• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 
79 #include "audit.h"
80 
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85 
86 /* no execve audit message should be longer than this (userspace limits),
87  * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89 
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92 
93 /* number of audit rules */
94 int audit_n_rules;
95 
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
98 
99 struct audit_aux_data {
100 	struct audit_aux_data	*next;
101 	int			type;
102 };
103 
104 #define AUDIT_AUX_IPCPERM	0
105 
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS	16
108 
109 struct audit_aux_data_pids {
110 	struct audit_aux_data	d;
111 	pid_t			target_pid[AUDIT_AUX_PIDS];
112 	kuid_t			target_auid[AUDIT_AUX_PIDS];
113 	kuid_t			target_uid[AUDIT_AUX_PIDS];
114 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
115 	u32			target_sid[AUDIT_AUX_PIDS];
116 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 	int			pid_count;
118 };
119 
120 struct audit_aux_data_bprm_fcaps {
121 	struct audit_aux_data	d;
122 	struct audit_cap_data	fcap;
123 	unsigned int		fcap_ver;
124 	struct audit_cap_data	old_pcap;
125 	struct audit_cap_data	new_pcap;
126 };
127 
128 struct audit_tree_refs {
129 	struct audit_tree_refs *next;
130 	struct audit_chunk *c[31];
131 };
132 
audit_match_perm(struct audit_context * ctx,int mask)133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135 	unsigned n;
136 	if (unlikely(!ctx))
137 		return 0;
138 	n = ctx->major;
139 
140 	switch (audit_classify_syscall(ctx->arch, n)) {
141 	case 0:	/* native */
142 		if ((mask & AUDIT_PERM_WRITE) &&
143 		     audit_match_class(AUDIT_CLASS_WRITE, n))
144 			return 1;
145 		if ((mask & AUDIT_PERM_READ) &&
146 		     audit_match_class(AUDIT_CLASS_READ, n))
147 			return 1;
148 		if ((mask & AUDIT_PERM_ATTR) &&
149 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
150 			return 1;
151 		return 0;
152 	case 1: /* 32bit on biarch */
153 		if ((mask & AUDIT_PERM_WRITE) &&
154 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 			return 1;
156 		if ((mask & AUDIT_PERM_READ) &&
157 		     audit_match_class(AUDIT_CLASS_READ_32, n))
158 			return 1;
159 		if ((mask & AUDIT_PERM_ATTR) &&
160 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 			return 1;
162 		return 0;
163 	case 2: /* open */
164 		return mask & ACC_MODE(ctx->argv[1]);
165 	case 3: /* openat */
166 		return mask & ACC_MODE(ctx->argv[2]);
167 	case 4: /* socketcall */
168 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 	case 5: /* execve */
170 		return mask & AUDIT_PERM_EXEC;
171 	default:
172 		return 0;
173 	}
174 }
175 
audit_match_filetype(struct audit_context * ctx,int val)176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178 	struct audit_names *n;
179 	umode_t mode = (umode_t)val;
180 
181 	if (unlikely(!ctx))
182 		return 0;
183 
184 	list_for_each_entry(n, &ctx->names_list, list) {
185 		if ((n->ino != AUDIT_INO_UNSET) &&
186 		    ((n->mode & S_IFMT) == mode))
187 			return 1;
188 	}
189 
190 	return 0;
191 }
192 
193 /*
194  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195  * ->first_trees points to its beginning, ->trees - to the current end of data.
196  * ->tree_count is the number of free entries in array pointed to by ->trees.
197  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
199  * it's going to remain 1-element for almost any setup) until we free context itself.
200  * References in it _are_ dropped - at the same time we free/drop aux stuff.
201  */
202 
audit_set_auditable(struct audit_context * ctx)203 static void audit_set_auditable(struct audit_context *ctx)
204 {
205 	if (!ctx->prio) {
206 		ctx->prio = 1;
207 		ctx->current_state = AUDIT_RECORD_CONTEXT;
208 	}
209 }
210 
put_tree_ref(struct audit_context * ctx,struct audit_chunk * chunk)211 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212 {
213 	struct audit_tree_refs *p = ctx->trees;
214 	int left = ctx->tree_count;
215 	if (likely(left)) {
216 		p->c[--left] = chunk;
217 		ctx->tree_count = left;
218 		return 1;
219 	}
220 	if (!p)
221 		return 0;
222 	p = p->next;
223 	if (p) {
224 		p->c[30] = chunk;
225 		ctx->trees = p;
226 		ctx->tree_count = 30;
227 		return 1;
228 	}
229 	return 0;
230 }
231 
grow_tree_refs(struct audit_context * ctx)232 static int grow_tree_refs(struct audit_context *ctx)
233 {
234 	struct audit_tree_refs *p = ctx->trees;
235 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236 	if (!ctx->trees) {
237 		ctx->trees = p;
238 		return 0;
239 	}
240 	if (p)
241 		p->next = ctx->trees;
242 	else
243 		ctx->first_trees = ctx->trees;
244 	ctx->tree_count = 31;
245 	return 1;
246 }
247 
unroll_tree_refs(struct audit_context * ctx,struct audit_tree_refs * p,int count)248 static void unroll_tree_refs(struct audit_context *ctx,
249 		      struct audit_tree_refs *p, int count)
250 {
251 	struct audit_tree_refs *q;
252 	int n;
253 	if (!p) {
254 		/* we started with empty chain */
255 		p = ctx->first_trees;
256 		count = 31;
257 		/* if the very first allocation has failed, nothing to do */
258 		if (!p)
259 			return;
260 	}
261 	n = count;
262 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
263 		while (n--) {
264 			audit_put_chunk(q->c[n]);
265 			q->c[n] = NULL;
266 		}
267 	}
268 	while (n-- > ctx->tree_count) {
269 		audit_put_chunk(q->c[n]);
270 		q->c[n] = NULL;
271 	}
272 	ctx->trees = p;
273 	ctx->tree_count = count;
274 }
275 
free_tree_refs(struct audit_context * ctx)276 static void free_tree_refs(struct audit_context *ctx)
277 {
278 	struct audit_tree_refs *p, *q;
279 	for (p = ctx->first_trees; p; p = q) {
280 		q = p->next;
281 		kfree(p);
282 	}
283 }
284 
match_tree_refs(struct audit_context * ctx,struct audit_tree * tree)285 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
286 {
287 	struct audit_tree_refs *p;
288 	int n;
289 	if (!tree)
290 		return 0;
291 	/* full ones */
292 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
293 		for (n = 0; n < 31; n++)
294 			if (audit_tree_match(p->c[n], tree))
295 				return 1;
296 	}
297 	/* partial */
298 	if (p) {
299 		for (n = ctx->tree_count; n < 31; n++)
300 			if (audit_tree_match(p->c[n], tree))
301 				return 1;
302 	}
303 	return 0;
304 }
305 
audit_compare_uid(kuid_t uid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)306 static int audit_compare_uid(kuid_t uid,
307 			     struct audit_names *name,
308 			     struct audit_field *f,
309 			     struct audit_context *ctx)
310 {
311 	struct audit_names *n;
312 	int rc;
313 
314 	if (name) {
315 		rc = audit_uid_comparator(uid, f->op, name->uid);
316 		if (rc)
317 			return rc;
318 	}
319 
320 	if (ctx) {
321 		list_for_each_entry(n, &ctx->names_list, list) {
322 			rc = audit_uid_comparator(uid, f->op, n->uid);
323 			if (rc)
324 				return rc;
325 		}
326 	}
327 	return 0;
328 }
329 
audit_compare_gid(kgid_t gid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)330 static int audit_compare_gid(kgid_t gid,
331 			     struct audit_names *name,
332 			     struct audit_field *f,
333 			     struct audit_context *ctx)
334 {
335 	struct audit_names *n;
336 	int rc;
337 
338 	if (name) {
339 		rc = audit_gid_comparator(gid, f->op, name->gid);
340 		if (rc)
341 			return rc;
342 	}
343 
344 	if (ctx) {
345 		list_for_each_entry(n, &ctx->names_list, list) {
346 			rc = audit_gid_comparator(gid, f->op, n->gid);
347 			if (rc)
348 				return rc;
349 		}
350 	}
351 	return 0;
352 }
353 
audit_field_compare(struct task_struct * tsk,const struct cred * cred,struct audit_field * f,struct audit_context * ctx,struct audit_names * name)354 static int audit_field_compare(struct task_struct *tsk,
355 			       const struct cred *cred,
356 			       struct audit_field *f,
357 			       struct audit_context *ctx,
358 			       struct audit_names *name)
359 {
360 	switch (f->val) {
361 	/* process to file object comparisons */
362 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
363 		return audit_compare_uid(cred->uid, name, f, ctx);
364 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
365 		return audit_compare_gid(cred->gid, name, f, ctx);
366 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
367 		return audit_compare_uid(cred->euid, name, f, ctx);
368 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
369 		return audit_compare_gid(cred->egid, name, f, ctx);
370 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
371 		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
372 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
373 		return audit_compare_uid(cred->suid, name, f, ctx);
374 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
375 		return audit_compare_gid(cred->sgid, name, f, ctx);
376 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
377 		return audit_compare_uid(cred->fsuid, name, f, ctx);
378 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
379 		return audit_compare_gid(cred->fsgid, name, f, ctx);
380 	/* uid comparisons */
381 	case AUDIT_COMPARE_UID_TO_AUID:
382 		return audit_uid_comparator(cred->uid, f->op,
383 					    audit_get_loginuid(tsk));
384 	case AUDIT_COMPARE_UID_TO_EUID:
385 		return audit_uid_comparator(cred->uid, f->op, cred->euid);
386 	case AUDIT_COMPARE_UID_TO_SUID:
387 		return audit_uid_comparator(cred->uid, f->op, cred->suid);
388 	case AUDIT_COMPARE_UID_TO_FSUID:
389 		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
390 	/* auid comparisons */
391 	case AUDIT_COMPARE_AUID_TO_EUID:
392 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
393 					    cred->euid);
394 	case AUDIT_COMPARE_AUID_TO_SUID:
395 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
396 					    cred->suid);
397 	case AUDIT_COMPARE_AUID_TO_FSUID:
398 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399 					    cred->fsuid);
400 	/* euid comparisons */
401 	case AUDIT_COMPARE_EUID_TO_SUID:
402 		return audit_uid_comparator(cred->euid, f->op, cred->suid);
403 	case AUDIT_COMPARE_EUID_TO_FSUID:
404 		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405 	/* suid comparisons */
406 	case AUDIT_COMPARE_SUID_TO_FSUID:
407 		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408 	/* gid comparisons */
409 	case AUDIT_COMPARE_GID_TO_EGID:
410 		return audit_gid_comparator(cred->gid, f->op, cred->egid);
411 	case AUDIT_COMPARE_GID_TO_SGID:
412 		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413 	case AUDIT_COMPARE_GID_TO_FSGID:
414 		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415 	/* egid comparisons */
416 	case AUDIT_COMPARE_EGID_TO_SGID:
417 		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418 	case AUDIT_COMPARE_EGID_TO_FSGID:
419 		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420 	/* sgid comparison */
421 	case AUDIT_COMPARE_SGID_TO_FSGID:
422 		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423 	default:
424 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
425 		return 0;
426 	}
427 	return 0;
428 }
429 
430 /* Determine if any context name data matches a rule's watch data */
431 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
432  * otherwise.
