• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_USB_H
3 #define __LINUX_USB_H
4 
5 #include <linux/mod_devicetable.h>
6 #include <linux/usb/ch9.h>
7 
8 #define USB_MAJOR			180
9 #define USB_DEVICE_MAJOR		189
10 
11 
12 #ifdef __KERNEL__
13 
14 #include <linux/errno.h>        /* for -ENODEV */
15 #include <linux/delay.h>	/* for mdelay() */
16 #include <linux/interrupt.h>	/* for in_interrupt() */
17 #include <linux/list.h>		/* for struct list_head */
18 #include <linux/kref.h>		/* for struct kref */
19 #include <linux/device.h>	/* for struct device */
20 #include <linux/fs.h>		/* for struct file_operations */
21 #include <linux/completion.h>	/* for struct completion */
22 #include <linux/sched.h>	/* for current && schedule_timeout */
23 #include <linux/mutex.h>	/* for struct mutex */
24 #include <linux/pm_runtime.h>	/* for runtime PM */
25 #include <linux/android_kabi.h>
26 
27 struct usb_device;
28 struct usb_driver;
29 struct wusb_dev;
30 
31 /*-------------------------------------------------------------------------*/
32 
33 /*
34  * Host-side wrappers for standard USB descriptors ... these are parsed
35  * from the data provided by devices.  Parsing turns them from a flat
36  * sequence of descriptors into a hierarchy:
37  *
38  *  - devices have one (usually) or more configs;
39  *  - configs have one (often) or more interfaces;
40  *  - interfaces have one (usually) or more settings;
41  *  - each interface setting has zero or (usually) more endpoints.
42  *  - a SuperSpeed endpoint has a companion descriptor
43  *
44  * And there might be other descriptors mixed in with those.
45  *
46  * Devices may also have class-specific or vendor-specific descriptors.
47  */
48 
49 struct ep_device;
50 
51 /**
52  * struct usb_host_endpoint - host-side endpoint descriptor and queue
53  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
54  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
55  * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
56  * @urb_list: urbs queued to this endpoint; maintained by usbcore
57  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
58  *	with one or more transfer descriptors (TDs) per urb
59  * @ep_dev: ep_device for sysfs info
60  * @extra: descriptors following this endpoint in the configuration
61  * @extralen: how many bytes of "extra" are valid
62  * @enabled: URBs may be submitted to this endpoint
63  * @streams: number of USB-3 streams allocated on the endpoint
64  *
65  * USB requests are always queued to a given endpoint, identified by a
66  * descriptor within an active interface in a given USB configuration.
67  */
68 struct usb_host_endpoint {
69 	struct usb_endpoint_descriptor		desc;
70 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
71 	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
72 	struct list_head		urb_list;
73 	void				*hcpriv;
74 	struct ep_device		*ep_dev;	/* For sysfs info */
75 
76 	unsigned char *extra;   /* Extra descriptors */
77 	int extralen;
78 	int enabled;
79 	int streams;
80 };
81 
82 /* host-side wrapper for one interface setting's parsed descriptors */
83 struct usb_host_interface {
84 	struct usb_interface_descriptor	desc;
85 
86 	int extralen;
87 	unsigned char *extra;   /* Extra descriptors */
88 
89 	/* array of desc.bNumEndpoints endpoints associated with this
90 	 * interface setting.  these will be in no particular order.
91 	 */
92 	struct usb_host_endpoint *endpoint;
93 
94 	char *string;		/* iInterface string, if present */
95 };
96 
97 enum usb_interface_condition {
98 	USB_INTERFACE_UNBOUND = 0,
99 	USB_INTERFACE_BINDING,
100 	USB_INTERFACE_BOUND,
101 	USB_INTERFACE_UNBINDING,
102 };
103 
104 int __must_check
105 usb_find_common_endpoints(struct usb_host_interface *alt,
106 		struct usb_endpoint_descriptor **bulk_in,
107 		struct usb_endpoint_descriptor **bulk_out,
108 		struct usb_endpoint_descriptor **int_in,
109 		struct usb_endpoint_descriptor **int_out);
110 
111 int __must_check
112 usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
113 		struct usb_endpoint_descriptor **bulk_in,
114 		struct usb_endpoint_descriptor **bulk_out,
115 		struct usb_endpoint_descriptor **int_in,
116 		struct usb_endpoint_descriptor **int_out);
117 
118 static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)119 usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
120 		struct usb_endpoint_descriptor **bulk_in)
121 {
122 	return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
123 }
124 
125 static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)126 usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
127 		struct usb_endpoint_descriptor **bulk_out)
128 {
129 	return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
130 }
131 
132 static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)133 usb_find_int_in_endpoint(struct usb_host_interface *alt,
134 		struct usb_endpoint_descriptor **int_in)
135 {
136 	return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
137 }
138 
139 static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)140 usb_find_int_out_endpoint(struct usb_host_interface *alt,
141 		struct usb_endpoint_descriptor **int_out)
142 {
143 	return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
144 }
145 
146 static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in)147 usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
148 		struct usb_endpoint_descriptor **bulk_in)
149 {
150 	return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
151 }
152 
153 static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_out)154 usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
155 		struct usb_endpoint_descriptor **bulk_out)
156 {
157 	return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
158 }
159 
160 static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_in)161 usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
162 		struct usb_endpoint_descriptor **int_in)
163 {
164 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
165 }
166 
167 static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** int_out)168 usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
169 		struct usb_endpoint_descriptor **int_out)
170 {
171 	return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
172 }
173 
174 /**
175  * struct usb_interface - what usb device drivers talk to
176  * @altsetting: array of interface structures, one for each alternate
177  *	setting that may be selected.  Each one includes a set of
178  *	endpoint configurations.  They will be in no particular order.
179  * @cur_altsetting: the current altsetting.
180  * @num_altsetting: number of altsettings defined.
181  * @intf_assoc: interface association descriptor
182  * @minor: the minor number assigned to this interface, if this
183  *	interface is bound to a driver that uses the USB major number.
184  *	If this interface does not use the USB major, this field should
185  *	be unused.  The driver should set this value in the probe()
186  *	function of the driver, after it has been assigned a minor
187  *	number from the USB core by calling usb_register_dev().
188  * @condition: binding state of the interface: not bound, binding
189  *	(in probe()), bound to a driver, or unbinding (in disconnect())
190  * @sysfs_files_created: sysfs attributes exist
191  * @ep_devs_created: endpoint child pseudo-devices exist
192  * @unregistering: flag set when the interface is being unregistered
193  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
194  *	capability during autosuspend.
195  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
196  *	has been deferred.
197  * @needs_binding: flag set when the driver should be re-probed or unbound
198  *	following a reset or suspend operation it doesn't support.
199  * @authorized: This allows to (de)authorize individual interfaces instead
200  *	a whole device in contrast to the device authorization.
201  * @dev: driver model's view of this device
202  * @usb_dev: if an interface is bound to the USB major, this will point
203  *	to the sysfs representation for that device.
204  * @reset_ws: Used for scheduling resets from atomic context.
205  * @resetting_device: USB core reset the device, so use alt setting 0 as
206  *	current; needs bandwidth alloc after reset.
207  *
208  * USB device drivers attach to interfaces on a physical device.  Each
209  * interface encapsulates a single high level function, such as feeding
210  * an audio stream to a speaker or reporting a change in a volume control.
211  * Many USB devices only have one interface.  The protocol used to talk to
212  * an interface's endpoints can be defined in a usb "class" specification,
213  * or by a product's vendor.  The (default) control endpoint is part of
214  * every interface, but is never listed among the interface's descriptors.
215  *
216  * The driver that is bound to the interface can use standard driver model
217  * calls such as dev_get_drvdata() on the dev member of this structure.
218  *
219  * Each interface may have alternate settings.  The initial configuration
220  * of a device sets altsetting 0, but the device driver can change
221  * that setting using usb_set_interface().  Alternate settings are often
222  * used to control the use of periodic endpoints, such as by having
223  * different endpoints use different amounts of reserved USB bandwidth.
224  * All standards-conformant USB devices that use isochronous endpoints
225  * will use them in non-default settings.
226  *
227  * The USB specification says that alternate setting numbers must run from
228  * 0 to one less than the total number of alternate settings.  But some
229  * devices manage to mess this up, and the structures aren't necessarily
230  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
231  * look up an alternate setting in the altsetting array based on its number.
