• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * AEAD: Authenticated Encryption with Associated Data
4  *
5  * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6  */
7 
8 #ifndef _CRYPTO_AEAD_H
9 #define _CRYPTO_AEAD_H
10 
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 
15 /**
16  * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
17  *
18  * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
19  * (listed as type "aead" in /proc/crypto)
20  *
21  * The most prominent examples for this type of encryption is GCM and CCM.
22  * However, the kernel supports other types of AEAD ciphers which are defined
23  * with the following cipher string:
24  *
25  *	authenc(keyed message digest, block cipher)
26  *
27  * For example: authenc(hmac(sha256), cbc(aes))
28  *
29  * The example code provided for the symmetric key cipher operation
30  * applies here as well. Naturally all *skcipher* symbols must be exchanged
31  * the *aead* pendants discussed in the following. In addition, for the AEAD
32  * operation, the aead_request_set_ad function must be used to set the
33  * pointer to the associated data memory location before performing the
34  * encryption or decryption operation. In case of an encryption, the associated
35  * data memory is filled during the encryption operation. For decryption, the
36  * associated data memory must contain data that is used to verify the integrity
37  * of the decrypted data. Another deviation from the asynchronous block cipher
38  * operation is that the caller should explicitly check for -EBADMSG of the
39  * crypto_aead_decrypt. That error indicates an authentication error, i.e.
40  * a breach in the integrity of the message. In essence, that -EBADMSG error
41  * code is the key bonus an AEAD cipher has over "standard" block chaining
42  * modes.
43  *
44  * Memory Structure:
45  *
46  * To support the needs of the most prominent user of AEAD ciphers, namely
47  * IPSEC, the AEAD ciphers have a special memory layout the caller must adhere
48  * to.
49  *
50  * The scatter list pointing to the input data must contain:
51  *
52  * * for RFC4106 ciphers, the concatenation of
53  *   associated authentication data || IV || plaintext or ciphertext. Note, the
54  *   same IV (buffer) is also set with the aead_request_set_crypt call. Note,
55  *   the API call of aead_request_set_ad must provide the length of the AAD and
56  *   the IV. The API call of aead_request_set_crypt only points to the size of
57  *   the input plaintext or ciphertext.
58  *
59  * * for "normal" AEAD ciphers, the concatenation of
60  *   associated authentication data || plaintext or ciphertext.
61  *
62  * It is important to note that if multiple scatter gather list entries form
63  * the input data mentioned above, the first entry must not point to a NULL
64  * buffer. If there is any potential where the AAD buffer can be NULL, the
65  * calling code must contain a precaution to ensure that this does not result
66  * in the first scatter gather list entry pointing to a NULL buffer.
67  */
68 
69 struct crypto_aead;
70 
71 /**
72  *	struct aead_request - AEAD request
73  *	@base: Common attributes for async crypto requests
74  *	@assoclen: Length in bytes of associated data for authentication
75  *	@cryptlen: Length of data to be encrypted or decrypted
76  *	@iv: Initialisation vector
77  *	@src: Source data
78  *	@dst: Destination data
79  *	@__ctx: Start of private context data
80  */
81 struct aead_request {
82 	struct crypto_async_request base;
83 
84 	unsigned int assoclen;
85 	unsigned int cryptlen;
86 
87 	u8 *iv;
88 
89 	struct scatterlist *src;
90 	struct scatterlist *dst;
91 
92 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
93 };
94 
95 /**
96  * struct aead_alg - AEAD cipher definition
97  * @maxauthsize: Set the maximum authentication tag size supported by the
98  *		 transformation. A transformation may support smaller tag sizes.
99  *		 As the authentication tag is a message digest to ensure the
100  *		 integrity of the encrypted data, a consumer typically wants the
101  *		 largest authentication tag possible as defined by this
102  *		 variable.
103  * @setauthsize: Set authentication size for the AEAD transformation. This
104  *		 function is used to specify the consumer requested size of the
105  * 		 authentication tag to be either generated by the transformation
106  *		 during encryption or the size of the authentication tag to be
107  *		 supplied during the decryption operation. This function is also
108  *		 responsible for checking the authentication tag size for
109  *		 validity.
110  * @setkey: see struct skcipher_alg
111  * @encrypt: see struct skcipher_alg
112  * @decrypt: see struct skcipher_alg
113  * @ivsize: see struct skcipher_alg
114  * @chunksize: see struct skcipher_alg
115  * @init: Initialize the cryptographic transformation object. This function
116  *	  is used to initialize the cryptographic transformation object.
