• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/android_kabi.h>
52 
53 struct netpoll_info;
54 struct device;
55 struct phy_device;
56 struct dsa_port;
57 
58 struct sfp_bus;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63 struct mpls_dev;
64 /* UDP Tunnel offloads */
65 struct udp_tunnel_info;
66 struct bpf_prog;
67 struct xdp_buff;
68 
69 void netdev_set_default_ethtool_ops(struct net_device *dev,
70 				    const struct ethtool_ops *ops);
71 
72 /* Backlog congestion levels */
73 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
74 #define NET_RX_DROP		1	/* packet dropped */
75 
76 #define MAX_NEST_DEV 8
77 
78 /*
79  * Transmit return codes: transmit return codes originate from three different
80  * namespaces:
81  *
82  * - qdisc return codes
83  * - driver transmit return codes
84  * - errno values
85  *
86  * Drivers are allowed to return any one of those in their hard_start_xmit()
87  * function. Real network devices commonly used with qdiscs should only return
88  * the driver transmit return codes though - when qdiscs are used, the actual
89  * transmission happens asynchronously, so the value is not propagated to
90  * higher layers. Virtual network devices transmit synchronously; in this case
91  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
92  * others are propagated to higher layers.
93  */
94 
95 /* qdisc ->enqueue() return codes. */
96 #define NET_XMIT_SUCCESS	0x00
97 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
98 #define NET_XMIT_CN		0x02	/* congestion notification	*/
99 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
100 
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102  * indicates that the device will soon be dropping packets, or already drops
103  * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106 
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK		0xf0
109 
110 enum netdev_tx {
111 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
112 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
113 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
114 };
115 typedef enum netdev_tx netdev_tx_t;
116 
117 /*
118  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
119  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
120  */
dev_xmit_complete(int rc)121 static inline bool dev_xmit_complete(int rc)
122 {
123 	/*
124 	 * Positive cases with an skb consumed by a driver:
125 	 * - successful transmission (rc == NETDEV_TX_OK)
126 	 * - error while transmitting (rc < 0)
127 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
128 	 */
129 	if (likely(rc < NET_XMIT_MASK))
130 		return true;
131 
132 	return false;
133 }
134 
135 /*
136  *	Compute the worst-case header length according to the protocols
137  *	used.
138  */
139 
140 #if defined(CONFIG_HYPERV_NET)
141 # define LL_MAX_HEADER 128
142 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
143 # if defined(CONFIG_MAC80211_MESH)
144 #  define LL_MAX_HEADER 128
145 # else
146 #  define LL_MAX_HEADER 96
147 # endif
148 #else
149 # define LL_MAX_HEADER 32
150 #endif
151 
152 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
153     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
154 #define MAX_HEADER LL_MAX_HEADER
155 #else
156 #define MAX_HEADER (LL_MAX_HEADER + 48)
157 #endif
158 
159 /*
160  *	Old network device statistics. Fields are native words
161  *	(unsigned long) so they can be read and written atomically.
162  */
163 
164 struct net_device_stats {
165 	unsigned long	rx_packets;
166 	unsigned long	tx_packets;
167 	unsigned long	rx_bytes;
168 	unsigned long	tx_bytes;
169 	unsigned long	rx_errors;
170 	unsigned long	tx_errors;
171 	unsigned long	rx_dropped;
172 	unsigned long	tx_dropped;
173 	unsigned long	multicast;
174 	unsigned long	collisions;
175 	unsigned long	rx_length_errors;
176 	unsigned long	rx_over_errors;
177 	unsigned long	rx_crc_errors;
178 	unsigned long	rx_frame_errors;
179 	unsigned long	rx_fifo_errors;
180 	unsigned long	rx_missed_errors;
181 	unsigned long	tx_aborted_errors;
182 	unsigned long	tx_carrier_errors;
183 	unsigned long	tx_fifo_errors;
184 	unsigned long	tx_heartbeat_errors;
185 	unsigned long	tx_window_errors;
186 	unsigned long	rx_compressed;
187 	unsigned long	tx_compressed;
188 };
189 
190 
191 #include <linux/cache.h>
192 #include <linux/skbuff.h>
193 
194 #ifdef CONFIG_RPS
195 #include <linux/static_key.h>
196 extern struct static_key_false rps_needed;
197 extern struct static_key_false rfs_needed;
198 #endif
199 
200 struct neighbour;
201 struct neigh_parms;
202 struct sk_buff;
203 
204 struct netdev_hw_addr {
205 	struct list_head	list;
206 	unsigned char		addr[MAX_ADDR_LEN];
207 	unsigned char		type;
208 #define NETDEV_HW_ADDR_T_LAN		1
209 #define NETDEV_HW_ADDR_T_SAN		2
210 #define NETDEV_HW_ADDR_T_SLAVE		3
211 #define NETDEV_HW_ADDR_T_UNICAST	4
212 #define NETDEV_HW_ADDR_T_MULTICAST	5
213 	bool			global_use;
214 	int			sync_cnt;
215 	int			refcount;
216 	int			synced;
217 	struct rcu_head		rcu_head;
218 };
219 
220 struct netdev_hw_addr_list {
221 	struct list_head	list;
222 	int			count;
223 };
224 
225 #define netdev_hw_addr_list_count(l) ((l)->count)
226 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
227 #define netdev_hw_addr_list_for_each(ha, l) \
228 	list_for_each_entry(ha, &(l)->list, list)
229 
230 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
231 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
232 #define netdev_for_each_uc_addr(ha, dev) \
233 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
234 
235 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
236 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
237 #define netdev_for_each_mc_addr(ha, dev) \
238 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
239 
240 struct hh_cache {
241 	unsigned int	hh_len;
242 	seqlock_t	hh_lock;
243 
244 	/* cached hardware header; allow for machine alignment needs.        */
245 #define HH_DATA_MOD	16
246 #define HH_DATA_OFF(__len) \
247 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
248 #define HH_DATA_ALIGN(__len) \
249 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
250 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
251 };
252 
253 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
254  * Alternative is:
255  *   dev->hard_header_len ? (dev->hard_header_len +
256  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
257  *
258  * We could use other alignment values, but we must maintain the
259  * relationship HH alignment <= LL alignment.
260  */
261 #define LL_RESERVED_SPACE(dev) \
262 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
263 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
265 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
266 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267 
268 struct header_ops {
269 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
270 			   unsigned short type, const void *daddr,
271 			   const void *saddr, unsigned int len);
272 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
273 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
274 	void	(*cache_update)(struct hh_cache *hh,
275 				const struct net_device *dev,
276 				const unsigned char *haddr);
277 	bool	(*validate)(const char *ll_header, unsigned int len);
278 	__be16	(*parse_protocol)(const struct sk_buff *skb);
279 
280 	ANDROID_KABI_RESERVE(1);
281 	ANDROID_KABI_RESERVE(2);
282 };
283 
284 /* These flag bits are private to the generic network queueing
285  * layer; they may not be explicitly referenced by any other
286  * code.
287  */
288 
289 enum netdev_state_t {
290 	__LINK_STATE_START,
291 	__LINK_STATE_PRESENT,
292 	__LINK_STATE_NOCARRIER,
293 	__LINK_STATE_LINKWATCH_PENDING,
294 	__LINK_STATE_DORMANT,
295 };
296 
297 
298 /*
299  * This structure holds boot-time configured netdevice settings. They
300  * are then used in the device probing.
301  */
302 struct netdev_boot_setup {
303 	char name[IFNAMSIZ];
304 	struct ifmap map;
305 };
306 #define NETDEV_BOOT_SETUP_MAX 8
307 
308 int __init netdev_boot_setup(char *str);
309 
310 struct gro_list {
311 	struct list_head	list;
312 	int			count;
313 };
314 
315 /*
316  * size of gro hash buckets, must less than bit number of
317  * napi_struct::gro_bitmask
318  */
319 #define GRO_HASH_BUCKETS	8
320 
321 /*
322  * Structure for NAPI scheduling similar to tasklet but with weighting
323  */
324 struct napi_struct {
325 	/* The poll_list must only be managed by the entity which
326 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
327 	 * whoever atomically sets that bit can add this napi_struct
328 	 * to the per-CPU poll_list, and whoever clears that bit
329 	 * can remove from the list right before clearing the bit.
330 	 */
331 	struct list_head	poll_list;
332 
333 	unsigned long		state;
334 	int			weight;
335 	unsigned long		gro_bitmask;
336 	int			(*poll)(struct napi_struct *, int);
337 #ifdef CONFIG_NETPOLL
338 	int			poll_owner;
339 #endif
340 	struct net_device	*dev;
341 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
342 	struct sk_buff		*skb;
343 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
344 	int			rx_count; /* length of rx_list */
345 	struct hrtimer		timer;
346 	struct list_head	dev_list;
347 	struct hlist_node	napi_hash_node;
348 	unsigned int		napi_id;
349 
350 	ANDROID_KABI_RESERVE(1);
351 	ANDROID_KABI_RESERVE(2);
352 	ANDROID_KABI_RESERVE(3);
353 	ANDROID_KABI_RESERVE(4);
354 };
355 
356 enum {
357 	NAPI_STATE_SCHED,	/* Poll is scheduled */
358 	NAPI_STATE_MISSED,	/* reschedule a napi */
359 	NAPI_STATE_DISABLE,	/* Disable pending */
360 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
361 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
362 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
363 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
364 };
365 
366 enum {
367 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
368 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
369 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
370 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
371 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
372 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
373 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
374 };
375 
376 enum gro_result {
377 	GRO_MERGED,
378 	GRO_MERGED_FREE,
379 	GRO_HELD,
380 	GRO_NORMAL,
381 	GRO_DROP,
382 	GRO_CONSUMED,
383 };
384 typedef enum gro_result gro_result_t;
385 
386 /*
387  * enum rx_handler_result - Possible return values for rx_handlers.
388  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
389  * further.
390  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
391  * case skb->dev was changed by rx_handler.
392  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
393  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
394  *
395  * rx_handlers are functions called from inside __netif_receive_skb(), to do
396  * special processing of the skb, prior to delivery to protocol handlers.
397  *
398  * Currently, a net_device can only have a single rx_handler registered. Trying
399  * to register a second rx_handler will return -EBUSY.
400  *
401  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
402  * To unregister a rx_handler on a net_device, use
403  * netdev_rx_handler_unregister().
404  *
405  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
406  * do with the skb.
407  *
408  * If the rx_handler consumed the skb in some way, it should return
409  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
410  * the skb to be delivered in some other way.
411  *
412  * If the rx_handler changed skb->dev, to divert the skb to another
413  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
414  * new device will be called if it exists.
415  *
416  * If the rx_handler decides the skb should be ignored, it should return
417  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
418  * are registered on exact device (ptype->dev == skb->dev).
419  *
420  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
421  * delivered, it should return RX_HANDLER_PASS.
422  *
423  * A device without a registered rx_handler will behave as if rx_handler
424  * returned RX_HANDLER_PASS.
425  */
426 
427 enum rx_handler_result {
428 	RX_HANDLER_CONSUMED,
429 	RX_HANDLER_ANOTHER,
430 	RX_HANDLER_EXACT,
431 	RX_HANDLER_PASS,
432 };
433 typedef enum rx_handler_result rx_handler_result_t;
434 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
435 
436 void __napi_schedule(struct napi_struct *n);
437 void __napi_schedule_irqoff(struct napi_struct *n);
438 
napi_disable_pending(struct napi_struct * n)439 static inline bool napi_disable_pending(struct napi_struct *n)
440 {
441 	return test_bit(NAPI_STATE_DISABLE, &n->state);
442 }
443 
444 bool napi_schedule_prep(struct napi_struct *n);
445 
446 /**
447  *	napi_schedule - schedule NAPI poll
448  *	@n: NAPI context
449  *
450  * Schedule NAPI poll routine to be called if it is not already
451  * running.
452  */
napi_schedule(struct napi_struct * n)453 static inline void napi_schedule(struct napi_struct *n)
454 {
455 	if (napi_schedule_prep(n))
456 		__napi_schedule(n);
457 }
458 
459 /**
460  *	napi_schedule_irqoff - schedule NAPI poll
461  *	@n: NAPI context
462  *
463  * Variant of napi_schedule(), assuming hard irqs are masked.
464  */
napi_schedule_irqoff(struct napi_struct * n)465 static inline void napi_schedule_irqoff(struct napi_struct *n)
466 {
467 	if (napi_schedule_prep(n))
468 		__napi_schedule_irqoff(n);
469 }
470 
471 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)472 static inline bool napi_reschedule(struct napi_struct *napi)
473 {
474 	if (napi_schedule_prep(napi)) {
475 		__napi_schedule(napi);
476 		return true;
477 	}
478 	return false;
479 }
480 
481 bool napi_complete_done(struct napi_struct *n, int work_done);
482 /**
483  *	napi_complete - NAPI processing complete
484  *	@n: NAPI context
485  *
486  * Mark NAPI processing as complete.
487  * Consider using napi_complete_done() instead.
488  * Return false if device should avoid rearming interrupts.
489  */
napi_complete(struct napi_struct * n)490 static inline bool napi_complete(struct napi_struct *n)
491 {
492 	return napi_complete_done(n, 0);
493 }
494 
495 /**
496  *	napi_hash_del - remove a NAPI from global table
497  *	@napi: NAPI context
498  *
499  * Warning: caller must observe RCU grace period
500  * before freeing memory containing @napi, if
501  * this function returns true.
502  * Note: core networking stack automatically calls it
503  * from netif_napi_del().
504  * Drivers might want to call this helper to combine all
505  * the needed RCU grace periods into a single one.
506  */
507 bool napi_hash_del(struct napi_struct *napi);
508 
509 /**
510  *	napi_disable - prevent NAPI from scheduling
511  *	@n: NAPI context
512  *
513  * Stop NAPI from being scheduled on this context.
514  * Waits till any outstanding processing completes.
515  */
516 void napi_disable(struct napi_struct *n);
517 
518 /**
519  *	napi_enable - enable NAPI scheduling
520  *	@n: NAPI context
521  *
522  * Resume NAPI from being scheduled on this context.
523  * Must be paired with napi_disable.
524  */
napi_enable(struct napi_struct * n)525 static inline void napi_enable(struct napi_struct *n)
526 {
527 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
528 	smp_mb__before_atomic();
529 	clear_bit(NAPI_STATE_SCHED, &n->state);
530 	clear_bit(NAPI_STATE_NPSVC, &n->state);
531 }
532 
533 /**
534  *	napi_synchronize - wait until NAPI is not running
535  *	@n: NAPI context
536  *
537  * Wait until NAPI is done being scheduled on this context.
538  * Waits till any outstanding processing completes but
539  * does not disable future activations.
540  */
napi_synchronize(const struct napi_struct * n)541 static inline void napi_synchronize(const struct napi_struct *n)
542 {
543 	if (IS_ENABLED(CONFIG_SMP))
544 		while (test_bit(NAPI_STATE_SCHED, &n->state))
545 			msleep(1);
546 	else
547 		barrier();
548 }
549 
550 /**
551  *	napi_if_scheduled_mark_missed - if napi is running, set the
552  *	NAPIF_STATE_MISSED
553  *	@n: NAPI context
554  *
555  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
556  * NAPI is scheduled.
557  **/
napi_if_scheduled_mark_missed(struct napi_struct * n)558 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
559 {
560 	unsigned long val, new;
561 
562 	do {
563 		val = READ_ONCE(n->state);
564 		if (val & NAPIF_STATE_DISABLE)
565 			return true;
566 
567 		if (!(val & NAPIF_STATE_SCHED))
568 			return false;
569 
570 		new = val | NAPIF_STATE_MISSED;
571 	} while (cmpxchg(&n->state, val, new) != val);
572 
573 	return true;
574 }
575 
576 enum netdev_queue_state_t {
577 	__QUEUE_STATE_DRV_XOFF,
578 	__QUEUE_STATE_STACK_XOFF,
579 	__QUEUE_STATE_FROZEN,
580 };
581 
582 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
583 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
584 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
585 
586 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
587 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
588 					QUEUE_STATE_FROZEN)
589 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
590 					QUEUE_STATE_FROZEN)
591 
592 /*
593  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
594  * netif_tx_* functions below are used to manipulate this flag.  The
595  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
596  * queue independently.  The netif_xmit_*stopped functions below are called
597  * to check if the queue has been stopped by the driver or stack (either
598  * of the XOFF bits are set in the state).  Drivers should not need to call
599  * netif_xmit*stopped functions, they should only be using netif_tx_*.
600  */
601 
602 struct netdev_queue {
603 /*
604  * read-mostly part
605  */
606 	struct net_device	*dev;
607 	struct Qdisc __rcu	*qdisc;
608 	struct Qdisc		*qdisc_sleeping;
609 #ifdef CONFIG_SYSFS
610 	struct kobject		kobj;
611 #endif
612 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
613 	int			numa_node;
614 #endif
615 	unsigned long		tx_maxrate;
616 	/*
617 	 * Number of TX timeouts for this queue
618 	 * (/sys/class/net/DEV/Q/trans_timeout)
619 	 */
620 	unsigned long		trans_timeout;
621 
622 	/* Subordinate device that the queue has been assigned to */
623 	struct net_device	*sb_dev;
624 #ifdef CONFIG_XDP_SOCKETS
625 	struct xdp_umem         *umem;
626 #endif
627 /*
628  * write-mostly part
629  */
630 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
631 	int			xmit_lock_owner;
632 	/*
633 	 * Time (in jiffies) of last Tx
634 	 */
635 	unsigned long		trans_start;
636 
637 	unsigned long		state;
638 
639 #ifdef CONFIG_BQL
640 	struct dql		dql;
641 #endif
642 
643 	ANDROID_KABI_RESERVE(1);
644 	ANDROID_KABI_RESERVE(2);
645 	ANDROID_KABI_RESERVE(3);
646 	ANDROID_KABI_RESERVE(4);
647 } ____cacheline_aligned_in_smp;
648 
649 extern int sysctl_fb_tunnels_only_for_init_net;
650 extern int sysctl_devconf_inherit_init_net;
651 
net_has_fallback_tunnels(const struct net * net)652 static inline bool net_has_fallback_tunnels(const struct net *net)
653 {
654 	return net == &init_net ||
655 	       !IS_ENABLED(CONFIG_SYSCTL) ||
656 	       !sysctl_fb_tunnels_only_for_init_net;
657 }
658 
netdev_queue_numa_node_read(const struct netdev_queue * q)659 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
660 {
661 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
662 	return q->numa_node;
663 #else
664 	return NUMA_NO_NODE;
665 #endif
666 }
667 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)668 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
669 {
670 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
671 	q->numa_node = node;
672 #endif
673 }
674 
675 #ifdef CONFIG_RPS
676 /*
677  * This structure holds an RPS map which can be of variable length.  The
678  * map is an array of CPUs.
679  */
680 struct rps_map {
681 	unsigned int len;
682 	struct rcu_head rcu;
683 	u16 cpus[0];
684 };
685 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
686 
687 /*
688  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
689  * tail pointer for that CPU's input queue at the time of last enqueue, and
690  * a hardware filter index.
691  */
692 struct rps_dev_flow {
693 	u16 cpu;
694 	u16 filter;
695 	unsigned int last_qtail;
696 };
697 #define RPS_NO_FILTER 0xffff
698 
699 /*
700  * The rps_dev_flow_table structure contains a table of flow mappings.
701  */
702 struct rps_dev_flow_table {
703 	unsigned int mask;
704 	struct rcu_head rcu;
705 	struct rps_dev_flow flows[0];
706 };
707 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
708     ((_num) * sizeof(struct rps_dev_flow)))
709 
710 /*
711  * The rps_sock_flow_table contains mappings of flows to the last CPU
712  * on which they were processed by the application (set in recvmsg).
713  * Each entry is a 32bit value. Upper part is the high-order bits
714  * of flow hash, lower part is CPU number.
715  * rps_cpu_mask is used to partition the space, depending on number of
716  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
717  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
718  * meaning we use 32-6=26 bits for the hash.
