have to use this function rather than
891  * populated_zone(). If the whole zone is reserved then we can easily
892  * end up with populated_zone() && !managed_zone().
893  */
managed_zone(struct zone * zone)894 static inline bool managed_zone(struct zone *zone)
895 {
896 	return zone_managed_pages(zone);
897 }
898 
899 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)900 static inline bool populated_zone(struct zone *zone)
901 {
902 	return zone->present_pages;
903 }
904 
905 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)906 static inline int zone_to_nid(struct zone *zone)
907 {
908 	return zone->node;
909 }
910 
zone_set_nid(struct zone * zone,int nid)911 static inline void zone_set_nid(struct zone *zone, int nid)
912 {
913 	zone->node = nid;
914 }
915 #else
zone_to_nid(struct zone * zone)916 static inline int zone_to_nid(struct zone *zone)
917 {
918 	return 0;
919 }
920 
zone_set_nid(struct zone * zone,int nid)921 static inline void zone_set_nid(struct zone *zone, int nid) {}
922 #endif
923 
924 extern int movable_zone;
925 
926 #ifdef CONFIG_HIGHMEM
zone_movable_is_highmem(void)927 static inline int zone_movable_is_highmem(void)
928 {
929 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
930 	return movable_zone == ZONE_HIGHMEM;
931 #else
932 	return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
933 #endif
934 }
935 #endif
936 
is_highmem_idx(enum zone_type idx)937 static inline int is_highmem_idx(enum zone_type idx)
938 {
939 #ifdef CONFIG_HIGHMEM
940 	return (idx == ZONE_HIGHMEM ||
941 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
942 #else
943 	return 0;
944 #endif
945 }
946 
947 #ifdef CONFIG_ZONE_DMA
948 bool has_managed_dma(void);
949 #else
has_managed_dma(void)950 static inline bool has_managed_dma(void)
951 {
952 	return false;
953 }
954 #endif
955 
956 /**
957  * is_highmem - helper function to quickly check if a struct zone is a
958  *              highmem zone or not.  This is an attempt to keep references
959  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
960  * @zone - pointer to struct zone variable
961  */
is_highmem(struct zone * zone)962 static inline int is_highmem(struct zone *zone)
963 {
964 #ifdef CONFIG_HIGHMEM
965 	return is_highmem_idx(zone_idx(zone));
966 #else
967 	return 0;
968 #endif
969 }
970 
971 /* These two functions are used to setup the per zone pages min values */
972 struct ctl_table;
973 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
974 					void __user *, size_t *, loff_t *);
975 int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
976 					void __user *, size_t *, loff_t *);
977 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
978 					void __user *, size_t *, loff_t *);
979 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
980 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
981 					void __user *, size_t *, loff_t *);
982 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
983 					void __user *, size_t *, loff_t *);
984 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
985 			void __user *, size_t *, loff_t *);
986 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
987 			void __user *, size_t *, loff_t *);
988 
989 extern int numa_zonelist_order_handler(struct ctl_table *, int,
990 			void __user *, size_t *, loff_t *);
991 extern char numa_zonelist_order[];
992 #define NUMA_ZONELIST_ORDER_LEN	16
993 
994 #ifndef CONFIG_NEED_MULTIPLE_NODES
995 
996 extern struct pglist_data contig_page_data;
997 #define NODE_DATA(nid)		(&contig_page_data)
998 #define NODE_MEM_MAP(nid)	mem_map
999 
1000 #else /* CONFIG_NEED_MULTIPLE_NODES */
1001 
1002 #include <asm/mmzone.h>
1003 
1004 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
1005 
1006 extern struct pglist_data *first_online_pgdat(void);
1007 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1008 extern struct zone *next_zone(struct zone *zone);
1009 
1010 /**
1011  * for_each_online_pgdat - helper macro to iterate over all online nodes
1012  * @pgdat - pointer to a pg_data_t variable
1013  */
1014 #define for_each_online_pgdat(pgdat)			\
1015 	for (pgdat = first_online_pgdat();		\
1016 	     pgdat;					\
1017 	     pgdat = next_online_pgdat(pgdat))
1018 /**
1019  * for_each_zone - helper macro to iterate over all memory zones
1020  * @zone - pointer to struct zone variable
1021  *
1022  * The user only needs to declare the zone variable, for_each_zone
1023  * fills it in.