433  *
434  * If task_creation is true, this is an explicit indication that we are
435  * filtering a task rule at task creation time.  This and tsk == current are
436  * the only situations where tsk->cred may be accessed without an rcu read lock.
437  */
audit_filter_rules(struct task_struct * tsk,struct audit_krule * rule,struct audit_context * ctx,struct audit_names * name,enum audit_state * state,bool task_creation)438 static int audit_filter_rules(struct task_struct *tsk,
439 			      struct audit_krule *rule,
440 			      struct audit_context *ctx,
441 			      struct audit_names *name,
442 			      enum audit_state *state,
443 			      bool task_creation)
444 {
445 	const struct cred *cred;
446 	int i, need_sid = 1;
447 	u32 sid;
448 	unsigned int sessionid;
449 
450 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451 
452 	for (i = 0; i < rule->field_count; i++) {
453 		struct audit_field *f = &rule->fields[i];
454 		struct audit_names *n;
455 		int result = 0;
456 		pid_t pid;
457 
458 		switch (f->type) {
459 		case AUDIT_PID:
460 			pid = task_tgid_nr(tsk);
461 			result = audit_comparator(pid, f->op, f->val);
462 			break;
463 		case AUDIT_PPID:
464 			if (ctx) {
465 				if (!ctx->ppid)
466 					ctx->ppid = task_ppid_nr(tsk);
467 				result = audit_comparator(ctx->ppid, f->op, f->val);
468 			}
469 			break;
470 		case AUDIT_EXE:
471 			result = audit_exe_compare(tsk, rule->exe);
472 			if (f->op == Audit_not_equal)
473 				result = !result;
474 			break;
475 		case AUDIT_UID:
476 			result = audit_uid_comparator(cred->uid, f->op, f->uid);
477 			break;
478 		case AUDIT_EUID:
479 			result = audit_uid_comparator(cred->euid, f->op, f->uid);
480 			break;
481 		case AUDIT_SUID:
482 			result = audit_uid_comparator(cred->suid, f->op, f->uid);
483 			break;
484 		case AUDIT_FSUID:
485 			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
486 			break;
487 		case AUDIT_GID:
488 			result = audit_gid_comparator(cred->gid, f->op, f->gid);
489 			if (f->op == Audit_equal) {
490 				if (!result)
491 					result = groups_search(cred->group_info, f->gid);
492 			} else if (f->op == Audit_not_equal) {
493 				if (result)
494 					result = !groups_search(cred->group_info, f->gid);
495 			}
496 			break;
497 		case AUDIT_EGID:
498 			result = audit_gid_comparator(cred->egid, f->op, f->gid);
499 			if (f->op == Audit_equal) {
500 				if (!result)
501 					result = groups_search(cred->group_info, f->gid);
502 			} else if (f->op == Audit_not_equal) {
503 				if (result)
504 					result = !groups_search(cred->group_info, f->gid);
505 			}
506 			break;
507 		case AUDIT_SGID:
508 			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
509 			break;
510 		case AUDIT_FSGID:
511 			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
512 			break;
513 		case AUDIT_SESSIONID:
514 			sessionid = audit_get_sessionid(tsk);
515 			result = audit_comparator(sessionid, f->op, f->val);
516 			break;
517 		case AUDIT_PERS:
518 			result = audit_comparator(tsk->personality, f->op, f->val);
519 			break;
520 		case AUDIT_ARCH:
521 			if (ctx)
522 				result = audit_comparator(ctx->arch, f->op, f->val);
523 			break;
524 
525 		case AUDIT_EXIT:
526 			if (ctx && ctx->return_valid)
527 				result = audit_comparator(ctx->return_code, f->op, f->val);
528 			break;
529 		case AUDIT_SUCCESS:
530 			if (ctx && ctx->return_valid) {
531 				if (f->val)
532 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
533 				else
534 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
535 			}
536 			break;
537 		case AUDIT_DEVMAJOR:
538 			if (name) {
539 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 					++result;
542 			} else if (ctx) {
543 				list_for_each_entry(n, &ctx->names_list, list) {
544 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
546 						++result;
547 						break;
548 					}
549 				}
550 			}
551 			break;
552 		case AUDIT_DEVMINOR:
553 			if (name) {
554 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
556 					++result;
557 			} else if (ctx) {
558 				list_for_each_entry(n, &ctx->names_list, list) {
559 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
561 						++result;
562 						break;
563 					}
564 				}
565 			}
566 			break;
567 		case AUDIT_INODE:
568 			if (name)
569 				result = audit_comparator(name->ino, f->op, f->val);
570 			else if (ctx) {
571 				list_for_each_entry(n, &ctx->names_list, list) {
572 					if (audit_comparator(n->ino, f->op, f->val)) {
573 						++result;
574 						break;
575 					}
576 				}
577 			}
578 			break;
579 		case AUDIT_OBJ_UID:
580 			if (name) {
581 				result = audit_uid_comparator(name->uid, f->op, f->uid);
582 			} else if (ctx) {
583 				list_for_each_entry(n, &ctx->names_list, list) {
584 					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
585 						++result;
586 						break;
587 					}
588 				}
589 			}
590 			break;
591 		case AUDIT_OBJ_GID:
592 			if (name) {
593 				result = audit_gid_comparator(name->gid, f->op, f->gid);
594 			} else if (ctx) {
595 				list_for_each_entry(n, &ctx->names_list, list) {
596 					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
597 						++result;
598 						break;
599 					}
600 				}
601 			}
602 			break;
603 		case AUDIT_WATCH:
604 			if (name) {
605 				result = audit_watch_compare(rule->watch,
606 							     name->ino,
607 							     name->dev);
608 				if (f->op == Audit_not_equal)
609 					result = !result;
610 			}
611 			break;
612 		case AUDIT_DIR:
613 			if (ctx) {
614 				result = match_tree_refs(ctx, rule->tree);
615 				if (f->op == Audit_not_equal)
616 					result = !result;
617 			}
618 			break;
619 		case AUDIT_LOGINUID:
620 			result = audit_uid_comparator(audit_get_loginuid(tsk),
621 						      f->op, f->uid);
622 			break;
623 		case AUDIT_LOGINUID_SET:
624 			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
625 			break;
626 		case AUDIT_SADDR_FAM:
627 			if (ctx && ctx->sockaddr)
628 				result = audit_comparator(ctx->sockaddr->ss_family,
629 							  f->op, f->val);
630 			break;
631 		case AUDIT_SUBJ_USER:
632 		case AUDIT_SUBJ_ROLE:
633 		case AUDIT_SUBJ_TYPE:
634 		case AUDIT_SUBJ_SEN:
635 		case AUDIT_SUBJ_CLR:
636 			/* NOTE: this may return negative values indicating
637 			   a temporary error.  We simply treat this as a
638 			   match for now to avoid losing information that
639 			   may be wanted.   An error message will also be
640 			   logged upon error */
641 			if (f->lsm_rule) {
642 				if (need_sid) {
643 					security_task_getsecid(tsk, &sid);
644 					need_sid = 0;
645 				}
646 				result = security_audit_rule_match(sid, f->type,
647 								   f->op,
648 								   f->lsm_rule);
649 			}
650 			break;
651 		case AUDIT_OBJ_USER:
652 		case AUDIT_OBJ_ROLE:
653 		case AUDIT_OBJ_TYPE:
654 		case AUDIT_OBJ_LEV_LOW:
655 		case AUDIT_OBJ_LEV_HIGH:
656 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
657 			   also applies here */
658 			if (f->lsm_rule) {
659 				/* Find files that match */
660 				if (name) {
661 					result = security_audit_rule_match(
662 								name->osid,
663 								f->type,
664 								f->op,
665 								f->lsm_rule);
666 				} else if (ctx) {
667 					list_for_each_entry(n, &ctx->names_list, list) {
668 						if (security_audit_rule_match(
669 								n->osid,
670 								f->type,
671 								f->op,
672 								f->lsm_rule)) {
673 							++result;
674 							break;
675 						}
676 					}
677 				}
678 				/* Find ipc objects that match */
679 				if (!ctx || ctx->type != AUDIT_IPC)
680 					break;
681 				if (security_audit_rule_match(ctx->ipc.osid,
682 							      f->type, f->op,
683 							      f->lsm_rule))
684 					++result;
685 			}
686 			break;
687 		case AUDIT_ARG0:
688 		case AUDIT_ARG1:
689 		case AUDIT_ARG2:
690 		case AUDIT_ARG3:
691 			if (ctx)
692 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
693 			break;
694 		case AUDIT_FILTERKEY:
695 			/* ignore this field for filtering */
696 			result = 1;
697 			break;
698 		case AUDIT_PERM:
699 			result = audit_match_perm(ctx, f->val);
700 			if (f->op == Audit_not_equal)
701 				result = !result;
702 			break;
703 		case AUDIT_FILETYPE:
704 			result = audit_match_filetype(ctx, f->val);
705 			if (f->op == Audit_not_equal)
706 				result = !result;
707 			break;
708 		case AUDIT_FIELD_COMPARE:
709 			result = audit_field_compare(tsk, cred, f, ctx, name);
710 			break;
711 		}
712 		if (!result)
713 			return 0;
714 	}
715 
716 	if (ctx) {
717 		if (rule->prio <= ctx->prio)
718 			return 0;
719 		if (rule->filterkey) {
720 			kfree(ctx->filterkey);
721 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
722 		}
723 		ctx->prio = rule->prio;
724 	}
725 	switch (rule->action) {
726 	case AUDIT_NEVER:
727 		*state = AUDIT_DISABLED;
728 		break;
729 	case AUDIT_ALWAYS:
730 		*state = AUDIT_RECORD_CONTEXT;
731 		break;
732 	}
733 	return 1;
734 }
735 
736 /* At process creation time, we can determine if system-call auditing is
737  * completely disabled for this task.  Since we only have the task
738  * structure at this point, we can only check uid and gid.