719  */
720 struct rps_sock_flow_table {
721 	u32	mask;
722 
723 	u32	ents[0] ____cacheline_aligned_in_smp;
724 };
725 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
726 
727 #define RPS_NO_CPU 0xffff
728 
729 extern u32 rps_cpu_mask;
730 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
731 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)732 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
733 					u32 hash)
734 {
735 	if (table && hash) {
736 		unsigned int index = hash & table->mask;
737 		u32 val = hash & ~rps_cpu_mask;
738 
739 		/* We only give a hint, preemption can change CPU under us */
740 		val |= raw_smp_processor_id();
741 
742 		/* The following WRITE_ONCE() is paired with the READ_ONCE()
743 		 * here, and another one in get_rps_cpu().
744 		 */
745 		if (READ_ONCE(table->ents[index]) != val)
746 			WRITE_ONCE(table->ents[index], val);
747 	}
748 }
749 
750 #ifdef CONFIG_RFS_ACCEL
751 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
752 			 u16 filter_id);
753 #endif
754 #endif /* CONFIG_RPS */
755 
756 /* This structure contains an instance of an RX queue. */
757 struct netdev_rx_queue {
758 #ifdef CONFIG_RPS
759 	struct rps_map __rcu		*rps_map;
760 	struct rps_dev_flow_table __rcu	*rps_flow_table;
761 #endif
762 	struct kobject			kobj;
763 	struct net_device		*dev;
764 	struct xdp_rxq_info		xdp_rxq;
765 #ifdef CONFIG_XDP_SOCKETS
766 	struct xdp_umem                 *umem;
767 #endif
768 
769 	ANDROID_KABI_RESERVE(1);
770 	ANDROID_KABI_RESERVE(2);
771 	ANDROID_KABI_RESERVE(3);
772 	ANDROID_KABI_RESERVE(4);
773 } ____cacheline_aligned_in_smp;
774 
775 /*
776  * RX queue sysfs structures and functions.
777  */
778 struct rx_queue_attribute {
779 	struct attribute attr;
780 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
781 	ssize_t (*store)(struct netdev_rx_queue *queue,
782 			 const char *buf, size_t len);
783 };
784 
785 #ifdef CONFIG_XPS
786 /*
787  * This structure holds an XPS map which can be of variable length.  The
788  * map is an array of queues.
789  */
790 struct xps_map {
791 	unsigned int len;
792 	unsigned int alloc_len;
793 	struct rcu_head rcu;
794 	u16 queues[0];
795 };
796 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
797 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
798        - sizeof(struct xps_map)) / sizeof(u16))
799 
800 /*
801  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
802  */
803 struct xps_dev_maps {
804 	struct rcu_head rcu;
805 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
806 };
807 
808 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
809 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
810 
811 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
812 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
813 
814 #endif /* CONFIG_XPS */
815 
816 #define TC_MAX_QUEUE	16
817 #define TC_BITMASK	15
818 /* HW offloaded queuing disciplines txq count and offset maps */
819 struct netdev_tc_txq {
820 	u16 count;
821 	u16 offset;
822 };
823 
824 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
825 /*
826  * This structure is to hold information about the device
827  * configured to run FCoE protocol stack.
828  */
829 struct netdev_fcoe_hbainfo {
830 	char	manufacturer[64];
831 	char	serial_number[64];
832 	char	hardware_version[64];
833 	char	driver_version[64];
834 	char	optionrom_version[64];
835 	char	firmware_version[64];
836 	char	model[256];
837 	char	model_description[256];
838 };
839 #endif
840 
841 #define MAX_PHYS_ITEM_ID_LEN 32
842 
843 /* This structure holds a unique identifier to identify some
844  * physical item (port for example) used by a netdevice.
845  */
846 struct netdev_phys_item_id {
847 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
848 	unsigned char id_len;
849 };
850 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)851 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
852 					    struct netdev_phys_item_id *b)
853 {
854 	return a->id_len == b->id_len &&
855 	       memcmp(a->id, b->id, a->id_len) == 0;
856 }
857 
858 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
859 				       struct sk_buff *skb,
860 				       struct net_device *sb_dev);
861 
862 enum tc_setup_type {
863 	TC_SETUP_QDISC_MQPRIO,
864 	TC_SETUP_CLSU32,
865 	TC_SETUP_CLSFLOWER,
866 	TC_SETUP_CLSMATCHALL,
867 	TC_SETUP_CLSBPF,
868 	TC_SETUP_BLOCK,
869 	TC_SETUP_QDISC_CBS,
870 	TC_SETUP_QDISC_RED,
871 	TC_SETUP_QDISC_PRIO,
872 	TC_SETUP_QDISC_MQ,
873 	TC_SETUP_QDISC_ETF,
874 	TC_SETUP_ROOT_QDISC,
875 	TC_SETUP_QDISC_GRED,
876 	TC_SETUP_QDISC_TAPRIO,
877 };
878 
879 /* These structures hold the attributes of bpf state that are being passed
880  * to the netdevice through the bpf op.
881  */
882 enum bpf_netdev_command {
883 	/* Set or clear a bpf program used in the earliest stages of packet
884 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
885 	 * is responsible for calling bpf_prog_put on any old progs that are
886 	 * stored. In case of error, the callee need not release the new prog
887 	 * reference, but on success it takes ownership and must bpf_prog_put
888 	 * when it is no longer used.
889 	 */
890 	XDP_SETUP_PROG,
891 	XDP_SETUP_PROG_HW,
892 	XDP_QUERY_PROG,
893 	XDP_QUERY_PROG_HW,
894 	/* BPF program for offload callbacks, invoked at program load time. */
895 	BPF_OFFLOAD_MAP_ALLOC,
896 	BPF_OFFLOAD_MAP_FREE,
897 	XDP_SETUP_XSK_UMEM,
898 };
899 
900 struct bpf_prog_offload_ops;
901 struct netlink_ext_ack;
902 struct xdp_umem;
903 
904 struct netdev_bpf {
905 	enum bpf_netdev_command command;
906 	union {
907 		/* XDP_SETUP_PROG */
908 		struct {
909 			u32 flags;
910 			struct bpf_prog *prog;
911 			struct netlink_ext_ack *extack;
912 		};
913 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
914 		struct {
915 			u32 prog_id;
916 			/* flags with which program was installed */
917 			u32 prog_flags;
918 		};
919 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
920 		struct {
921 			struct bpf_offloaded_map *offmap;
922 		};
923 		/* XDP_SETUP_XSK_UMEM */
924 		struct {
925 			struct xdp_umem *umem;
926 			u16 queue_id;
927 		} xsk;
928 	};
929 };
930 
931 /* Flags for ndo_xsk_wakeup. */
932 #define XDP_WAKEUP_RX (1 << 0)
933 #define XDP_WAKEUP_TX (1 << 1)
934 
935 #ifdef CONFIG_XFRM_OFFLOAD
936 struct xfrmdev_ops {
937 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
938 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
939 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
940 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
941 				       struct xfrm_state *x);
942 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
943 
944 	ANDROID_KABI_RESERVE(1);
945 	ANDROID_KABI_RESERVE(2);
946 	ANDROID_KABI_RESERVE(3);
947 	ANDROID_KABI_RESERVE(4);
948 };
949 #endif
950 
951 struct dev_ifalias {
952 	struct rcu_head rcuhead;
953 	char ifalias[];
954 };
955 
956 struct devlink;
957 struct tlsdev_ops;
958 
959 
960 /*
961  * This structure defines the management hooks for network devices.
962  * The following hooks can be defined; unless noted otherwise, they are
963  * optional and can be filled with a null pointer.
964  *
965  * int (*ndo_init)(struct net_device *dev);
966  *     This function is called once when a network device is registered.
967  *     The network device can use this for any late stage initialization
968  *     or semantic validation. It can fail with an error code which will
969  *     be propagated back to register_netdev.
970  *
971  * void (*ndo_uninit)(struct net_device *dev);
972  *     This function is called when device is unregistered or when registration
973  *     fails. It is not called if init fails.
974  *
975  * int (*ndo_open)(struct net_device *dev);
976  *     This function is called when a network device transitions to the up
977  *     state.
978  *
979  * int (*ndo_stop)(struct net_device *dev);
980  *     This function is called when a network device transitions to the down
981  *     state.
982  *
983  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
984  *                               struct net_device *dev);
985  *	Called when a packet needs to be transmitted.
986  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
987  *	the queue before that can happen; it's for obsolete devices and weird
988  *	corner cases, but the stack really does a non-trivial amount
989  *	of useless work if you return NETDEV_TX_BUSY.
990  *	Required; cannot be NULL.
991  *
992  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
993  *					   struct net_device *dev
994  *					   netdev_features_t features);
995  *	Called by core transmit path to determine if device is capable of
996  *	performing offload operations on a given packet. This is to give
997  *	the device an opportunity to implement any restrictions that cannot
998  *	be otherwise expressed by feature flags. The check is called with
999  *	the set of features that the stack has calculated and it returns
1000  *	those the driver believes to be appropriate.
1001  *
1002  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1003  *                         struct net_device *sb_dev);
1004  *	Called to decide which queue to use when device supports multiple
1005  *	transmit queues.
1006  *
1007  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1008  *	This function is called to allow device receiver to make
1009  *	changes to configuration when multicast or promiscuous is enabled.
1010  *
1011  * void (*ndo_set_rx_mode)(struct net_device *dev);
1012  *	This function is called device changes address list filtering.
1013  *	If driver handles unicast address filtering, it should set
1014  *	IFF_UNICAST_FLT in its priv_flags.
1015  *
1016  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1017  *	This function  is called when the Media Access Control address
1018  *	needs to be changed. If this interface is not defined, the
1019  *	MAC address can not be changed.
1020  *
1021  * int (*ndo_validate_addr)(struct net_device *dev);
1022  *	Test if Media Access Control address is valid for the device.
1023  *
1024  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1025  *	Called when a user requests an ioctl which can't be handled by
1026  *	the generic interface code. If not defined ioctls return
1027  *	not supported error code.
1028  *
1029  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1030  *	Used to set network devices bus interface parameters. This interface
1031  *	is retained for legacy reasons; new devices should use the bus
1032  *	interface (PCI) for low level management.
1033  *
1034  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1035  *	Called when a user wants to change the Maximum Transfer Unit
1036  *	of a device.
1037  *
1038  * void (*ndo_tx_timeout)(struct net_device *dev);
1039  *	Callback used when the transmitter has not made any progress
1040  *	for dev->watchdog ticks.
1041  *
1042  * void (*ndo_get_stats64)(struct net_device *dev,
1043  *                         struct rtnl_link_stats64 *storage);
1044  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1045  *	Called when a user wants to get the network device usage
1046  *	statistics. Drivers must do one of the following:
1047  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1048  *	   rtnl_link_stats64 structure passed by the caller.
1049  *	2. Define @ndo_get_stats to update a net_device_stats structure
1050  *	   (which should normally be dev->stats) and return a pointer to
1051  *	   it. The structure may be changed asynchronously only if each
1052  *	   field is written atomically.
1053  *	3. Update dev->stats asynchronously and atomically, and define
1054  *	   neither operation.
1055  *
1056  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1057  *	Return true if this device supports offload stats of this attr_id.
1058  *
1059  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1060  *	void *attr_data)
1061  *	Get statistics for offload operations by attr_id. Write it into the
1062  *	attr_data pointer.
1063  *
1064  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1065  *	If device supports VLAN filtering this function is called when a
1066  *	VLAN id is registered.
1067  *
1068  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1069  *	If device supports VLAN filtering this function is called when a
1070  *	VLAN id is unregistered.
1071  *
1072  * void (*ndo_poll_controller)(struct net_device *dev);
1073  *
1074  *	SR-IOV management functions.
1075  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1076  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1077  *			  u8 qos, __be16 proto);
1078  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1079  *			  int max_tx_rate);
1080  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1081  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1082  * int (*ndo_get_vf_config)(struct net_device *dev,
1083  *			    int vf, struct ifla_vf_info *ivf);
1084  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1085  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1086  *			  struct nlattr *port[]);
1087  *
1088  *      Enable or disable the VF ability to query its RSS Redirection Table and
1089  *      Hash Key. This is needed since on some devices VF share this information
1090  *      with PF and querying it may introduce a theoretical security risk.
1091  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1092  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1093  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1094  *		       void *type_data);
1095  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1096  *	This is always called from the stack with the rtnl lock held and netif
1097  *	tx queues stopped. This allows the netdevice to perform queue
1098  *	management safely.
1099  *
1100  *	Fiber Channel over Ethernet (FCoE) offload functions.
1101  * int (*ndo_fcoe_enable)(struct net_device *dev);
1102  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1103  *	so the underlying device can perform whatever needed configuration or
1104  *	initialization to support acceleration of FCoE traffic.
1105  *
1106  * int (*ndo_fcoe_disable)(struct net_device *dev);
1107  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1108  *	so the underlying device can perform whatever needed clean-ups to
1109  *	stop supporting acceleration of FCoE traffic.
1110  *
1111  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1112  *			     struct scatterlist *sgl, unsigned int sgc);
1113  *	Called when the FCoE Initiator wants to initialize an I/O that
1114  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1115  *	perform necessary setup and returns 1 to indicate the device is set up
1116  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1117  *
1118  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1119  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1120  *	indicated by the FC exchange id 'xid', so the underlying device can
1121  *	clean up and reuse resources for later DDP requests.
1122  *
1123  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1124  *			      struct scatterlist *sgl, unsigned int sgc);
1125  *	Called when the FCoE Target wants to initialize an I/O that
1126  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1127  *	perform necessary setup and returns 1 to indicate the device is set up
1128  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1129  *
1130  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1131  *			       struct netdev_fcoe_hbainfo *hbainfo);
1132  *	Called when the FCoE Protocol stack wants information on the underlying
1133  *	device. This information is utilized by the FCoE protocol stack to
1134  *	register attributes with Fiber Channel management service as per the
1135  *	FC-GS Fabric Device Management Information(FDMI) specification.
1136  *
1137  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1138  *	Called when the underlying device wants to override default World Wide
1139  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1140  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1141  *	protocol stack to use.
1142  *
1143  *	RFS acceleration.
1144  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1145  *			    u16 rxq_index, u32 flow_id);
1146  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1147  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1148  *	Return the filter ID on success, or a negative error code.
1149  *
1150  *	Slave management functions (for bridge, bonding, etc).
1151  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1152  *	Called to make another netdev an underling.
1153  *
1154  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1155  *	Called to release previously enslaved netdev.
1156  *
1157  *      Feature/offload setting functions.
1158  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1159  *		netdev_features_t features);
1160  *	Adjusts the requested feature flags according to device-specific
1161  *	constraints, and returns the resulting flags. Must not modify
1162  *	the device state.
1163  *
1164  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1165  *	Called to update device configuration to new features. Passed
1166  *	feature set might be less than what was returned by ndo_fix_features()).
1167  *	Must return >0 or -errno if it changed dev->features itself.
1168  *
1169  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1170  *		      struct net_device *dev,
1171  *		      const unsigned char *addr, u16 vid, u16 flags,
1172  *		      struct netlink_ext_ack *extack);
1173  *	Adds an FDB entry to dev for addr.
1174  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1175  *		      struct net_device *dev,
1176  *		      const unsigned char *addr, u16 vid)
1177  *	Deletes the FDB entry from dev coresponding to addr.
1178  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1179  *		       struct net_device *dev, struct net_device *filter_dev,
1180  *		       int *idx)
1181  *	Used to add FDB entries to dump requests. Implementers should add
1182  *	entries to skb and update idx with the number of entries.
1183  *
1184  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1185  *			     u16 flags, struct netlink_ext_ack *extack)
1186  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1187  *			     struct net_device *dev, u32 filter_mask,
1188  *			     int nlflags)
1189  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1190  *			     u16 flags);
1191  *
1192  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1193  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1194  *	which do not represent real hardware may define this to allow their
1195  *	userspace components to manage their virtual carrier state. Devices
1196  *	that determine carrier state from physical hardware properties (eg
1197  *	network cables) or protocol-dependent mechanisms (eg
1198  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1199  *
1200  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1201  *			       struct netdev_phys_item_id *ppid);
1202  *	Called to get ID of physical port of this device. If driver does
1203  *	not implement this, it is assumed that the hw is not able to have
1204  *	multiple net devices on single physical port.
1205  *
1206  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1207  *				 struct netdev_phys_item_id *ppid)
1208  *	Called to get the parent ID of the physical port of this device.
1209  *
1210  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1211  *			      struct udp_tunnel_info *ti);
1212  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1213  *	address family that a UDP tunnel is listnening to. It is called only
1214  *	when a new port starts listening. The operation is protected by the
1215  *	RTNL.
1216  *
1217  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1218  *			      struct udp_tunnel_info *ti);
1219  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1220  *	address family that the UDP tunnel is not listening to anymore. The
1221  *	operation is protected by the RTNL.
1222  *
1223  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1224  *				 struct net_device *dev)
1225  *	Called by upper layer devices to accelerate switching or other
1226  *	station functionality into hardware. 'pdev is the lowerdev
1227  *	to use for the offload and 'dev' is the net device that will
1228  *	back the offload. Returns a pointer to the private structure
1229  *	the upper layer will maintain.
1230  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1231  *	Called by upper layer device to delete the station created
1232  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1233  *	the station and priv is the structure returned by the add
1234  *	operation.
1235  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1236  *			     int queue_index, u32 maxrate);
1237  *	Called when a user wants to set a max-rate limitation of specific
1238  *	TX queue.
1239  * int (*ndo_get_iflink)(const struct net_device *dev);
1240  *	Called to get the iflink value of this device.
1241  * void (*ndo_change_proto_down)(struct net_device *dev,
1242  *				 bool proto_down);
1243  *	This function is used to pass protocol port error state information
1244  *	to the switch driver. The switch driver can react to the proto_down
1245  *      by doing a phys down on the associated switch port.
1246  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1247  *	This function is used to get egress tunnel information for given skb.
1248  *	This is useful for retrieving outer tunnel header parameters while
1249  *	sampling packet.
1250  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1251  *	This function is used to specify the headroom that the skb must
1252  *	consider when allocation skb during packet reception. Setting
1253  *	appropriate rx headroom value allows avoiding skb head copy on
1254  *	forward. Setting a negative value resets the rx headroom to the
1255  *	default value.
1256  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1257  *	This function is used to set or query state related to XDP on the
1258  *	netdevice and manage BPF offload. See definition of
1259  *	enum bpf_netdev_command for details.
1260  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1261  *			u32 flags);
1262  *	This function is used to submit @n XDP packets for transmit on a
1263  *	netdevice. Returns number of frames successfully transmitted, frames
1264  *	that got dropped are freed/returned via xdp_return_frame().
1265  *	Returns negative number, means general error invoking ndo, meaning
1266  *	no frames were xmit'ed and core-caller will free all frames.
1267  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1268  *      This function is used to wake up the softirq, ksoftirqd or kthread
1269  *	responsible for sending and/or receiving packets on a specific
1270  *	queue id bound to an AF_XDP socket. The flags field specifies if
1271  *	only RX, only Tx, or both should be woken up using the flags
1272  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1273  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1274  *	Get devlink port instance associated with a given netdev.
1275  *	Called with a reference on the netdevice and devlink locks only,
1276  *	rtnl_lock is not held.