117  *	  This function is called only once at the instantiation time, right
118  *	  after the transformation context was allocated. In case the
119  *	  cryptographic hardware has some special requirements which need to
120  *	  be handled by software, this function shall check for the precise
121  *	  requirement of the transformation and put any software fallbacks
122  *	  in place.
123  * @exit: Deinitialize the cryptographic transformation object. This is a
124  *	  counterpart to @init, used to remove various changes set in
125  *	  @init.
126  * @base: Definition of a generic crypto cipher algorithm.
127  *
128  * All fields except @ivsize is mandatory and must be filled.
129  */
130 struct aead_alg {
131 	int (*setkey)(struct crypto_aead *tfm, const u8 *key,
132 	              unsigned int keylen);
133 	int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
134 	int (*encrypt)(struct aead_request *req);
135 	int (*decrypt)(struct aead_request *req);
136 	int (*init)(struct crypto_aead *tfm);
137 	void (*exit)(struct crypto_aead *tfm);
138 
139 	unsigned int ivsize;
140 	unsigned int maxauthsize;
141 	unsigned int chunksize;
142 
143 	struct crypto_alg base;
144 };
145 
146 struct crypto_aead {
147 	unsigned int authsize;
148 	unsigned int reqsize;
149 
150 	struct crypto_tfm base;
151 };
152 
__crypto_aead_cast(struct crypto_tfm * tfm)153 static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
154 {
155 	return container_of(tfm, struct crypto_aead, base);
156 }
157 
158 /**
159  * crypto_alloc_aead() - allocate AEAD cipher handle
160  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
161  *	     AEAD cipher
162  * @type: specifies the type of the cipher
163  * @mask: specifies the mask for the cipher
164  *
165  * Allocate a cipher handle for an AEAD. The returned struct
166  * crypto_aead is the cipher handle that is required for any subsequent
167  * API invocation for that AEAD.
168  *
169  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
170  *	   of an error, PTR_ERR() returns the error code.
171  */
172 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
173 
crypto_aead_tfm(struct crypto_aead * tfm)174 static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
175 {
176 	return &tfm->base;
177 }
178 
179 /**
180  * crypto_free_aead() - zeroize and free aead handle
181  * @tfm: cipher handle to be freed
182  *
183  * If @tfm is a NULL or error pointer, this function does nothing.
184  */
crypto_free_aead(struct crypto_aead * tfm)185 static inline void crypto_free_aead(struct crypto_aead *tfm)
186 {
187 	crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
188 }
189 
crypto_aead_alg(struct crypto_aead * tfm)190 static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
191 {
192 	return container_of(crypto_aead_tfm(tfm)->__crt_alg,
193 			    struct aead_alg, base);
194 }
195 
crypto_aead_alg_ivsize(struct aead_alg * alg)196 static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
197 {
198 	return alg->ivsize;
199 }
200 
201 /**
202  * crypto_aead_ivsize() - obtain IV size
203  * @tfm: cipher handle
204  *
205  * The size of the IV for the aead referenced by the cipher handle is
206  * returned. This IV size may be zero if the cipher does not need an IV.
207  *
208  * Return: IV size in bytes
209  */
crypto_aead_ivsize(struct crypto_aead * tfm)210 static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
211 {
212 	return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
213 }
214 
215 /**
216  * crypto_aead_authsize() - obtain maximum authentication data size
217  * @tfm: cipher handle
218  *
219  * The maximum size of the authentication data for the AEAD cipher referenced
220  * by the AEAD cipher handle is returned. The authentication data size may be
221  * zero if the cipher implements a hard-coded maximum.
222  *
223  * The authentication data may also be known as "tag value".
224  *
225  * Return: authentication data size / tag size in bytes
226  */
crypto_aead_authsize(struct crypto_aead * tfm)227 static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
228 {
229 	return tfm->authsize;
230 }
231 
232 /**
233  * crypto_aead_blocksize() - obtain block size of cipher
234  * @tfm: cipher handle
235  *
236  * The block size for the AEAD referenced with the cipher handle is returned.
237  * The caller may use that information to allocate appropriate memory for the
238  * data returned by the encryption or decryption operation
239  *
240  * Return: block size of cipher
241  */
crypto_aead_blocksize(struct crypto_aead * tfm)242 static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
243 {
244 	return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
245 }
246 
crypto_aead_alignmask(struct crypto_aead * tfm)247 static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
248 {
249 	return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
250 }
251 
crypto_aead_get_flags(struct crypto_aead * tfm)252 static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
253 {
254 	return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
255 }
256 
crypto_aead_set_flags(struct crypto_aead * tfm,u32 flags)257 static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
258 {
259 	crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
260 }
261 
crypto_aead_clear_flags(struct crypto_aead * tfm,u32 flags)262 static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
263 {
264 	crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
265 }
266 
267 /**
268  * crypto_aead_setkey() - set key for cipher
269  * @tfm: cipher handle
270  * @key: buffer holding the key
271  * @keylen: length of the key in bytes
272  *
273  * The caller provided key is set for the AEAD referenced by the cipher
274  * handle.