232  */
233 struct usb_interface {
234 	/* array of alternate settings for this interface,
235 	 * stored in no particular order */
236 	struct usb_host_interface *altsetting;
237 
238 	struct usb_host_interface *cur_altsetting;	/* the currently
239 					 * active alternate setting */
240 	unsigned num_altsetting;	/* number of alternate settings */
241 
242 	/* If there is an interface association descriptor then it will list
243 	 * the associated interfaces */
244 	struct usb_interface_assoc_descriptor *intf_assoc;
245 
246 	int minor;			/* minor number this interface is
247 					 * bound to */
248 	enum usb_interface_condition condition;		/* state of binding */
249 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
250 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
251 	unsigned unregistering:1;	/* unregistration is in progress */
252 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
253 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
254 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
255 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
256 	unsigned authorized:1;		/* used for interface authorization */
257 
258 	struct device dev;		/* interface specific device info */
259 	struct device *usb_dev;
260 	struct work_struct reset_ws;	/* for resets in atomic context */
261 
262 	ANDROID_KABI_RESERVE(1);
263 	ANDROID_KABI_RESERVE(2);
264 	ANDROID_KABI_RESERVE(3);
265 	ANDROID_KABI_RESERVE(4);
266 };
267 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
268 
usb_get_intfdata(struct usb_interface * intf)269 static inline void *usb_get_intfdata(struct usb_interface *intf)
270 {
271 	return dev_get_drvdata(&intf->dev);
272 }
273 
usb_set_intfdata(struct usb_interface * intf,void * data)274 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
275 {
276 	dev_set_drvdata(&intf->dev, data);
277 }
278 
279 struct usb_interface *usb_get_intf(struct usb_interface *intf);
280 void usb_put_intf(struct usb_interface *intf);
281 
282 /* Hard limit */
283 #define USB_MAXENDPOINTS	30
284 /* this maximum is arbitrary */
285 #define USB_MAXINTERFACES	32
286 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
287 
288 bool usb_check_bulk_endpoints(
289 		const struct usb_interface *intf, const u8 *ep_addrs);
290 bool usb_check_int_endpoints(
291 		const struct usb_interface *intf, const u8 *ep_addrs);
292 
293 /*
294  * USB Resume Timer: Every Host controller driver should drive the resume
295  * signalling on the bus for the amount of time defined by this macro.
296  *
297  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
298  *
299  * Note that the USB Specification states we should drive resume for *at least*
300  * 20 ms, but it doesn't give an upper bound. This creates two possible
301  * situations which we want to avoid:
302  *
303  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
304  * us to fail USB Electrical Tests, thus failing Certification
305  *
306  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
307  * and while we can argue that's against the USB Specification, we don't have
308  * control over which devices a certification laboratory will be using for
309  * certification. If CertLab uses a device which was tested against Windows and
310  * that happens to have relaxed resume signalling rules, we might fall into
311  * situations where we fail interoperability and electrical tests.
312  *
313  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
314  * should cope with both LPJ calibration errors and devices not following every
315  * detail of the USB Specification.
316  */
317 #define USB_RESUME_TIMEOUT	40 /* ms */
318 
319 /**
320  * struct usb_interface_cache - long-term representation of a device interface
321  * @num_altsetting: number of altsettings defined.
322  * @ref: reference counter.
323  * @altsetting: variable-length array of interface structures, one for
324  *	each alternate setting that may be selected.  Each one includes a
325  *	set of endpoint configurations.  They will be in no particular order.
326  *
327  * These structures persist for the lifetime of a usb_device, unlike
328  * struct usb_interface (which persists only as long as its configuration
329  * is installed).  The altsetting arrays can be accessed through these
330  * structures at any time, permitting comparison of configurations and
331  * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
332  */
333 struct usb_interface_cache {
334 	unsigned num_altsetting;	/* number of alternate settings */
335 	struct kref ref;		/* reference counter */
336 
337 	/* variable-length array of alternate settings for this interface,
338 	 * stored in no particular order */
339 	struct usb_host_interface altsetting[0];
340 };
341 #define	ref_to_usb_interface_cache(r) \
342 		container_of(r, struct usb_interface_cache, ref)
343 #define	altsetting_to_usb_interface_cache(a) \
344 		container_of(a, struct usb_interface_cache, altsetting[0])
345 
346 /**
347  * struct usb_host_config - representation of a device's configuration
348  * @desc: the device's configuration descriptor.
349  * @string: pointer to the cached version of the iConfiguration string, if
350  *	present for this configuration.
351  * @intf_assoc: list of any interface association descriptors in this config
352  * @interface: array of pointers to usb_interface structures, one for each
353  *	interface in the configuration.  The number of interfaces is stored
354  *	in desc.bNumInterfaces.  These pointers are valid only while the
355  *	the configuration is active.
356  * @intf_cache: array of pointers to usb_interface_cache structures, one
357  *	for each interface in the configuration.  These structures exist
358  *	for the entire life of the device.
359  * @extra: pointer to buffer containing all extra descriptors associated
360  *	with this configuration (those preceding the first interface
361  *	descriptor).
362  * @extralen: length of the extra descriptors buffer.
363  *
364  * USB devices may have multiple configurations, but only one can be active
365  * at any time.  Each encapsulates a different operational environment;
366  * for example, a dual-speed device would have separate configurations for
367  * full-speed and high-speed operation.  The number of configurations
368  * available is stored in the device descriptor as bNumConfigurations.
369  *
370  * A configuration can contain multiple interfaces.  Each corresponds to
371  * a different function of the USB device, and all are available whenever
372  * the configuration is active.  The USB standard says that interfaces
373  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
374  * of devices get this wrong.  In addition, the interface array is not
375  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
376  * look up an interface entry based on its number.
377  *
378  * Device drivers should not attempt to activate configurations.  The choice
379  * of which configuration to install is a policy decision based on such
380  * considerations as available power, functionality provided, and the user's
381  * desires (expressed through userspace tools).  However, drivers can call
382  * usb_reset_configuration() to reinitialize the current configuration and
383  * all its interfaces.
384  */
385 struct usb_host_config {
386 	struct usb_config_descriptor	desc;
387 
388 	char *string;		/* iConfiguration string, if present */
389 
390 	/* List of any Interface Association Descriptors in this
391 	 * configuration. */
392 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
393 
394 	/* the interfaces associated with this configuration,
395 	 * stored in no particular order */
396 	struct usb_interface *interface[USB_MAXINTERFACES];
397 
398 	/* Interface information available even when this is not the
399 	 * active configuration */
400 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
401 
402 	unsigned char *extra;   /* Extra descriptors */
403 	int extralen;
404 };
405 
406 /* USB2.0 and USB3.0 device BOS descriptor set */
407 struct usb_host_bos {
408 	struct usb_bos_descriptor	*desc;
409 
410 	/* wireless cap descriptor is handled by wusb */
411 	struct usb_ext_cap_descriptor	*ext_cap;
412 	struct usb_ss_cap_descriptor	*ss_cap;
413 	struct usb_ssp_cap_descriptor	*ssp_cap;
414 	struct usb_ss_container_id_descriptor	*ss_id;
415 	struct usb_ptm_cap_descriptor	*ptm_cap;
416 
417 	ANDROID_KABI_RESERVE(1);
418 	ANDROID_KABI_RESERVE(2);
419 	ANDROID_KABI_RESERVE(3);
420 	ANDROID_KABI_RESERVE(4);
421 };
422 
423 int __usb_get_extra_descriptor(char *buffer, unsigned size,
424 	unsigned char type, void **ptr, size_t min);
425 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
426 				__usb_get_extra_descriptor((ifpoint)->extra, \
427 				(ifpoint)->extralen, \
428 				type, (void **)ptr, sizeof(**(ptr)))
429 
430 /* ----------------------------------------------------------------------- */
431 
432 /* USB device number allocation bitmap */
433 struct usb_devmap {
434 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
435 };
436 
437 /*
438  * Allocated per bus (tree of devices) we have:
439  */
440 struct usb_bus {
441 	struct device *controller;	/* host/master side hardware */
442 	struct device *sysdev;		/* as seen from firmware or bus */
443 	int busnum;			/* Bus number (in order of reg) */
444 	const char *bus_name;		/* stable id (PCI slot_name etc) */
445 	u8 uses_pio_for_control;	/*
446 					 * Does the host controller use PIO
447 					 * for control transfers?
448 					 */
449 	u8 otg_port;			/* 0, or number of OTG/HNP port */
450 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
451 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
452 	unsigned no_stop_on_short:1;    /*
453 					 * Quirk: some controllers don't stop
454 					 * the ep queue on a short transfer
455 					 * with the URB_SHORT_NOT_OK flag set.
456 					 */
457 	unsigned no_sg_constraint:1;	/* no sg constraint */
458 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
459 
460 	int devnum_next;		/* Next open device number in
461 					 * round-robin allocation */
462 	struct mutex devnum_next_mutex; /* devnum_next mutex */
463 
464 	struct usb_devmap devmap;	/* device address allocation map */
465 	struct usb_device *root_hub;	/* Root hub */
466 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
467 
468 	int bandwidth_allocated;	/* on this bus: how much of the time
469 					 * reserved for periodic (intr/iso)
470 					 * requests is used, on average?
471 					 * Units: microseconds/frame.
472 					 * Limits: Full/low speed reserve 90%,
473 					 * while high speed reserves 80%.
474 					 */
475 	int bandwidth_int_reqs;		/* number of Interrupt requests */
476 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
477 
478 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
479 
480 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
481 	struct mon_bus *mon_bus;	/* non-null when associated */
482 	int monitored;			/* non-zero when monitored */
483 #endif
484 
485 	ANDROID_KABI_RESERVE(1);
486 	ANDROID_KABI_RESERVE(2);
487 	ANDROID_KABI_RESERVE(3);
488 	ANDROID_KABI_RESERVE(4);
489 };
490 
491 struct usb_dev_state;
492 
493 /* ----------------------------------------------------------------------- */
494 
495 struct usb_tt;
496 
497 enum usb_device_removable {
498 	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
499 	USB_DEVICE_REMOVABLE,
500 	USB_DEVICE_FIXED,
501 };
502 
503 enum usb_port_connect_type {
504 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
505 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
506 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
507 	USB_PORT_NOT_USED,
508 };
509 
510 /*
511  * USB port quirks.