1024  */
1025 #define for_each_zone(zone)			        \
1026 	for (zone = (first_online_pgdat())->node_zones; \
1027 	     zone;					\
1028 	     zone = next_zone(zone))
1029 
1030 #define for_each_populated_zone(zone)		        \
1031 	for (zone = (first_online_pgdat())->node_zones; \
1032 	     zone;					\
1033 	     zone = next_zone(zone))			\
1034 		if (!populated_zone(zone))		\
1035 			; /* do nothing */		\
1036 		else
1037 
zonelist_zone(struct zoneref * zoneref)1038 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1039 {
1040 	return zoneref->zone;
1041 }
1042 
zonelist_zone_idx(struct zoneref * zoneref)1043 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1044 {
1045 	return zoneref->zone_idx;
1046 }
1047 
zonelist_node_idx(struct zoneref * zoneref)1048 static inline int zonelist_node_idx(struct zoneref *zoneref)
1049 {
1050 	return zone_to_nid(zoneref->zone);
1051 }
1052 
1053 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1054 					enum zone_type highest_zoneidx,
1055 					nodemask_t *nodes);
1056 
1057 /**
1058  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1059  * @z - The cursor used as a starting point for the search
1060  * @highest_zoneidx - The zone index of the highest zone to return
1061  * @nodes - An optional nodemask to filter the zonelist with
1062  *
1063  * This function returns the next zone at or below a given zone index that is
1064  * within the allowed nodemask using a cursor as the starting point for the
1065  * search. The zoneref returned is a cursor that represents the current zone
1066  * being examined. It should be advanced by one before calling
1067  * next_zones_zonelist again.
1068  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1069 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1070 					enum zone_type highest_zoneidx,
1071 					nodemask_t *nodes)
1072 {
1073 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1074 		return z;
1075 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1076 }
1077 
1078 /**
1079  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1080  * @zonelist - The zonelist to search for a suitable zone
1081  * @highest_zoneidx - The zone index of the highest zone to return
1082  * @nodes - An optional nodemask to filter the zonelist with
1083  * @return - Zoneref pointer for the first suitable zone found (see below)
1084  *
1085  * This function returns the first zone at or below a given zone index that is
1086  * within the allowed nodemask. The zoneref returned is a cursor that can be
1087  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1088  * one before calling.
1089  *
1090  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1091  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1092  * update due to cpuset modification.
1093  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1094 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1095 					enum zone_type highest_zoneidx,
1096 					nodemask_t *nodes)
1097 {
1098 	return next_zones_zonelist(zonelist->_zonerefs,
1099 							highest_zoneidx, nodes);
1100 }
1101 
1102 /**
1103  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1104  * @zone - The current zone in the iterator
1105  * @z - The current pointer within zonelist->zones being iterated
1106  * @zlist - The zonelist being iterated
1107  * @highidx - The zone index of the highest zone to return
1108  * @nodemask - Nodemask allowed by the allocator
1109  *
1110  * This iterator iterates though all zones at or below a given zone index and
1111  * within a given nodemask
1112  */
1113 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1114 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1115 		zone;							\
1116 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1117 			zone = zonelist_zone(z))
1118 
1119 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1120 	for (zone = z->zone;	\
1121 		zone;							\
1122 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1123 			zone = zonelist_zone(z))
1124 
1125 
1126 /**
1127  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1128  * @zone - The current zone in the iterator
1129  * @z - The current pointer within zonelist->zones being iterated
1130  * @zlist - The zonelist being iterated
1131  * @highidx - The zone index of the highest zone to return
1132  *
1133  * This iterator iterates though all zones at or below a given zone index.