739  */
audit_filter_task(struct task_struct * tsk,char ** key)740 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
741 {
742 	struct audit_entry *e;
743 	enum audit_state   state;
744 
745 	rcu_read_lock();
746 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
747 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
748 				       &state, true)) {
749 			if (state == AUDIT_RECORD_CONTEXT)
750 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
751 			rcu_read_unlock();
752 			return state;
753 		}
754 	}
755 	rcu_read_unlock();
756 	return AUDIT_BUILD_CONTEXT;
757 }
758 
audit_in_mask(const struct audit_krule * rule,unsigned long val)759 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
760 {
761 	int word, bit;
762 
763 	if (val > 0xffffffff)
764 		return false;
765 
766 	word = AUDIT_WORD(val);
767 	if (word >= AUDIT_BITMASK_SIZE)
768 		return false;
769 
770 	bit = AUDIT_BIT(val);
771 
772 	return rule->mask[word] & bit;
773 }
774 
775 /* At syscall entry and exit time, this filter is called if the
776  * audit_state is not low enough that auditing cannot take place, but is
777  * also not high enough that we already know we have to write an audit
778  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
779  */
audit_filter_syscall(struct task_struct * tsk,struct audit_context * ctx,struct list_head * list)780 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
781 					     struct audit_context *ctx,
782 					     struct list_head *list)
783 {
784 	struct audit_entry *e;
785 	enum audit_state state;
786 
787 	if (auditd_test_task(tsk))
788 		return AUDIT_DISABLED;
789 
790 	rcu_read_lock();
791 	list_for_each_entry_rcu(e, list, list) {
792 		if (audit_in_mask(&e->rule, ctx->major) &&
793 		    audit_filter_rules(tsk, &e->rule, ctx, NULL,
794 				       &state, false)) {
795 			rcu_read_unlock();
796 			ctx->current_state = state;
797 			return state;
798 		}
799 	}
800 	rcu_read_unlock();
801 	return AUDIT_BUILD_CONTEXT;
802 }
803 
804 /*
805  * Given an audit_name check the inode hash table to see if they match.
806  * Called holding the rcu read lock to protect the use of audit_inode_hash
807  */
audit_filter_inode_name(struct task_struct * tsk,struct audit_names * n,struct audit_context * ctx)808 static int audit_filter_inode_name(struct task_struct *tsk,
809 				   struct audit_names *n,
810 				   struct audit_context *ctx) {
811 	int h = audit_hash_ino((u32)n->ino);
812 	struct list_head *list = &audit_inode_hash[h];
813 	struct audit_entry *e;
814 	enum audit_state state;
815 
816 	list_for_each_entry_rcu(e, list, list) {
817 		if (audit_in_mask(&e->rule, ctx->major) &&
818 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
819 			ctx->current_state = state;
820 			return 1;
821 		}
822 	}
823 	return 0;
824 }
825 
826 /* At syscall exit time, this filter is called if any audit_names have been
827  * collected during syscall processing.  We only check rules in sublists at hash
828  * buckets applicable to the inode numbers in audit_names.
829  * Regarding audit_state, same rules apply as for audit_filter_syscall().
830  */
audit_filter_inodes(struct task_struct * tsk,struct audit_context * ctx)831 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
832 {
833 	struct audit_names *n;
834 
835 	if (auditd_test_task(tsk))
836 		return;
837 
838 	rcu_read_lock();
839 
840 	list_for_each_entry(n, &ctx->names_list, list) {
841 		if (audit_filter_inode_name(tsk, n, ctx))
842 			break;
843 	}
844 	rcu_read_unlock();
845 }
846 
audit_proctitle_free(struct audit_context * context)847 static inline void audit_proctitle_free(struct audit_context *context)
848 {
849 	kfree(context->proctitle.value);
850 	context->proctitle.value = NULL;
851 	context->proctitle.len = 0;
852 }
853 
audit_free_module(struct audit_context * context)854 static inline void audit_free_module(struct audit_context *context)
855 {
856 	if (context->type == AUDIT_KERN_MODULE) {
857 		kfree(context->module.name);
858 		context->module.name = NULL;
859 	}
860 }
audit_free_names(struct audit_context * context)861 static inline void audit_free_names(struct audit_context *context)
862 {
863 	struct audit_names *n, *next;
864 
865 	list_for_each_entry_safe(n, next, &context->names_list, list) {
866 		list_del(&n->list);
867 		if (n->name)
868 			putname(n->name);
869 		if (n->should_free)
870 			kfree(n);
871 	}
872 	context->name_count = 0;
873 	path_put(&context->pwd);
874 	context->pwd.dentry = NULL;
875 	context->pwd.mnt = NULL;
876 }
877 
audit_free_aux(struct audit_context * context)878 static inline void audit_free_aux(struct audit_context *context)
879 {
880 	struct audit_aux_data *aux;
881 
882 	while ((aux = context->aux)) {
883 		context->aux = aux->next;
884 		kfree(aux);
885 	}
886 	while ((aux = context->aux_pids)) {
887 		context->aux_pids = aux->next;
888 		kfree(aux);
889 	}
890 }
891 
audit_alloc_context(enum audit_state state)892 static inline struct audit_context *audit_alloc_context(enum audit_state state)
893 {
894 	struct audit_context *context;
895 
896 	context = kzalloc(sizeof(*context), GFP_KERNEL);
897 	if (!context)
898 		return NULL;
899 	context->state = state;
900 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
901 	INIT_LIST_HEAD(&context->killed_trees);
902 	INIT_LIST_HEAD(&context->names_list);
903 	return context;
904 }
905 
906 /**
907  * audit_alloc - allocate an audit context block for a task
908  * @tsk: task
909  *
910  * Filter on the task information and allocate a per-task audit context
911  * if necessary.  Doing so turns on system call auditing for the
912  * specified task.  This is called from copy_process, so no lock is
913  * needed.
914  */
audit_alloc(struct task_struct * tsk)915 int audit_alloc(struct task_struct *tsk)
916 {
917 	struct audit_context *context;
918 	enum audit_state     state;
919 	char *key = NULL;
920 
921 	if (likely(!audit_ever_enabled))
922 		return 0; /* Return if not auditing. */
923 
924 	state = audit_filter_task(tsk, &key);
925 	if (state == AUDIT_DISABLED) {
926 		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
927 		return 0;
928 	}
929 
930 	if (!(context = audit_alloc_context(state))) {
931 		kfree(key);
932 		audit_log_lost("out of memory in audit_alloc");
933 		return -ENOMEM;
934 	}
935 	context->filterkey = key;
936 
937 	audit_set_context(tsk, context);
938 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
939 	return 0;
940 }
941 
audit_free_context(struct audit_context * context)942 static inline void audit_free_context(struct audit_context *context)
943 {
944 	audit_free_module(context);
945 	audit_free_names(context);
946 	unroll_tree_refs(context, NULL, 0);
947 	free_tree_refs(context);
948 	audit_free_aux(context);
949 	kfree(context->filterkey);
950 	kfree(context->sockaddr);
951 	audit_proctitle_free(context);
952 	kfree(context);
953 }
954 
audit_log_pid_context(struct audit_context * context,pid_t pid,kuid_t auid,kuid_t uid,unsigned int sessionid,u32 sid,char * comm)955 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
956 				 kuid_t auid, kuid_t uid, unsigned int sessionid,
957 				 u32 sid, char *comm)
958 {
959 	struct audit_buffer *ab;
960 	char *ctx = NULL;
961 	u32 len;
962 	int rc = 0;
963 
964 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
965 	if (!ab)
966 		return rc;
967 
968 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
969 			 from_kuid(&init_user_ns, auid),
970 			 from_kuid(&init_user_ns, uid), sessionid);
971 	if (sid) {
972 		if (security_secid_to_secctx(sid, &ctx, &len)) {
973 			audit_log_format(ab, " obj=(none)");
974 			rc = 1;
975 		} else {
976 			audit_log_format(ab, " obj=%s", ctx);
977 			security_release_secctx(ctx, len);
978 		}
979 	}
980 	audit_log_format(ab, " ocomm=");
981 	audit_log_untrustedstring(ab, comm);
982 	audit_log_end(ab);
983 
984 	return rc;
985 }
986 
audit_log_execve_info(struct audit_context * context,struct audit_buffer ** ab)987 static void audit_log_execve_info(struct audit_context *context,
988 				  struct audit_buffer **ab)
989 {
990 	long len_max;
991 	long len_rem;
992 	long len_full;
993 	long len_buf;
994 	long len_abuf = 0;
995 	long len_tmp;
996 	bool require_data;
997 	bool encode;
998 	unsigned int iter;
999 	unsigned int arg;
1000 	char *buf_head;
1001 	char *buf;
1002 	const char __user *p = (const char __user *)current->mm->arg_start;
1003 
1004 	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1005 	 *       data we put in the audit record for this argument (see the
1006 	 *       code below) ... at this point in time 96 is plenty */
1007 	char abuf[96];
1008 
1009 	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1010 	 *       current value of 7500 is not as important as the fact that it
1011 	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1012 	 *       room if we go over a little bit in the logging below */
1013 	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1014 	len_max = MAX_EXECVE_AUDIT_LEN;
1015 
1016 	/* scratch buffer to hold the userspace args */
1017 	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1018 	if (!buf_head) {
1019 		audit_panic("out of memory for argv string");
1020 		return;
1021 	}
1022 	buf = buf_head;
1023 
1024 	audit_log_format(*ab, "argc=%d", context->execve.argc);
1025 
1026 	len_rem = len_max;
1027 	len_buf = 0;
1028 	len_full = 0;
1029 	require_data = true;
1030 	encode = false;
1031 	iter = 0;
1032 	arg = 0;
1033 	do {
1034 		/* NOTE: we don't ever want to trust this value for anything
1035 		 *       serious, but the audit record format insists we
1036 		 *       provide an argument length for really long arguments,
1037 		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1038 		 *       to use strncpy_from_user() to obtain this value for
1039 		 *       recording in the log, although we don't use it
1040 		 *       anywhere here to avoid a double-fetch problem */
1041 		if (len_full == 0)
1042 			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1043 
1044 		/* read more data from userspace */
1045 		if (require_data) {
1046 			/* can we make more room in the buffer? */
1047 			if (buf != buf_head) {
1048 				memmove(buf_head, buf, len_buf);
1049 				buf = buf_head;
1050 			}
1051 
1052 			/* fetch as much as we can of the argument */
1053 			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1054 						    len_max - len_buf);
1055 			if (len_tmp == -EFAULT) {
1056 				/* unable to copy from userspace */
1057 				send_sig(SIGKILL, current, 0);
1058 				goto out;
1059 			} else if (len_tmp == (len_max - len_buf)) {
1060 				/* buffer is not large enough */
1061 				require_data = true;
1062 				/* NOTE: if we are going to span multiple
1063 				 *       buffers force the encoding so we stand
1064 				 *       a chance at a sane len_full value and
1065 				 *       consistent record encoding */
1066 				encode = true;
1067 				len_full = len_full * 2;
1068 				p += len_tmp;
1069 			} else {
1070 				require_data = false;
1071 				if (!encode)
1072 					encode = audit_string_contains_control(
1073 								buf, len_tmp);
1074 				/* try to use a trusted value for len_full */
1075 				if (len_full < len_max)
1076 					len_full = (encode ?