512  */
513 
514 /* For the given port, prefer the old (faster) enumeration scheme. */
515 #define USB_PORT_QUIRK_OLD_SCHEME	BIT(0)
516 
517 /* Decrease TRSTRCY to 10ms during device enumeration. */
518 #define USB_PORT_QUIRK_FAST_ENUM	BIT(1)
519 
520 /*
521  * USB 2.0 Link Power Management (LPM) parameters.
522  */
523 struct usb2_lpm_parameters {
524 	/* Best effort service latency indicate how long the host will drive
525 	 * resume on an exit from L1.
526 	 */
527 	unsigned int besl;
528 
529 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
530 	 * When the timer counts to zero, the parent hub will initiate a LPM
531 	 * transition to L1.
532 	 */
533 	int timeout;
534 };
535 
536 /*
537  * USB 3.0 Link Power Management (LPM) parameters.
538  *
539  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
540  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
541  * All three are stored in nanoseconds.
542  */
543 struct usb3_lpm_parameters {
544 	/*
545 	 * Maximum exit latency (MEL) for the host to send a packet to the
546 	 * device (either a Ping for isoc endpoints, or a data packet for
547 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
548 	 * in the path to transition the links to U0.
549 	 */
550 	unsigned int mel;
551 	/*
552 	 * Maximum exit latency for a device-initiated LPM transition to bring
553 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
554 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
555 	 */
556 	unsigned int pel;
557 
558 	/*
559 	 * The System Exit Latency (SEL) includes PEL, and three other
560 	 * latencies.  After a device initiates a U0 transition, it will take
561 	 * some time from when the device sends the ERDY to when it will finally
562 	 * receive the data packet.  Basically, SEL should be the worse-case
563 	 * latency from when a device starts initiating a U0 transition to when
564 	 * it will get data.
565 	 */
566 	unsigned int sel;
567 	/*
568 	 * The idle timeout value that is currently programmed into the parent
569 	 * hub for this device.  When the timer counts to zero, the parent hub
570 	 * will initiate an LPM transition to either U1 or U2.
571 	 */
572 	int timeout;
573 };
574 
575 /**
576  * struct usb_device - kernel's representation of a USB device
577  * @devnum: device number; address on a USB bus
578  * @devpath: device ID string for use in messages (e.g., /port/...)
579  * @route: tree topology hex string for use with xHCI
580  * @state: device state: configured, not attached, etc.
581  * @speed: device speed: high/full/low (or error)
582  * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
583  * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
584  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
585  * @ttport: device port on that tt hub
586  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
587  * @parent: our hub, unless we're the root
588  * @bus: bus we're part of
589  * @ep0: endpoint 0 data (default control pipe)
590  * @dev: generic device interface
591  * @descriptor: USB device descriptor
592  * @bos: USB device BOS descriptor set
593  * @config: all of the device's configs
594  * @actconfig: the active configuration
595  * @ep_in: array of IN endpoints
596  * @ep_out: array of OUT endpoints
597  * @rawdescriptors: raw descriptors for each config
598  * @bus_mA: Current available from the bus
599  * @portnum: parent port number (origin 1)
600  * @level: number of USB hub ancestors
601  * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
602  * @can_submit: URBs may be submitted
603  * @persist_enabled:  USB_PERSIST enabled for this device
604  * @have_langid: whether string_langid is valid
605  * @authorized: policy has said we can use it;
606  *	(user space) policy determines if we authorize this device to be
607  *	used or not. By default, wired USB devices are authorized.
608  *	WUSB devices are not, until we authorize them from user space.
609  *	FIXME -- complete doc
610  * @authenticated: Crypto authentication passed
611  * @wusb: device is Wireless USB
612  * @lpm_capable: device supports LPM
613  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
614  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
615  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
616  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
617  * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
618  * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
619  * @string_langid: language ID for strings
620  * @product: iProduct string, if present (static)
621  * @manufacturer: iManufacturer string, if present (static)
622  * @serial: iSerialNumber string, if present (static)
623  * @filelist: usbfs files that are open to this device
624  * @maxchild: number of ports if hub
625  * @quirks: quirks of the whole device
626  * @urbnum: number of URBs submitted for the whole device
627  * @active_duration: total time device is not suspended
628  * @connect_time: time device was first connected
629  * @do_remote_wakeup:  remote wakeup should be enabled
630  * @reset_resume: needs reset instead of resume
631  * @port_is_suspended: the upstream port is suspended (L2 or U3)
632  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
633  *	specific data for the device.
634  * @slot_id: Slot ID assigned by xHCI
635  * @removable: Device can be physically removed from this port
636  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
637  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
638  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
639  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
640  *	to keep track of the number of functions that require USB 3.0 Link Power
641  *	Management to be disabled for this usb_device.  This count should only
642  *	be manipulated by those functions, with the bandwidth_mutex is held.
643  * @hub_delay: cached value consisting of:
644  *		parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
645  *
646  *	Will be used as wValue for SetIsochDelay requests.
647  *
648  * Notes:
649  * Usbcore drivers should not set usbdev->state directly.  Instead use
650  * usb_set_device_state().
651  */
652 struct usb_device {
653 	int		devnum;
654 	char		devpath[16];
655 	u32		route;
656 	enum usb_device_state	state;
657 	enum usb_device_speed	speed;
658 	unsigned int		rx_lanes;
659 	unsigned int		tx_lanes;
660 
661 	struct usb_tt	*tt;
662 	int		ttport;
663 
664 	unsigned int toggle[2];
665 
666 	struct usb_device *parent;
667 	struct usb_bus *bus;
668 	struct usb_host_endpoint ep0;
669 
670 	struct device dev;
671 
672 	struct usb_device_descriptor descriptor;
673 	struct usb_host_bos *bos;
674 	struct usb_host_config *config;
675 
676 	struct usb_host_config *actconfig;
677 	struct usb_host_endpoint *ep_in[16];
678 	struct usb_host_endpoint *ep_out[16];
679 
680 	char **rawdescriptors;
681 
682 	unsigned short bus_mA;
683 	u8 portnum;
684 	u8 level;
685 	u8 devaddr;
686 
687 	unsigned can_submit:1;
688 	unsigned persist_enabled:1;
689 	unsigned have_langid:1;
690 	unsigned authorized:1;
691 	unsigned authenticated:1;
692 	unsigned wusb:1;
693 	unsigned lpm_capable:1;
694 	unsigned usb2_hw_lpm_capable:1;
695 	unsigned usb2_hw_lpm_besl_capable:1;
696 	unsigned usb2_hw_lpm_enabled:1;
697 	unsigned usb2_hw_lpm_allowed:1;
698 	unsigned usb3_lpm_u1_enabled:1;
699 	unsigned usb3_lpm_u2_enabled:1;
700 	int string_langid;
701 
702 	/* static strings from the device */
703 	char *product;
704 	char *manufacturer;
705 	char *serial;
706 
707 	struct list_head filelist;
708 
709 	int maxchild;
710 
711 	u32 quirks;
712 	atomic_t urbnum;
713 
714 	unsigned long active_duration;
715 
716 #ifdef CONFIG_PM
717 	unsigned long connect_time;
718 
719 	unsigned do_remote_wakeup:1;
720 	unsigned reset_resume:1;
721 	unsigned port_is_suspended:1;
722 #endif
723 	struct wusb_dev *wusb_dev;
724 	int slot_id;
725 	enum usb_device_removable removable;
726 	struct usb2_lpm_parameters l1_params;
727 	struct usb3_lpm_parameters u1_params;
728 	struct usb3_lpm_parameters u2_params;
729 	unsigned lpm_disable_count;
730 
731 	u16 hub_delay;
732 
733 	ANDROID_KABI_RESERVE(1);
734 	ANDROID_KABI_RESERVE(2);
735 	ANDROID_KABI_RESERVE(3);
736 	ANDROID_KABI_RESERVE(4);
737 };
738 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
739 
interface_to_usbdev(struct usb_interface * intf)740 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
741 {
742 	return to_usb_device(intf->dev.parent);
743 }
744 
745 extern struct usb_device *usb_get_dev(struct usb_device *dev);
746 extern void usb_put_dev(struct usb_device *dev);
747 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
748 	int port1);
749 
750 /**
751  * usb_hub_for_each_child - iterate over all child devices on the hub
752  * @hdev:  USB device belonging to the usb hub
753  * @port1: portnum associated with child device
754  * @child: child device pointer
755  */
756 #define usb_hub_for_each_child(hdev, port1, child) \
757 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
758 			port1 <= hdev->maxchild; \
759 			child = usb_hub_find_child(hdev, ++port1)) \
760 		if (!child) continue; else
761 
762 /* USB device locking */
763 #define usb_lock_device(udev)			device_lock(&(udev)->dev)
764 #define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
765 #define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
766 #define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
767 extern int usb_lock_device_for_reset(struct usb_device *udev,
768 				     const struct usb_interface *iface);
769 
770 /* USB port reset for device reinitialization */
771 extern int usb_reset_device(struct usb_device *dev);
772 extern void usb_queue_reset_device(struct usb_interface *dev);
773 
774 #ifdef CONFIG_ACPI
775 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
776 	bool enable);
777 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
778 extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
779 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)780 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
781 	bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)782 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
783 	{ return true; }
usb_acpi_port_lpm_incapable(struct usb_device * hdev,int index)784 static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
785 	{ return 0; }
786 #endif
787 
788 /* USB autosuspend and autoresume */
789 #ifdef CONFIG_PM
790 extern void usb_enable_autosuspend(struct usb_device *udev);
791 extern void usb_disable_autosuspend(struct usb_device *udev);
792 
793 extern int usb_autopm_get_interface(struct usb_interface *intf);
794 extern void usb_autopm_put_interface(struct usb_interface *intf);