1277  */
1278 struct net_device_ops {
1279 	int			(*ndo_init)(struct net_device *dev);
1280 	void			(*ndo_uninit)(struct net_device *dev);
1281 	int			(*ndo_open)(struct net_device *dev);
1282 	int			(*ndo_stop)(struct net_device *dev);
1283 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1284 						  struct net_device *dev);
1285 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1286 						      struct net_device *dev,
1287 						      netdev_features_t features);
1288 	u16			(*ndo_select_queue)(struct net_device *dev,
1289 						    struct sk_buff *skb,
1290 						    struct net_device *sb_dev);
1291 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1292 						       int flags);
1293 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1294 	int			(*ndo_set_mac_address)(struct net_device *dev,
1295 						       void *addr);
1296 	int			(*ndo_validate_addr)(struct net_device *dev);
1297 	int			(*ndo_do_ioctl)(struct net_device *dev,
1298 					        struct ifreq *ifr, int cmd);
1299 	int			(*ndo_set_config)(struct net_device *dev,
1300 					          struct ifmap *map);
1301 	int			(*ndo_change_mtu)(struct net_device *dev,
1302 						  int new_mtu);
1303 	int			(*ndo_neigh_setup)(struct net_device *dev,
1304 						   struct neigh_parms *);
1305 	void			(*ndo_tx_timeout) (struct net_device *dev);
1306 
1307 	void			(*ndo_get_stats64)(struct net_device *dev,
1308 						   struct rtnl_link_stats64 *storage);
1309 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1310 	int			(*ndo_get_offload_stats)(int attr_id,
1311 							 const struct net_device *dev,
1312 							 void *attr_data);
1313 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1314 
1315 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1316 						       __be16 proto, u16 vid);
1317 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1318 						        __be16 proto, u16 vid);
1319 #ifdef CONFIG_NET_POLL_CONTROLLER
1320 	void                    (*ndo_poll_controller)(struct net_device *dev);
1321 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1322 						     struct netpoll_info *info);
1323 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1324 #endif
1325 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1326 						  int queue, u8 *mac);
1327 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1328 						   int queue, u16 vlan,
1329 						   u8 qos, __be16 proto);
1330 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1331 						   int vf, int min_tx_rate,
1332 						   int max_tx_rate);
1333 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1334 						       int vf, bool setting);
1335 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1336 						    int vf, bool setting);
1337 	int			(*ndo_get_vf_config)(struct net_device *dev,
1338 						     int vf,
1339 						     struct ifla_vf_info *ivf);
1340 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1341 							 int vf, int link_state);
1342 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1343 						    int vf,
1344 						    struct ifla_vf_stats
1345 						    *vf_stats);
1346 	int			(*ndo_set_vf_port)(struct net_device *dev,
1347 						   int vf,
1348 						   struct nlattr *port[]);
1349 	int			(*ndo_get_vf_port)(struct net_device *dev,
1350 						   int vf, struct sk_buff *skb);
1351 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1352 						   int vf, u64 guid,
1353 						   int guid_type);
1354 	int			(*ndo_set_vf_rss_query_en)(
1355 						   struct net_device *dev,
1356 						   int vf, bool setting);
1357 	int			(*ndo_setup_tc)(struct net_device *dev,
1358 						enum tc_setup_type type,
1359 						void *type_data);
1360 #if IS_ENABLED(CONFIG_FCOE)
1361 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1362 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1363 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1364 						      u16 xid,
1365 						      struct scatterlist *sgl,
1366 						      unsigned int sgc);
1367 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1368 						     u16 xid);
1369 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1370 						       u16 xid,
1371 						       struct scatterlist *sgl,
1372 						       unsigned int sgc);
1373 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1374 							struct netdev_fcoe_hbainfo *hbainfo);
1375 #endif
1376 
1377 #if IS_ENABLED(CONFIG_LIBFCOE)
1378 #define NETDEV_FCOE_WWNN 0
1379 #define NETDEV_FCOE_WWPN 1
1380 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1381 						    u64 *wwn, int type);
1382 #endif
1383 
1384 #ifdef CONFIG_RFS_ACCEL
1385 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1386 						     const struct sk_buff *skb,
1387 						     u16 rxq_index,
1388 						     u32 flow_id);
1389 #endif
1390 	int			(*ndo_add_slave)(struct net_device *dev,
1391 						 struct net_device *slave_dev,
1392 						 struct netlink_ext_ack *extack);
1393 	int			(*ndo_del_slave)(struct net_device *dev,
1394 						 struct net_device *slave_dev);
1395 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1396 						    netdev_features_t features);
1397 	int			(*ndo_set_features)(struct net_device *dev,
1398 						    netdev_features_t features);
1399 	int			(*ndo_neigh_construct)(struct net_device *dev,
1400 						       struct neighbour *n);
1401 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1402 						     struct neighbour *n);
1403 
1404 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1405 					       struct nlattr *tb[],
1406 					       struct net_device *dev,
1407 					       const unsigned char *addr,
1408 					       u16 vid,
1409 					       u16 flags,
1410 					       struct netlink_ext_ack *extack);
1411 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1412 					       struct nlattr *tb[],
1413 					       struct net_device *dev,
1414 					       const unsigned char *addr,
1415 					       u16 vid);
1416 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1417 						struct netlink_callback *cb,
1418 						struct net_device *dev,
1419 						struct net_device *filter_dev,
1420 						int *idx);
1421 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1422 					       struct nlattr *tb[],
1423 					       struct net_device *dev,
1424 					       const unsigned char *addr,
1425 					       u16 vid, u32 portid, u32 seq,
1426 					       struct netlink_ext_ack *extack);
1427 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1428 						      struct nlmsghdr *nlh,
1429 						      u16 flags,
1430 						      struct netlink_ext_ack *extack);
1431 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1432 						      u32 pid, u32 seq,
1433 						      struct net_device *dev,
1434 						      u32 filter_mask,
1435 						      int nlflags);
1436 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1437 						      struct nlmsghdr *nlh,
1438 						      u16 flags);
1439 	int			(*ndo_change_carrier)(struct net_device *dev,
1440 						      bool new_carrier);
1441 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1442 							struct netdev_phys_item_id *ppid);
1443 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1444 							  struct netdev_phys_item_id *ppid);
1445 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1446 							  char *name, size_t len);
1447 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1448 						      struct udp_tunnel_info *ti);
1449 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1450 						      struct udp_tunnel_info *ti);
1451 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1452 							struct net_device *dev);
1453 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1454 							void *priv);
1455 
1456 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1457 						      int queue_index,
1458 						      u32 maxrate);
1459 	int			(*ndo_get_iflink)(const struct net_device *dev);
1460 	int			(*ndo_change_proto_down)(struct net_device *dev,
1461 							 bool proto_down);
1462 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1463 						       struct sk_buff *skb);
1464 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1465 						       int needed_headroom);
1466 	int			(*ndo_bpf)(struct net_device *dev,
1467 					   struct netdev_bpf *bpf);
1468 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1469 						struct xdp_frame **xdp,
1470 						u32 flags);
1471 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1472 						  u32 queue_id, u32 flags);
1473 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1474 
1475 	ANDROID_KABI_RESERVE(1);
1476 	ANDROID_KABI_RESERVE(2);
1477 	ANDROID_KABI_RESERVE(3);
1478 	ANDROID_KABI_RESERVE(4);
1479 	ANDROID_KABI_RESERVE(5);
1480 	ANDROID_KABI_RESERVE(6);
1481 	ANDROID_KABI_RESERVE(7);
1482 	ANDROID_KABI_RESERVE(8);
1483 };
1484 
1485 /**
1486  * enum net_device_priv_flags - &struct net_device priv_flags
1487  *
1488  * These are the &struct net_device, they are only set internally
1489  * by drivers and used in the kernel. These flags are invisible to
1490  * userspace; this means that the order of these flags can change
1491  * during any kernel release.
1492  *
1493  * You should have a pretty good reason to be extending these flags.
1494  *
1495  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1496  * @IFF_EBRIDGE: Ethernet bridging device
1497  * @IFF_BONDING: bonding master or slave
1498  * @IFF_ISATAP: ISATAP interface (RFC4214)
1499  * @IFF_WAN_HDLC: WAN HDLC device
1500  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1501  *	release skb->dst
1502  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1503  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1504  * @IFF_MACVLAN_PORT: device used as macvlan port
1505  * @IFF_BRIDGE_PORT: device used as bridge port
1506  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1507  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1508  * @IFF_UNICAST_FLT: Supports unicast filtering
1509  * @IFF_TEAM_PORT: device used as team port
1510  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1511  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1512  *	change when it's running
1513  * @IFF_MACVLAN: Macvlan device
1514  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1515  *	underlying stacked devices
1516  * @IFF_L3MDEV_MASTER: device is an L3 master device
1517  * @IFF_NO_QUEUE: device can run without qdisc attached
1518  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1519  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1520  * @IFF_TEAM: device is a team device
1521  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1522  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1523  *	entity (i.e. the master device for bridged veth)
1524  * @IFF_MACSEC: device is a MACsec device
1525  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1526  * @IFF_FAILOVER: device is a failover master device
1527  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1528  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1529  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1530  */
1531 enum netdev_priv_flags {
1532 	IFF_802_1Q_VLAN			= 1<<0,
1533 	IFF_EBRIDGE			= 1<<1,
1534 	IFF_BONDING			= 1<<2,
1535 	IFF_ISATAP			= 1<<3,
1536 	IFF_WAN_HDLC			= 1<<4,
1537 	IFF_XMIT_DST_RELEASE		= 1<<5,
1538 	IFF_DONT_BRIDGE			= 1<<6,
1539 	IFF_DISABLE_NETPOLL		= 1<<7,
1540 	IFF_MACVLAN_PORT		= 1<<8,
1541 	IFF_BRIDGE_PORT			= 1<<9,
1542 	IFF_OVS_DATAPATH		= 1<<10,
1543 	IFF_TX_SKB_SHARING		= 1<<11,
1544 	IFF_UNICAST_FLT			= 1<<12,
1545 	IFF_TEAM_PORT			= 1<<13,
1546 	IFF_SUPP_NOFCS			= 1<<14,
1547 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1548 	IFF_MACVLAN			= 1<<16,
1549 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1550 	IFF_L3MDEV_MASTER		= 1<<18,
1551 	IFF_NO_QUEUE			= 1<<19,
1552 	IFF_OPENVSWITCH			= 1<<20,
1553 	IFF_L3MDEV_SLAVE		= 1<<21,
1554 	IFF_TEAM			= 1<<22,
1555 	IFF_RXFH_CONFIGURED		= 1<<23,
1556 	IFF_PHONY_HEADROOM		= 1<<24,
1557 	IFF_MACSEC			= 1<<25,
1558 	IFF_NO_RX_HANDLER		= 1<<26,
1559 	IFF_FAILOVER			= 1<<27,
1560 	IFF_FAILOVER_SLAVE		= 1<<28,
1561 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1562 	IFF_LIVE_RENAME_OK		= 1<<30,
1563 };
1564 
1565 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1566 #define IFF_EBRIDGE			IFF_EBRIDGE
1567 #define IFF_BONDING			IFF_BONDING
1568 #define IFF_ISATAP			IFF_ISATAP
1569 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1570 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1571 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1572 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1573 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1574 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1575 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1576 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1577 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1578 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1579 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1580 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1581 #define IFF_MACVLAN			IFF_MACVLAN
1582 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1583 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1584 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1585 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1586 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1587 #define IFF_TEAM			IFF_TEAM
1588 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1589 #define IFF_MACSEC			IFF_MACSEC
1590 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1591 #define IFF_FAILOVER			IFF_FAILOVER
1592 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1593 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1594 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1595 
1596 /**
1597  *	struct net_device - The DEVICE structure.
1598  *
1599  *	Actually, this whole structure is a big mistake.  It mixes I/O
1600  *	data with strictly "high-level" data, and it has to know about
1601  *	almost every data structure used in the INET module.
1602  *
1603  *	@name:	This is the first field of the "visible" part of this structure
1604  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1605  *		of the interface.
1606  *
1607  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1608  *	@ifalias:	SNMP alias
1609  *	@mem_end:	Shared memory end
1610  *	@mem_start:	Shared memory start
1611  *	@base_addr:	Device I/O address
1612  *	@irq:		Device IRQ number
1613  *
1614  *	@state:		Generic network queuing layer state, see netdev_state_t
1615  *	@dev_list:	The global list of network devices
1616  *	@napi_list:	List entry used for polling NAPI devices
1617  *	@unreg_list:	List entry  when we are unregistering the
1618  *			device; see the function unregister_netdev
1619  *	@close_list:	List entry used when we are closing the device
1620  *	@ptype_all:     Device-specific packet handlers for all protocols
1621  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1622  *
1623  *	@adj_list:	Directly linked devices, like slaves for bonding
1624  *	@features:	Currently active device features
1625  *	@hw_features:	User-changeable features
1626  *
1627  *	@wanted_features:	User-requested features
1628  *	@vlan_features:		Mask of features inheritable by VLAN devices
1629  *
1630  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1631  *				This field indicates what encapsulation
1632  *				offloads the hardware is capable of doing,
1633  *				and drivers will need to set them appropriately.
1634  *
1635  *	@mpls_features:	Mask of features inheritable by MPLS
1636  *
1637  *	@ifindex:	interface index
1638  *	@group:		The group the device belongs to
1639  *
1640  *	@stats:		Statistics struct, which was left as a legacy, use
1641  *			rtnl_link_stats64 instead
1642  *
1643  *	@rx_dropped:	Dropped packets by core network,
1644  *			do not use this in drivers
1645  *	@tx_dropped:	Dropped packets by core network,
1646  *			do not use this in drivers
1647  *	@rx_nohandler:	nohandler dropped packets by core network on
1648  *			inactive devices, do not use this in drivers
1649  *	@carrier_up_count:	Number of times the carrier has been up
1650  *	@carrier_down_count:	Number of times the carrier has been down
1651  *
1652  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1653  *				instead of ioctl,
1654  *				see <net/iw_handler.h> for details.
1655  *	@wireless_data:	Instance data managed by the core of wireless extensions
1656  *
1657  *	@netdev_ops:	Includes several pointers to callbacks,
1658  *			if one wants to override the ndo_*() functions
1659  *	@ethtool_ops:	Management operations
1660  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1661  *			discovery handling. Necessary for e.g. 6LoWPAN.
1662  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1663  *			of Layer 2 headers.
1664  *
1665  *	@flags:		Interface flags (a la BSD)
1666  *	@priv_flags:	Like 'flags' but invisible to userspace,
1667  *			see if.h for the definitions
1668  *	@gflags:	Global flags ( kept as legacy )
1669  *	@padded:	How much padding added by alloc_netdev()
1670  *	@operstate:	RFC2863 operstate
1671  *	@link_mode:	Mapping policy to operstate
1672  *	@if_port:	Selectable AUI, TP, ...
1673  *	@dma:		DMA channel
1674  *	@mtu:		Interface MTU value
1675  *	@min_mtu:	Interface Minimum MTU value
1676  *	@max_mtu:	Interface Maximum MTU value
1677  *	@type:		Interface hardware type
1678  *	@hard_header_len: Maximum hardware header length.
1679  *	@min_header_len:  Minimum hardware header length
1680  *
1681  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1682  *			  cases can this be guaranteed
1683  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1684  *			  cases can this be guaranteed. Some cases also use
1685  *			  LL_MAX_HEADER instead to allocate the skb
1686  *
1687  *	interface address info:
1688  *
1689  * 	@perm_addr:		Permanent hw address
1690  * 	@addr_assign_type:	Hw address assignment type
1691  * 	@addr_len:		Hardware address length
1692  *	@upper_level:		Maximum depth level of upper devices.
1693  *	@lower_level:		Maximum depth level of lower devices.
1694  *	@neigh_priv_len:	Used in neigh_alloc()
1695  * 	@dev_id:		Used to differentiate devices that share
1696  * 				the same link layer address
1697  * 	@dev_port:		Used to differentiate devices that share
1698  * 				the same function
1699  *	@addr_list_lock:	XXX: need comments on this one
1700  *	@uc_promisc:		Counter that indicates promiscuous mode
1701  *				has been enabled due to the need to listen to
1702  *				additional unicast addresses in a device that
1703  *				does not implement ndo_set_rx_mode()
1704  *	@uc:			unicast mac addresses
1705  *	@mc:			multicast mac addresses
1706  *	@dev_addrs:		list of device hw addresses
1707  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1708  *	@promiscuity:		Number of times the NIC is told to work in
1709  *				promiscuous mode; if it becomes 0 the NIC will
1710  *				exit promiscuous mode
1711  *	@allmulti:		Counter, enables or disables allmulticast mode
1712  *
1713  *	@vlan_info:	VLAN info
1714  *	@dsa_ptr:	dsa specific data
1715  *	@tipc_ptr:	TIPC specific data
1716  *	@atalk_ptr:	AppleTalk link
1717  *	@ip_ptr:	IPv4 specific data
1718  *	@ip6_ptr:	IPv6 specific data
1719  *	@ax25_ptr:	AX.25 specific data
1720  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1721  *
1722  *	@dev_addr:	Hw address (before bcast,
1723  *			because most packets are unicast)
1724  *
1725  *	@_rx:			Array of RX queues
1726  *	@num_rx_queues:		Number of RX queues
1727  *				allocated at register_netdev() time
1728  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1729  *
1730  *	@rx_handler:		handler for received packets
1731  *	@rx_handler_data: 	XXX: need comments on this one
1732  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1733  *				ingress processing
1734  *	@ingress_queue:		XXX: need comments on this one
1735  *	@broadcast:		hw bcast address
1736  *
1737  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1738  *			indexed by RX queue number. Assigned by driver.
1739  *			This must only be set if the ndo_rx_flow_steer
1740  *			operation is defined
1741  *	@index_hlist:		Device index hash chain
1742  *
1743  *	@_tx:			Array of TX queues
1744  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1745  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1746  *	@qdisc:			Root qdisc from userspace point of view
1747  *	@tx_queue_len:		Max frames per queue allowed
1748  *	@tx_global_lock: 	XXX: need comments on this one
1749  *
1750  *	@xps_maps:	XXX: need comments on this one
1751  *	@miniq_egress:		clsact qdisc specific data for
1752  *				egress processing
1753  *	@watchdog_timeo:	Represents the timeout that is used by
1754  *				the watchdog (see dev_watchdog())
1755  *	@watchdog_timer:	List of timers
1756  *
1757  *	@pcpu_refcnt:		Number of references to this device
1758  *	@todo_list:		Delayed register/unregister
1759  *	@link_watch_list:	XXX: need comments on this one
1760  *
1761  *	@reg_state:		Register/unregister state machine
1762  *	@dismantle:		Device is going to be freed
1763  *	@rtnl_link_state:	This enum represents the phases of creating
1764  *				a new link
1765  *
1766  *	@needs_free_netdev:	Should unregister perform free_netdev?
1767  *	@priv_destructor:	Called from unregister
1768  *	@npinfo:		XXX: need comments on this one
1769  * 	@nd_net:		Network namespace this network device is inside
1770  *
1771  * 	@ml_priv:	Mid-layer private
1772  * 	@lstats:	Loopback statistics
1773  * 	@tstats:	Tunnel statistics
1774  * 	@dstats:	Dummy statistics
1775  * 	@vstats:	Virtual ethernet statistics
1776  *
1777  *	@garp_port:	GARP
1778  *	@mrp_port:	MRP
1779  *
1780  *	@dev:		Class/net/name entry
1781  *	@sysfs_groups:	Space for optional device, statistics and wireless
1782  *			sysfs groups
1783  *
1784  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1785  *	@rtnl_link_ops:	Rtnl_link_ops
1786  *
1787  *	@gso_max_size:	Maximum size of generic segmentation offload
1788  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1789  *			NIC for GSO
1790  *
1791  *	@dcbnl_ops:	Data Center Bridging netlink ops
1792  *	@num_tc:	Number of traffic classes in the net device
1793  *	@tc_to_txq:	XXX: need comments on this one
1794  *	@prio_tc_map:	XXX: need comments on this one
1795  *
1796  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1797  *
1798  *	@priomap:	XXX: need comments on this one
1799  *	@phydev:	Physical device may attach itself
1800  *			for hardware timestamping
1801  *	@sfp_bus:	attached &struct sfp_bus structure.
1802  *	@qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock
1803  *				spinlock
1804  *	@qdisc_running_key:	lockdep class annotating Qdisc->running seqcount
1805  *	@qdisc_xmit_lock_key:	lockdep class annotating
1806  *				netdev_queue->_xmit_lock spinlock
1807  *	@addr_list_lock_key:	lockdep class annotating
1808  *				net_device->addr_list_lock spinlock
1809  *
1810  *	@proto_down:	protocol port state information can be sent to the
1811  *			switch driver and used to set the phys state of the
1812  *			switch port.
1813  *
1814  *	@wol_enabled:	Wake-on-LAN is enabled
1815  *
1816  *	FIXME: cleanup struct net_device such that network protocol info
1817  *	moves out.