1077 						    len_tmp * 2 : len_tmp);
1078 				p += len_tmp + 1;
1079 			}
1080 			len_buf += len_tmp;
1081 			buf_head[len_buf] = '\0';
1082 
1083 			/* length of the buffer in the audit record? */
1084 			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1085 		}
1086 
1087 		/* write as much as we can to the audit log */
1088 		if (len_buf >= 0) {
1089 			/* NOTE: some magic numbers here - basically if we
1090 			 *       can't fit a reasonable amount of data into the
1091 			 *       existing audit buffer, flush it and start with
1092 			 *       a new buffer */
1093 			if ((sizeof(abuf) + 8) > len_rem) {
1094 				len_rem = len_max;
1095 				audit_log_end(*ab);
1096 				*ab = audit_log_start(context,
1097 						      GFP_KERNEL, AUDIT_EXECVE);
1098 				if (!*ab)
1099 					goto out;
1100 			}
1101 
1102 			/* create the non-arg portion of the arg record */
1103 			len_tmp = 0;
1104 			if (require_data || (iter > 0) ||
1105 			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1106 				if (iter == 0) {
1107 					len_tmp += snprintf(&abuf[len_tmp],
1108 							sizeof(abuf) - len_tmp,
1109 							" a%d_len=%lu",
1110 							arg, len_full);
1111 				}
1112 				len_tmp += snprintf(&abuf[len_tmp],
1113 						    sizeof(abuf) - len_tmp,
1114 						    " a%d[%d]=", arg, iter++);
1115 			} else
1116 				len_tmp += snprintf(&abuf[len_tmp],
1117 						    sizeof(abuf) - len_tmp,
1118 						    " a%d=", arg);
1119 			WARN_ON(len_tmp >= sizeof(abuf));
1120 			abuf[sizeof(abuf) - 1] = '\0';
1121 
1122 			/* log the arg in the audit record */
1123 			audit_log_format(*ab, "%s", abuf);
1124 			len_rem -= len_tmp;
1125 			len_tmp = len_buf;
1126 			if (encode) {
1127 				if (len_abuf > len_rem)
1128 					len_tmp = len_rem / 2; /* encoding */
1129 				audit_log_n_hex(*ab, buf, len_tmp);
1130 				len_rem -= len_tmp * 2;
1131 				len_abuf -= len_tmp * 2;
1132 			} else {
1133 				if (len_abuf > len_rem)
1134 					len_tmp = len_rem - 2; /* quotes */
1135 				audit_log_n_string(*ab, buf, len_tmp);
1136 				len_rem -= len_tmp + 2;
1137 				/* don't subtract the "2" because we still need
1138 				 * to add quotes to the remaining string */
1139 				len_abuf -= len_tmp;
1140 			}
1141 			len_buf -= len_tmp;
1142 			buf += len_tmp;
1143 		}
1144 
1145 		/* ready to move to the next argument? */
1146 		if ((len_buf == 0) && !require_data) {
1147 			arg++;
1148 			iter = 0;
1149 			len_full = 0;
1150 			require_data = true;
1151 			encode = false;
1152 		}
1153 	} while (arg < context->execve.argc);
1154 
1155 	/* NOTE: the caller handles the final audit_log_end() call */
1156 
1157 out:
1158 	kfree(buf_head);
1159 }
1160 
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)1161 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1162 			  kernel_cap_t *cap)
1163 {
1164 	int i;
1165 
1166 	if (cap_isclear(*cap)) {
1167 		audit_log_format(ab, " %s=0", prefix);
1168 		return;
1169 	}
1170 	audit_log_format(ab, " %s=", prefix);
1171 	CAP_FOR_EACH_U32(i)
1172 		audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1173 }
1174 
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)1175 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1176 {
1177 	if (name->fcap_ver == -1) {
1178 		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1179 		return;
1180 	}
1181 	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1182 	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1183 	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1184 			 name->fcap.fE, name->fcap_ver,
1185 			 from_kuid(&init_user_ns, name->fcap.rootid));
1186 }
1187 
audit_log_time(struct audit_context * context,struct audit_buffer ** ab)1188 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1189 {
1190 	const struct audit_ntp_data *ntp = &context->time.ntp_data;
1191 	const struct timespec64 *tk = &context->time.tk_injoffset;
1192 	static const char * const ntp_name[] = {
1193 		"offset",
1194 		"freq",
1195 		"status",
1196 		"tai",
1197 		"tick",
1198 		"adjust",
1199 	};
1200 	int type;
1201 
1202 	if (context->type == AUDIT_TIME_ADJNTPVAL) {
1203 		for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1204 			if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1205 				if (!*ab) {
1206 					*ab = audit_log_start(context,
1207 							GFP_KERNEL,
1208 							AUDIT_TIME_ADJNTPVAL);
1209 					if (!*ab)
1210 						return;
1211 				}
1212 				audit_log_format(*ab, "op=%s old=%lli new=%lli",
1213 						 ntp_name[type],
1214 						 ntp->vals[type].oldval,
1215 						 ntp->vals[type].newval);
1216 				audit_log_end(*ab);
1217 				*ab = NULL;
1218 			}
1219 		}
1220 	}
1221 	if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1222 		if (!*ab) {
1223 			*ab = audit_log_start(context, GFP_KERNEL,
1224 					      AUDIT_TIME_INJOFFSET);
1225 			if (!*ab)
1226 				return;
1227 		}
1228 		audit_log_format(*ab, "sec=%lli nsec=%li",
1229 				 (long long)tk->tv_sec, tk->tv_nsec);
1230 		audit_log_end(*ab);
1231 		*ab = NULL;
1232 	}
1233 }
1234 
show_special(struct audit_context * context,int * call_panic)1235 static void show_special(struct audit_context *context, int *call_panic)
1236 {
1237 	struct audit_buffer *ab;
1238 	int i;
1239 
1240 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1241 	if (!ab)
1242 		return;
1243 
1244 	switch (context->type) {
1245 	case AUDIT_SOCKETCALL: {
1246 		int nargs = context->socketcall.nargs;
1247 		audit_log_format(ab, "nargs=%d", nargs);
1248 		for (i = 0; i < nargs; i++)
1249 			audit_log_format(ab, " a%d=%lx", i,
1250 				context->socketcall.args[i]);
1251 		break; }
1252 	case AUDIT_IPC: {
1253 		u32 osid = context->ipc.osid;
1254 
1255 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1256 				 from_kuid(&init_user_ns, context->ipc.uid),
1257 				 from_kgid(&init_user_ns, context->ipc.gid),
1258 				 context->ipc.mode);
1259 		if (osid) {
1260 			char *ctx = NULL;
1261 			u32 len;
1262 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1263 				audit_log_format(ab, " osid=%u", osid);
1264 				*call_panic = 1;
1265 			} else {
1266 				audit_log_format(ab, " obj=%s", ctx);
1267 				security_release_secctx(ctx, len);
1268 			}
1269 		}
1270 		if (context->ipc.has_perm) {
1271 			audit_log_end(ab);
1272 			ab = audit_log_start(context, GFP_KERNEL,
1273 					     AUDIT_IPC_SET_PERM);
1274 			if (unlikely(!ab))
1275 				return;
1276 			audit_log_format(ab,
1277 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1278 				context->ipc.qbytes,
1279 				context->ipc.perm_uid,
1280 				context->ipc.perm_gid,
1281 				context->ipc.perm_mode);
1282 		}
1283 		break; }
1284 	case AUDIT_MQ_OPEN:
1285 		audit_log_format(ab,
1286 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1287 			"mq_msgsize=%ld mq_curmsgs=%ld",
1288 			context->mq_open.oflag, context->mq_open.mode,
1289 			context->mq_open.attr.mq_flags,
1290 			context->mq_open.attr.mq_maxmsg,
1291 			context->mq_open.attr.mq_msgsize,
1292 			context->mq_open.attr.mq_curmsgs);
1293 		break;
1294 	case AUDIT_MQ_SENDRECV:
1295 		audit_log_format(ab,
1296 			"mqdes=%d msg_len=%zd msg_prio=%u "
1297 			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1298 			context->mq_sendrecv.mqdes,
1299 			context->mq_sendrecv.msg_len,
1300 			context->mq_sendrecv.msg_prio,
1301 			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1302 			context->mq_sendrecv.abs_timeout.tv_nsec);
1303 		break;
1304 	case AUDIT_MQ_NOTIFY:
1305 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1306 				context->mq_notify.mqdes,
1307 				context->mq_notify.sigev_signo);
1308 		break;
1309 	case AUDIT_MQ_GETSETATTR: {
1310 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1311 		audit_log_format(ab,
1312 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1313 			"mq_curmsgs=%ld ",
1314 			context->mq_getsetattr.mqdes,
1315 			attr->mq_flags, attr->mq_maxmsg,
1316 			attr->mq_msgsize, attr->mq_curmsgs);
1317 		break; }
1318 	case AUDIT_CAPSET:
1319 		audit_log_format(ab, "pid=%d", context->capset.pid);
1320 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1321 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1322 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1323 		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1324 		break;
1325 	case AUDIT_MMAP:
1326 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1327 				 context->mmap.flags);
1328 		break;
1329 	case AUDIT_EXECVE:
1330 		audit_log_execve_info(context, &ab);
1331 		break;
1332 	case AUDIT_KERN_MODULE:
1333 		audit_log_format(ab, "name=");
1334 		if (context->module.name) {
1335 			audit_log_untrustedstring(ab, context->module.name);
1336 		} else
1337 			audit_log_format(ab, "(null)");
1338 
1339 		break;
1340 	case AUDIT_TIME_ADJNTPVAL:
1341 	case AUDIT_TIME_INJOFFSET:
1342 		/* this call deviates from the rest, eating the buffer */
1343 		audit_log_time(context, &ab);
1344 		break;
1345 	}
1346 	audit_log_end(ab);
1347 }
1348 
audit_proctitle_rtrim(char * proctitle,int len)1349 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1350 {
1351 	char *end = proctitle + len - 1;
1352 	while (end > proctitle && !isprint(*end))
1353 		end--;
1354 
1355 	/* catch the case where proctitle is only 1 non-print character */
1356 	len = end - proctitle + 1;
1357 	len -= isprint(proctitle[len-1]) == 0;