795 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
796 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
797 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
798 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
799 
usb_mark_last_busy(struct usb_device * udev)800 static inline void usb_mark_last_busy(struct usb_device *udev)
801 {
802 	pm_runtime_mark_last_busy(&udev->dev);
803 }
804 
805 #else
806 
usb_enable_autosuspend(struct usb_device * udev)807 static inline int usb_enable_autosuspend(struct usb_device *udev)
808 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)809 static inline int usb_disable_autosuspend(struct usb_device *udev)
810 { return 0; }
811 
usb_autopm_get_interface(struct usb_interface * intf)812 static inline int usb_autopm_get_interface(struct usb_interface *intf)
813 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)814 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
815 { return 0; }
816 
usb_autopm_put_interface(struct usb_interface * intf)817 static inline void usb_autopm_put_interface(struct usb_interface *intf)
818 { }
usb_autopm_put_interface_async(struct usb_interface * intf)819 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
820 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)821 static inline void usb_autopm_get_interface_no_resume(
822 		struct usb_interface *intf)
823 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)824 static inline void usb_autopm_put_interface_no_suspend(
825 		struct usb_interface *intf)
826 { }
usb_mark_last_busy(struct usb_device * udev)827 static inline void usb_mark_last_busy(struct usb_device *udev)
828 { }
829 #endif
830 
831 extern int usb_disable_lpm(struct usb_device *udev);
832 extern void usb_enable_lpm(struct usb_device *udev);
833 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
834 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
835 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
836 
837 extern int usb_disable_ltm(struct usb_device *udev);
838 extern void usb_enable_ltm(struct usb_device *udev);
839 
usb_device_supports_ltm(struct usb_device * udev)840 static inline bool usb_device_supports_ltm(struct usb_device *udev)
841 {
842 	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
843 		return false;
844 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
845 }
846 
usb_device_no_sg_constraint(struct usb_device * udev)847 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
848 {
849 	return udev && udev->bus && udev->bus->no_sg_constraint;
850 }
851 
852 
853 /*-------------------------------------------------------------------------*/
854 
855 /* for drivers using iso endpoints */
856 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
857 
858 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
859 extern int usb_alloc_streams(struct usb_interface *interface,
860 		struct usb_host_endpoint **eps, unsigned int num_eps,
861 		unsigned int num_streams, gfp_t mem_flags);
862 
863 /* Reverts a group of bulk endpoints back to not using stream IDs. */
864 extern int usb_free_streams(struct usb_interface *interface,
865 		struct usb_host_endpoint **eps, unsigned int num_eps,
866 		gfp_t mem_flags);
867 
868 /* used these for multi-interface device registration */
869 extern int usb_driver_claim_interface(struct usb_driver *driver,
870 			struct usb_interface *iface, void *priv);
871 
872 /**
873  * usb_interface_claimed - returns true iff an interface is claimed
874  * @iface: the interface being checked
875  *
876  * Return: %true (nonzero) iff the interface is claimed, else %false
877  * (zero).
878  *
879  * Note:
880  * Callers must own the driver model's usb bus readlock.  So driver
881  * probe() entries don't need extra locking, but other call contexts
882  * may need to explicitly claim that lock.
883  *
884  */
usb_interface_claimed(struct usb_interface * iface)885 static inline int usb_interface_claimed(struct usb_interface *iface)
886 {
887 	return (iface->dev.driver != NULL);
888 }
889 
890 extern void usb_driver_release_interface(struct usb_driver *driver,
891 			struct usb_interface *iface);
892 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
893 					 const struct usb_device_id *id);
894 extern int usb_match_one_id(struct usb_interface *interface,
895 			    const struct usb_device_id *id);
896 
897 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
898 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
899 		int minor);
900 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
901 		unsigned ifnum);
902 extern struct usb_host_interface *usb_altnum_to_altsetting(
903 		const struct usb_interface *intf, unsigned int altnum);
904 extern struct usb_host_interface *usb_find_alt_setting(
905 		struct usb_host_config *config,
906 		unsigned int iface_num,
907 		unsigned int alt_num);
908 
909 /* port claiming functions */
910 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
911 		struct usb_dev_state *owner);
912 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
913 		struct usb_dev_state *owner);
914 
915 /**
916  * usb_make_path - returns stable device path in the usb tree
917  * @dev: the device whose path is being constructed
918  * @buf: where to put the string
919  * @size: how big is "buf"?
920  *
921  * Return: Length of the string (> 0) or negative if size was too small.
922  *
923  * Note:
924  * This identifier is intended to be "stable", reflecting physical paths in
925  * hardware such as physical bus addresses for host controllers or ports on
926  * USB hubs.  That makes it stay the same until systems are physically
927  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
928  * controllers.  Adding and removing devices, including virtual root hubs
929  * in host controller driver modules, does not change these path identifiers;
930  * neither does rebooting or re-enumerating.  These are more useful identifiers
931  * than changeable ("unstable") ones like bus numbers or device addresses.
932  *
933  * With a partial exception for devices connected to USB 2.0 root hubs, these
934  * identifiers are also predictable.  So long as the device tree isn't changed,
935  * plugging any USB device into a given hub port always gives it the same path.
936  * Because of the use of "companion" controllers, devices connected to ports on
937  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
938  * high speed, and a different one if they are full or low speed.
939  */
usb_make_path(struct usb_device * dev,char * buf,size_t size)940 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
941 {
942 	int actual;
943 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
944 			  dev->devpath);
945 	return (actual >= (int)size) ? -1 : actual;
946 }
947 
948 /*-------------------------------------------------------------------------*/
949 
950 #define USB_DEVICE_ID_MATCH_DEVICE \
951 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
952 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
953 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
954 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
955 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
956 #define USB_DEVICE_ID_MATCH_DEV_INFO \
957 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
958 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
959 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
960 #define USB_DEVICE_ID_MATCH_INT_INFO \
961 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
962 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
963 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
964 
965 /**
966  * USB_DEVICE - macro used to describe a specific usb device
967  * @vend: the 16 bit USB Vendor ID
968  * @prod: the 16 bit USB Product ID
969  *
970  * This macro is used to create a struct usb_device_id that matches a
971  * specific device.
972  */
973 #define USB_DEVICE(vend, prod) \
974 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
975 	.idVendor = (vend), \
976 	.idProduct = (prod)
977 /**
978  * USB_DEVICE_VER - describe a specific usb device with a version range
979  * @vend: the 16 bit USB Vendor ID
980  * @prod: the 16 bit USB Product ID
981  * @lo: the bcdDevice_lo value
982  * @hi: the bcdDevice_hi value
983  *
984  * This macro is used to create a struct usb_device_id that matches a
985  * specific device, with a version range.
986  */
987 #define USB_DEVICE_VER(vend, prod, lo, hi) \
988 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
989 	.idVendor = (vend), \
990 	.idProduct = (prod), \
991 	.bcdDevice_lo = (lo), \
992 	.bcdDevice_hi = (hi)
993 
994 /**
995  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
996  * @vend: the 16 bit USB Vendor ID
997  * @prod: the 16 bit USB Product ID
998  * @cl: bInterfaceClass value
999  *
1000  * This macro is used to create a struct usb_device_id that matches a
1001  * specific interface class of devices.
1002  */
1003 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1004 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1005 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
1006 	.idVendor = (vend), \
1007 	.idProduct = (prod), \
1008 	.bInterfaceClass = (cl)
1009 
1010 /**
1011  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1012  * @vend: the 16 bit USB Vendor ID
1013  * @prod: the 16 bit USB Product ID
1014  * @pr: bInterfaceProtocol value
1015  *
1016  * This macro is used to create a struct usb_device_id that matches a
1017  * specific interface protocol of devices.
1018  */
1019 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1020 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1021 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1022 	.idVendor = (vend), \
1023 	.idProduct = (prod), \
1024 	.bInterfaceProtocol = (pr)
1025 
1026 /**
1027  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1028  * @vend: the 16 bit USB Vendor ID
1029  * @prod: the 16 bit USB Product ID
1030  * @num: bInterfaceNumber value
1031  *
1032  * This macro is used to create a struct usb_device_id that matches a
1033  * specific interface number of devices.
1034  */
1035 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1036 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1037 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1038 	.idVendor = (vend), \
1039 	.idProduct = (prod), \
1040 	.bInterfaceNumber = (num)
1041 
1042 /**
1043  * USB_DEVICE_INFO - macro used to describe a class of usb devices
1044  * @cl: bDeviceClass value
1045  * @sc: bDeviceSubClass value
1046  * @pr: bDeviceProtocol value
1047  *
1048  * This macro is used to create a struct usb_device_id that matches a
1049  * specific class of devices.