1818  */
1819 
1820 struct net_device {
1821 	char			name[IFNAMSIZ];
1822 	struct hlist_node	name_hlist;
1823 	struct dev_ifalias	__rcu *ifalias;
1824 	/*
1825 	 *	I/O specific fields
1826 	 *	FIXME: Merge these and struct ifmap into one
1827 	 */
1828 	unsigned long		mem_end;
1829 	unsigned long		mem_start;
1830 	unsigned long		base_addr;
1831 	int			irq;
1832 
1833 	/*
1834 	 *	Some hardware also needs these fields (state,dev_list,
1835 	 *	napi_list,unreg_list,close_list) but they are not
1836 	 *	part of the usual set specified in Space.c.
1837 	 */
1838 
1839 	unsigned long		state;
1840 
1841 	struct list_head	dev_list;
1842 	struct list_head	napi_list;
1843 	struct list_head	unreg_list;
1844 	struct list_head	close_list;
1845 	struct list_head	ptype_all;
1846 	struct list_head	ptype_specific;
1847 
1848 	struct {
1849 		struct list_head upper;
1850 		struct list_head lower;
1851 	} adj_list;
1852 
1853 	netdev_features_t	features;
1854 	netdev_features_t	hw_features;
1855 	netdev_features_t	wanted_features;
1856 	netdev_features_t	vlan_features;
1857 	netdev_features_t	hw_enc_features;
1858 	netdev_features_t	mpls_features;
1859 	netdev_features_t	gso_partial_features;
1860 
1861 	int			ifindex;
1862 	int			group;
1863 
1864 	struct net_device_stats	stats;
1865 
1866 	atomic_long_t		rx_dropped;
1867 	atomic_long_t		tx_dropped;
1868 	atomic_long_t		rx_nohandler;
1869 
1870 	/* Stats to monitor link on/off, flapping */
1871 	atomic_t		carrier_up_count;
1872 	atomic_t		carrier_down_count;
1873 
1874 #ifdef CONFIG_WIRELESS_EXT
1875 	const struct iw_handler_def *wireless_handlers;
1876 	struct iw_public_data	*wireless_data;
1877 #endif
1878 	const struct net_device_ops *netdev_ops;
1879 	const struct ethtool_ops *ethtool_ops;
1880 #ifdef CONFIG_NET_L3_MASTER_DEV
1881 	const struct l3mdev_ops	*l3mdev_ops;
1882 #endif
1883 #if IS_ENABLED(CONFIG_IPV6)
1884 	const struct ndisc_ops *ndisc_ops;
1885 #endif
1886 
1887 #ifdef CONFIG_XFRM_OFFLOAD
1888 	const struct xfrmdev_ops *xfrmdev_ops;
1889 #endif
1890 
1891 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1892 	const struct tlsdev_ops *tlsdev_ops;
1893 #endif
1894 
1895 	const struct header_ops *header_ops;
1896 
1897 	unsigned int		flags;
1898 	unsigned int		priv_flags;
1899 
1900 	unsigned short		gflags;
1901 	unsigned short		padded;
1902 
1903 	unsigned char		operstate;
1904 	unsigned char		link_mode;
1905 
1906 	unsigned char		if_port;
1907 	unsigned char		dma;
1908 
1909 	/* Note : dev->mtu is often read without holding a lock.
1910 	 * Writers usually hold RTNL.
1911 	 * It is recommended to use READ_ONCE() to annotate the reads,
1912 	 * and to use WRITE_ONCE() to annotate the writes.
1913 	 */
1914 	unsigned int		mtu;
1915 	unsigned int		min_mtu;
1916 	unsigned int		max_mtu;
1917 	unsigned short		type;
1918 	unsigned short		hard_header_len;
1919 	unsigned char		min_header_len;
1920 
1921 	unsigned short		needed_headroom;
1922 	unsigned short		needed_tailroom;
1923 
1924 	/* Interface address info. */
1925 	unsigned char		perm_addr[MAX_ADDR_LEN];
1926 	unsigned char		addr_assign_type;
1927 	unsigned char		addr_len;
1928 	unsigned char		upper_level;
1929 	unsigned char		lower_level;
1930 	unsigned short		neigh_priv_len;
1931 	unsigned short          dev_id;
1932 	unsigned short          dev_port;
1933 	spinlock_t		addr_list_lock;
1934 	unsigned char		name_assign_type;
1935 	bool			uc_promisc;
1936 	struct netdev_hw_addr_list	uc;
1937 	struct netdev_hw_addr_list	mc;
1938 	struct netdev_hw_addr_list	dev_addrs;
1939 
1940 #ifdef CONFIG_SYSFS
1941 	struct kset		*queues_kset;
1942 #endif
1943 	unsigned int		promiscuity;
1944 	unsigned int		allmulti;
1945 
1946 
1947 	/* Protocol-specific pointers */
1948 
1949 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1950 	struct vlan_info __rcu	*vlan_info;
1951 #endif
1952 #if IS_ENABLED(CONFIG_NET_DSA)
1953 	struct dsa_port		*dsa_ptr;
1954 #endif
1955 #if IS_ENABLED(CONFIG_TIPC)
1956 	struct tipc_bearer __rcu *tipc_ptr;
1957 #endif
1958 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1959 	void 			*atalk_ptr;
1960 #endif
1961 	struct in_device __rcu	*ip_ptr;
1962 	struct inet6_dev __rcu	*ip6_ptr;
1963 #if IS_ENABLED(CONFIG_AX25)
1964 	void			*ax25_ptr;
1965 #endif
1966 	struct wireless_dev	*ieee80211_ptr;
1967 	struct wpan_dev		*ieee802154_ptr;
1968 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1969 	struct mpls_dev __rcu	*mpls_ptr;
1970 #endif
1971 
1972 /*
1973  * Cache lines mostly used on receive path (including eth_type_trans())
1974  */
1975 	/* Interface address info used in eth_type_trans() */
1976 	unsigned char		*dev_addr;
1977 
1978 	struct netdev_rx_queue	*_rx;
1979 	unsigned int		num_rx_queues;
1980 	unsigned int		real_num_rx_queues;
1981 
1982 	struct bpf_prog __rcu	*xdp_prog;
1983 	unsigned long		gro_flush_timeout;
1984 	rx_handler_func_t __rcu	*rx_handler;
1985 	void __rcu		*rx_handler_data;
1986 
1987 #ifdef CONFIG_NET_CLS_ACT
1988 	struct mini_Qdisc __rcu	*miniq_ingress;
1989 #endif
1990 	struct netdev_queue __rcu *ingress_queue;
1991 #ifdef CONFIG_NETFILTER_INGRESS
1992 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1993 #endif
1994 
1995 	unsigned char		broadcast[MAX_ADDR_LEN];
1996 #ifdef CONFIG_RFS_ACCEL
1997 	struct cpu_rmap		*rx_cpu_rmap;
1998 #endif
1999 	struct hlist_node	index_hlist;
2000 
2001 /*
2002  * Cache lines mostly used on transmit path
2003  */
2004 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2005 	unsigned int		num_tx_queues;
2006 	unsigned int		real_num_tx_queues;
2007 	struct Qdisc __rcu	*qdisc;
2008 #ifdef CONFIG_NET_SCHED
2009 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2010 #endif
2011 	unsigned int		tx_queue_len;
2012 	spinlock_t		tx_global_lock;
2013 	int			watchdog_timeo;
2014 
2015 #ifdef CONFIG_XPS
2016 	struct xps_dev_maps __rcu *xps_cpus_map;
2017 	struct xps_dev_maps __rcu *xps_rxqs_map;
2018 #endif
2019 #ifdef CONFIG_NET_CLS_ACT
2020 	struct mini_Qdisc __rcu	*miniq_egress;
2021 #endif
2022 
2023 	/* These may be needed for future network-power-down code. */
2024 	struct timer_list	watchdog_timer;
2025 
2026 	int __percpu		*pcpu_refcnt;
2027 	struct list_head	todo_list;
2028 
2029 	struct list_head	link_watch_list;
2030 
2031 	enum { NETREG_UNINITIALIZED=0,
2032 	       NETREG_REGISTERED,	/* completed register_netdevice */
2033 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2034 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2035 	       NETREG_RELEASED,		/* called free_netdev */
2036 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2037 	} reg_state:8;
2038 
2039 	bool dismantle;
2040 
2041 	enum {
2042 		RTNL_LINK_INITIALIZED,
2043 		RTNL_LINK_INITIALIZING,
2044 	} rtnl_link_state:16;
2045 
2046 	bool needs_free_netdev;
2047 	void (*priv_destructor)(struct net_device *dev);
2048 
2049 #ifdef CONFIG_NETPOLL
2050 	struct netpoll_info __rcu	*npinfo;
2051 #endif
2052 
2053 	possible_net_t			nd_net;
2054 
2055 	/* mid-layer private */
2056 	union {
2057 		void					*ml_priv;
2058 		struct pcpu_lstats __percpu		*lstats;
2059 		struct pcpu_sw_netstats __percpu	*tstats;
2060 		struct pcpu_dstats __percpu		*dstats;
2061 	};
2062 
2063 #if IS_ENABLED(CONFIG_GARP)
2064 	struct garp_port __rcu	*garp_port;
2065 #endif
2066 #if IS_ENABLED(CONFIG_MRP)
2067 	struct mrp_port __rcu	*mrp_port;
2068 #endif
2069 
2070 	struct device		dev;
2071 	const struct attribute_group *sysfs_groups[4];
2072 	const struct attribute_group *sysfs_rx_queue_group;
2073 
2074 	const struct rtnl_link_ops *rtnl_link_ops;
2075 
2076 	/* for setting kernel sock attribute on TCP connection setup */
2077 #define GSO_MAX_SIZE		65536
2078 	unsigned int		gso_max_size;
2079 #define GSO_MAX_SEGS		65535
2080 	u16			gso_max_segs;
2081 
2082 #ifdef CONFIG_DCB
2083 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2084 #endif
2085 	s16			num_tc;
2086 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2087 	u8			prio_tc_map[TC_BITMASK + 1];
2088 
2089 #if IS_ENABLED(CONFIG_FCOE)
2090 	unsigned int		fcoe_ddp_xid;
2091 #endif
2092 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2093 	struct netprio_map __rcu *priomap;
2094 #endif
2095 	struct phy_device	*phydev;
2096 	struct sfp_bus		*sfp_bus;
2097 	struct lock_class_key	qdisc_tx_busylock_key;
2098 	struct lock_class_key	qdisc_running_key;
2099 	struct lock_class_key	qdisc_xmit_lock_key;
2100 	struct lock_class_key	addr_list_lock_key;
2101 	bool			proto_down;
2102 	unsigned		wol_enabled:1;
2103 
2104 	ANDROID_KABI_RESERVE(1);
2105 	ANDROID_KABI_RESERVE(2);
2106 	ANDROID_KABI_RESERVE(3);
2107 	ANDROID_KABI_RESERVE(4);
2108 	ANDROID_KABI_RESERVE(5);
2109 	ANDROID_KABI_RESERVE(6);
2110 	ANDROID_KABI_RESERVE(7);
2111 	ANDROID_KABI_RESERVE(8);
2112 
2113 };
2114 #define to_net_dev(d) container_of(d, struct net_device, dev)
2115 
netif_elide_gro(const struct net_device * dev)2116 static inline bool netif_elide_gro(const struct net_device *dev)
2117 {
2118 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2119 		return true;
2120 	return false;
2121 }
2122 
2123 #define	NETDEV_ALIGN		32
2124 
2125 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2126 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2127 {
2128 	return dev->prio_tc_map[prio & TC_BITMASK];
2129 }
2130 
2131 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2132 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2133 {
2134 	if (tc >= dev->num_tc)
2135 		return -EINVAL;
2136 
2137 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2138 	return 0;
2139 }
2140 
2141 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2142 void netdev_reset_tc(struct net_device *dev);
2143 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2144 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2145 
2146 static inline
netdev_get_num_tc(struct net_device * dev)2147 int netdev_get_num_tc(struct net_device *dev)
2148 {
2149 	return dev->num_tc;
2150 }
2151 
2152 void netdev_unbind_sb_channel(struct net_device *dev,
2153 			      struct net_device *sb_dev);
2154 int netdev_bind_sb_channel_queue(struct net_device *dev,
2155 				 struct net_device *sb_dev,
2156 				 u8 tc, u16 count, u16 offset);
2157 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2158 static inline int netdev_get_sb_channel(struct net_device *dev)
2159 {
2160 	return max_t(int, -dev->num_tc, 0);
2161 }
2162 
2163 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2164 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2165 					 unsigned int index)
2166 {
2167 	return &dev->_tx[index];
2168 }
2169 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2170 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2171 						    const struct sk_buff *skb)
2172 {
2173 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2174 }
2175 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2176 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2177 					    void (*f)(struct net_device *,
2178 						      struct netdev_queue *,
2179 						      void *),
2180 					    void *arg)
2181 {
2182 	unsigned int i;
2183 
2184 	for (i = 0; i < dev->num_tx_queues; i++)
2185 		f(dev, &dev->_tx[i], arg);
2186 }
2187 
2188 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2189 		     struct net_device *sb_dev);
2190 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2191 					 struct sk_buff *skb,
2192 					 struct net_device *sb_dev);
2193 
2194 /* returns the headroom that the master device needs to take in account
2195  * when forwarding to this dev
2196  */
netdev_get_fwd_headroom(struct net_device * dev)2197 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2198 {
2199 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2200 }
2201 
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2202 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2203 {
2204 	if (dev->netdev_ops->ndo_set_rx_headroom)
2205 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2206 }
2207 
2208 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2209 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2210 {
2211 	netdev_set_rx_headroom(dev, -1);
2212 }
2213 
2214 /*
2215  * Net namespace inlines
2216  */
2217 static inline
dev_net(const struct net_device * dev)2218 struct net *dev_net(const struct net_device *dev)
2219 {
2220 	return read_pnet(&dev->nd_net);
2221 }
2222 
2223 static inline
dev_net_set(struct net_device * dev,struct net * net)2224 void dev_net_set(struct net_device *dev, struct net *net)
2225 {
2226 	write_pnet(&dev->nd_net, net);
2227 }
2228 
2229 /**
2230  *	netdev_priv - access network device private data
2231  *	@dev: network device
2232  *
2233  * Get network device private data
2234  */
netdev_priv(const struct net_device * dev)2235 static inline void *netdev_priv(const struct net_device *dev)
2236 {
2237 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2238 }
2239 
2240 /* Set the sysfs physical device reference for the network logical device
2241  * if set prior to registration will cause a symlink during initialization.
2242  */
2243 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2244 
2245 /* Set the sysfs device type for the network logical device to allow
2246  * fine-grained identification of different network device types. For
2247  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2248  */
2249 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2250 
2251 /* Default NAPI poll() weight
2252  * Device drivers are strongly advised to not use bigger value
2253  */
2254 #define NAPI_POLL_WEIGHT 64
2255 
2256 /**
2257  *	netif_napi_add - initialize a NAPI context
2258  *	@dev:  network device
2259  *	@napi: NAPI context
2260  *	@poll: polling function
2261  *	@weight: default weight
2262  *
2263  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2264  * *any* of the other NAPI-related functions.
2265  */
2266 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2267 		    int (*poll)(struct napi_struct *, int), int weight);
2268 
2269 /**
2270  *	netif_tx_napi_add - initialize a NAPI context
2271  *	@dev:  network device
2272  *	@napi: NAPI context
2273  *	@poll: polling function
2274  *	@weight: default weight
2275  *
2276  * This variant of netif_napi_add() should be used from drivers using NAPI
2277  * to exclusively poll a TX queue.
2278  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2279  */
netif_tx_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2280 static inline void netif_tx_napi_add(struct net_device *dev,
2281 				     struct napi_struct *napi,
2282 				     int (*poll)(struct napi_struct *, int),
2283 				     int weight)
2284 {
2285 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2286 	netif_napi_add(dev, napi, poll, weight);
2287 }
2288 
2289 /**
2290  *  netif_napi_del - remove a NAPI context
2291  *  @napi: NAPI context
2292  *
2293  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2294  */
2295 void netif_napi_del(struct napi_struct *napi);
2296 
2297 struct napi_gro_cb {
2298 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2299 	void	*frag0;
2300 
2301 	/* Length of frag0. */
2302 	unsigned int frag0_len;
2303 
2304 	/* This indicates where we are processing relative to skb->data. */
2305 	int	data_offset;
2306 
2307 	/* This is non-zero if the packet cannot be merged with the new skb. */
2308 	u16	flush;
2309 
2310 	/* Save the IP ID here and check when we get to the transport layer */
2311 	u16	flush_id;
2312 
2313 	/* Number of segments aggregated. */
2314 	u16	count;
2315 
2316 	/* Start offset for remote checksum offload */
2317 	u16	gro_remcsum_start;
2318 
2319 	/* jiffies when first packet was created/queued */
2320 	unsigned long age;
2321 
2322 	/* Used in ipv6_gro_receive() and foo-over-udp */
2323 	u16	proto;
2324 
2325 	/* This is non-zero if the packet may be of the same flow. */
2326 	u8	same_flow:1;
2327 
2328 	/* Used in tunnel GRO receive */
2329 	u8	encap_mark:1;
2330 
2331 	/* GRO checksum is valid */
2332 	u8	csum_valid:1;
2333 
2334 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2335 	u8	csum_cnt:3;
2336 
2337 	/* Free the skb? */
2338 	u8	free:2;
2339 #define NAPI_GRO_FREE		  1
2340 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2341 
2342 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2343 	u8	is_ipv6:1;
2344 
2345 	/* Used in GRE, set in fou/gue_gro_receive */
2346 	u8	is_fou:1;
2347 
2348 	/* Used to determine if flush_id can be ignored */
2349 	u8	is_atomic:1;
2350 
2351 	/* Number of gro_receive callbacks this packet already went through */
2352 	u8 recursion_counter:4;
2353 
2354 	/* GRO is done by frag_list pointer chaining. */
2355 	u8	is_flist:1;
2356 
2357 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2358 	__wsum	csum;
2359 
2360 	/* used in skb_gro_receive() slow path */
2361 	struct sk_buff *last;
2362 };
2363 
2364 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2365 
2366 #define GRO_RECURSION_LIMIT 15
gro_recursion_inc_test(struct sk_buff * skb)2367 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2368 {
2369 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2370 }
2371 
2372 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
call_gro_receive(gro_receive_t cb,struct list_head * head,struct sk_buff * skb)2373 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2374 					       struct list_head *head,
2375 					       struct sk_buff *skb)
2376 {
2377 	if (unlikely(gro_recursion_inc_test(skb))) {
2378 		NAPI_GRO_CB(skb)->flush |= 1;
2379 		return NULL;
2380 	}
2381 
2382 	return cb(head, skb);
2383 }
2384 
2385 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2386 					    struct sk_buff *);
call_gro_receive_sk(gro_receive_sk_t cb,struct sock * sk,struct list_head * head,struct sk_buff * skb)2387 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2388 						  struct sock *sk,
2389 						  struct list_head *head,
2390 						  struct sk_buff *skb)
2391 {
2392 	if (unlikely(gro_recursion_inc_test(skb))) {
2393 		NAPI_GRO_CB(skb)->flush |= 1;
2394 		return NULL;
2395 	}
2396 
2397 	return cb(sk, head, skb);
2398 }
2399 
2400 struct packet_type {
2401 	__be16			type;	/* This is really htons(ether_type). */
2402 	bool			ignore_outgoing;
2403 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2404 	int			(*func) (struct sk_buff *,
2405 					 struct net_device *,
2406 					 struct packet_type *,
2407 					 struct net_device *);
2408 	void			(*list_func) (struct list_head *,
2409 					      struct packet_type *,
2410 					      struct net_device *);
2411 	bool			(*id_match)(struct packet_type *ptype,
2412 					    struct sock *sk);
2413 	void			*af_packet_priv;
2414 	struct list_head	list;
2415 
2416 	ANDROID_KABI_RESERVE(1);
2417 	ANDROID_KABI_RESERVE(2);
2418 	ANDROID_KABI_RESERVE(3);
2419 	ANDROID_KABI_RESERVE(4);
2420 };
2421 
2422 struct offload_callbacks {
2423 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2424 						netdev_features_t features);
2425 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2426 						struct sk_buff *skb);
2427 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2428 };
2429 
2430 struct packet_offload {
2431 	__be16			 type;	/* This is really htons(ether_type). */
2432 	u16			 priority;
2433 	struct offload_callbacks callbacks;
2434 	struct list_head	 list;
2435 };
2436 
2437 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2438 struct pcpu_sw_netstats {
2439 	u64     rx_packets;
2440 	u64     rx_bytes;
2441 	u64     tx_packets;
2442 	u64     tx_bytes;
2443 	struct u64_stats_sync   syncp;
2444 } __aligned(4 * sizeof(u64));
2445 
2446 struct pcpu_lstats {
2447 	u64 packets;
2448 	u64 bytes;
2449 	struct u64_stats_sync syncp;
2450 } __aligned(2 * sizeof(u64));
2451 
2452 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2453 ({									\
2454 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2455 	if (pcpu_stats)	{						\
2456 		int __cpu;						\
2457 		for_each_possible_cpu(__cpu) {				\
2458 			typeof(type) *stat;				\
2459 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2460 			u64_stats_init(&stat->syncp);			\
2461 		}							\
2462 	}								\
2463 	pcpu_stats;							\
2464 })
2465 
2466 #define netdev_alloc_pcpu_stats(type)					\
2467 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2468 
2469 enum netdev_lag_tx_type {
2470 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2471 	NETDEV_LAG_TX_TYPE_RANDOM,
2472 	NETDEV_LAG_TX_TYPE_BROADCAST,
2473 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2474 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2475 	NETDEV_LAG_TX_TYPE_HASH,
2476 };
2477 
2478 enum netdev_lag_hash {
2479 	NETDEV_LAG_HASH_NONE,
2480 	NETDEV_LAG_HASH_L2,
2481 	NETDEV_LAG_HASH_L34,
2482 	NETDEV_LAG_HASH_L23,
2483 	NETDEV_LAG_HASH_E23,
2484 	NETDEV_LAG_HASH_E34,
2485 	NETDEV_LAG_HASH_UNKNOWN,
2486 };
2487 
2488 struct netdev_lag_upper_info {
2489 	enum netdev_lag_tx_type tx_type;
2490 	enum netdev_lag_hash hash_type;
2491 };
2492 
2493 struct netdev_lag_lower_state_info {
2494 	u8 link_up : 1,
2495 	   tx_enabled : 1;
2496 };
2497 
2498 #include <linux/notifier.h>
2499 
2500 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2501  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2502  * adding new types.