1358 	return len;
1359 }
1360 
1361 /*
1362  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1363  * @context: audit_context for the task
1364  * @n: audit_names structure with reportable details
1365  * @path: optional path to report instead of audit_names->name
1366  * @record_num: record number to report when handling a list of names
1367  * @call_panic: optional pointer to int that will be updated if secid fails
1368  */
audit_log_name(struct audit_context * context,struct audit_names * n,const struct path * path,int record_num,int * call_panic)1369 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1370 		    const struct path *path, int record_num, int *call_panic)
1371 {
1372 	struct audit_buffer *ab;
1373 
1374 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1375 	if (!ab)
1376 		return;
1377 
1378 	audit_log_format(ab, "item=%d", record_num);
1379 
1380 	if (path)
1381 		audit_log_d_path(ab, " name=", path);
1382 	else if (n->name) {
1383 		switch (n->name_len) {
1384 		case AUDIT_NAME_FULL:
1385 			/* log the full path */
1386 			audit_log_format(ab, " name=");
1387 			audit_log_untrustedstring(ab, n->name->name);
1388 			break;
1389 		case 0:
1390 			/* name was specified as a relative path and the
1391 			 * directory component is the cwd
1392 			 */
1393 			audit_log_d_path(ab, " name=", &context->pwd);
1394 			break;
1395 		default:
1396 			/* log the name's directory component */
1397 			audit_log_format(ab, " name=");
1398 			audit_log_n_untrustedstring(ab, n->name->name,
1399 						    n->name_len);
1400 		}
1401 	} else
1402 		audit_log_format(ab, " name=(null)");
1403 
1404 	if (n->ino != AUDIT_INO_UNSET)
1405 		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1406 				 n->ino,
1407 				 MAJOR(n->dev),
1408 				 MINOR(n->dev),
1409 				 n->mode,
1410 				 from_kuid(&init_user_ns, n->uid),
1411 				 from_kgid(&init_user_ns, n->gid),
1412 				 MAJOR(n->rdev),
1413 				 MINOR(n->rdev));
1414 	if (n->osid != 0) {
1415 		char *ctx = NULL;
1416 		u32 len;
1417 
1418 		if (security_secid_to_secctx(
1419 			n->osid, &ctx, &len)) {
1420 			audit_log_format(ab, " osid=%u", n->osid);
1421 			if (call_panic)
1422 				*call_panic = 2;
1423 		} else {
1424 			audit_log_format(ab, " obj=%s", ctx);
1425 			security_release_secctx(ctx, len);
1426 		}
1427 	}
1428 
1429 	/* log the audit_names record type */
1430 	switch (n->type) {
1431 	case AUDIT_TYPE_NORMAL:
1432 		audit_log_format(ab, " nametype=NORMAL");
1433 		break;
1434 	case AUDIT_TYPE_PARENT:
1435 		audit_log_format(ab, " nametype=PARENT");
1436 		break;
1437 	case AUDIT_TYPE_CHILD_DELETE:
1438 		audit_log_format(ab, " nametype=DELETE");
1439 		break;
1440 	case AUDIT_TYPE_CHILD_CREATE:
1441 		audit_log_format(ab, " nametype=CREATE");
1442 		break;
1443 	default:
1444 		audit_log_format(ab, " nametype=UNKNOWN");
1445 		break;
1446 	}
1447 
1448 	audit_log_fcaps(ab, n);
1449 	audit_log_end(ab);
1450 }
1451 
audit_log_proctitle(void)1452 static void audit_log_proctitle(void)
1453 {
1454 	int res;
1455 	char *buf;
1456 	char *msg = "(null)";
1457 	int len = strlen(msg);
1458 	struct audit_context *context = audit_context();
1459 	struct audit_buffer *ab;
1460 
1461 	if (!context || context->dummy)
1462 		return;
1463 
1464 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1465 	if (!ab)
1466 		return;	/* audit_panic or being filtered */
1467 
1468 	audit_log_format(ab, "proctitle=");
1469 
1470 	/* Not  cached */
1471 	if (!context->proctitle.value) {
1472 		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1473 		if (!buf)
1474 			goto out;
1475 		/* Historically called this from procfs naming */
1476 		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1477 		if (res == 0) {
1478 			kfree(buf);
1479 			goto out;
1480 		}
1481 		res = audit_proctitle_rtrim(buf, res);
1482 		if (res == 0) {
1483 			kfree(buf);
1484 			goto out;
1485 		}
1486 		context->proctitle.value = buf;
1487 		context->proctitle.len = res;
1488 	}
1489 	msg = context->proctitle.value;
1490 	len = context->proctitle.len;
1491 out:
1492 	audit_log_n_untrustedstring(ab, msg, len);
1493 	audit_log_end(ab);
1494 }
1495 
audit_log_exit(void)1496 static void audit_log_exit(void)
1497 {
1498 	int i, call_panic = 0;
1499 	struct audit_context *context = audit_context();
1500 	struct audit_buffer *ab;
1501 	struct audit_aux_data *aux;
1502 	struct audit_names *n;
1503 
1504 	context->personality = current->personality;
1505 
1506 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1507 	if (!ab)
1508 		return;		/* audit_panic has been called */
1509 	audit_log_format(ab, "arch=%x syscall=%d",
1510 			 context->arch, context->major);
1511 	if (context->personality != PER_LINUX)
1512 		audit_log_format(ab, " per=%lx", context->personality);
1513 	if (context->return_valid)
1514 		audit_log_format(ab, " success=%s exit=%ld",
1515 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1516 				 context->return_code);
1517 
1518 	audit_log_format(ab,
1519 			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1520 			 context->argv[0],
1521 			 context->argv[1],
1522 			 context->argv[2],
1523 			 context->argv[3],
1524 			 context->name_count);
1525 
1526 	audit_log_task_info(ab);
1527 	audit_log_key(ab, context->filterkey);
1528 	audit_log_end(ab);
1529 
1530 	for (aux = context->aux; aux; aux = aux->next) {
1531 
1532 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1533 		if (!ab)
1534 			continue; /* audit_panic has been called */
1535 
1536 		switch (aux->type) {
1537 
1538 		case AUDIT_BPRM_FCAPS: {
1539 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1540 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1541 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1542 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1543 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1544 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1545 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1546 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1547 			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1548 			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1549 			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1550 			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1551 			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1552 			audit_log_format(ab, " frootid=%d",
1553 					 from_kuid(&init_user_ns,
1554 						   axs->fcap.rootid));
1555 			break; }
1556 
1557 		}
1558 		audit_log_end(ab);
1559 	}
1560 
1561 	if (context->type)
1562 		show_special(context, &call_panic);
1563 
1564 	if (context->fds[0] >= 0) {
1565 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1566 		if (ab) {
1567 			audit_log_format(ab, "fd0=%d fd1=%d",
1568 					context->fds[0], context->fds[1]);
1569 			audit_log_end(ab);
1570 		}
1571 	}
1572 
1573 	if (context->sockaddr_len) {
1574 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1575 		if (ab) {
1576 			audit_log_format(ab, "saddr=");
1577 			audit_log_n_hex(ab, (void *)context->sockaddr,
1578 					context->sockaddr_len);
1579 			audit_log_end(ab);
1580 		}
1581 	}
1582 
1583 	for (aux = context->aux_pids; aux; aux = aux->next) {
1584 		struct audit_aux_data_pids *axs = (void *)aux;
1585 
1586 		for (i = 0; i < axs->pid_count; i++)
1587 			if (audit_log_pid_context(context, axs->target_pid[i],
1588 						  axs->target_auid[i],
1589 						  axs->target_uid[i],
1590 						  axs->target_sessionid[i],
1591 						  axs->target_sid[i],
1592 						  axs->target_comm[i]))
1593 				call_panic = 1;
1594 	}
1595 
1596 	if (context->target_pid &&
1597 	    audit_log_pid_context(context, context->target_pid,
1598 				  context->target_auid, context->target_uid,
1599 				  context->target_sessionid,
1600 				  context->target_sid, context->target_comm))
1601 			call_panic = 1;
1602 
1603 	if (context->pwd.dentry && context->pwd.mnt) {
1604 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1605 		if (ab) {
1606 			audit_log_d_path(ab, "cwd=", &context->pwd);
1607 			audit_log_end(ab);
1608 		}
1609 	}
1610 
1611 	i = 0;
1612 	list_for_each_entry(n, &context->names_list, list) {
1613 		if (n->hidden)
1614 			continue;
1615 		audit_log_name(context, n, NULL, i++, &call_panic);
1616 	}
1617 
1618 	audit_log_proctitle();
1619 
1620 	/* Send end of event record to help user space know we are finished */
1621 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1622 	if (ab)
1623 		audit_log_end(ab);
1624 	if (call_panic)
1625 		audit_panic("error converting sid to string");
1626 }
1627 
1628 /**
1629  * __audit_free - free a per-task audit context
1630  * @tsk: task whose audit context block to free
1631  *
1632  * Called from copy_process and do_exit
1633  */
__audit_free(struct task_struct * tsk)1634 void __audit_free(struct task_struct *tsk)
1635 {
1636 	struct audit_context *context = tsk->audit_context;
1637 
1638 	if (!context)
1639 		return;
1640 
1641 	if (!list_empty(&context->killed_trees))
1642 		audit_kill_trees(context);
1643 
1644 	/* We are called either by do_exit() or the fork() error handling code;
1645 	 * in the former case tsk == current and in the latter tsk is a
1646 	 * random task_struct that doesn't doesn't have any meaningful data we
1647 	 * need to log via audit_log_exit().