1134  */
1135 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1136 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1137 
1138 #ifdef CONFIG_SPARSEMEM
1139 #include <asm/sparsemem.h>
1140 #endif
1141 
1142 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1143 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
early_pfn_to_nid(unsigned long pfn)1144 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1145 {
1146 	BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1147 	return 0;
1148 }
1149 #endif
1150 
1151 #ifdef CONFIG_FLATMEM
1152 #define pfn_to_nid(pfn)		(0)
1153 #endif
1154 
1155 #ifdef CONFIG_SPARSEMEM
1156 
1157 /*
1158  * SECTION_SHIFT    		#bits space required to store a section #
1159  *
1160  * PA_SECTION_SHIFT		physical address to/from section number
1161  * PFN_SECTION_SHIFT		pfn to/from section number
1162  */
1163 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1164 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1165 
1166 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1167 
1168 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1169 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1170 
1171 #define SECTION_BLOCKFLAGS_BITS \
1172 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1173 
1174 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1175 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1176 #endif
1177 
pfn_to_section_nr(unsigned long pfn)1178 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1179 {
1180 	return pfn >> PFN_SECTION_SHIFT;
1181 }
section_nr_to_pfn(unsigned long sec)1182 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1183 {
1184 	return sec << PFN_SECTION_SHIFT;
1185 }
1186 
1187 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1188 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1189 
1190 #define SUBSECTION_SHIFT 21
1191 
1192 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1193 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1194 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1195 
1196 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1197 #error Subsection size exceeds section size
1198 #else
1199 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1200 #endif
1201 
1202 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1203 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1204 
1205 struct mem_section_usage {
1206 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1207 	/* See declaration of similar field in struct zone */
1208 	unsigned long pageblock_flags[0];
1209 };
1210 
1211 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1212 
1213 struct page;
1214 struct page_ext;
1215 struct mem_section {
1216 	/*
1217 	 * This is, logically, a pointer to an array of struct
1218 	 * pages.  However, it is stored with some other magic.
1219 	 * (see sparse.c::sparse_init_one_section())
1220 	 *
1221 	 * Additionally during early boot we encode node id of
1222 	 * the location of the section here to guide allocation.
1223 	 * (see sparse.c::memory_present())
1224 	 *
1225 	 * Making it a UL at least makes someone do a cast
1226 	 * before using it wrong.
1227 	 */
1228 	unsigned long section_mem_map;
1229 
1230 	struct mem_section_usage *usage;
1231 #ifdef CONFIG_PAGE_EXTENSION
1232 	/*
1233 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1234 	 * section. (see page_ext.h about this.)
1235 	 */
1236 	struct page_ext *page_ext;
1237 	unsigned long pad;
1238 #endif
1239 	/*
1240 	 * WARNING: mem_section must be a power-of-2 in size for the
1241 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1242 	 */
1243 };
1244 
1245 #ifdef CONFIG_SPARSEMEM_EXTREME
1246 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1247 #else
1248 #define SECTIONS_PER_ROOT	1
1249 #endif
1250 
1251 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1252 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1253 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1254 
1255 #ifdef CONFIG_SPARSEMEM_EXTREME
1256 extern struct mem_section **mem_section;
1257 #else
1258 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1259 #endif
1260 
section_to_usemap(struct mem_section * ms)1261 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1262 {
1263 	return ms->usage->pageblock_flags;
1264 }
1265 
__nr_to_section(unsigned long nr)1266 static inline struct mem_section *__nr_to_section(unsigned long nr)
1267 {
1268 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1269 
1270 	if (unlikely(root >= NR_SECTION_ROOTS))
1271 		return NULL;
1272 
1273 #ifdef CONFIG_SPARSEMEM_EXTREME
1274 	if (!mem_section || !mem_section[root])
1275 		return NULL;
1276 #endif
1277 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1278 }
1279 extern unsigned long __section_nr(struct mem_section *ms);
1280 extern size_t mem_section_usage_size(void);
1281 
1282 /*
1283  * We use the lower bits of the mem_map pointer to store
1284  * a little bit of information.  The pointer is calculated
1285  * as mem_map - section_nr_to_pfn(pnum).  The result is
1286  * aligned to the minimum alignment of the two values:
1287  *   1. All mem_map arrays are page-aligned.
1288  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1289  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1290  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1291  *      worst combination is powerpc with 256k pages,
1292  *      which results in PFN_SECTION_SHIFT equal 6.
1293  * To sum it up, at least 6 bits are available.