2503  */
2504 enum netdev_cmd {
2505 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2506 	NETDEV_DOWN,
2507 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2508 				   detected a hardware crash and restarted
2509 				   - we can use this eg to kick tcp sessions
2510 				   once done */
2511 	NETDEV_CHANGE,		/* Notify device state change */
2512 	NETDEV_REGISTER,
2513 	NETDEV_UNREGISTER,
2514 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2515 	NETDEV_CHANGEADDR,	/* notify after the address change */
2516 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2517 	NETDEV_GOING_DOWN,
2518 	NETDEV_CHANGENAME,
2519 	NETDEV_FEAT_CHANGE,
2520 	NETDEV_BONDING_FAILOVER,
2521 	NETDEV_PRE_UP,
2522 	NETDEV_PRE_TYPE_CHANGE,
2523 	NETDEV_POST_TYPE_CHANGE,
2524 	NETDEV_POST_INIT,
2525 	NETDEV_RELEASE,
2526 	NETDEV_NOTIFY_PEERS,
2527 	NETDEV_JOIN,
2528 	NETDEV_CHANGEUPPER,
2529 	NETDEV_RESEND_IGMP,
2530 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2531 	NETDEV_CHANGEINFODATA,
2532 	NETDEV_BONDING_INFO,
2533 	NETDEV_PRECHANGEUPPER,
2534 	NETDEV_CHANGELOWERSTATE,
2535 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2536 	NETDEV_UDP_TUNNEL_DROP_INFO,
2537 	NETDEV_CHANGE_TX_QUEUE_LEN,
2538 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2539 	NETDEV_CVLAN_FILTER_DROP_INFO,
2540 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2541 	NETDEV_SVLAN_FILTER_DROP_INFO,
2542 };
2543 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2544 
2545 int register_netdevice_notifier(struct notifier_block *nb);
2546 int unregister_netdevice_notifier(struct notifier_block *nb);
2547 
2548 struct netdev_notifier_info {
2549 	struct net_device	*dev;
2550 	struct netlink_ext_ack	*extack;
2551 };
2552 
2553 struct netdev_notifier_info_ext {
2554 	struct netdev_notifier_info info; /* must be first */
2555 	union {
2556 		u32 mtu;
2557 	} ext;
2558 };
2559 
2560 struct netdev_notifier_change_info {
2561 	struct netdev_notifier_info info; /* must be first */
2562 	unsigned int flags_changed;
2563 };
2564 
2565 struct netdev_notifier_changeupper_info {
2566 	struct netdev_notifier_info info; /* must be first */
2567 	struct net_device *upper_dev; /* new upper dev */
2568 	bool master; /* is upper dev master */
2569 	bool linking; /* is the notification for link or unlink */
2570 	void *upper_info; /* upper dev info */
2571 };
2572 
2573 struct netdev_notifier_changelowerstate_info {
2574 	struct netdev_notifier_info info; /* must be first */
2575 	void *lower_state_info; /* is lower dev state */
2576 };
2577 
2578 struct netdev_notifier_pre_changeaddr_info {
2579 	struct netdev_notifier_info info; /* must be first */
2580 	const unsigned char *dev_addr;
2581 };
2582 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2583 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2584 					     struct net_device *dev)
2585 {
2586 	info->dev = dev;
2587 	info->extack = NULL;
2588 }
2589 
2590 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2591 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2592 {
2593 	return info->dev;
2594 }
2595 
2596 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2597 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2598 {
2599 	return info->extack;
2600 }
2601 
2602 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2603 
2604 
2605 extern rwlock_t				dev_base_lock;		/* Device list lock */
2606 
2607 #define for_each_netdev(net, d)		\
2608 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2609 #define for_each_netdev_reverse(net, d)	\
2610 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2611 #define for_each_netdev_rcu(net, d)		\
2612 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2613 #define for_each_netdev_safe(net, d, n)	\
2614 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2615 #define for_each_netdev_continue(net, d)		\
2616 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2617 #define for_each_netdev_continue_rcu(net, d)		\
2618 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2619 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2620 		for_each_netdev_rcu(&init_net, slave)	\
2621 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2622 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2623 
next_net_device(struct net_device * dev)2624 static inline struct net_device *next_net_device(struct net_device *dev)
2625 {
2626 	struct list_head *lh;
2627 	struct net *net;
2628 
2629 	net = dev_net(dev);
2630 	lh = dev->dev_list.next;
2631 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2632 }
2633 
next_net_device_rcu(struct net_device * dev)2634 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2635 {
2636 	struct list_head *lh;
2637 	struct net *net;
2638 
2639 	net = dev_net(dev);
2640 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2641 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2642 }
2643 
first_net_device(struct net * net)2644 static inline struct net_device *first_net_device(struct net *net)
2645 {
2646 	return list_empty(&net->dev_base_head) ? NULL :
2647 		net_device_entry(net->dev_base_head.next);
2648 }
2649 
first_net_device_rcu(struct net * net)2650 static inline struct net_device *first_net_device_rcu(struct net *net)
2651 {
2652 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2653 
2654 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2655 }
2656 
2657 int netdev_boot_setup_check(struct net_device *dev);
2658 unsigned long netdev_boot_base(const char *prefix, int unit);
2659 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2660 				       const char *hwaddr);
2661 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2662 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2663 void dev_add_pack(struct packet_type *pt);
2664 void dev_remove_pack(struct packet_type *pt);
2665 void __dev_remove_pack(struct packet_type *pt);
2666 void dev_add_offload(struct packet_offload *po);
2667 void dev_remove_offload(struct packet_offload *po);
2668 
2669 int dev_get_iflink(const struct net_device *dev);
2670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2671 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2672 				      unsigned short mask);
2673 struct net_device *dev_get_by_name(struct net *net, const char *name);
2674 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2675 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2676 int dev_alloc_name(struct net_device *dev, const char *name);
2677 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2678 void dev_close(struct net_device *dev);
2679 void dev_close_many(struct list_head *head, bool unlink);
2680 void dev_disable_lro(struct net_device *dev);
2681 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2682 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2683 		     struct net_device *sb_dev);
2684 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2685 		       struct net_device *sb_dev);
2686 int dev_queue_xmit(struct sk_buff *skb);
2687 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2688 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2689 int register_netdevice(struct net_device *dev);
2690 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2691 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2692 static inline void unregister_netdevice(struct net_device *dev)
2693 {
2694 	unregister_netdevice_queue(dev, NULL);
2695 }
2696 
2697 int netdev_refcnt_read(const struct net_device *dev);
2698 void free_netdev(struct net_device *dev);
2699 void netdev_freemem(struct net_device *dev);
2700 void synchronize_net(void);
2701 int init_dummy_netdev(struct net_device *dev);
2702 
2703 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2704 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2705 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2706 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2707 int netdev_get_name(struct net *net, char *name, int ifindex);
2708 int dev_restart(struct net_device *dev);
2709 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2710 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2711 
skb_gro_offset(const struct sk_buff * skb)2712 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2713 {
2714 	return NAPI_GRO_CB(skb)->data_offset;
2715 }
2716 
skb_gro_len(const struct sk_buff * skb)2717 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2718 {
2719 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2720 }
2721 
skb_gro_pull(struct sk_buff * skb,unsigned int len)2722 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2723 {
2724 	NAPI_GRO_CB(skb)->data_offset += len;
2725 }
2726 
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2727 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2728 					unsigned int offset)
2729 {
2730 	return NAPI_GRO_CB(skb)->frag0 + offset;
2731 }
2732 
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2733 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2734 {
2735 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2736 }
2737 
skb_gro_frag0_invalidate(struct sk_buff * skb)2738 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2739 {
2740 	NAPI_GRO_CB(skb)->frag0 = NULL;
2741 	NAPI_GRO_CB(skb)->frag0_len = 0;
2742 }
2743 
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2744 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2745 					unsigned int offset)
2746 {
2747 	if (!pskb_may_pull(skb, hlen))
2748 		return NULL;
2749 
2750 	skb_gro_frag0_invalidate(skb);
2751 	return skb->data + offset;
2752 }
2753 
skb_gro_network_header(struct sk_buff * skb)2754 static inline void *skb_gro_network_header(struct sk_buff *skb)
2755 {
2756 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2757 	       skb_network_offset(skb);
2758 }
2759 
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2760 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2761 					const void *start, unsigned int len)
2762 {
2763 	if (NAPI_GRO_CB(skb)->csum_valid)
2764 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2765 						  csum_partial(start, len, 0));
2766 }
2767 
2768 /* GRO checksum functions. These are logical equivalents of the normal
2769  * checksum functions (in skbuff.h) except that they operate on the GRO
2770  * offsets and fields in sk_buff.
2771  */
2772 
2773 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2774 
skb_at_gro_remcsum_start(struct sk_buff * skb)2775 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2776 {
2777 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2778 }
2779 
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2780 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2781 						      bool zero_okay,
2782 						      __sum16 check)
2783 {
2784 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2785 		skb_checksum_start_offset(skb) <
2786 		 skb_gro_offset(skb)) &&
2787 		!skb_at_gro_remcsum_start(skb) &&
2788 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2789 		(!zero_okay || check));
2790 }
2791 
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)2792 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2793 							   __wsum psum)
2794 {
2795 	if (NAPI_GRO_CB(skb)->csum_valid &&
2796 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2797 		return 0;
2798 
2799 	NAPI_GRO_CB(skb)->csum = psum;
2800 
2801 	return __skb_gro_checksum_complete(skb);
2802 }
2803 
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)2804 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2805 {
2806 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2807 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2808 		NAPI_GRO_CB(skb)->csum_cnt--;
2809 	} else {
2810 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2811 		 * verified a new top level checksum or an encapsulated one
2812 		 * during GRO. This saves work if we fallback to normal path.
2813 		 */
2814 		__skb_incr_checksum_unnecessary(skb);
2815 	}
2816 }
2817 
2818 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2819 				    compute_pseudo)			\
2820 ({									\
2821 	__sum16 __ret = 0;						\
2822 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2823 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2824 				compute_pseudo(skb, proto));		\
2825 	if (!__ret)							\
2826 		skb_gro_incr_csum_unnecessary(skb);			\
2827 	__ret;								\
2828 })
2829 
2830 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2831 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2832 
2833 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2834 					     compute_pseudo)		\
2835 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2836 
2837 #define skb_gro_checksum_simple_validate(skb)				\
2838 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2839 
__skb_gro_checksum_convert_check(struct sk_buff * skb)2840 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2841 {
2842 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2843 		!NAPI_GRO_CB(skb)->csum_valid);
2844 }
2845 
__skb_gro_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)2846 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2847 					      __sum16 check, __wsum pseudo)
2848 {
2849 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2850 	NAPI_GRO_CB(skb)->csum_valid = 1;
2851 }
2852 
2853 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2854 do {									\
2855 	if (__skb_gro_checksum_convert_check(skb))			\
2856 		__skb_gro_checksum_convert(skb, check,			\
2857 					   compute_pseudo(skb, proto));	\
2858 } while (0)
2859 
2860 struct gro_remcsum {
2861 	int offset;
2862 	__wsum delta;
2863 };
2864 
skb_gro_remcsum_init(struct gro_remcsum * grc)2865 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2866 {
2867 	grc->offset = 0;
2868 	grc->delta = 0;
2869 }
2870 
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,unsigned int off,size_t hdrlen,int start,int offset,struct gro_remcsum * grc,bool nopartial)2871 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2872 					    unsigned int off, size_t hdrlen,
2873 					    int start, int offset,
2874 					    struct gro_remcsum *grc,
2875 					    bool nopartial)
2876 {
2877 	__wsum delta;
2878 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2879 
2880 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2881 
2882 	if (!nopartial) {
2883 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2884 		return ptr;
2885 	}
2886 
2887 	ptr = skb_gro_header_fast(skb, off);
2888 	if (skb_gro_header_hard(skb, off + plen)) {
2889 		ptr = skb_gro_header_slow(skb, off + plen, off);
2890 		if (!ptr)
2891 			return NULL;
2892 	}
2893 
2894 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2895 			       start, offset);
2896 
2897 	/* Adjust skb->csum since we changed the packet */
2898 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2899 
2900 	grc->offset = off + hdrlen + offset;
2901 	grc->delta = delta;
2902 
2903 	return ptr;
2904 }
2905 
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)2906 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2907 					   struct gro_remcsum *grc)
2908 {
2909 	void *ptr;
2910 	size_t plen = grc->offset + sizeof(u16);
2911 
2912 	if (!grc->delta)
2913 		return;
2914 
2915 	ptr = skb_gro_header_fast(skb, grc->offset);
2916 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2917 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2918 		if (!ptr)
2919 			return;
2920 	}
2921 
2922 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2923 }
2924 
2925 #ifdef CONFIG_XFRM_OFFLOAD
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)2926 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2927 {
2928 	if (PTR_ERR(pp) != -EINPROGRESS)
2929 		NAPI_GRO_CB(skb)->flush |= flush;
2930 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)2931 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2932 					       struct sk_buff *pp,
2933 					       int flush,
2934 					       struct gro_remcsum *grc)
2935 {
2936 	if (PTR_ERR(pp) != -EINPROGRESS) {
2937 		NAPI_GRO_CB(skb)->flush |= flush;
2938 		skb_gro_remcsum_cleanup(skb, grc);
2939 		skb->remcsum_offload = 0;
2940 	}
2941 }
2942 #else
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)2943 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2944 {
2945 	NAPI_GRO_CB(skb)->flush |= flush;
2946 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)2947 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2948 					       struct sk_buff *pp,
2949 					       int flush,
2950 					       struct gro_remcsum *grc)
2951 {
2952 	NAPI_GRO_CB(skb)->flush |= flush;
2953 	skb_gro_remcsum_cleanup(skb, grc);
2954 	skb->remcsum_offload = 0;
2955 }
2956 #endif
2957 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)2958 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2959 				  unsigned short type,
2960 				  const void *daddr, const void *saddr,
2961 				  unsigned int len)
2962 {
2963 	if (!dev->header_ops || !dev->header_ops->create)
2964 		return 0;
2965 
2966 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2967 }
2968 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)2969 static inline int dev_parse_header(const struct sk_buff *skb,
2970 				   unsigned char *haddr)
2971 {
2972 	const struct net_device *dev = skb->dev;
2973 
2974 	if (!dev->header_ops || !dev->header_ops->parse)
2975 		return 0;
2976 	return dev->header_ops->parse(skb, haddr);
2977 }
2978 
dev_parse_header_protocol(const struct sk_buff * skb)2979 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2980 {
2981 	const struct net_device *dev = skb->dev;
2982 
2983 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
2984 		return 0;
2985 	return dev->header_ops->parse_protocol(skb);
2986 }
2987 
2988 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)2989 static inline bool dev_validate_header(const struct net_device *dev,
2990 				       char *ll_header, int len)
2991 {
2992 	if (likely(len >= dev->hard_header_len))
2993 		return true;
2994 	if (len < dev->min_header_len)
2995 		return false;
2996 
2997 	if (capable(CAP_SYS_RAWIO)) {
2998 		memset(ll_header + len, 0, dev->hard_header_len - len);
2999 		return true;
3000 	}
3001 
3002 	if (dev->header_ops && dev->header_ops->validate)
3003 		return dev->header_ops->validate(ll_header, len);
3004 
3005 	return false;
3006 }
3007 
3008 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3009 			   int len, int size);
3010 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
unregister_gifconf(unsigned int family)3011 static inline int unregister_gifconf(unsigned int family)
3012 {
3013 	return register_gifconf(family, NULL);
3014 }
3015 
3016 #ifdef CONFIG_NET_FLOW_LIMIT
3017 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3018 struct sd_flow_limit {
3019 	u64			count;
3020 	unsigned int		num_buckets;
3021 	unsigned int		history_head;
3022 	u16			history[FLOW_LIMIT_HISTORY];
3023 	u8			buckets[];
3024 };
3025 
3026 extern int netdev_flow_limit_table_len;
3027 #endif /* CONFIG_NET_FLOW_LIMIT */
3028 
3029 /*
3030  * Incoming packets are placed on per-CPU queues
3031  */
3032 struct softnet_data {
3033 	struct list_head	poll_list;
3034 	struct sk_buff_head	process_queue;
3035 
3036 	/* stats */
3037 	unsigned int		processed;
3038 	unsigned int		time_squeeze;
3039 	unsigned int		received_rps;
3040 #ifdef CONFIG_RPS
3041 	struct softnet_data	*rps_ipi_list;
3042 #endif
3043 #ifdef CONFIG_NET_FLOW_LIMIT
3044 	struct sd_flow_limit __rcu *flow_limit;
3045 #endif
3046 	struct Qdisc		*output_queue;
3047 	struct Qdisc		**output_queue_tailp;
3048 	struct sk_buff		*completion_queue;
3049 #ifdef CONFIG_XFRM_OFFLOAD
3050 	struct sk_buff_head	xfrm_backlog;
3051 #endif
3052 	/* written and read only by owning cpu: */
3053 	struct {
3054 		u16 recursion;
3055 		u8  more;
3056 	} xmit;
3057 #ifdef CONFIG_RPS
3058 	/* input_queue_head should be written by cpu owning this struct,
3059 	 * and only read by other cpus. Worth using a cache line.