1648 	 */
1649 	if (tsk == current && !context->dummy && context->in_syscall) {
1650 		context->return_valid = 0;
1651 		context->return_code = 0;
1652 
1653 		audit_filter_syscall(tsk, context,
1654 				     &audit_filter_list[AUDIT_FILTER_EXIT]);
1655 		audit_filter_inodes(tsk, context);
1656 		if (context->current_state == AUDIT_RECORD_CONTEXT)
1657 			audit_log_exit();
1658 	}
1659 
1660 	audit_set_context(tsk, NULL);
1661 	audit_free_context(context);
1662 }
1663 
1664 /**
1665  * __audit_syscall_entry - fill in an audit record at syscall entry
1666  * @major: major syscall type (function)
1667  * @a1: additional syscall register 1
1668  * @a2: additional syscall register 2
1669  * @a3: additional syscall register 3
1670  * @a4: additional syscall register 4
1671  *
1672  * Fill in audit context at syscall entry.  This only happens if the
1673  * audit context was created when the task was created and the state or
1674  * filters demand the audit context be built.  If the state from the
1675  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1676  * then the record will be written at syscall exit time (otherwise, it
1677  * will only be written if another part of the kernel requests that it
1678  * be written).
1679  */
__audit_syscall_entry(int major,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4)1680 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1681 			   unsigned long a3, unsigned long a4)
1682 {
1683 	struct audit_context *context = audit_context();
1684 	enum audit_state     state;
1685 
1686 	if (!audit_enabled || !context)
1687 		return;
1688 
1689 	BUG_ON(context->in_syscall || context->name_count);
1690 
1691 	state = context->state;
1692 	if (state == AUDIT_DISABLED)
1693 		return;
1694 
1695 	context->dummy = !audit_n_rules;
1696 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1697 		context->prio = 0;
1698 		if (auditd_test_task(current))
1699 			return;
1700 	}
1701 
1702 	context->arch	    = syscall_get_arch(current);
1703 	context->major      = major;
1704 	context->argv[0]    = a1;
1705 	context->argv[1]    = a2;
1706 	context->argv[2]    = a3;
1707 	context->argv[3]    = a4;
1708 	context->serial     = 0;
1709 	context->in_syscall = 1;
1710 	context->current_state  = state;
1711 	context->ppid       = 0;
1712 	ktime_get_coarse_real_ts64(&context->ctime);
1713 }
1714 
1715 /**
1716  * __audit_syscall_exit - deallocate audit context after a system call
1717  * @success: success value of the syscall
1718  * @return_code: return value of the syscall
1719  *
1720  * Tear down after system call.  If the audit context has been marked as
1721  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1722  * filtering, or because some other part of the kernel wrote an audit
1723  * message), then write out the syscall information.  In call cases,
1724  * free the names stored from getname().
1725  */
__audit_syscall_exit(int success,long return_code)1726 void __audit_syscall_exit(int success, long return_code)
1727 {
1728 	struct audit_context *context;
1729 
1730 	context = audit_context();
1731 	if (!context)
1732 		return;
1733 
1734 	if (!list_empty(&context->killed_trees))
1735 		audit_kill_trees(context);
1736 
1737 	if (!context->dummy && context->in_syscall) {
1738 		if (success)
1739 			context->return_valid = AUDITSC_SUCCESS;
1740 		else
1741 			context->return_valid = AUDITSC_FAILURE;
1742 
1743 		/*
1744 		 * we need to fix up the return code in the audit logs if the
1745 		 * actual return codes are later going to be fixed up by the
1746 		 * arch specific signal handlers
1747 		 *
1748 		 * This is actually a test for:
1749 		 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1750 		 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1751 		 *
1752 		 * but is faster than a bunch of ||
1753 		 */
1754 		if (unlikely(return_code <= -ERESTARTSYS) &&
1755 		    (return_code >= -ERESTART_RESTARTBLOCK) &&
1756 		    (return_code != -ENOIOCTLCMD))
1757 			context->return_code = -EINTR;
1758 		else
1759 			context->return_code  = return_code;
1760 
1761 		audit_filter_syscall(current, context,
1762 				     &audit_filter_list[AUDIT_FILTER_EXIT]);
1763 		audit_filter_inodes(current, context);
1764 		if (context->current_state == AUDIT_RECORD_CONTEXT)
1765 			audit_log_exit();
1766 	}
1767 
1768 	context->in_syscall = 0;
1769 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1770 
1771 	audit_free_module(context);
1772 	audit_free_names(context);
1773 	unroll_tree_refs(context, NULL, 0);
1774 	audit_free_aux(context);
1775 	context->aux = NULL;
1776 	context->aux_pids = NULL;
1777 	context->target_pid = 0;
1778 	context->target_sid = 0;
1779 	context->sockaddr_len = 0;
1780 	context->type = 0;
1781 	context->fds[0] = -1;
1782 	if (context->state != AUDIT_RECORD_CONTEXT) {
1783 		kfree(context->filterkey);
1784 		context->filterkey = NULL;
1785 	}
1786 }
1787 
handle_one(const struct inode * inode)1788 static inline void handle_one(const struct inode *inode)
1789 {
1790 	struct audit_context *context;
1791 	struct audit_tree_refs *p;
1792 	struct audit_chunk *chunk;
1793 	int count;
1794 	if (likely(!inode->i_fsnotify_marks))
1795 		return;
1796 	context = audit_context();
1797 	p = context->trees;
1798 	count = context->tree_count;
1799 	rcu_read_lock();
1800 	chunk = audit_tree_lookup(inode);
1801 	rcu_read_unlock();
1802 	if (!chunk)
1803 		return;
1804 	if (likely(put_tree_ref(context, chunk)))
1805 		return;
1806 	if (unlikely(!grow_tree_refs(context))) {
1807 		pr_warn("out of memory, audit has lost a tree reference\n");
1808 		audit_set_auditable(context);
1809 		audit_put_chunk(chunk);
1810 		unroll_tree_refs(context, p, count);
1811 		return;
1812 	}
1813 	put_tree_ref(context, chunk);
1814 }
1815 
handle_path(const struct dentry * dentry)1816 static void handle_path(const struct dentry *dentry)
1817 {
1818 	struct audit_context *context;
1819 	struct audit_tree_refs *p;
1820 	const struct dentry *d, *parent;
1821 	struct audit_chunk *drop;
1822 	unsigned long seq;
1823 	int count;
1824 
1825 	context = audit_context();
1826 	p = context->trees;
1827 	count = context->tree_count;
1828 retry:
1829 	drop = NULL;
1830 	d = dentry;
1831 	rcu_read_lock();
1832 	seq = read_seqbegin(&rename_lock);
1833 	for(;;) {
1834 		struct inode *inode = d_backing_inode(d);
1835 		if (inode && unlikely(inode->i_fsnotify_marks)) {
1836 			struct audit_chunk *chunk;
1837 			chunk = audit_tree_lookup(inode);
1838 			if (chunk) {
1839 				if (unlikely(!put_tree_ref(context, chunk))) {
1840 					drop = chunk;
1841 					break;
1842 				}
1843 			}
1844 		}
1845 		parent = d->d_parent;
1846 		if (parent == d)
1847 			break;
1848 		d = parent;
1849 	}
1850 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1851 		rcu_read_unlock();
1852 		if (!drop) {
1853 			/* just a race with rename */
1854 			unroll_tree_refs(context, p, count);
1855 			goto retry;
1856 		}
1857 		audit_put_chunk(drop);
1858 		if (grow_tree_refs(context)) {
1859 			/* OK, got more space */
1860 			unroll_tree_refs(context, p, count);
1861 			goto retry;
1862 		}
1863 		/* too bad */
1864 		pr_warn("out of memory, audit has lost a tree reference\n");
1865 		unroll_tree_refs(context, p, count);
1866 		audit_set_auditable(context);
1867 		return;
1868 	}
1869 	rcu_read_unlock();
1870 }
1871 
audit_alloc_name(struct audit_context * context,unsigned char type)1872 static struct audit_names *audit_alloc_name(struct audit_context *context,
1873 						unsigned char type)
1874 {
1875 	struct audit_names *aname;
1876 
1877 	if (context->name_count < AUDIT_NAMES) {
1878 		aname = &context->preallocated_names[context->name_count];
1879 		memset(aname, 0, sizeof(*aname));
1880 	} else {
1881 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1882 		if (!aname)
1883 			return NULL;
1884 		aname->should_free = true;
1885 	}
1886 
1887 	aname->ino = AUDIT_INO_UNSET;
1888 	aname->type = type;
1889 	list_add_tail(&aname->list, &context->names_list);
1890 
1891 	context->name_count++;
1892 	return aname;
1893 }
1894 
1895 /**
1896  * __audit_reusename - fill out filename with info from existing entry
1897  * @uptr: userland ptr to pathname
1898  *
1899  * Search the audit_names list for the current audit context. If there is an
1900  * existing entry with a matching "uptr" then return the filename
1901  * associated with that audit_name. If not, return NULL.
1902  */
1903 struct filename *
__audit_reusename(const __user char * uptr)1904 __audit_reusename(const __user char *uptr)
1905 {
1906 	struct audit_context *context = audit_context();
1907 	struct audit_names *n;
1908 
1909 	list_for_each_entry(n, &context->names_list, list) {
1910 		if (!n->name)
1911 			continue;
1912 		if (n->name->uptr == uptr) {
1913 			n->name->refcnt++;
1914 			return n->name;
1915 		}
1916 	}
1917 	return NULL;
1918 }
1919 
1920 /**
1921  * __audit_getname - add a name to the list
1922  * @name: name to add
1923  *
1924  * Add a name to the list of audit names for this context.
1925  * Called from fs/namei.c:getname().