1050  */
1051 #define USB_DEVICE_INFO(cl, sc, pr) \
1052 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1053 	.bDeviceClass = (cl), \
1054 	.bDeviceSubClass = (sc), \
1055 	.bDeviceProtocol = (pr)
1056 
1057 /**
1058  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1059  * @cl: bInterfaceClass value
1060  * @sc: bInterfaceSubClass value
1061  * @pr: bInterfaceProtocol value
1062  *
1063  * This macro is used to create a struct usb_device_id that matches a
1064  * specific class of interfaces.
1065  */
1066 #define USB_INTERFACE_INFO(cl, sc, pr) \
1067 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1068 	.bInterfaceClass = (cl), \
1069 	.bInterfaceSubClass = (sc), \
1070 	.bInterfaceProtocol = (pr)
1071 
1072 /**
1073  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1074  * @vend: the 16 bit USB Vendor ID
1075  * @prod: the 16 bit USB Product ID
1076  * @cl: bInterfaceClass value
1077  * @sc: bInterfaceSubClass value
1078  * @pr: bInterfaceProtocol value
1079  *
1080  * This macro is used to create a struct usb_device_id that matches a
1081  * specific device with a specific class of interfaces.
1082  *
1083  * This is especially useful when explicitly matching devices that have
1084  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1085  */
1086 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1087 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1088 		| USB_DEVICE_ID_MATCH_DEVICE, \
1089 	.idVendor = (vend), \
1090 	.idProduct = (prod), \
1091 	.bInterfaceClass = (cl), \
1092 	.bInterfaceSubClass = (sc), \
1093 	.bInterfaceProtocol = (pr)
1094 
1095 /**
1096  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1097  * @vend: the 16 bit USB Vendor ID
1098  * @cl: bInterfaceClass value
1099  * @sc: bInterfaceSubClass value
1100  * @pr: bInterfaceProtocol value
1101  *
1102  * This macro is used to create a struct usb_device_id that matches a
1103  * specific vendor with a specific class of interfaces.
1104  *
1105  * This is especially useful when explicitly matching devices that have
1106  * vendor specific bDeviceClass values, but standards-compliant interfaces.
1107  */
1108 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1109 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1110 		| USB_DEVICE_ID_MATCH_VENDOR, \
1111 	.idVendor = (vend), \
1112 	.bInterfaceClass = (cl), \
1113 	.bInterfaceSubClass = (sc), \
1114 	.bInterfaceProtocol = (pr)
1115 
1116 /* ----------------------------------------------------------------------- */
1117 
1118 /* Stuff for dynamic usb ids */
1119 struct usb_dynids {
1120 	spinlock_t lock;
1121 	struct list_head list;
1122 };
1123 
1124 struct usb_dynid {
1125 	struct list_head node;
1126 	struct usb_device_id id;
1127 };
1128 
1129 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1130 				const struct usb_device_id *id_table,
1131 				struct device_driver *driver,
1132 				const char *buf, size_t count);
1133 
1134 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1135 
1136 /**
1137  * struct usbdrv_wrap - wrapper for driver-model structure
1138  * @driver: The driver-model core driver structure.
1139  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1140  */
1141 struct usbdrv_wrap {
1142 	struct device_driver driver;
1143 	int for_devices;
1144 };
1145 
1146 /**
1147  * struct usb_driver - identifies USB interface driver to usbcore
1148  * @name: The driver name should be unique among USB drivers,
1149  *	and should normally be the same as the module name.
1150  * @probe: Called to see if the driver is willing to manage a particular
1151  *	interface on a device.  If it is, probe returns zero and uses
1152  *	usb_set_intfdata() to associate driver-specific data with the
1153  *	interface.  It may also use usb_set_interface() to specify the
1154  *	appropriate altsetting.  If unwilling to manage the interface,
1155  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1156  *	negative errno value.
1157  * @disconnect: Called when the interface is no longer accessible, usually
1158  *	because its device has been (or is being) disconnected or the
1159  *	driver module is being unloaded.
1160  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1161  *	the "usbfs" filesystem.  This lets devices provide ways to
1162  *	expose information to user space regardless of where they
1163  *	do (or don't) show up otherwise in the filesystem.
1164  * @suspend: Called when the device is going to be suspended by the
1165  *	system either from system sleep or runtime suspend context. The
1166  *	return value will be ignored in system sleep context, so do NOT
1167  *	try to continue using the device if suspend fails in this case.
1168  *	Instead, let the resume or reset-resume routine recover from
1169  *	the failure.
1170  * @resume: Called when the device is being resumed by the system.
1171  * @reset_resume: Called when the suspended device has been reset instead
1172  *	of being resumed.
1173  * @pre_reset: Called by usb_reset_device() when the device is about to be
1174  *	reset.  This routine must not return until the driver has no active
1175  *	URBs for the device, and no more URBs may be submitted until the
1176  *	post_reset method is called.
1177  * @post_reset: Called by usb_reset_device() after the device
1178  *	has been reset
1179  * @id_table: USB drivers use ID table to support hotplugging.
1180  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1181  *	or your driver's probe function will never get called.
1182  * @dev_groups: Attributes attached to the device that will be created once it
1183  *	is bound to the driver.
1184  * @dynids: used internally to hold the list of dynamically added device
1185  *	ids for this driver.
1186  * @drvwrap: Driver-model core structure wrapper.
1187  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1188  *	added to this driver by preventing the sysfs file from being created.
1189  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1190  *	for interfaces bound to this driver.
1191  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1192  *	endpoints before calling the driver's disconnect method.
1193  * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1194  *	to initiate lower power link state transitions when an idle timeout
1195  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1196  *
1197  * USB interface drivers must provide a name, probe() and disconnect()
1198  * methods, and an id_table.  Other driver fields are optional.
1199  *
1200  * The id_table is used in hotplugging.  It holds a set of descriptors,
1201  * and specialized data may be associated with each entry.  That table
1202  * is used by both user and kernel mode hotplugging support.
1203  *
1204  * The probe() and disconnect() methods are called in a context where
1205  * they can sleep, but they should avoid abusing the privilege.  Most
1206  * work to connect to a device should be done when the device is opened,
1207  * and undone at the last close.  The disconnect code needs to address
1208  * concurrency issues with respect to open() and close() methods, as
1209  * well as forcing all pending I/O requests to complete (by unlinking
1210  * them as necessary, and blocking until the unlinks complete).
1211  */
1212 struct usb_driver {
1213 	const char *name;
1214 
1215 	int (*probe) (struct usb_interface *intf,
1216 		      const struct usb_device_id *id);
1217 
1218 	void (*disconnect) (struct usb_interface *intf);
1219 
1220 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1221 			void *buf);
1222 
1223 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1224 	int (*resume) (struct usb_interface *intf);
1225 	int (*reset_resume)(struct usb_interface *intf);
1226 
1227 	int (*pre_reset)(struct usb_interface *intf);
1228 	int (*post_reset)(struct usb_interface *intf);
1229 
1230 	const struct usb_device_id *id_table;
1231 	const struct attribute_group **dev_groups;
1232 
1233 	struct usb_dynids dynids;
1234 	struct usbdrv_wrap drvwrap;
1235 	unsigned int no_dynamic_id:1;
1236 	unsigned int supports_autosuspend:1;
1237 	unsigned int disable_hub_initiated_lpm:1;
1238 	unsigned int soft_unbind:1;
1239 
1240 	ANDROID_KABI_RESERVE(1);
1241 	ANDROID_KABI_RESERVE(2);
1242 	ANDROID_KABI_RESERVE(3);
1243 	ANDROID_KABI_RESERVE(4);
1244 };
1245 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1246 
1247 /**
1248  * struct usb_device_driver - identifies USB device driver to usbcore
1249  * @name: The driver name should be unique among USB drivers,
1250  *	and should normally be the same as the module name.
1251  * @probe: Called to see if the driver is willing to manage a particular
1252  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1253  *	to associate driver-specific data with the device.  If unwilling
1254  *	to manage the device, return a negative errno value.
1255  * @disconnect: Called when the device is no longer accessible, usually
1256  *	because it has been (or is being) disconnected or the driver's
1257  *	module is being unloaded.
1258  * @suspend: Called when the device is going to be suspended by the system.
1259  * @resume: Called when the device is being resumed by the system.
1260  * @dev_groups: Attributes attached to the device that will be created once it
1261  *	is bound to the driver.
1262  * @drvwrap: Driver-model core structure wrapper.
1263  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1264  *	for devices bound to this driver.
1265  *
1266  * USB drivers must provide all the fields listed above except drvwrap.
1267  */
1268 struct usb_device_driver {
1269 	const char *name;
1270 
1271 	int (*probe) (struct usb_device *udev);
1272 	void (*disconnect) (struct usb_device *udev);
1273 
1274 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1275 	int (*resume) (struct usb_device *udev, pm_message_t message);
1276 	const struct attribute_group **dev_groups;
1277 	struct usbdrv_wrap drvwrap;
1278 	unsigned int supports_autosuspend:1;
1279 };
1280 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1281 		drvwrap.driver)
1282 
1283 extern struct bus_type usb_bus_type;
1284 
1285 /**
1286  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1287  * @name: the usb class device name for this driver.  Will show up in sysfs.
1288  * @devnode: Callback to provide a naming hint for a possible
1289  *	device node to create.
1290  * @fops: pointer to the struct file_operations of this driver.
1291  * @minor_base: the start of the minor range for this driver.