3060 	 */
3061 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3062 
3063 	/* Elements below can be accessed between CPUs for RPS/RFS */
3064 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3065 	struct softnet_data	*rps_ipi_next;
3066 	unsigned int		cpu;
3067 	unsigned int		input_queue_tail;
3068 #endif
3069 	unsigned int		dropped;
3070 	struct sk_buff_head	input_pkt_queue;
3071 	struct napi_struct	backlog;
3072 
3073 };
3074 
input_queue_head_incr(struct softnet_data * sd)3075 static inline void input_queue_head_incr(struct softnet_data *sd)
3076 {
3077 #ifdef CONFIG_RPS
3078 	sd->input_queue_head++;
3079 #endif
3080 }
3081 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3082 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3083 					      unsigned int *qtail)
3084 {
3085 #ifdef CONFIG_RPS
3086 	*qtail = ++sd->input_queue_tail;
3087 #endif
3088 }
3089 
3090 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3091 
dev_recursion_level(void)3092 static inline int dev_recursion_level(void)
3093 {
3094 	return this_cpu_read(softnet_data.xmit.recursion);
3095 }
3096 
3097 #define XMIT_RECURSION_LIMIT	8
dev_xmit_recursion(void)3098 static inline bool dev_xmit_recursion(void)
3099 {
3100 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3101 			XMIT_RECURSION_LIMIT);
3102 }
3103 
dev_xmit_recursion_inc(void)3104 static inline void dev_xmit_recursion_inc(void)
3105 {
3106 	__this_cpu_inc(softnet_data.xmit.recursion);
3107 }
3108 
dev_xmit_recursion_dec(void)3109 static inline void dev_xmit_recursion_dec(void)
3110 {
3111 	__this_cpu_dec(softnet_data.xmit.recursion);
3112 }
3113 
3114 void __netif_schedule(struct Qdisc *q);
3115 void netif_schedule_queue(struct netdev_queue *txq);
3116 
netif_tx_schedule_all(struct net_device * dev)3117 static inline void netif_tx_schedule_all(struct net_device *dev)
3118 {
3119 	unsigned int i;
3120 
3121 	for (i = 0; i < dev->num_tx_queues; i++)
3122 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3123 }
3124 
netif_tx_start_queue(struct netdev_queue * dev_queue)3125 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3126 {
3127 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3128 }
3129 
3130 /**
3131  *	netif_start_queue - allow transmit
3132  *	@dev: network device
3133  *
3134  *	Allow upper layers to call the device hard_start_xmit routine.
3135  */
netif_start_queue(struct net_device * dev)3136 static inline void netif_start_queue(struct net_device *dev)
3137 {
3138 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3139 }
3140 
netif_tx_start_all_queues(struct net_device * dev)3141 static inline void netif_tx_start_all_queues(struct net_device *dev)
3142 {
3143 	unsigned int i;
3144 
3145 	for (i = 0; i < dev->num_tx_queues; i++) {
3146 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3147 		netif_tx_start_queue(txq);
3148 	}
3149 }
3150 
3151 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3152 
3153 /**
3154  *	netif_wake_queue - restart transmit
3155  *	@dev: network device
3156  *
3157  *	Allow upper layers to call the device hard_start_xmit routine.
3158  *	Used for flow control when transmit resources are available.
3159  */
netif_wake_queue(struct net_device * dev)3160 static inline void netif_wake_queue(struct net_device *dev)
3161 {
3162 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3163 }
3164 
netif_tx_wake_all_queues(struct net_device * dev)3165 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3166 {
3167 	unsigned int i;
3168 
3169 	for (i = 0; i < dev->num_tx_queues; i++) {
3170 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3171 		netif_tx_wake_queue(txq);
3172 	}
3173 }
3174 
netif_tx_stop_queue(struct netdev_queue * dev_queue)3175 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3176 {
3177 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3178 }
3179 
3180 /**
3181  *	netif_stop_queue - stop transmitted packets
3182  *	@dev: network device
3183  *
3184  *	Stop upper layers calling the device hard_start_xmit routine.
3185  *	Used for flow control when transmit resources are unavailable.
3186  */
netif_stop_queue(struct net_device * dev)3187 static inline void netif_stop_queue(struct net_device *dev)
3188 {
3189 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3190 }
3191 
3192 void netif_tx_stop_all_queues(struct net_device *dev);
3193 void netdev_update_lockdep_key(struct net_device *dev);
3194 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3195 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3196 {
3197 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3198 }
3199 
3200 /**
3201  *	netif_queue_stopped - test if transmit queue is flowblocked
3202  *	@dev: network device
3203  *
3204  *	Test if transmit queue on device is currently unable to send.
3205  */
netif_queue_stopped(const struct net_device * dev)3206 static inline bool netif_queue_stopped(const struct net_device *dev)
3207 {
3208 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3209 }
3210 
netif_xmit_stopped(const struct netdev_queue * dev_queue)3211 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3212 {
3213 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3214 }
3215 
3216 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3217 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3218 {
3219 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3220 }
3221 
3222 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3223 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3224 {
3225 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3226 }
3227 
3228 /**
3229  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3230  *	@dev_queue: pointer to transmit queue
3231  *
3232  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3233  * to give appropriate hint to the CPU.
3234  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3235 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3236 {
3237 #ifdef CONFIG_BQL
3238 	prefetchw(&dev_queue->dql.num_queued);
3239 #endif
3240 }
3241 
3242 /**
3243  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3244  *	@dev_queue: pointer to transmit queue
3245  *
3246  * BQL enabled drivers might use this helper in their TX completion path,
3247  * to give appropriate hint to the CPU.
3248  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3249 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3250 {
3251 #ifdef CONFIG_BQL
3252 	prefetchw(&dev_queue->dql.limit);
3253 #endif
3254 }
3255 
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3256 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3257 					unsigned int bytes)
3258 {
3259 #ifdef CONFIG_BQL
3260 	dql_queued(&dev_queue->dql, bytes);
3261 
3262 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3263 		return;
3264 
3265 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3266 
3267 	/*
3268 	 * The XOFF flag must be set before checking the dql_avail below,
3269 	 * because in netdev_tx_completed_queue we update the dql_completed
3270 	 * before checking the XOFF flag.
3271 	 */
3272 	smp_mb();
3273 
3274 	/* check again in case another CPU has just made room avail */
3275 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3276 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3277 #endif
3278 }
3279 
3280 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3281  * that they should not test BQL status themselves.
3282  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3283  * skb of a batch.
3284  * Returns true if the doorbell must be used to kick the NIC.
3285  */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3286 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3287 					  unsigned int bytes,
3288 					  bool xmit_more)
3289 {
3290 	if (xmit_more) {
3291 #ifdef CONFIG_BQL
3292 		dql_queued(&dev_queue->dql, bytes);
3293 #endif
3294 		return netif_tx_queue_stopped(dev_queue);
3295 	}
3296 	netdev_tx_sent_queue(dev_queue, bytes);
3297 	return true;
3298 }
3299 
3300 /**
3301  * 	netdev_sent_queue - report the number of bytes queued to hardware
3302  * 	@dev: network device
3303  * 	@bytes: number of bytes queued to the hardware device queue
3304  *
3305  * 	Report the number of bytes queued for sending/completion to the network
3306  * 	device hardware queue. @bytes should be a good approximation and should
3307  * 	exactly match netdev_completed_queue() @bytes
3308  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3309 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3310 {
3311 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3312 }
3313 
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3314 static inline bool __netdev_sent_queue(struct net_device *dev,
3315 				       unsigned int bytes,
3316 				       bool xmit_more)
3317 {
3318 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3319 				      xmit_more);
3320 }
3321 
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3322 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3323 					     unsigned int pkts, unsigned int bytes)
3324 {
3325 #ifdef CONFIG_BQL
3326 	if (unlikely(!bytes))
3327 		return;
3328 
3329 	dql_completed(&dev_queue->dql, bytes);
3330 
3331 	/*
3332 	 * Without the memory barrier there is a small possiblity that
3333 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3334 	 * be stopped forever
3335 	 */
3336 	smp_mb();
3337 
3338 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3339 		return;
3340 
3341 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3342 		netif_schedule_queue(dev_queue);
3343 #endif
3344 }
3345 
3346 /**
3347  * 	netdev_completed_queue - report bytes and packets completed by device
3348  * 	@dev: network device
3349  * 	@pkts: actual number of packets sent over the medium
3350  * 	@bytes: actual number of bytes sent over the medium
3351  *
3352  * 	Report the number of bytes and packets transmitted by the network device
3353  * 	hardware queue over the physical medium, @bytes must exactly match the
3354  * 	@bytes amount passed to netdev_sent_queue()
3355  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3356 static inline void netdev_completed_queue(struct net_device *dev,
3357 					  unsigned int pkts, unsigned int bytes)
3358 {
3359 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3360 }
3361 
netdev_tx_reset_queue(struct netdev_queue * q)3362 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3363 {
3364 #ifdef CONFIG_BQL
3365 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3366 	dql_reset(&q->dql);
3367 #endif
3368 }
3369 
3370 /**
3371  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3372  * 	@dev_queue: network device
3373  *
3374  * 	Reset the bytes and packet count of a network device and clear the
3375  * 	software flow control OFF bit for this network device
3376  */
netdev_reset_queue(struct net_device * dev_queue)3377 static inline void netdev_reset_queue(struct net_device *dev_queue)
3378 {
3379 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3380 }
3381 
3382 /**
3383  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3384  * 	@dev: network device
3385  * 	@queue_index: given tx queue index
3386  *
3387  * 	Returns 0 if given tx queue index >= number of device tx queues,
3388  * 	otherwise returns the originally passed tx queue index.
3389  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3390 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3391 {
3392 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3393 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3394 				     dev->name, queue_index,
3395 				     dev->real_num_tx_queues);
3396 		return 0;
3397 	}
3398 
3399 	return queue_index;
3400 }
3401 
3402 /**
3403  *	netif_running - test if up
3404  *	@dev: network device
3405  *
3406  *	Test if the device has been brought up.
3407  */
netif_running(const struct net_device * dev)3408 static inline bool netif_running(const struct net_device *dev)
3409 {
3410 	return test_bit(__LINK_STATE_START, &dev->state);
3411 }
3412 
3413 /*
3414  * Routines to manage the subqueues on a device.  We only need start,
3415  * stop, and a check if it's stopped.  All other device management is
3416  * done at the overall netdevice level.
3417  * Also test the device if we're multiqueue.
3418  */
3419 
3420 /**
3421  *	netif_start_subqueue - allow sending packets on subqueue
3422  *	@dev: network device
3423  *	@queue_index: sub queue index
3424  *
3425  * Start individual transmit queue of a device with multiple transmit queues.
3426  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3427 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3428 {
3429 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3430 
3431 	netif_tx_start_queue(txq);
3432 }
3433 
3434 /**
3435  *	netif_stop_subqueue - stop sending packets on subqueue
3436  *	@dev: network device
3437  *	@queue_index: sub queue index
3438  *
3439  * Stop individual transmit queue of a device with multiple transmit queues.
3440  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3441 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3442 {
3443 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3444 	netif_tx_stop_queue(txq);
3445 }
3446 
3447 /**
3448  *	netif_subqueue_stopped - test status of subqueue
3449  *	@dev: network device
3450  *	@queue_index: sub queue index
3451  *
3452  * Check individual transmit queue of a device with multiple transmit queues.
3453  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3454 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3455 					    u16 queue_index)
3456 {
3457 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3458 
3459 	return netif_tx_queue_stopped(txq);
3460 }
3461 
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3462 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3463 					  struct sk_buff *skb)
3464 {
3465 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3466 }
3467 
3468 /**
3469  *	netif_wake_subqueue - allow sending packets on subqueue
3470  *	@dev: network device
3471  *	@queue_index: sub queue index
3472  *
3473  * Resume individual transmit queue of a device with multiple transmit queues.
3474  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3475 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3476 {
3477 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3478 
3479 	netif_tx_wake_queue(txq);
3480 }
3481 
3482 #ifdef CONFIG_XPS
3483 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3484 			u16 index);
3485 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3486 			  u16 index, bool is_rxqs_map);
3487 
3488 /**
3489  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3490  *	@j: CPU/Rx queue index
3491  *	@mask: bitmask of all cpus/rx queues
3492  *	@nr_bits: number of bits in the bitmask
3493  *
3494  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3495  */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3496 static inline bool netif_attr_test_mask(unsigned long j,
3497 					const unsigned long *mask,
3498 					unsigned int nr_bits)
3499 {
3500 	cpu_max_bits_warn(j, nr_bits);
3501 	return test_bit(j, mask);
3502 }
3503 
3504 /**
3505  *	netif_attr_test_online - Test for online CPU/Rx queue
3506  *	@j: CPU/Rx queue index
3507  *	@online_mask: bitmask for CPUs/Rx queues that are online
3508  *	@nr_bits: number of bits in the bitmask
3509  *
3510  * Returns true if a CPU/Rx queue is online.
3511  */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3512 static inline bool netif_attr_test_online(unsigned long j,
3513 					  const unsigned long *online_mask,
3514 					  unsigned int nr_bits)
3515 {
3516 	cpu_max_bits_warn(j, nr_bits);
3517 
3518 	if (online_mask)
3519 		return test_bit(j, online_mask);
3520 
3521 	return (j < nr_bits);
3522 }
3523 
3524 /**
3525  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3526  *	@n: CPU/Rx queue index
3527  *	@srcp: the cpumask/Rx queue mask pointer
3528  *	@nr_bits: number of bits in the bitmask
3529  *
3530  * Returns >= nr_bits if no further CPUs/Rx queues set.
3531  */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3532 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3533 					       unsigned int nr_bits)
3534 {
3535 	/* -1 is a legal arg here. */
3536 	if (n != -1)
3537 		cpu_max_bits_warn(n, nr_bits);
3538 
3539 	if (srcp)
3540 		return find_next_bit(srcp, nr_bits, n + 1);
3541 
3542 	return n + 1;
3543 }
3544 
3545 /**
3546  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3547  *	@n: CPU/Rx queue index
3548  *	@src1p: the first CPUs/Rx queues mask pointer
3549  *	@src2p: the second CPUs/Rx queues mask pointer
3550  *	@nr_bits: number of bits in the bitmask
3551  *
3552  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3553  */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3554 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3555 					  const unsigned long *src2p,
3556 					  unsigned int nr_bits)
3557 {
3558 	/* -1 is a legal arg here. */
3559 	if (n != -1)
3560 		cpu_max_bits_warn(n, nr_bits);
3561 
3562 	if (src1p && src2p)
3563 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3564 	else if (src1p)
3565 		return find_next_bit(src1p, nr_bits, n + 1);
3566 	else if (src2p)
3567 		return find_next_bit(src2p, nr_bits, n + 1);
3568 
3569 	return n + 1;
3570 }
3571 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3572 static inline int netif_set_xps_queue(struct net_device *dev,
3573 				      const struct cpumask *mask,
3574 				      u16 index)
3575 {
3576 	return 0;
3577 }
3578 
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)3579 static inline int __netif_set_xps_queue(struct net_device *dev,
3580 					const unsigned long *mask,
3581 					u16 index, bool is_rxqs_map)
3582 {
3583 	return 0;
3584 }
3585 #endif
3586 
3587 /**
3588  *	netif_is_multiqueue - test if device has multiple transmit queues
3589  *	@dev: network device
3590  *
3591  * Check if device has multiple transmit queues
3592  */
netif_is_multiqueue(const struct net_device * dev)3593 static inline bool netif_is_multiqueue(const struct net_device *dev)
3594 {
3595 	return dev->num_tx_queues > 1;
3596 }
3597 
3598 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3599 
3600 #ifdef CONFIG_SYSFS
3601 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3602 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3603 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3604 						unsigned int rxqs)
3605 {
3606 	dev->real_num_rx_queues = rxqs;
3607 	return 0;
3608 }
3609 #endif
3610 
3611 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3612 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3613 {
3614 	return dev->_rx + rxq;
3615 }
3616 
3617 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3618 static inline unsigned int get_netdev_rx_queue_index(
3619 		struct netdev_rx_queue *queue)
3620 {
3621 	struct net_device *dev = queue->dev;
3622 	int index = queue - dev->_rx;
3623 
3624 	BUG_ON(index >= dev->num_rx_queues);
3625 	return index;
3626 }
3627 #endif
3628 
3629 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3630 int netif_get_num_default_rss_queues(void);
3631 
3632 enum skb_free_reason {
3633 	SKB_REASON_CONSUMED,
3634 	SKB_REASON_DROPPED,
3635 };
3636 
3637 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3638 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3639 
3640 /*
3641  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3642  * interrupt context or with hardware interrupts being disabled.
3643  * (in_irq() || irqs_disabled())
3644  *
3645  * We provide four helpers that can be used in following contexts :
3646  *
3647  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3648  *  replacing kfree_skb(skb)
3649  *
3650  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3651  *  Typically used in place of consume_skb(skb) in TX completion path
3652  *
3653  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3654  *  replacing kfree_skb(skb)
3655  *
3656  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3657  *  and consumed a packet. Used in place of consume_skb(skb)
3658  */
dev_kfree_skb_irq(struct sk_buff * skb)3659 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3660 {
3661 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3662 }
3663 
dev_consume_skb_irq(struct sk_buff * skb)3664 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3665 {
3666 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3667 }
3668 
dev_kfree_skb_any(struct sk_buff * skb)3669 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3670 {
3671 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3672 }
3673 
dev_consume_skb_any(struct sk_buff * skb)3674 static inline void dev_consume_skb_any(struct sk_buff *skb)
3675 {
3676 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3677 }
3678 
3679 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3680 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3681 int netif_rx(struct sk_buff *skb);
3682 int netif_rx_ni(struct sk_buff *skb);
3683 int netif_receive_skb(struct sk_buff *skb);
3684 int netif_receive_skb_core(struct sk_buff *skb);
3685 void netif_receive_skb_list(struct list_head *head);
3686 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3687 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3688 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3689 gro_result_t napi_gro_frags(struct napi_struct *napi);
3690 struct packet_offload *gro_find_receive_by_type(__be16 type);
3691 struct packet_offload *gro_find_complete_by_type(__be16 type);
3692 
napi_free_frags(struct napi_struct * napi)3693 static inline void napi_free_frags(struct napi_struct *napi)
3694 {
3695 	kfree_skb(napi->skb);
3696 	napi->skb = NULL;
3697 }
3698 
3699 bool netdev_is_rx_handler_busy(struct net_device *dev);
3700 int netdev_rx_handler_register(struct net_device *dev,
3701 			       rx_handler_func_t *rx_handler,
3702 			       void *rx_handler_data);
3703 void netdev_rx_handler_unregister(struct net_device *dev);
3704 
3705 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3706 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3707 {
3708 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3709 }
3710 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3711 		bool *need_copyout);
3712 int dev_ifconf(struct net *net, struct ifconf *, int);
3713 int dev_ethtool(struct net *net, struct ifreq *);
3714 unsigned int dev_get_flags(const struct net_device *);
3715 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3716 		       struct netlink_ext_ack *extack);
3717 int dev_change_flags(struct net_device *dev, unsigned int flags,
3718 		     struct netlink_ext_ack *extack);
3719 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3720 			unsigned int gchanges);
3721 int dev_change_name(struct net_device *, const char *);
3722 int dev_set_alias(struct net_device *, const char *, size_t);
3723 int dev_get_alias(const struct net_device *, char *, size_t);
3724 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3725 int __dev_set_mtu(struct net_device *, int);
3726 int dev_validate_mtu(struct net_device *dev, int mtu,
3727 		     struct netlink_ext_ack *extack);
3728 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3729 		    struct netlink_ext_ack *extack);
3730 int dev_set_mtu(struct net_device *, int);
3731 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3732 void dev_set_group(struct net_device *, int);
3733 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3734 			      struct netlink_ext_ack *extack);
3735 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3736 			struct netlink_ext_ack *extack);
3737 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3738 			     struct netlink_ext_ack *extack);
3739 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3740 int dev_change_carrier(struct net_device *, bool new_carrier);
3741 int dev_get_phys_port_id(struct net_device *dev,
3742 			 struct netdev_phys_item_id *ppid);
3743 int dev_get_phys_port_name(struct net_device *dev,
3744 			   char *name, size_t len);
3745 int dev_get_port_parent_id(struct net_device *dev,
3746 			   struct netdev_phys_item_id *ppid, bool recurse);
3747 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3748 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3749 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3750 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3751 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3752 				    struct netdev_queue *txq, int *ret);
3753 
3754 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3755 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3756 		      int fd, u32 flags);
3757 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3758 		    enum bpf_netdev_command cmd);
3759 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3760 
3761 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3762 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3763 bool is_skb_forwardable(const struct net_device *dev,
3764 			const struct sk_buff *skb);
3765 
____dev_forward_skb(struct net_device * dev,struct sk_buff * skb)3766 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3767 					       struct sk_buff *skb)
3768 {
3769 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3770 	    unlikely(!is_skb_forwardable(dev, skb))) {
3771 		atomic_long_inc(&dev->rx_dropped);
3772 		kfree_skb(skb);
3773 		return NET_RX_DROP;
3774 	}
3775 
3776 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3777 	skb->priority = 0;
3778 	return 0;
3779 }
3780 
3781 bool dev_nit_active(struct net_device *dev);
3782 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3783 
3784 extern int		netdev_budget;
3785 extern unsigned int	netdev_budget_usecs;
3786 
3787 /* Called by rtnetlink.c:rtnl_unlock() */
3788 void netdev_run_todo(void);
3789 
3790 /**
3791  *	dev_put - release reference to device
3792  *	@dev: network device
3793  *
3794  * Release reference to device to allow it to be freed.