1926  */
__audit_getname(struct filename * name)1927 void __audit_getname(struct filename *name)
1928 {
1929 	struct audit_context *context = audit_context();
1930 	struct audit_names *n;
1931 
1932 	if (!context->in_syscall)
1933 		return;
1934 
1935 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1936 	if (!n)
1937 		return;
1938 
1939 	n->name = name;
1940 	n->name_len = AUDIT_NAME_FULL;
1941 	name->aname = n;
1942 	name->refcnt++;
1943 
1944 	if (!context->pwd.dentry)
1945 		get_fs_pwd(current->fs, &context->pwd);
1946 }
1947 
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)1948 static inline int audit_copy_fcaps(struct audit_names *name,
1949 				   const struct dentry *dentry)
1950 {
1951 	struct cpu_vfs_cap_data caps;
1952 	int rc;
1953 
1954 	if (!dentry)
1955 		return 0;
1956 
1957 	rc = get_vfs_caps_from_disk(dentry, &caps);
1958 	if (rc)
1959 		return rc;
1960 
1961 	name->fcap.permitted = caps.permitted;
1962 	name->fcap.inheritable = caps.inheritable;
1963 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1964 	name->fcap.rootid = caps.rootid;
1965 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1966 				VFS_CAP_REVISION_SHIFT;
1967 
1968 	return 0;
1969 }
1970 
1971 /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,struct inode * inode,unsigned int flags)1972 static void audit_copy_inode(struct audit_names *name,
1973 			     const struct dentry *dentry,
1974 			     struct inode *inode, unsigned int flags)
1975 {
1976 	name->ino   = inode->i_ino;
1977 	name->dev   = inode->i_sb->s_dev;
1978 	name->mode  = inode->i_mode;
1979 	name->uid   = inode->i_uid;
1980 	name->gid   = inode->i_gid;
1981 	name->rdev  = inode->i_rdev;
1982 	security_inode_getsecid(inode, &name->osid);
1983 	if (flags & AUDIT_INODE_NOEVAL) {
1984 		name->fcap_ver = -1;
1985 		return;
1986 	}
1987 	audit_copy_fcaps(name, dentry);
1988 }
1989 
1990 /**
1991  * __audit_inode - store the inode and device from a lookup
1992  * @name: name being audited
1993  * @dentry: dentry being audited
1994  * @flags: attributes for this particular entry
1995  */
__audit_inode(struct filename * name,const struct dentry * dentry,unsigned int flags)1996 void __audit_inode(struct filename *name, const struct dentry *dentry,
1997 		   unsigned int flags)
1998 {
1999 	struct audit_context *context = audit_context();
2000 	struct inode *inode = d_backing_inode(dentry);
2001 	struct audit_names *n;
2002 	bool parent = flags & AUDIT_INODE_PARENT;
2003 	struct audit_entry *e;
2004 	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2005 	int i;
2006 
2007 	if (!context->in_syscall)
2008 		return;
2009 
2010 	rcu_read_lock();
2011 	list_for_each_entry_rcu(e, list, list) {
2012 		for (i = 0; i < e->rule.field_count; i++) {
2013 			struct audit_field *f = &e->rule.fields[i];
2014 
2015 			if (f->type == AUDIT_FSTYPE
2016 			    && audit_comparator(inode->i_sb->s_magic,
2017 						f->op, f->val)
2018 			    && e->rule.action == AUDIT_NEVER) {
2019 				rcu_read_unlock();
2020 				return;
2021 			}
2022 		}
2023 	}
2024 	rcu_read_unlock();
2025 
2026 	if (!name)
2027 		goto out_alloc;
2028 
2029 	/*
2030 	 * If we have a pointer to an audit_names entry already, then we can
2031 	 * just use it directly if the type is correct.
2032 	 */
2033 	n = name->aname;
2034 	if (n) {
2035 		if (parent) {
2036 			if (n->type == AUDIT_TYPE_PARENT ||
2037 			    n->type == AUDIT_TYPE_UNKNOWN)
2038 				goto out;
2039 		} else {
2040 			if (n->type != AUDIT_TYPE_PARENT)
2041 				goto out;
2042 		}
2043 	}
2044 
2045 	list_for_each_entry_reverse(n, &context->names_list, list) {
2046 		if (n->ino) {
2047 			/* valid inode number, use that for the comparison */
2048 			if (n->ino != inode->i_ino ||
2049 			    n->dev != inode->i_sb->s_dev)
2050 				continue;
2051 		} else if (n->name) {
2052 			/* inode number has not been set, check the name */
2053 			if (strcmp(n->name->name, name->name))
2054 				continue;
2055 		} else
2056 			/* no inode and no name (?!) ... this is odd ... */
2057 			continue;
2058 
2059 		/* match the correct record type */
2060 		if (parent) {
2061 			if (n->type == AUDIT_TYPE_PARENT ||
2062 			    n->type == AUDIT_TYPE_UNKNOWN)
2063 				goto out;
2064 		} else {
2065 			if (n->type != AUDIT_TYPE_PARENT)
2066 				goto out;
2067 		}
2068 	}
2069 
2070 out_alloc:
2071 	/* unable to find an entry with both a matching name and type */
2072 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2073 	if (!n)
2074 		return;
2075 	if (name) {
2076 		n->name = name;
2077 		name->refcnt++;
2078 	}
2079 
2080 out:
2081 	if (parent) {
2082 		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2083 		n->type = AUDIT_TYPE_PARENT;
2084 		if (flags & AUDIT_INODE_HIDDEN)
2085 			n->hidden = true;
2086 	} else {
2087 		n->name_len = AUDIT_NAME_FULL;
2088 		n->type = AUDIT_TYPE_NORMAL;
2089 	}
2090 	handle_path(dentry);
2091 	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2092 }
2093 
__audit_file(const struct file * file)2094 void __audit_file(const struct file *file)
2095 {
2096 	__audit_inode(NULL, file->f_path.dentry, 0);
2097 }
2098 
2099 /**
2100  * __audit_inode_child - collect inode info for created/removed objects
2101  * @parent: inode of dentry parent
2102  * @dentry: dentry being audited
2103  * @type:   AUDIT_TYPE_* value that we're looking for
2104  *
2105  * For syscalls that create or remove filesystem objects, audit_inode
2106  * can only collect information for the filesystem object's parent.
2107  * This call updates the audit context with the child's information.
2108  * Syscalls that create a new filesystem object must be hooked after
2109  * the object is created.  Syscalls that remove a filesystem object
2110  * must be hooked prior, in order to capture the target inode during
2111  * unsuccessful attempts.
2112  */
__audit_inode_child(struct inode * parent,const struct dentry * dentry,const unsigned char type)2113 void __audit_inode_child(struct inode *parent,
2114 			 const struct dentry *dentry,
2115 			 const unsigned char type)
2116 {
2117 	struct audit_context *context = audit_context();
2118 	struct inode *inode = d_backing_inode(dentry);
2119 	const struct qstr *dname = &dentry->d_name;
2120 	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2121 	struct audit_entry *e;
2122 	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2123 	int i;
2124 
2125 	if (!context->in_syscall)
2126 		return;
2127 
2128 	rcu_read_lock();
2129 	list_for_each_entry_rcu(e, list, list) {
2130 		for (i = 0; i < e->rule.field_count; i++) {
2131 			struct audit_field *f = &e->rule.fields[i];
2132 
2133 			if (f->type == AUDIT_FSTYPE
2134 			    && audit_comparator(parent->i_sb->s_magic,
2135 						f->op, f->val)
2136 			    && e->rule.action == AUDIT_NEVER) {
2137 				rcu_read_unlock();
2138 				return;
2139 			}
2140 		}
2141 	}
2142 	rcu_read_unlock();
2143 
2144 	if (inode)
2145 		handle_one(inode);
2146 
2147 	/* look for a parent entry first */
2148 	list_for_each_entry(n, &context->names_list, list) {
2149 		if (!n->name ||
2150 		    (n->type != AUDIT_TYPE_PARENT &&
2151 		     n->type != AUDIT_TYPE_UNKNOWN))
2152 			continue;
2153 
2154 		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2155 		    !audit_compare_dname_path(dname,
2156 					      n->name->name, n->name_len)) {
2157 			if (n->type == AUDIT_TYPE_UNKNOWN)
2158 				n->type = AUDIT_TYPE_PARENT;
2159 			found_parent = n;
2160 			break;
2161 		}
2162 	}
2163 
2164 	cond_resched();
2165 
2166 	/* is there a matching child entry? */
2167 	list_for_each_entry(n, &context->names_list, list) {
2168 		/* can only match entries that have a name */
2169 		if (!n->name ||
2170 		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2171 			continue;
2172 
2173 		if (!strcmp(dname->name, n->name->name) ||
2174 		    !audit_compare_dname_path(dname, n->name->name,
2175 						found_parent ?
2176 						found_parent->name_len :
2177 						AUDIT_NAME_FULL)) {
2178 			if (n->type == AUDIT_TYPE_UNKNOWN)
2179 				n->type = type;
2180 			found_child = n;
2181 			break;
2182 		}
2183 	}
2184 
2185 	if (!found_parent) {
2186 		/* create a new, "anonymous" parent record */
2187 		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2188 		if (!n)
2189 			return;
2190 		audit_copy_inode(n, NULL, parent, 0);
2191 	}
2192 
2193 	if (!found_child) {
2194 		found_child = audit_alloc_name(context, type);
2195 		if (!found_child)
2196 			return;
2197 
2198 		/* Re-use the name belonging to the slot for a matching parent
2199 		 * directory. All names for this context are relinquished in
2200 		 * audit_free_names() */
2201 		if (found_parent) {
2202 			found_child->name = found_parent->name;
2203 			found_child->name_len = AUDIT_NAME_FULL;
2204 			found_child->name->refcnt++;
2205 		}
2206 	}
2207 
2208 	if (inode)
2209 		audit_copy_inode(found_child, dentry, inode, 0);
2210 	else
2211 		found_child->ino = AUDIT_INO_UNSET;
2212 }
2213 EXPORT_SYMBOL_GPL(__audit_inode_child);
2214 
2215 /**
2216  * auditsc_get_stamp - get local copies of audit_context values
2217  * @ctx: audit_context for the task
2218  * @t: timespec64 to store time recorded in the audit_context
2219  * @serial: serial value that is recorded in the audit_context
2220  *
2221  * Also sets the context as auditable.