1292  *
1293  * This structure is used for the usb_register_dev() and
1294  * usb_deregister_dev() functions, to consolidate a number of the
1295  * parameters used for them.
1296  */
1297 struct usb_class_driver {
1298 	char *name;
1299 	char *(*devnode)(struct device *dev, umode_t *mode);
1300 	const struct file_operations *fops;
1301 	int minor_base;
1302 };
1303 
1304 /*
1305  * use these in module_init()/module_exit()
1306  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1307  */
1308 extern int usb_register_driver(struct usb_driver *, struct module *,
1309 			       const char *);
1310 
1311 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1312 #define usb_register(driver) \
1313 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1314 
1315 extern void usb_deregister(struct usb_driver *);
1316 
1317 /**
1318  * module_usb_driver() - Helper macro for registering a USB driver
1319  * @__usb_driver: usb_driver struct
1320  *
1321  * Helper macro for USB drivers which do not do anything special in module
1322  * init/exit. This eliminates a lot of boilerplate. Each module may only
1323  * use this macro once, and calling it replaces module_init() and module_exit()
1324  */
1325 #define module_usb_driver(__usb_driver) \
1326 	module_driver(__usb_driver, usb_register, \
1327 		       usb_deregister)
1328 
1329 extern int usb_register_device_driver(struct usb_device_driver *,
1330 			struct module *);
1331 extern void usb_deregister_device_driver(struct usb_device_driver *);
1332 
1333 extern int usb_register_dev(struct usb_interface *intf,
1334 			    struct usb_class_driver *class_driver);
1335 extern void usb_deregister_dev(struct usb_interface *intf,
1336 			       struct usb_class_driver *class_driver);
1337 
1338 extern int usb_disabled(void);
1339 
1340 /* ----------------------------------------------------------------------- */
1341 
1342 /*
1343  * URB support, for asynchronous request completions
1344  */
1345 
1346 /*
1347  * urb->transfer_flags:
1348  *
1349  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1350  */
1351 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1352 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1353 					 * slot in the schedule */
1354 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1355 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1356 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1357 					 * needed */
1358 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1359 
1360 /* The following flags are used internally by usbcore and HCDs */
1361 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1362 #define URB_DIR_OUT		0
1363 #define URB_DIR_MASK		URB_DIR_IN
1364 
1365 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1366 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1367 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1368 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1369 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1370 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1371 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1372 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1373 
1374 struct usb_iso_packet_descriptor {
1375 	unsigned int offset;
1376 	unsigned int length;		/* expected length */
1377 	unsigned int actual_length;
1378 	int status;
1379 };
1380 
1381 struct urb;
1382 
1383 struct usb_anchor {
1384 	struct list_head urb_list;
1385 	wait_queue_head_t wait;
1386 	spinlock_t lock;
1387 	atomic_t suspend_wakeups;
1388 	unsigned int poisoned:1;
1389 };
1390 
init_usb_anchor(struct usb_anchor * anchor)1391 static inline void init_usb_anchor(struct usb_anchor *anchor)
1392 {
1393 	memset(anchor, 0, sizeof(*anchor));
1394 	INIT_LIST_HEAD(&anchor->urb_list);
1395 	init_waitqueue_head(&anchor->wait);
1396 	spin_lock_init(&anchor->lock);
1397 }
1398 
1399 typedef void (*usb_complete_t)(struct urb *);
1400 
1401 /**
1402  * struct urb - USB Request Block
1403  * @urb_list: For use by current owner of the URB.
1404  * @anchor_list: membership in the list of an anchor
1405  * @anchor: to anchor URBs to a common mooring
1406  * @ep: Points to the endpoint's data structure.  Will eventually
1407  *	replace @pipe.
1408  * @pipe: Holds endpoint number, direction, type, and more.
1409  *	Create these values with the eight macros available;
1410  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1411  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1412  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1413  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1414  *	is a different endpoint (and pipe) from "out" endpoint two.
1415  *	The current configuration controls the existence, type, and
1416  *	maximum packet size of any given endpoint.
1417  * @stream_id: the endpoint's stream ID for bulk streams
1418  * @dev: Identifies the USB device to perform the request.
1419  * @status: This is read in non-iso completion functions to get the
1420  *	status of the particular request.  ISO requests only use it
1421  *	to tell whether the URB was unlinked; detailed status for
1422  *	each frame is in the fields of the iso_frame-desc.
1423  * @transfer_flags: A variety of flags may be used to affect how URB
1424  *	submission, unlinking, or operation are handled.  Different
1425  *	kinds of URB can use different flags.
1426  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1427  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1428  *	(however, do not leave garbage in transfer_buffer even then).
1429  *	This buffer must be suitable for DMA; allocate it with
1430  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1431  *	of this buffer will be modified.  This buffer is used for the data
1432  *	stage of control transfers.
1433  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1434  *	the device driver is saying that it provided this DMA address,
1435  *	which the host controller driver should use in preference to the
1436  *	transfer_buffer.
1437  * @sg: scatter gather buffer list, the buffer size of each element in
1438  * 	the list (except the last) must be divisible by the endpoint's
1439  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1440  * @num_mapped_sgs: (internal) number of mapped sg entries
1441  * @num_sgs: number of entries in the sg list
1442  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1443  *	be broken up into chunks according to the current maximum packet
1444  *	size for the endpoint, which is a function of the configuration
1445  *	and is encoded in the pipe.  When the length is zero, neither
1446  *	transfer_buffer nor transfer_dma is used.
1447  * @actual_length: This is read in non-iso completion functions, and
1448  *	it tells how many bytes (out of transfer_buffer_length) were
1449  *	transferred.  It will normally be the same as requested, unless
1450  *	either an error was reported or a short read was performed.
1451  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1452  *	short reads be reported as errors.
1453  * @setup_packet: Only used for control transfers, this points to eight bytes
1454  *	of setup data.  Control transfers always start by sending this data
1455  *	to the device.  Then transfer_buffer is read or written, if needed.
1456  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1457  *	this field; setup_packet must point to a valid buffer.
1458  * @start_frame: Returns the initial frame for isochronous transfers.
1459  * @number_of_packets: Lists the number of ISO transfer buffers.
1460  * @interval: Specifies the polling interval for interrupt or isochronous
1461  *	transfers.  The units are frames (milliseconds) for full and low
1462  *	speed devices, and microframes (1/8 millisecond) for highspeed
1463  *	and SuperSpeed devices.
1464  * @error_count: Returns the number of ISO transfers that reported errors.
1465  * @context: For use in completion functions.  This normally points to
1466  *	request-specific driver context.
1467  * @complete: Completion handler. This URB is passed as the parameter to the
1468  *	completion function.  The completion function may then do what
1469  *	it likes with the URB, including resubmitting or freeing it.
1470  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1471  *	collect the transfer status for each buffer.
1472  *
1473  * This structure identifies USB transfer requests.  URBs must be allocated by
1474  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1475  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1476  * are submitted using usb_submit_urb(), and pending requests may be canceled
1477  * using usb_unlink_urb() or usb_kill_urb().
1478  *
1479  * Data Transfer Buffers:
1480  *
1481  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1482  * taken from the general page pool.  That is provided by transfer_buffer
1483  * (control requests also use setup_packet), and host controller drivers
1484  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1485  * mapping operations can be expensive on some platforms (perhaps using a dma
1486  * bounce buffer or talking to an IOMMU),
1487  * although they're cheap on commodity x86 and ppc hardware.
1488  *
1489  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1490  * which tells the host controller driver that no such mapping is needed for
1491  * the transfer_buffer since
1492  * the device driver is DMA-aware.  For example, a device driver might
1493  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1494  * When this transfer flag is provided, host controller drivers will
1495  * attempt to use the dma address found in the transfer_dma
1496  * field rather than determining a dma address themselves.
1497  *
1498  * Note that transfer_buffer must still be set if the controller
1499  * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1500  * to root hub. If you have to trasfer between highmem zone and the device
1501  * on such controller, create a bounce buffer or bail out with an error.
1502  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1503  * capable, assign NULL to it, so that usbmon knows not to use the value.
1504  * The setup_packet must always be set, so it cannot be located in highmem.
1505  *
1506  * Initialization:
1507  *
1508  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1509  * zero), and complete fields.  All URBs must also initialize
1510  * transfer_buffer and transfer_buffer_length.  They may provide the
1511  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1512  * to be treated as errors; that flag is invalid for write requests.
1513  *
1514  * Bulk URBs may
1515  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1516  * should always terminate with a short packet, even if it means adding an
1517  * extra zero length packet.
1518  *
1519  * Control URBs must provide a valid pointer in the setup_packet field.
1520  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1521  * beforehand.
1522  *
1523  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1524  * or, for highspeed devices, 125 microsecond units)
1525  * to poll for transfers.  After the URB has been submitted, the interval
1526  * field reflects how the transfer was actually scheduled.
1527  * The polling interval may be more frequent than requested.
1528  * For example, some controllers have a maximum interval of 32 milliseconds,
1529  * while others support intervals of up to 1024 milliseconds.
1530  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1531  * endpoints, as well as high speed interrupt endpoints, the encoding of
1532  * the transfer interval in the endpoint descriptor is logarithmic.
1533  * Device drivers must convert that value to linear units themselves.)