275  *
276  * Note, the key length determines the cipher type. Many block ciphers implement
277  * different cipher modes depending on the key size, such as AES-128 vs AES-192
278  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
279  * is performed.
280  *
281  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
282  */
283 int crypto_aead_setkey(struct crypto_aead *tfm,
284 		       const u8 *key, unsigned int keylen);
285 
286 /**
287  * crypto_aead_setauthsize() - set authentication data size
288  * @tfm: cipher handle
289  * @authsize: size of the authentication data / tag in bytes
290  *
291  * Set the authentication data size / tag size. AEAD requires an authentication
292  * tag (or MAC) in addition to the associated data.
293  *
294  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
295  */
296 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
297 
crypto_aead_reqtfm(struct aead_request * req)298 static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
299 {
300 	return __crypto_aead_cast(req->base.tfm);
301 }
302 
303 /**
304  * crypto_aead_encrypt() - encrypt plaintext
305  * @req: reference to the aead_request handle that holds all information
306  *	 needed to perform the cipher operation
307  *
308  * Encrypt plaintext data using the aead_request handle. That data structure
309  * and how it is filled with data is discussed with the aead_request_*
310  * functions.
311  *
312  * IMPORTANT NOTE The encryption operation creates the authentication data /
313  *		  tag. That data is concatenated with the created ciphertext.
314  *		  The ciphertext memory size is therefore the given number of
315  *		  block cipher blocks + the size defined by the
316  *		  crypto_aead_setauthsize invocation. The caller must ensure
317  *		  that sufficient memory is available for the ciphertext and
318  *		  the authentication tag.
319  *
320  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
321  */
322 int crypto_aead_encrypt(struct aead_request *req);
323 
324 /**
325  * crypto_aead_decrypt() - decrypt ciphertext
326  * @req: reference to the ablkcipher_request handle that holds all information
327  *	 needed to perform the cipher operation
328  *
329  * Decrypt ciphertext data using the aead_request handle. That data structure
330  * and how it is filled with data is discussed with the aead_request_*
331  * functions.
332  *
333  * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
334  *		  authentication data / tag. That authentication data / tag
335  *		  must have the size defined by the crypto_aead_setauthsize
336  *		  invocation.
337  *
338  *
339  * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
340  *	   cipher operation performs the authentication of the data during the
341  *	   decryption operation. Therefore, the function returns this error if
342  *	   the authentication of the ciphertext was unsuccessful (i.e. the
343  *	   integrity of the ciphertext or the associated data was violated);
344  *	   < 0 if an error occurred.
345  */
346 int crypto_aead_decrypt(struct aead_request *req);
347 
348 /**
349  * DOC: Asynchronous AEAD Request Handle
350  *
351  * The aead_request data structure contains all pointers to data required for
352  * the AEAD cipher operation. This includes the cipher handle (which can be
353  * used by multiple aead_request instances), pointer to plaintext and
354  * ciphertext, asynchronous callback function, etc. It acts as a handle to the
355  * aead_request_* API calls in a similar way as AEAD handle to the
356  * crypto_aead_* API calls.
357  */
358 
359 /**
360  * crypto_aead_reqsize() - obtain size of the request data structure
361  * @tfm: cipher handle
362  *
363  * Return: number of bytes
364  */
crypto_aead_reqsize(struct crypto_aead * tfm)365 static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
366 {
367 	return tfm->reqsize;
368 }
369 
370 /**
371  * aead_request_set_tfm() - update cipher handle reference in request
372  * @req: request handle to be modified
373  * @tfm: cipher handle that shall be added to the request handle
374  *
375  * Allow the caller to replace the existing aead handle in the request
376  * data structure with a different one.
377  */
aead_request_set_tfm(struct aead_request * req,struct crypto_aead * tfm)378 static inline void aead_request_set_tfm(struct aead_request *req,
379 					struct crypto_aead *tfm)
380 {
381 	req->base.tfm = crypto_aead_tfm(tfm);
382 }
383 
384 /**
385  * aead_request_alloc() - allocate request data structure
386  * @tfm: cipher handle to be registered with the request
387  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
388  *
389  * Allocate the request data structure that must be used with the AEAD
390  * encrypt and decrypt API calls. During the allocation, the provided aead
391  * handle is registered in the request data structure.