3795  */
dev_put(struct net_device * dev)3796 static inline void dev_put(struct net_device *dev)
3797 {
3798 	if (dev)
3799 		this_cpu_dec(*dev->pcpu_refcnt);
3800 }
3801 
3802 /**
3803  *	dev_hold - get reference to device
3804  *	@dev: network device
3805  *
3806  * Hold reference to device to keep it from being freed.
3807  */
dev_hold(struct net_device * dev)3808 static inline void dev_hold(struct net_device *dev)
3809 {
3810 	if (dev)
3811 		this_cpu_inc(*dev->pcpu_refcnt);
3812 }
3813 
3814 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3815  * and _off may be called from IRQ context, but it is caller
3816  * who is responsible for serialization of these calls.
3817  *
3818  * The name carrier is inappropriate, these functions should really be
3819  * called netif_lowerlayer_*() because they represent the state of any
3820  * kind of lower layer not just hardware media.
3821  */
3822 
3823 void linkwatch_init_dev(struct net_device *dev);
3824 void linkwatch_fire_event(struct net_device *dev);
3825 void linkwatch_forget_dev(struct net_device *dev);
3826 
3827 /**
3828  *	netif_carrier_ok - test if carrier present
3829  *	@dev: network device
3830  *
3831  * Check if carrier is present on device
3832  */
netif_carrier_ok(const struct net_device * dev)3833 static inline bool netif_carrier_ok(const struct net_device *dev)
3834 {
3835 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3836 }
3837 
3838 unsigned long dev_trans_start(struct net_device *dev);
3839 
3840 void __netdev_watchdog_up(struct net_device *dev);
3841 
3842 void netif_carrier_on(struct net_device *dev);
3843 
3844 void netif_carrier_off(struct net_device *dev);
3845 
3846 /**
3847  *	netif_dormant_on - mark device as dormant.
3848  *	@dev: network device
3849  *
3850  * Mark device as dormant (as per RFC2863).
3851  *
3852  * The dormant state indicates that the relevant interface is not
3853  * actually in a condition to pass packets (i.e., it is not 'up') but is
3854  * in a "pending" state, waiting for some external event.  For "on-
3855  * demand" interfaces, this new state identifies the situation where the
3856  * interface is waiting for events to place it in the up state.
3857  */
netif_dormant_on(struct net_device * dev)3858 static inline void netif_dormant_on(struct net_device *dev)
3859 {
3860 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3861 		linkwatch_fire_event(dev);
3862 }
3863 
3864 /**
3865  *	netif_dormant_off - set device as not dormant.
3866  *	@dev: network device
3867  *
3868  * Device is not in dormant state.
3869  */
netif_dormant_off(struct net_device * dev)3870 static inline void netif_dormant_off(struct net_device *dev)
3871 {
3872 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3873 		linkwatch_fire_event(dev);
3874 }
3875 
3876 /**
3877  *	netif_dormant - test if device is dormant
3878  *	@dev: network device
3879  *
3880  * Check if device is dormant.
3881  */
netif_dormant(const struct net_device * dev)3882 static inline bool netif_dormant(const struct net_device *dev)
3883 {
3884 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3885 }
3886 
3887 
3888 /**
3889  *	netif_oper_up - test if device is operational
3890  *	@dev: network device
3891  *
3892  * Check if carrier is operational
3893  */
netif_oper_up(const struct net_device * dev)3894 static inline bool netif_oper_up(const struct net_device *dev)
3895 {
3896 	return (dev->operstate == IF_OPER_UP ||
3897 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3898 }
3899 
3900 /**
3901  *	netif_device_present - is device available or removed
3902  *	@dev: network device
3903  *
3904  * Check if device has not been removed from system.
3905  */
netif_device_present(struct net_device * dev)3906 static inline bool netif_device_present(struct net_device *dev)
3907 {
3908 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3909 }
3910 
3911 void netif_device_detach(struct net_device *dev);
3912 
3913 void netif_device_attach(struct net_device *dev);
3914 
3915 /*
3916  * Network interface message level settings
3917  */
3918 
3919 enum {
3920 	NETIF_MSG_DRV		= 0x0001,
3921 	NETIF_MSG_PROBE		= 0x0002,
3922 	NETIF_MSG_LINK		= 0x0004,
3923 	NETIF_MSG_TIMER		= 0x0008,
3924 	NETIF_MSG_IFDOWN	= 0x0010,
3925 	NETIF_MSG_IFUP		= 0x0020,
3926 	NETIF_MSG_RX_ERR	= 0x0040,
3927 	NETIF_MSG_TX_ERR	= 0x0080,
3928 	NETIF_MSG_TX_QUEUED	= 0x0100,
3929 	NETIF_MSG_INTR		= 0x0200,
3930 	NETIF_MSG_TX_DONE	= 0x0400,
3931 	NETIF_MSG_RX_STATUS	= 0x0800,
3932 	NETIF_MSG_PKTDATA	= 0x1000,
3933 	NETIF_MSG_HW		= 0x2000,
3934 	NETIF_MSG_WOL		= 0x4000,
3935 };
3936 
3937 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3938 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3939 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3940 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3941 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3942 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3943 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3944 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3945 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3946 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3947 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3948 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3949 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3950 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3951 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3952 
netif_msg_init(int debug_value,int default_msg_enable_bits)3953 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3954 {
3955 	/* use default */
3956 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3957 		return default_msg_enable_bits;
3958 	if (debug_value == 0)	/* no output */
3959 		return 0;
3960 	/* set low N bits */
3961 	return (1U << debug_value) - 1;
3962 }
3963 
__netif_tx_lock(struct netdev_queue * txq,int cpu)3964 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3965 {
3966 	spin_lock(&txq->_xmit_lock);
3967 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
3968 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
3969 }
3970 
__netif_tx_acquire(struct netdev_queue * txq)3971 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3972 {
3973 	__acquire(&txq->_xmit_lock);
3974 	return true;
3975 }
3976 
__netif_tx_release(struct netdev_queue * txq)3977 static inline void __netif_tx_release(struct netdev_queue *txq)
3978 {
3979 	__release(&txq->_xmit_lock);
3980 }
3981 
__netif_tx_lock_bh(struct netdev_queue * txq)3982 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3983 {
3984 	spin_lock_bh(&txq->_xmit_lock);
3985 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
3986 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
3987 }
3988 
__netif_tx_trylock(struct netdev_queue * txq)3989 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3990 {
3991 	bool ok = spin_trylock(&txq->_xmit_lock);
3992 
3993 	if (likely(ok)) {
3994 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
3995 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
3996 	}
3997 	return ok;
3998 }
3999 
__netif_tx_unlock(struct netdev_queue * txq)4000 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4001 {
4002 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4003 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4004 	spin_unlock(&txq->_xmit_lock);
4005 }
4006 
__netif_tx_unlock_bh(struct netdev_queue * txq)4007 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4008 {
4009 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4010 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4011 	spin_unlock_bh(&txq->_xmit_lock);
4012 }
4013 
txq_trans_update(struct netdev_queue * txq)4014 static inline void txq_trans_update(struct netdev_queue *txq)
4015 {
4016 	if (txq->xmit_lock_owner != -1)
4017 		txq->trans_start = jiffies;
4018 }
4019 
4020 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4021 static inline void netif_trans_update(struct net_device *dev)
4022 {
4023 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4024 
4025 	if (txq->trans_start != jiffies)
4026 		txq->trans_start = jiffies;
4027 }
4028 
4029 /**
4030  *	netif_tx_lock - grab network device transmit lock
4031  *	@dev: network device
4032  *
4033  * Get network device transmit lock
4034  */
netif_tx_lock(struct net_device * dev)4035 static inline void netif_tx_lock(struct net_device *dev)
4036 {
4037 	unsigned int i;
4038 	int cpu;
4039 
4040 	spin_lock(&dev->tx_global_lock);
4041 	cpu = smp_processor_id();
4042 	for (i = 0; i < dev->num_tx_queues; i++) {
4043 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4044 
4045 		/* We are the only thread of execution doing a
4046 		 * freeze, but we have to grab the _xmit_lock in
4047 		 * order to synchronize with threads which are in
4048 		 * the ->hard_start_xmit() handler and already
4049 		 * checked the frozen bit.
4050 		 */
4051 		__netif_tx_lock(txq, cpu);
4052 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4053 		__netif_tx_unlock(txq);
4054 	}
4055 }
4056 
netif_tx_lock_bh(struct net_device * dev)4057 static inline void netif_tx_lock_bh(struct net_device *dev)
4058 {
4059 	local_bh_disable();
4060 	netif_tx_lock(dev);
4061 }
4062 
netif_tx_unlock(struct net_device * dev)4063 static inline void netif_tx_unlock(struct net_device *dev)
4064 {
4065 	unsigned int i;
4066 
4067 	for (i = 0; i < dev->num_tx_queues; i++) {
4068 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4069 
4070 		/* No need to grab the _xmit_lock here.  If the
4071 		 * queue is not stopped for another reason, we
4072 		 * force a schedule.
4073 		 */
4074 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4075 		netif_schedule_queue(txq);
4076 	}
4077 	spin_unlock(&dev->tx_global_lock);
4078 }
4079 
netif_tx_unlock_bh(struct net_device * dev)4080 static inline void netif_tx_unlock_bh(struct net_device *dev)
4081 {
4082 	netif_tx_unlock(dev);
4083 	local_bh_enable();
4084 }
4085 
4086 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4087 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4088 		__netif_tx_lock(txq, cpu);		\
4089 	} else {					\
4090 		__netif_tx_acquire(txq);		\
4091 	}						\
4092 }
4093 
4094 #define HARD_TX_TRYLOCK(dev, txq)			\
4095 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4096 		__netif_tx_trylock(txq) :		\
4097 		__netif_tx_acquire(txq))
4098 
4099 #define HARD_TX_UNLOCK(dev, txq) {			\
4100 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4101 		__netif_tx_unlock(txq);			\
4102 	} else {					\
4103 		__netif_tx_release(txq);		\
4104 	}						\
4105 }
4106 
netif_tx_disable(struct net_device * dev)4107 static inline void netif_tx_disable(struct net_device *dev)
4108 {
4109 	unsigned int i;
4110 	int cpu;
4111 
4112 	local_bh_disable();
4113 	cpu = smp_processor_id();
4114 	spin_lock(&dev->tx_global_lock);
4115 	for (i = 0; i < dev->num_tx_queues; i++) {
4116 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4117 
4118 		__netif_tx_lock(txq, cpu);
4119 		netif_tx_stop_queue(txq);
4120 		__netif_tx_unlock(txq);
4121 	}
4122 	spin_unlock(&dev->tx_global_lock);
4123 	local_bh_enable();
4124 }
4125 
netif_addr_lock(struct net_device * dev)4126 static inline void netif_addr_lock(struct net_device *dev)
4127 {
4128 	spin_lock(&dev->addr_list_lock);
4129 }
4130 
netif_addr_lock_bh(struct net_device * dev)4131 static inline void netif_addr_lock_bh(struct net_device *dev)
4132 {
4133 	spin_lock_bh(&dev->addr_list_lock);
4134 }
4135 
netif_addr_unlock(struct net_device * dev)4136 static inline void netif_addr_unlock(struct net_device *dev)
4137 {
4138 	spin_unlock(&dev->addr_list_lock);
4139 }
4140 
netif_addr_unlock_bh(struct net_device * dev)4141 static inline void netif_addr_unlock_bh(struct net_device *dev)
4142 {
4143 	spin_unlock_bh(&dev->addr_list_lock);
4144 }
4145 
4146 /*
4147  * dev_addrs walker. Should be used only for read access. Call with
4148  * rcu_read_lock held.
4149  */
4150 #define for_each_dev_addr(dev, ha) \
4151 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4152 
4153 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4154 
4155 void ether_setup(struct net_device *dev);
4156 
4157 /* Support for loadable net-drivers */
4158 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4159 				    unsigned char name_assign_type,
4160 				    void (*setup)(struct net_device *),
4161 				    unsigned int txqs, unsigned int rxqs);
4162 int dev_get_valid_name(struct net *net, struct net_device *dev,
4163 		       const char *name);
4164 
4165 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4166 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4167 
4168 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4169 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4170 			 count)
4171 
4172 int register_netdev(struct net_device *dev);
4173 void unregister_netdev(struct net_device *dev);
4174 
4175 /* General hardware address lists handling functions */
4176 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4177 		   struct netdev_hw_addr_list *from_list, int addr_len);
4178 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4179 		      struct netdev_hw_addr_list *from_list, int addr_len);
4180 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4181 		       struct net_device *dev,
4182 		       int (*sync)(struct net_device *, const unsigned char *),
4183 		       int (*unsync)(struct net_device *,
4184 				     const unsigned char *));
4185 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4186 			   struct net_device *dev,
4187 			   int (*sync)(struct net_device *,
4188 				       const unsigned char *, int),
4189 			   int (*unsync)(struct net_device *,
4190 					 const unsigned char *, int));
4191 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4192 			      struct net_device *dev,
4193 			      int (*unsync)(struct net_device *,
4194 					    const unsigned char *, int));
4195 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4196 			  struct net_device *dev,
4197 			  int (*unsync)(struct net_device *,
4198 					const unsigned char *));
4199 void __hw_addr_init(struct netdev_hw_addr_list *list);
4200 
4201 /* Functions used for device addresses handling */
4202 static inline void
__dev_addr_set(struct net_device * dev,const u8 * addr,size_t len)4203 __dev_addr_set(struct net_device *dev, const u8 *addr, size_t len)
4204 {
4205 	memcpy(dev->dev_addr, addr, len);
4206 }
4207 
dev_addr_set(struct net_device * dev,const u8 * addr)4208 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4209 {
4210 	__dev_addr_set(dev, addr, dev->addr_len);
4211 }
4212 
4213 static inline void
dev_addr_mod(struct net_device * dev,unsigned int offset,const u8 * addr,size_t len)4214 dev_addr_mod(struct net_device *dev, unsigned int offset,
4215 	     const u8 *addr, size_t len)
4216 {
4217 	memcpy(&dev->dev_addr[offset], addr, len);
4218 }
4219 
4220 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4221 		 unsigned char addr_type);
4222 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4223 		 unsigned char addr_type);
4224 void dev_addr_flush(struct net_device *dev);
4225 int dev_addr_init(struct net_device *dev);
4226 
4227 /* Functions used for unicast addresses handling */
4228 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4229 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4230 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4231 int dev_uc_sync(struct net_device *to, struct net_device *from);
4232 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4233 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4234 void dev_uc_flush(struct net_device *dev);
4235 void dev_uc_init(struct net_device *dev);
4236 
4237 /**
4238  *  __dev_uc_sync - Synchonize device's unicast list
4239  *  @dev:  device to sync
4240  *  @sync: function to call if address should be added
4241  *  @unsync: function to call if address should be removed
4242  *
4243  *  Add newly added addresses to the interface, and release
4244  *  addresses that have been deleted.
4245  */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4246 static inline int __dev_uc_sync(struct net_device *dev,
4247 				int (*sync)(struct net_device *,
4248 					    const unsigned char *),
4249 				int (*unsync)(struct net_device *,
4250 					      const unsigned char *))
4251 {
4252 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4253 }
4254 
4255 /**
4256  *  __dev_uc_unsync - Remove synchronized addresses from device
4257  *  @dev:  device to sync
4258  *  @unsync: function to call if address should be removed
4259  *
4260  *  Remove all addresses that were added to the device by dev_uc_sync().
4261  */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4262 static inline void __dev_uc_unsync(struct net_device *dev,
4263 				   int (*unsync)(struct net_device *,
4264 						 const unsigned char *))
4265 {
4266 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4267 }
4268 
4269 /* Functions used for multicast addresses handling */
4270 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4271 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4272 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4273 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4274 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4275 int dev_mc_sync(struct net_device *to, struct net_device *from);
4276 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4277 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4278 void dev_mc_flush(struct net_device *dev);
4279 void dev_mc_init(struct net_device *dev);
4280 
4281 /**
4282  *  __dev_mc_sync - Synchonize device's multicast list
4283  *  @dev:  device to sync
4284  *  @sync: function to call if address should be added
4285  *  @unsync: function to call if address should be removed
4286  *
4287  *  Add newly added addresses to the interface, and release
4288  *  addresses that have been deleted.
4289  */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4290 static inline int __dev_mc_sync(struct net_device *dev,
4291 				int (*sync)(struct net_device *,
4292 					    const unsigned char *),
4293 				int (*unsync)(struct net_device *,
4294 					      const unsigned char *))
4295 {
4296 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4297 }
4298 
4299 /**
4300  *  __dev_mc_unsync - Remove synchronized addresses from device
4301  *  @dev:  device to sync
4302  *  @unsync: function to call if address should be removed
4303  *
4304  *  Remove all addresses that were added to the device by dev_mc_sync().