1294  */
1295 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1296 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1297 #define SECTION_IS_ONLINE	(1UL<<2)
1298 #define SECTION_IS_EARLY	(1UL<<3)
1299 #define SECTION_MAP_LAST_BIT	(1UL<<4)
1300 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1301 #define SECTION_NID_SHIFT	3
1302 
__section_mem_map_addr(struct mem_section * section)1303 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1304 {
1305 	unsigned long map = section->section_mem_map;
1306 	map &= SECTION_MAP_MASK;
1307 	return (struct page *)map;
1308 }
1309 
present_section(struct mem_section * section)1310 static inline int present_section(struct mem_section *section)
1311 {
1312 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1313 }
1314 
present_section_nr(unsigned long nr)1315 static inline int present_section_nr(unsigned long nr)
1316 {
1317 	return present_section(__nr_to_section(nr));
1318 }
1319 
valid_section(struct mem_section * section)1320 static inline int valid_section(struct mem_section *section)
1321 {
1322 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1323 }
1324 
early_section(struct mem_section * section)1325 static inline int early_section(struct mem_section *section)
1326 {
1327 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1328 }
1329 
valid_section_nr(unsigned long nr)1330 static inline int valid_section_nr(unsigned long nr)
1331 {
1332 	return valid_section(__nr_to_section(nr));
1333 }
1334 
online_section(struct mem_section * section)1335 static inline int online_section(struct mem_section *section)
1336 {
1337 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1338 }
1339 
online_section_nr(unsigned long nr)1340 static inline int online_section_nr(unsigned long nr)
1341 {
1342 	return online_section(__nr_to_section(nr));
1343 }
1344 
1345 #ifdef CONFIG_MEMORY_HOTPLUG
1346 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1347 #ifdef CONFIG_MEMORY_HOTREMOVE
1348 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1349 #endif
1350 #endif
1351 
__pfn_to_section(unsigned long pfn)1352 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1353 {
1354 	return __nr_to_section(pfn_to_section_nr(pfn));
1355 }
1356 
1357 extern unsigned long __highest_present_section_nr;
1358 
subsection_map_index(unsigned long pfn)1359 static inline int subsection_map_index(unsigned long pfn)
1360 {
1361 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1362 }
1363 
1364 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1365 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1366 {
1367 	int idx = subsection_map_index(pfn);
1368 
1369 	return test_bit(idx, ms->usage->subsection_map);
1370 }
1371 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)1372 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1373 {
1374 	return 1;
1375 }
1376 #endif
1377 
1378 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
pfn_valid(unsigned long pfn)1379 static inline int pfn_valid(unsigned long pfn)
1380 {
1381 	struct mem_section *ms;
1382 
1383 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1384 		return 0;
1385 	ms = __nr_to_section(pfn_to_section_nr(pfn));
1386 	if (!valid_section(ms))
1387 		return 0;
1388 	/*
1389 	 * Traditionally early sections always returned pfn_valid() for
1390 	 * the entire section-sized span.
1391 	 */
1392 	return early_section(ms) || pfn_section_valid(ms, pfn);
1393 }
1394 #endif
1395 
pfn_present(unsigned long pfn)1396 static inline int pfn_present(unsigned long pfn)
1397 {
1398 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1399 		return 0;
1400 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1401 }
1402 
1403 /*
1404  * These are _only_ used during initialisation, therefore they
1405  * can use __initdata ...  They could have names to indicate
1406  * this restriction.
1407  */
1408 #ifdef CONFIG_NUMA
1409 #define pfn_to_nid(pfn)							\
1410 ({									\
1411 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1412 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1413 })
1414 #else
1415 #define pfn_to_nid(pfn)		(0)
1416 #endif
1417 
1418 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1419 void sparse_init(void);
1420 #else
1421 #define sparse_init()	do {} while (0)
1422 #define sparse_index_init(_sec, _nid)  do {} while (0)
1423 #define pfn_present pfn_valid
1424 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1425 #endif /* CONFIG_SPARSEMEM */
1426 
1427 /*
1428  * During memory init memblocks map pfns to nids. The search is expensive and
1429  * this caches recent lookups. The implementation of __early_pfn_to_nid
1430  * may treat start/end as pfns or sections.
1431  */
1432 struct mminit_pfnnid_cache {
1433 	unsigned long last_start;
1434 	unsigned long last_end;
1435 	int last_nid;
1436 };
1437 
1438 #ifndef early_pfn_valid
1439 #define early_pfn_valid(pfn)	(1)
1440 #endif
1441 
1442 void memory_present(int nid, unsigned long start, unsigned long end);
1443 
1444 /*
1445  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1446  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1447  * pfn_valid_within() should be used in this case; we optimise this away
1448  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1449  */
1450 #ifdef CONFIG_HOLES_IN_ZONE
1451 #define pfn_valid_within(pfn) pfn_valid(pfn)
1452 #else
1453 #define pfn_valid_within(pfn) (1)
1454 #endif
1455 
1456 #endif /* !__GENERATING_BOUNDS.H */
1457 #endif /* !__ASSEMBLY__ */
1458 #endif /* _LINUX_MMZONE_H */
1459