392  *
393  * Return: allocated request handle in case of success, or NULL if out of memory
394  */
aead_request_alloc(struct crypto_aead * tfm,gfp_t gfp)395 static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
396 						      gfp_t gfp)
397 {
398 	struct aead_request *req;
399 
400 	req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
401 
402 	if (likely(req))
403 		aead_request_set_tfm(req, tfm);
404 
405 	return req;
406 }
407 
408 /**
409  * aead_request_free() - zeroize and free request data structure
410  * @req: request data structure cipher handle to be freed
411  */
aead_request_free(struct aead_request * req)412 static inline void aead_request_free(struct aead_request *req)
413 {
414 	kzfree(req);
415 }
416 
417 /**
418  * aead_request_set_callback() - set asynchronous callback function
419  * @req: request handle
420  * @flags: specify zero or an ORing of the flags
421  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
422  *	   increase the wait queue beyond the initial maximum size;
423  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
424  * @compl: callback function pointer to be registered with the request handle
425  * @data: The data pointer refers to memory that is not used by the kernel
426  *	  crypto API, but provided to the callback function for it to use. Here,
427  *	  the caller can provide a reference to memory the callback function can
428  *	  operate on. As the callback function is invoked asynchronously to the
429  *	  related functionality, it may need to access data structures of the
430  *	  related functionality which can be referenced using this pointer. The
431  *	  callback function can access the memory via the "data" field in the
432  *	  crypto_async_request data structure provided to the callback function.
433  *
434  * Setting the callback function that is triggered once the cipher operation
435  * completes
436  *
437  * The callback function is registered with the aead_request handle and
438  * must comply with the following template::
439  *
440  *	void callback_function(struct crypto_async_request *req, int error)
441  */
aead_request_set_callback(struct aead_request * req,u32 flags,crypto_completion_t compl,void * data)442 static inline void aead_request_set_callback(struct aead_request *req,
443 					     u32 flags,
444 					     crypto_completion_t compl,
445 					     void *data)
446 {
447 	req->base.complete = compl;
448 	req->base.data = data;
449 	req->base.flags = flags;
450 }
451 
452 /**
453  * aead_request_set_crypt - set data buffers
454  * @req: request handle
455  * @src: source scatter / gather list
456  * @dst: destination scatter / gather list
457  * @cryptlen: number of bytes to process from @src
458  * @iv: IV for the cipher operation which must comply with the IV size defined
459  *      by crypto_aead_ivsize()
460  *
461  * Setting the source data and destination data scatter / gather lists which
462  * hold the associated data concatenated with the plaintext or ciphertext. See
463  * below for the authentication tag.
464  *
465  * For encryption, the source is treated as the plaintext and the
466  * destination is the ciphertext. For a decryption operation, the use is
467  * reversed - the source is the ciphertext and the destination is the plaintext.
468  *
469  * The memory structure for cipher operation has the following structure:
470  *
471  * - AEAD encryption input:  assoc data || plaintext
472  * - AEAD encryption output: assoc data || cipherntext || auth tag
473  * - AEAD decryption input:  assoc data || ciphertext || auth tag
474  * - AEAD decryption output: assoc data || plaintext
475  *
476  * Albeit the kernel requires the presence of the AAD buffer, however,
477  * the kernel does not fill the AAD buffer in the output case. If the
478  * caller wants to have that data buffer filled, the caller must either
479  * use an in-place cipher operation (i.e. same memory location for
480  * input/output memory location).
481  */
aead_request_set_crypt(struct aead_request * req,struct scatterlist * src,struct scatterlist * dst,unsigned int cryptlen,u8 * iv)482 static inline void aead_request_set_crypt(struct aead_request *req,
483 					  struct scatterlist *src,
484 					  struct scatterlist *dst,
485 					  unsigned int cryptlen, u8 *iv)
486 {
487 	req->src = src;
488 	req->dst = dst;
489 	req->cryptlen = cryptlen;
490 	req->iv = iv;
491 }
492 
493 /**
494  * aead_request_set_ad - set associated data information
495  * @req: request handle
496  * @assoclen: number of bytes in associated data
497  *
498  * Setting the AD information.  This function sets the length of
499  * the associated data.
500  */
aead_request_set_ad(struct aead_request * req,unsigned int assoclen)501 static inline void aead_request_set_ad(struct aead_request *req,
502 				       unsigned int assoclen)
503 {
504 	req->assoclen = assoclen;
505 }
506 
507 #endif	/* _CRYPTO_AEAD_H */
508