1534  *
1535  * If an isochronous endpoint queue isn't already running, the host
1536  * controller will schedule a new URB to start as soon as bandwidth
1537  * utilization allows.  If the queue is running then a new URB will be
1538  * scheduled to start in the first transfer slot following the end of the
1539  * preceding URB, if that slot has not already expired.  If the slot has
1540  * expired (which can happen when IRQ delivery is delayed for a long time),
1541  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1542  * is clear then the URB will be scheduled to start in the expired slot,
1543  * implying that some of its packets will not be transferred; if the flag
1544  * is set then the URB will be scheduled in the first unexpired slot,
1545  * breaking the queue's synchronization.  Upon URB completion, the
1546  * start_frame field will be set to the (micro)frame number in which the
1547  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1548  * and can go from as low as 256 to as high as 65536 frames.
1549  *
1550  * Isochronous URBs have a different data transfer model, in part because
1551  * the quality of service is only "best effort".  Callers provide specially
1552  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1553  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1554  * URBs are normally queued, submitted by drivers to arrange that
1555  * transfers are at least double buffered, and then explicitly resubmitted
1556  * in completion handlers, so
1557  * that data (such as audio or video) streams at as constant a rate as the
1558  * host controller scheduler can support.
1559  *
1560  * Completion Callbacks:
1561  *
1562  * The completion callback is made in_interrupt(), and one of the first
1563  * things that a completion handler should do is check the status field.
1564  * The status field is provided for all URBs.  It is used to report
1565  * unlinked URBs, and status for all non-ISO transfers.  It should not
1566  * be examined before the URB is returned to the completion handler.
1567  *
1568  * The context field is normally used to link URBs back to the relevant
1569  * driver or request state.
1570  *
1571  * When the completion callback is invoked for non-isochronous URBs, the
1572  * actual_length field tells how many bytes were transferred.  This field
1573  * is updated even when the URB terminated with an error or was unlinked.
1574  *
1575  * ISO transfer status is reported in the status and actual_length fields
1576  * of the iso_frame_desc array, and the number of errors is reported in
1577  * error_count.  Completion callbacks for ISO transfers will normally
1578  * (re)submit URBs to ensure a constant transfer rate.
1579  *
1580  * Note that even fields marked "public" should not be touched by the driver
1581  * when the urb is owned by the hcd, that is, since the call to
1582  * usb_submit_urb() till the entry into the completion routine.
1583  */
1584 struct urb {
1585 	/* private: usb core and host controller only fields in the urb */
1586 	struct kref kref;		/* reference count of the URB */
1587 	int unlinked;			/* unlink error code */
1588 	void *hcpriv;			/* private data for host controller */
1589 	atomic_t use_count;		/* concurrent submissions counter */
1590 	atomic_t reject;		/* submissions will fail */
1591 
1592 	/* public: documented fields in the urb that can be used by drivers */
1593 	struct list_head urb_list;	/* list head for use by the urb's
1594 					 * current owner */
1595 	struct list_head anchor_list;	/* the URB may be anchored */
1596 	struct usb_anchor *anchor;
1597 	struct usb_device *dev;		/* (in) pointer to associated device */
1598 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1599 	unsigned int pipe;		/* (in) pipe information */
1600 	unsigned int stream_id;		/* (in) stream ID */
1601 	int status;			/* (return) non-ISO status */
1602 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1603 	void *transfer_buffer;		/* (in) associated data buffer */
1604 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1605 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1606 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1607 	int num_sgs;			/* (in) number of entries in the sg list */
1608 	u32 transfer_buffer_length;	/* (in) data buffer length */
1609 	u32 actual_length;		/* (return) actual transfer length */
1610 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1611 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1612 	int start_frame;		/* (modify) start frame (ISO) */
1613 	int number_of_packets;		/* (in) number of ISO packets */
1614 	int interval;			/* (modify) transfer interval
1615 					 * (INT/ISO) */
1616 	int error_count;		/* (return) number of ISO errors */
1617 	void *context;			/* (in) context for completion */
1618 	usb_complete_t complete;	/* (in) completion routine */
1619 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1620 					/* (in) ISO ONLY */
1621 	ANDROID_KABI_RESERVE(1);
1622 	ANDROID_KABI_RESERVE(2);
1623 	ANDROID_KABI_RESERVE(3);
1624 	ANDROID_KABI_RESERVE(4);
1625 };
1626 
1627 /* ----------------------------------------------------------------------- */
1628 
1629 /**
1630  * usb_fill_control_urb - initializes a control urb
1631  * @urb: pointer to the urb to initialize.
1632  * @dev: pointer to the struct usb_device for this urb.
1633  * @pipe: the endpoint pipe
1634  * @setup_packet: pointer to the setup_packet buffer
1635  * @transfer_buffer: pointer to the transfer buffer
1636  * @buffer_length: length of the transfer buffer
1637  * @complete_fn: pointer to the usb_complete_t function
1638  * @context: what to set the urb context to.
1639  *
1640  * Initializes a control urb with the proper information needed to submit
1641  * it to a device.
1642  */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1643 static inline void usb_fill_control_urb(struct urb *urb,
1644 					struct usb_device *dev,
1645 					unsigned int pipe,
1646 					unsigned char *setup_packet,
1647 					void *transfer_buffer,
1648 					int buffer_length,
1649 					usb_complete_t complete_fn,
1650 					void *context)
1651 {
1652 	urb->dev = dev;
1653 	urb->pipe = pipe;
1654 	urb->setup_packet = setup_packet;
1655 	urb->transfer_buffer = transfer_buffer;
1656 	urb->transfer_buffer_length = buffer_length;
1657 	urb->complete = complete_fn;
1658 	urb->context = context;
1659 }
1660 
1661 /**
1662  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1663  * @urb: pointer to the urb to initialize.
1664  * @dev: pointer to the struct usb_device for this urb.
1665  * @pipe: the endpoint pipe
1666  * @transfer_buffer: pointer to the transfer buffer
1667  * @buffer_length: length of the transfer buffer
1668  * @complete_fn: pointer to the usb_complete_t function
1669  * @context: what to set the urb context to.
1670  *
1671  * Initializes a bulk urb with the proper information needed to submit it
1672  * to a device.
1673  */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1674 static inline void usb_fill_bulk_urb(struct urb *urb,
1675 				     struct usb_device *dev,
1676 				     unsigned int pipe,
1677 				     void *transfer_buffer,
1678 				     int buffer_length,
1679 				     usb_complete_t complete_fn,
1680 				     void *context)
1681 {
1682 	urb->dev = dev;
1683 	urb->pipe = pipe;
1684 	urb->transfer_buffer = transfer_buffer;
1685 	urb->transfer_buffer_length = buffer_length;
1686 	urb->complete = complete_fn;
1687 	urb->context = context;
1688 }
1689 
1690 /**
1691  * usb_fill_int_urb - macro to help initialize a interrupt urb
1692  * @urb: pointer to the urb to initialize.
1693  * @dev: pointer to the struct usb_device for this urb.
1694  * @pipe: the endpoint pipe
1695  * @transfer_buffer: pointer to the transfer buffer
1696  * @buffer_length: length of the transfer buffer
1697  * @complete_fn: pointer to the usb_complete_t function
1698  * @context: what to set the urb context to.
1699  * @interval: what to set the urb interval to, encoded like
1700  *	the endpoint descriptor's bInterval value.
1701  *
1702  * Initializes a interrupt urb with the proper information needed to submit
1703  * it to a device.
1704  *
1705  * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1706  * encoding of the endpoint interval, and express polling intervals in
1707  * microframes (eight per millisecond) rather than in frames (one per
1708  * millisecond).
1709  *
1710  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1711  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1712  * through to the host controller, rather than being translated into microframe
1713  * units.
1714  */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1715 static inline void usb_fill_int_urb(struct urb *urb,
1716 				    struct usb_device *dev,
1717 				    unsigned int pipe,
1718 				    void *transfer_buffer,
1719 				    int buffer_length,
1720 				    usb_complete_t complete_fn,
1721 				    void *context,
1722 				    int interval)
1723 {
1724 	urb->dev = dev;
1725 	urb->pipe = pipe;
1726 	urb->transfer_buffer = transfer_buffer;
1727 	urb->transfer_buffer_length = buffer_length;
1728 	urb->complete = complete_fn;
1729 	urb->context = context;
1730 
1731 	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1732 		/* make sure interval is within allowed range */
1733 		interval = clamp(interval, 1, 16);
1734 
1735 		urb->interval = 1 << (interval - 1);
1736 	} else {
1737 		urb->interval = interval;
1738 	}
1739 
1740 	urb->start_frame = -1;
1741 }
1742 
1743 extern void usb_init_urb(struct urb *urb);
1744 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1745 extern void usb_free_urb(struct urb *urb);
1746 #define usb_put_urb usb_free_urb
1747 extern struct urb *usb_get_urb(struct urb *urb);
1748 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1749 extern int usb_unlink_urb(struct urb *urb);
1750 extern void usb_kill_urb(struct urb *urb);
1751 extern void usb_poison_urb(struct urb *urb);
1752 extern void usb_unpoison_urb(struct urb *urb);
1753 extern void usb_block_urb(struct urb *urb);
1754 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1755 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1756 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1757 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1758 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1759 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1760 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1761 extern void usb_unanchor_urb(struct urb *urb);
1762 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1763 					 unsigned int timeout);
1764 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1765 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1766 extern int usb_anchor_empty(struct usb_anchor *anchor);
1767 
1768 #define usb_unblock_urb	usb_unpoison_urb
1769 
1770 /**
1771  * usb_urb_dir_in - check if an URB describes an IN transfer
1772  * @urb: URB to be checked
1773  *
1774  * Return: 1 if @urb describes an IN transfer (device-to-host),
1775  * otherwise 0.