4305  */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4306 static inline void __dev_mc_unsync(struct net_device *dev,
4307 				   int (*unsync)(struct net_device *,
4308 						 const unsigned char *))
4309 {
4310 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4311 }
4312 
4313 /* Functions used for secondary unicast and multicast support */
4314 void dev_set_rx_mode(struct net_device *dev);
4315 void __dev_set_rx_mode(struct net_device *dev);
4316 int dev_set_promiscuity(struct net_device *dev, int inc);
4317 int dev_set_allmulti(struct net_device *dev, int inc);
4318 void netdev_state_change(struct net_device *dev);
4319 void netdev_notify_peers(struct net_device *dev);
4320 void netdev_features_change(struct net_device *dev);
4321 /* Load a device via the kmod */
4322 void dev_load(struct net *net, const char *name);
4323 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4324 					struct rtnl_link_stats64 *storage);
4325 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4326 			     const struct net_device_stats *netdev_stats);
4327 
4328 extern int		netdev_max_backlog;
4329 extern int		netdev_tstamp_prequeue;
4330 extern int		weight_p;
4331 extern int		dev_weight_rx_bias;
4332 extern int		dev_weight_tx_bias;
4333 extern int		dev_rx_weight;
4334 extern int		dev_tx_weight;
4335 extern int		gro_normal_batch;
4336 
4337 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4338 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4339 						     struct list_head **iter);
4340 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4341 						     struct list_head **iter);
4342 
4343 /* iterate through upper list, must be called under RCU read lock */
4344 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4345 	for (iter = &(dev)->adj_list.upper, \
4346 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4347 	     updev; \
4348 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4349 
4350 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4351 				  int (*fn)(struct net_device *upper_dev,
4352 					    void *data),
4353 				  void *data);
4354 
4355 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4356 				  struct net_device *upper_dev);
4357 
4358 bool netdev_has_any_upper_dev(struct net_device *dev);
4359 
4360 void *netdev_lower_get_next_private(struct net_device *dev,
4361 				    struct list_head **iter);
4362 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4363 					struct list_head **iter);
4364 
4365 #define netdev_for_each_lower_private(dev, priv, iter) \
4366 	for (iter = (dev)->adj_list.lower.next, \
4367 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4368 	     priv; \
4369 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4370 
4371 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4372 	for (iter = &(dev)->adj_list.lower, \
4373 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4374 	     priv; \
4375 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4376 
4377 void *netdev_lower_get_next(struct net_device *dev,
4378 				struct list_head **iter);
4379 
4380 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4381 	for (iter = (dev)->adj_list.lower.next, \
4382 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4383 	     ldev; \
4384 	     ldev = netdev_lower_get_next(dev, &(iter)))
4385 
4386 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4387 					     struct list_head **iter);
4388 int netdev_walk_all_lower_dev(struct net_device *dev,
4389 			      int (*fn)(struct net_device *lower_dev,
4390 					void *data),
4391 			      void *data);
4392 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4393 				  int (*fn)(struct net_device *lower_dev,
4394 					    void *data),
4395 				  void *data);
4396 
4397 void *netdev_adjacent_get_private(struct list_head *adj_list);
4398 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4399 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4400 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4401 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4402 			  struct netlink_ext_ack *extack);
4403 int netdev_master_upper_dev_link(struct net_device *dev,
4404 				 struct net_device *upper_dev,
4405 				 void *upper_priv, void *upper_info,
4406 				 struct netlink_ext_ack *extack);
4407 void netdev_upper_dev_unlink(struct net_device *dev,
4408 			     struct net_device *upper_dev);
4409 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4410 				   struct net_device *new_dev,
4411 				   struct net_device *dev,
4412 				   struct netlink_ext_ack *extack);
4413 void netdev_adjacent_change_commit(struct net_device *old_dev,
4414 				   struct net_device *new_dev,
4415 				   struct net_device *dev);
4416 void netdev_adjacent_change_abort(struct net_device *old_dev,
4417 				  struct net_device *new_dev,
4418 				  struct net_device *dev);
4419 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4420 void *netdev_lower_dev_get_private(struct net_device *dev,
4421 				   struct net_device *lower_dev);
4422 void netdev_lower_state_changed(struct net_device *lower_dev,
4423 				void *lower_state_info);
4424 
4425 /* RSS keys are 40 or 52 bytes long */
4426 #define NETDEV_RSS_KEY_LEN 52
4427 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4428 void netdev_rss_key_fill(void *buffer, size_t len);
4429 
4430 int skb_checksum_help(struct sk_buff *skb);
4431 int skb_crc32c_csum_help(struct sk_buff *skb);
4432 int skb_csum_hwoffload_help(struct sk_buff *skb,
4433 			    const netdev_features_t features);
4434 
4435 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4436 				  netdev_features_t features, bool tx_path);
4437 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4438 				    netdev_features_t features);
4439 
4440 struct netdev_bonding_info {
4441 	ifslave	slave;
4442 	ifbond	master;
4443 };
4444 
4445 struct netdev_notifier_bonding_info {
4446 	struct netdev_notifier_info info; /* must be first */
4447 	struct netdev_bonding_info  bonding_info;
4448 };
4449 
4450 void netdev_bonding_info_change(struct net_device *dev,
4451 				struct netdev_bonding_info *bonding_info);
4452 
4453 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4454 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4455 {
4456 	return __skb_gso_segment(skb, features, true);
4457 }
4458 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4459 
can_checksum_protocol(netdev_features_t features,__be16 protocol)4460 static inline bool can_checksum_protocol(netdev_features_t features,
4461 					 __be16 protocol)
4462 {
4463 	if (protocol == htons(ETH_P_FCOE))
4464 		return !!(features & NETIF_F_FCOE_CRC);
4465 
4466 	/* Assume this is an IP checksum (not SCTP CRC) */
4467 
4468 	if (features & NETIF_F_HW_CSUM) {
4469 		/* Can checksum everything */
4470 		return true;
4471 	}
4472 
4473 	switch (protocol) {
4474 	case htons(ETH_P_IP):
4475 		return !!(features & NETIF_F_IP_CSUM);
4476 	case htons(ETH_P_IPV6):
4477 		return !!(features & NETIF_F_IPV6_CSUM);
4478 	default:
4479 		return false;
4480 	}
4481 }
4482 
4483 #ifdef CONFIG_BUG
4484 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4485 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4486 static inline void netdev_rx_csum_fault(struct net_device *dev,
4487 					struct sk_buff *skb)
4488 {
4489 }
4490 #endif
4491 /* rx skb timestamps */
4492 void net_enable_timestamp(void);
4493 void net_disable_timestamp(void);
4494 
4495 #ifdef CONFIG_PROC_FS
4496 int __init dev_proc_init(void);
4497 #else
4498 #define dev_proc_init() 0
4499 #endif
4500 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4501 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4502 					      struct sk_buff *skb, struct net_device *dev,
4503 					      bool more)
4504 {
4505 	__this_cpu_write(softnet_data.xmit.more, more);
4506 	return ops->ndo_start_xmit(skb, dev);
4507 }
4508 
netdev_xmit_more(void)4509 static inline bool netdev_xmit_more(void)
4510 {
4511 	return __this_cpu_read(softnet_data.xmit.more);
4512 }
4513 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4514 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4515 					    struct netdev_queue *txq, bool more)
4516 {
4517 	const struct net_device_ops *ops = dev->netdev_ops;
4518 	netdev_tx_t rc;
4519 
4520 	rc = __netdev_start_xmit(ops, skb, dev, more);
4521 	if (rc == NETDEV_TX_OK)
4522 		txq_trans_update(txq);
4523 
4524 	return rc;
4525 }
4526 
4527 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4528 				const void *ns);
4529 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4530 				 const void *ns);
4531 
netdev_class_create_file(const struct class_attribute * class_attr)4532 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4533 {
4534 	return netdev_class_create_file_ns(class_attr, NULL);
4535 }
4536 
netdev_class_remove_file(const struct class_attribute * class_attr)4537 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4538 {
4539 	netdev_class_remove_file_ns(class_attr, NULL);
4540 }
4541 
4542 extern const struct kobj_ns_type_operations net_ns_type_operations;
4543 
4544 const char *netdev_drivername(const struct net_device *dev);
4545 
4546 void linkwatch_run_queue(void);
4547 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4548 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4549 							  netdev_features_t f2)
4550 {
4551 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4552 		if (f1 & NETIF_F_HW_CSUM)
4553 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4554 		else
4555 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4556 	}
4557 
4558 	return f1 & f2;
4559 }
4560 
netdev_get_wanted_features(struct net_device * dev)4561 static inline netdev_features_t netdev_get_wanted_features(
4562 	struct net_device *dev)
4563 {
4564 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4565 }
4566 netdev_features_t netdev_increment_features(netdev_features_t all,
4567 	netdev_features_t one, netdev_features_t mask);
4568 
4569 /* Allow TSO being used on stacked device :
4570  * Performing the GSO segmentation before last device
4571  * is a performance improvement.
4572  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4573 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4574 							netdev_features_t mask)
4575 {
4576 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4577 }
4578 
4579 int __netdev_update_features(struct net_device *dev);
4580 void netdev_update_features(struct net_device *dev);
4581 void netdev_change_features(struct net_device *dev);
4582 
4583 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4584 					struct net_device *dev);
4585 
4586 netdev_features_t passthru_features_check(struct sk_buff *skb,
4587 					  struct net_device *dev,
4588 					  netdev_features_t features);
4589 netdev_features_t netif_skb_features(struct sk_buff *skb);
4590 
net_gso_ok(netdev_features_t features,int gso_type)4591 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4592 {
4593 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4594 
4595 	/* check flags correspondence */
4596 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4597 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4598 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4599 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4600 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4601 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4602 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4603 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4604 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4605 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4606 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4607 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4608 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4609 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4610 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4611 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4612 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4613 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4614 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4615 
4616 	return (features & feature) == feature;
4617 }
4618 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4619 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4620 {
4621 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4622 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4623 }
4624 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4625 static inline bool netif_needs_gso(struct sk_buff *skb,
4626 				   netdev_features_t features)
4627 {
4628 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4629 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4630 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4631 }
4632 
netif_set_gso_max_size(struct net_device * dev,unsigned int size)4633 static inline void netif_set_gso_max_size(struct net_device *dev,
4634 					  unsigned int size)
4635 {
4636 	dev->gso_max_size = size;
4637 }
4638 
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4639 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4640 					int pulled_hlen, u16 mac_offset,
4641 					int mac_len)
4642 {
4643 	skb->protocol = protocol;
4644 	skb->encapsulation = 1;
4645 	skb_push(skb, pulled_hlen);
4646 	skb_reset_transport_header(skb);
4647 	skb->mac_header = mac_offset;
4648 	skb->network_header = skb->mac_header + mac_len;
4649 	skb->mac_len = mac_len;
4650 }
4651 
netif_is_macsec(const struct net_device * dev)4652 static inline bool netif_is_macsec(const struct net_device *dev)
4653 {
4654 	return dev->priv_flags & IFF_MACSEC;
4655 }
4656 
netif_is_macvlan(const struct net_device * dev)4657 static inline bool netif_is_macvlan(const struct net_device *dev)
4658 {
4659 	return dev->priv_flags & IFF_MACVLAN;
4660 }
4661 
netif_is_macvlan_port(const struct net_device * dev)4662 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4663 {
4664 	return dev->priv_flags & IFF_MACVLAN_PORT;
4665 }
4666 
netif_is_bond_master(const struct net_device * dev)4667 static inline bool netif_is_bond_master(const struct net_device *dev)
4668 {
4669 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4670 }
4671 
netif_is_bond_slave(const struct net_device * dev)4672 static inline bool netif_is_bond_slave(const struct net_device *dev)
4673 {
4674 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4675 }
4676 
netif_supports_nofcs(struct net_device * dev)4677 static inline bool netif_supports_nofcs(struct net_device *dev)
4678 {
4679 	return dev->priv_flags & IFF_SUPP_NOFCS;
4680 }
4681 
netif_has_l3_rx_handler(const struct net_device * dev)4682 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4683 {
4684 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4685 }
4686 
netif_is_l3_master(const struct net_device * dev)4687 static inline bool netif_is_l3_master(const struct net_device *dev)
4688 {
4689 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4690 }
4691 
netif_is_l3_slave(const struct net_device * dev)4692 static inline bool netif_is_l3_slave(const struct net_device *dev)
4693 {
4694 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4695 }
4696 
netif_is_bridge_master(const struct net_device * dev)4697 static inline bool netif_is_bridge_master(const struct net_device *dev)
4698 {
4699 	return dev->priv_flags & IFF_EBRIDGE;
4700 }
4701 
netif_is_bridge_port(const struct net_device * dev)4702 static inline bool netif_is_bridge_port(const struct net_device *dev)
4703 {
4704 	return dev->priv_flags & IFF_BRIDGE_PORT;
4705 }
4706 
netif_is_ovs_master(const struct net_device * dev)4707 static inline bool netif_is_ovs_master(const struct net_device *dev)
4708 {
4709 	return dev->priv_flags & IFF_OPENVSWITCH;
4710 }
4711 
netif_is_ovs_port(const struct net_device * dev)4712 static inline bool netif_is_ovs_port(const struct net_device *dev)
4713 {
4714 	return dev->priv_flags & IFF_OVS_DATAPATH;
4715 }
4716 
netif_is_team_master(const struct net_device * dev)4717 static inline bool netif_is_team_master(const struct net_device *dev)
4718 {
4719 	return dev->priv_flags & IFF_TEAM;
4720 }
4721 
netif_is_team_port(const struct net_device * dev)4722 static inline bool netif_is_team_port(const struct net_device *dev)
4723 {
4724 	return dev->priv_flags & IFF_TEAM_PORT;
4725 }
4726 
netif_is_lag_master(const struct net_device * dev)4727 static inline bool netif_is_lag_master(const struct net_device *dev)
4728 {
4729 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4730 }
4731 
netif_is_lag_port(const struct net_device * dev)4732 static inline bool netif_is_lag_port(const struct net_device *dev)
4733 {
4734 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4735 }
4736 
netif_is_rxfh_configured(const struct net_device * dev)4737 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4738 {
4739 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4740 }
4741 
netif_is_failover(const struct net_device * dev)4742 static inline bool netif_is_failover(const struct net_device *dev)
4743 {
4744 	return dev->priv_flags & IFF_FAILOVER;
4745 }
4746 
netif_is_failover_slave(const struct net_device * dev)4747 static inline bool netif_is_failover_slave(const struct net_device *dev)
4748 {
4749 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4750 }
4751 
4752 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)4753 static inline void netif_keep_dst(struct net_device *dev)
4754 {
4755 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4756 }
4757 
4758 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)4759 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4760 {
4761 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4762 	return dev->priv_flags & IFF_MACSEC;
4763 }
4764 
4765 extern struct pernet_operations __net_initdata loopback_net_ops;
4766 
4767 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4768 
4769 /* netdev_printk helpers, similar to dev_printk */
4770 
netdev_name(const struct net_device * dev)4771 static inline const char *netdev_name(const struct net_device *dev)
4772 {
4773 	if (!dev->name[0] || strchr(dev->name, '%'))
4774 		return "(unnamed net_device)";
4775 	return dev->name;
4776 }
4777 
netdev_unregistering(const struct net_device * dev)4778 static inline bool netdev_unregistering(const struct net_device *dev)
4779 {
4780 	return dev->reg_state == NETREG_UNREGISTERING;
4781 }
4782 
netdev_reg_state(const struct net_device * dev)4783 static inline const char *netdev_reg_state(const struct net_device *dev)
4784 {
4785 	switch (dev->reg_state) {
4786 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4787 	case NETREG_REGISTERED: return "";
4788 	case NETREG_UNREGISTERING: return " (unregistering)";
4789 	case NETREG_UNREGISTERED: return " (unregistered)";
4790 	case NETREG_RELEASED: return " (released)";
4791 	case NETREG_DUMMY: return " (dummy)";
4792 	}
4793 
4794 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4795 	return " (unknown)";
4796 }
4797 
4798 __printf(3, 4) __cold
4799 void netdev_printk(const char *level, const struct net_device *dev,
4800 		   const char *format, ...);
4801 __printf(2, 3) __cold
4802 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4803 __printf(2, 3) __cold
4804 void netdev_alert(const struct net_device *dev, const char *format, ...);
4805 __printf(2, 3) __cold
4806 void netdev_crit(const struct net_device *dev, const char *format, ...);
4807 __printf(2, 3) __cold
4808 void netdev_err(const struct net_device *dev, const char *format, ...);
4809 __printf(2, 3) __cold
4810 void netdev_warn(const struct net_device *dev, const char *format, ...);
4811 __printf(2, 3) __cold
4812 void netdev_notice(const struct net_device *dev, const char *format, ...);
4813 __printf(2, 3) __cold
4814 void netdev_info(const struct net_device *dev, const char *format, ...);
4815 
4816 #define netdev_level_once(level, dev, fmt, ...)			\
4817 do {								\
4818 	static bool __print_once __read_mostly;			\
4819 								\
4820 	if (!__print_once) {					\
4821 		__print_once = true;				\
4822 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4823 	}							\
4824 } while (0)
4825 
4826 #define netdev_emerg_once(dev, fmt, ...) \
4827 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4828 #define netdev_alert_once(dev, fmt, ...) \
4829 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4830 #define netdev_crit_once(dev, fmt, ...) \
4831 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4832 #define netdev_err_once(dev, fmt, ...) \
4833 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4834 #define netdev_warn_once(dev, fmt, ...) \
4835 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4836 #define netdev_notice_once(dev, fmt, ...) \
4837 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4838 #define netdev_info_once(dev, fmt, ...) \
4839 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4840 
4841 #define MODULE_ALIAS_NETDEV(device) \
4842 	MODULE_ALIAS("netdev-" device)
4843 
4844 #if defined(CONFIG_DYNAMIC_DEBUG) || \
4845 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
4846 #define netdev_dbg(__dev, format, args...)			\
4847 do {								\
4848 	dynamic_netdev_dbg(__dev, format, ##args);		\
4849 } while (0)
4850 #elif defined(DEBUG)
4851 #define netdev_dbg(__dev, format, args...)			\
4852 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4853 #else
4854 #define netdev_dbg(__dev, format, args...)			\
4855 ({								\
4856 	if (0)							\
4857 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4858 })
4859 #endif
4860 
4861 #if defined(VERBOSE_DEBUG)
4862 #define netdev_vdbg	netdev_dbg
4863 #else
4864 
4865 #define netdev_vdbg(dev, format, args...)			\
4866 ({								\
4867 	if (0)							\
4868 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4869 	0;							\
4870 })
4871 #endif
4872 
4873 /*
4874  * netdev_WARN() acts like dev_printk(), but with the key difference
4875  * of using a WARN/WARN_ON to get the message out, including the
4876  * file/line information and a backtrace.
4877  */
4878 #define netdev_WARN(dev, format, args...)			\
4879 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4880 	     netdev_reg_state(dev), ##args)
4881 
4882 #define netdev_WARN_ONCE(dev, format, args...)				\
4883 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4884 		  netdev_reg_state(dev), ##args)
4885 
4886 /* netif printk helpers, similar to netdev_printk */
4887 
4888 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4889 do {					  			\
4890 	if (netif_msg_##type(priv))				\
4891 		netdev_printk(level, (dev), fmt, ##args);	\
4892 } while (0)
4893 
4894 #define netif_level(level, priv, type, dev, fmt, args...)	\
4895 do {								\
4896 	if (netif_msg_##type(priv))				\
4897 		netdev_##level(dev, fmt, ##args);		\
4898 } while (0)
4899 
4900 #define netif_emerg(priv, type, dev, fmt, args...)		\
4901 	netif_level(emerg, priv, type, dev, fmt, ##args)
4902 #define netif_alert(priv, type, dev, fmt, args...)		\
4903 	netif_level(alert, priv, type, dev, fmt, ##args)
4904 #define netif_crit(priv, type, dev, fmt, args...)		\
4905 	netif_level(crit, priv, type, dev, fmt, ##args)
4906 #define netif_err(priv, type, dev, fmt, args...)		\
4907 	netif_level(err, priv, type, dev, fmt, ##args)
4908 #define netif_warn(priv, type, dev, fmt, args...)		\
4909 	netif_level(warn, priv, type, dev, fmt, ##args)
4910 #define netif_notice(priv, type, dev, fmt, args...)		\
4911 	netif_level(notice, priv, type, dev, fmt, ##args)
4912 #define netif_info(priv, type, dev, fmt, args...)		\
4913 	netif_level(info, priv, type, dev, fmt, ##args)
4914 
4915 #if defined(CONFIG_DYNAMIC_DEBUG) || \
4916 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
4917 #define netif_dbg(priv, type, netdev, format, args...)		\
4918 do {								\
4919 	if (netif_msg_##type(priv))				\
4920 		dynamic_netdev_dbg(netdev, format, ##args);	\
4921 } while (0)
4922 #elif defined(DEBUG)
4923 #define netif_dbg(priv, type, dev, format, args...)		\
4924 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4925 #else
4926 #define netif_dbg(priv, type, dev, format, args...)			\
4927 ({									\
4928 	if (0)								\
4929 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4930 	0;								\
4931 })
4932 #endif
4933 
4934 /* if @cond then downgrade to debug, else print at @level */
4935 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4936 	do {                                                              \
4937 		if (cond)                                                 \
4938 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4939 		else                                                      \
4940 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4941 	} while (0)
4942 
4943 #if defined(VERBOSE_DEBUG)
4944 #define netif_vdbg	netif_dbg
4945 #else
4946 #define netif_vdbg(priv, type, dev, format, args...)		\
4947 ({								\
4948 	if (0)							\
4949 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4950 	0;							\
4951 })
4952 #endif
4953 
4954 /*
4955  *	The list of packet types we will receive (as opposed to discard)
4956  *	and the routines to invoke.
4957  *
4958  *	Why 16. Because with 16 the only overlap we get on a hash of the
4959  *	low nibble of the protocol value is RARP/SNAP/X.25.
4960  *
4961  *		0800	IP
4962  *		0001	802.3
4963  *		0002	AX.25
4964  *		0004	802.2
4965  *		8035	RARP
4966  *		0005	SNAP
4967  *		0805	X.25
4968  *		0806	ARP
4969  *		8137	IPX
4970  *		0009	Localtalk
4971  *		86DD	IPv6
4972  */
4973 #define PTYPE_HASH_SIZE	(16)
4974 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4975 
4976 extern struct net_device *blackhole_netdev;
4977 
4978 #endif	/* _LINUX_NETDEVICE_H */
4979