1776  */
usb_urb_dir_in(struct urb * urb)1777 static inline int usb_urb_dir_in(struct urb *urb)
1778 {
1779 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1780 }
1781 
1782 /**
1783  * usb_urb_dir_out - check if an URB describes an OUT transfer
1784  * @urb: URB to be checked
1785  *
1786  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1787  * otherwise 0.
1788  */
usb_urb_dir_out(struct urb * urb)1789 static inline int usb_urb_dir_out(struct urb *urb)
1790 {
1791 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1792 }
1793 
1794 int usb_urb_ep_type_check(const struct urb *urb);
1795 
1796 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1797 	gfp_t mem_flags, dma_addr_t *dma);
1798 void usb_free_coherent(struct usb_device *dev, size_t size,
1799 	void *addr, dma_addr_t dma);
1800 
1801 #if 0
1802 struct urb *usb_buffer_map(struct urb *urb);
1803 void usb_buffer_dmasync(struct urb *urb);
1804 void usb_buffer_unmap(struct urb *urb);
1805 #endif
1806 
1807 struct scatterlist;
1808 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1809 		      struct scatterlist *sg, int nents);
1810 #if 0
1811 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1812 			   struct scatterlist *sg, int n_hw_ents);
1813 #endif
1814 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1815 			 struct scatterlist *sg, int n_hw_ents);
1816 
1817 /*-------------------------------------------------------------------*
1818  *                         SYNCHRONOUS CALL SUPPORT                  *
1819  *-------------------------------------------------------------------*/
1820 
1821 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1822 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1823 	void *data, __u16 size, int timeout);
1824 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1825 	void *data, int len, int *actual_length, int timeout);
1826 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1827 	void *data, int len, int *actual_length,
1828 	int timeout);
1829 
1830 /* wrappers around usb_control_msg() for the most common standard requests */
1831 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1832 	unsigned char descindex, void *buf, int size);
1833 extern int usb_get_status(struct usb_device *dev,
1834 	int recip, int type, int target, void *data);
1835 
usb_get_std_status(struct usb_device * dev,int recip,int target,void * data)1836 static inline int usb_get_std_status(struct usb_device *dev,
1837 	int recip, int target, void *data)
1838 {
1839 	return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1840 		data);
1841 }
1842 
usb_get_ptm_status(struct usb_device * dev,void * data)1843 static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1844 {
1845 	return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1846 		0, data);
1847 }
1848 
1849 extern int usb_string(struct usb_device *dev, int index,
1850 	char *buf, size_t size);
1851 
1852 /* wrappers that also update important state inside usbcore */
1853 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1854 extern int usb_reset_configuration(struct usb_device *dev);
1855 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1856 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1857 
1858 /* this request isn't really synchronous, but it belongs with the others */
1859 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1860 
1861 /* choose and set configuration for device */
1862 extern int usb_choose_configuration(struct usb_device *udev);
1863 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1864 
1865 /*
1866  * timeouts, in milliseconds, used for sending/receiving control messages
1867  * they typically complete within a few frames (msec) after they're issued
1868  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1869  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1870  */
1871 #define USB_CTRL_GET_TIMEOUT	5000
1872 #define USB_CTRL_SET_TIMEOUT	5000
1873 
1874 
1875 /**
1876  * struct usb_sg_request - support for scatter/gather I/O
1877  * @status: zero indicates success, else negative errno
1878  * @bytes: counts bytes transferred.
1879  *
1880  * These requests are initialized using usb_sg_init(), and then are used
1881  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1882  * members of the request object aren't for driver access.
1883  *
1884  * The status and bytecount values are valid only after usb_sg_wait()
1885  * returns.  If the status is zero, then the bytecount matches the total
1886  * from the request.
1887  *
1888  * After an error completion, drivers may need to clear a halt condition
1889  * on the endpoint.
1890  */
1891 struct usb_sg_request {
1892 	int			status;
1893 	size_t			bytes;
1894 
1895 	/* private:
1896 	 * members below are private to usbcore,
1897 	 * and are not provided for driver access!
1898 	 */
1899 	spinlock_t		lock;
1900 
1901 	struct usb_device	*dev;
1902 	int			pipe;
1903 
1904 	int			entries;
1905 	struct urb		**urbs;
1906 
1907 	int			count;
1908 	struct completion	complete;
1909 };
1910 
1911 int usb_sg_init(
1912 	struct usb_sg_request	*io,
1913 	struct usb_device	*dev,
1914 	unsigned		pipe,
1915 	unsigned		period,
1916 	struct scatterlist	*sg,
1917 	int			nents,
1918 	size_t			length,
1919 	gfp_t			mem_flags
1920 );
1921 void usb_sg_cancel(struct usb_sg_request *io);
1922 void usb_sg_wait(struct usb_sg_request *io);
1923 
1924 
1925 /* ----------------------------------------------------------------------- */
1926 
1927 /*
1928  * For various legacy reasons, Linux has a small cookie that's paired with
1929  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1930  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1931  * an unsigned int encoded as:
1932  *
1933  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1934  *					 1 = Device-to-Host [In] ...
1935  *					like endpoint bEndpointAddress)
1936  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1937  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1938  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1939  *					 10 = control, 11 = bulk)
1940  *
1941  * Given the device address and endpoint descriptor, pipes are redundant.
1942  */
1943 
1944 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1945 /* (yet ... they're the values used by usbfs) */
1946 #define PIPE_ISOCHRONOUS		0
1947 #define PIPE_INTERRUPT			1
1948 #define PIPE_CONTROL			2
1949 #define PIPE_BULK			3
1950 
1951 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1952 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1953 
1954 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1955 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1956 
1957 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1958 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1959 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1960 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1961 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1962 
__create_pipe(struct usb_device * dev,unsigned int endpoint)1963 static inline unsigned int __create_pipe(struct usb_device *dev,
1964 		unsigned int endpoint)
1965 {
1966 	return (dev->devnum << 8) | (endpoint << 15);
1967 }
1968 
1969 /* Create various pipes... */
1970 #define usb_sndctrlpipe(dev, endpoint)	\
1971 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1972 #define usb_rcvctrlpipe(dev, endpoint)	\
1973 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1974 #define usb_sndisocpipe(dev, endpoint)	\
1975 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1976 #define usb_rcvisocpipe(dev, endpoint)	\
1977 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1978 #define usb_sndbulkpipe(dev, endpoint)	\
1979 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1980 #define usb_rcvbulkpipe(dev, endpoint)	\
1981 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1982 #define usb_sndintpipe(dev, endpoint)	\
1983 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1984 #define usb_rcvintpipe(dev, endpoint)	\
1985 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1986 
1987 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)1988 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1989 {
1990 	struct usb_host_endpoint **eps;
1991 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1992 	return eps[usb_pipeendpoint(pipe)];
1993 }
1994 
1995 /*-------------------------------------------------------------------------*/
1996 
1997 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)1998 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1999 {
2000 	struct usb_host_endpoint	*ep;
2001 	unsigned			epnum = usb_pipeendpoint(pipe);
2002 
2003 	if (is_out) {
2004 		WARN_ON(usb_pipein(pipe));
2005 		ep = udev->ep_out[epnum];
2006 	} else {
2007 		WARN_ON(usb_pipeout(pipe));
2008 		ep = udev->ep_in[epnum];
2009 	}
2010 	if (!ep)
2011 		return 0;
2012 
2013 	/* NOTE:  only 0x07ff bits are for packet size... */
2014 	return usb_endpoint_maxp(&ep->desc);
2015 }
2016 
2017 /* ----------------------------------------------------------------------- */
2018 
2019 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)2020 static inline int usb_translate_errors(int error_code)
2021 {
2022 	switch (error_code) {
2023 	case 0:
2024 	case -ENOMEM:
2025 	case -ENODEV:
2026 	case -EOPNOTSUPP:
2027 		return error_code;
2028 	default:
2029 		return -EIO;
2030 	}
2031 }
2032 
2033 /* Events from the usb core */
2034 #define USB_DEVICE_ADD		0x0001
2035 #define USB_DEVICE_REMOVE	0x0002
2036 #define USB_BUS_ADD		0x0003
2037 #define USB_BUS_REMOVE		0x0004
2038 extern void usb_register_notify(struct notifier_block *nb);
2039 extern void usb_unregister_notify(struct notifier_block *nb);
2040 
2041 /* debugfs stuff */
2042 extern struct dentry *usb_debug_root;
2043 
2044 /* LED triggers */
2045 enum usb_led_event {
2046 	USB_LED_EVENT_HOST = 0,
2047 	USB_LED_EVENT_GADGET = 1,
2048 };
2049 
2050 #ifdef CONFIG_USB_LED_TRIG
2051 extern void usb_led_activity(enum usb_led_event ev);
2052 #else
usb_led_activity(enum usb_led_event ev)2053 static inline void usb_led_activity(enum usb_led_event ev) {}
2054 #endif
2055 
2056 #endif  /* __KERNEL__ */
2057 
2058 #endif
2059