2222  */
auditsc_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)2223 int auditsc_get_stamp(struct audit_context *ctx,
2224 		       struct timespec64 *t, unsigned int *serial)
2225 {
2226 	if (!ctx->in_syscall)
2227 		return 0;
2228 	if (!ctx->serial)
2229 		ctx->serial = audit_serial();
2230 	t->tv_sec  = ctx->ctime.tv_sec;
2231 	t->tv_nsec = ctx->ctime.tv_nsec;
2232 	*serial    = ctx->serial;
2233 	if (!ctx->prio) {
2234 		ctx->prio = 1;
2235 		ctx->current_state = AUDIT_RECORD_CONTEXT;
2236 	}
2237 	return 1;
2238 }
2239 
2240 /**
2241  * __audit_mq_open - record audit data for a POSIX MQ open
2242  * @oflag: open flag
2243  * @mode: mode bits
2244  * @attr: queue attributes
2245  *
2246  */
__audit_mq_open(int oflag,umode_t mode,struct mq_attr * attr)2247 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2248 {
2249 	struct audit_context *context = audit_context();
2250 
2251 	if (attr)
2252 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2253 	else
2254 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2255 
2256 	context->mq_open.oflag = oflag;
2257 	context->mq_open.mode = mode;
2258 
2259 	context->type = AUDIT_MQ_OPEN;
2260 }
2261 
2262 /**
2263  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2264  * @mqdes: MQ descriptor
2265  * @msg_len: Message length
2266  * @msg_prio: Message priority
2267  * @abs_timeout: Message timeout in absolute time
2268  *
2269  */
__audit_mq_sendrecv(mqd_t mqdes,size_t msg_len,unsigned int msg_prio,const struct timespec64 * abs_timeout)2270 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2271 			const struct timespec64 *abs_timeout)
2272 {
2273 	struct audit_context *context = audit_context();
2274 	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2275 
2276 	if (abs_timeout)
2277 		memcpy(p, abs_timeout, sizeof(*p));
2278 	else
2279 		memset(p, 0, sizeof(*p));
2280 
2281 	context->mq_sendrecv.mqdes = mqdes;
2282 	context->mq_sendrecv.msg_len = msg_len;
2283 	context->mq_sendrecv.msg_prio = msg_prio;
2284 
2285 	context->type = AUDIT_MQ_SENDRECV;
2286 }
2287 
2288 /**
2289  * __audit_mq_notify - record audit data for a POSIX MQ notify
2290  * @mqdes: MQ descriptor
2291  * @notification: Notification event
2292  *
2293  */
2294 
__audit_mq_notify(mqd_t mqdes,const struct sigevent * notification)2295 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2296 {
2297 	struct audit_context *context = audit_context();
2298 
2299 	if (notification)
2300 		context->mq_notify.sigev_signo = notification->sigev_signo;
2301 	else
2302 		context->mq_notify.sigev_signo = 0;
2303 
2304 	context->mq_notify.mqdes = mqdes;
2305 	context->type = AUDIT_MQ_NOTIFY;
2306 }
2307 
2308 /**
2309  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2310  * @mqdes: MQ descriptor
2311  * @mqstat: MQ flags
2312  *
2313  */
__audit_mq_getsetattr(mqd_t mqdes,struct mq_attr * mqstat)2314 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2315 {
2316 	struct audit_context *context = audit_context();
2317 	context->mq_getsetattr.mqdes = mqdes;
2318 	context->mq_getsetattr.mqstat = *mqstat;
2319 	context->type = AUDIT_MQ_GETSETATTR;
2320 }
2321 
2322 /**
2323  * __audit_ipc_obj - record audit data for ipc object
2324  * @ipcp: ipc permissions
2325  *
2326  */
__audit_ipc_obj(struct kern_ipc_perm * ipcp)2327 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2328 {
2329 	struct audit_context *context = audit_context();
2330 	context->ipc.uid = ipcp->uid;
2331 	context->ipc.gid = ipcp->gid;
2332 	context->ipc.mode = ipcp->mode;
2333 	context->ipc.has_perm = 0;
2334 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2335 	context->type = AUDIT_IPC;
2336 }
2337 
2338 /**
2339  * __audit_ipc_set_perm - record audit data for new ipc permissions
2340  * @qbytes: msgq bytes
2341  * @uid: msgq user id
2342  * @gid: msgq group id
2343  * @mode: msgq mode (permissions)
2344  *
2345  * Called only after audit_ipc_obj().
2346  */
__audit_ipc_set_perm(unsigned long qbytes,uid_t uid,gid_t gid,umode_t mode)2347 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2348 {
2349 	struct audit_context *context = audit_context();
2350 
2351 	context->ipc.qbytes = qbytes;
2352 	context->ipc.perm_uid = uid;
2353 	context->ipc.perm_gid = gid;
2354 	context->ipc.perm_mode = mode;
2355 	context->ipc.has_perm = 1;
2356 }
2357 
__audit_bprm(struct linux_binprm * bprm)2358 void __audit_bprm(struct linux_binprm *bprm)
2359 {
2360 	struct audit_context *context = audit_context();
2361 
2362 	context->type = AUDIT_EXECVE;
2363 	context->execve.argc = bprm->argc;
2364 }
2365 
2366 
2367 /**
2368  * __audit_socketcall - record audit data for sys_socketcall
2369  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2370  * @args: args array
2371  *
2372  */
__audit_socketcall(int nargs,unsigned long * args)2373 int __audit_socketcall(int nargs, unsigned long *args)
2374 {
2375 	struct audit_context *context = audit_context();
2376 
2377 	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2378 		return -EINVAL;
2379 	context->type = AUDIT_SOCKETCALL;
2380 	context->socketcall.nargs = nargs;
2381 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2382 	return 0;
2383 }
2384 
2385 /**
2386  * __audit_fd_pair - record audit data for pipe and socketpair
2387  * @fd1: the first file descriptor
2388  * @fd2: the second file descriptor
2389  *
2390  */
__audit_fd_pair(int fd1,int fd2)2391 void __audit_fd_pair(int fd1, int fd2)
2392 {
2393 	struct audit_context *context = audit_context();
2394 	context->fds[0] = fd1;
2395 	context->fds[1] = fd2;
2396 }
2397 
2398 /**
2399  * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2400  * @len: data length in user space
2401  * @a: data address in kernel space
2402  *
2403  * Returns 0 for success or NULL context or < 0 on error.
2404  */
__audit_sockaddr(int len,void * a)2405 int __audit_sockaddr(int len, void *a)
2406 {
2407 	struct audit_context *context = audit_context();
2408 
2409 	if (!context->sockaddr) {
2410 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2411 		if (!p)
2412 			return -ENOMEM;
2413 		context->sockaddr = p;
2414 	}
2415 
2416 	context->sockaddr_len = len;
2417 	memcpy(context->sockaddr, a, len);
2418 	return 0;
2419 }
2420 
__audit_ptrace(struct task_struct * t)2421 void __audit_ptrace(struct task_struct *t)
2422 {
2423 	struct audit_context *context = audit_context();
2424 
2425 	context->target_pid = task_tgid_nr(t);
2426 	context->target_auid = audit_get_loginuid(t);
2427 	context->target_uid = task_uid(t);
2428 	context->target_sessionid = audit_get_sessionid(t);
2429 	security_task_getsecid(t, &context->target_sid);
2430 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2431 }
2432 
2433 /**
2434  * audit_signal_info_syscall - record signal info for syscalls
2435  * @t: task being signaled
2436  *
2437  * If the audit subsystem is being terminated, record the task (pid)
2438  * and uid that is doing that.
2439  */
audit_signal_info_syscall(struct task_struct * t)2440 int audit_signal_info_syscall(struct task_struct *t)
2441 {
2442 	struct audit_aux_data_pids *axp;
2443 	struct audit_context *ctx = audit_context();
2444 	kuid_t t_uid = task_uid(t);
2445 
2446 	if (!audit_signals || audit_dummy_context())
2447 		return 0;
2448 
2449 	/* optimize the common case by putting first signal recipient directly
2450 	 * in audit_context */
2451 	if (!ctx->target_pid) {
2452 		ctx->target_pid = task_tgid_nr(t);
2453 		ctx->target_auid = audit_get_loginuid(t);
2454 		ctx->target_uid = t_uid;
2455 		ctx->target_sessionid = audit_get_sessionid(t);
2456 		security_task_getsecid(t, &ctx->target_sid);
2457 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2458 		return 0;
2459 	}
2460 
2461 	axp = (void *)ctx->aux_pids;
2462 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2463 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2464 		if (!axp)
2465 			return -ENOMEM;
2466 
2467 		axp->d.type = AUDIT_OBJ_PID;
2468 		axp->d.next = ctx->aux_pids;
2469 		ctx->aux_pids = (void *)axp;
2470 	}
2471 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2472 
2473 	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2474 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2475 	axp->target_uid[axp->pid_count] = t_uid;
2476 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2477 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2478 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2479 	axp->pid_count++;
2480 
2481 	return 0;
2482 }
2483 
2484 /**
2485  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2486  * @bprm: pointer to the bprm being processed
2487  * @new: the proposed new credentials
2488  * @old: the old credentials
2489  *
2490  * Simply check if the proc already has the caps given by the file and if not
2491  * store the priv escalation info for later auditing at the end of the syscall
2492  *
2493  * -Eric
2494  */
__audit_log_bprm_fcaps(struct linux_binprm * bprm,const struct cred * new,const struct cred * old)2495 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2496 			   const struct cred *new, const struct cred *old)
2497 {
2498 	struct audit_aux_data_bprm_fcaps *ax;
2499 	struct audit_context *context = audit_context();
2500 	struct cpu_vfs_cap_data vcaps;
2501 
2502 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2503 	if (!ax)
2504 		return -ENOMEM;
2505 
2506 	ax->d.type = AUDIT_BPRM_FCAPS;
2507 	ax->d.next = context->aux;
2508 	context->aux = (void *)ax;
2509 
2510 	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2511 
2512 	ax->fcap.permitted = vcaps.permitted;
2513 	ax->fcap.inheritable = vcaps.inheritable;
2514 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2515 	ax->fcap.rootid = vcaps.rootid;
2516 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2517 
2518 	ax->old_pcap.permitted   = old->cap_permitted;
2519 	ax->old_pcap.inheritable = old->cap_inheritable;
2520 	ax->old_pcap.effective   = old->cap_effective;
2521 	ax->old_pcap.ambient     = old->cap_ambient;
2522 
2523 	ax->new_pcap.permitted   = new->cap_permitted;
2524 	ax->new_pcap.inheritable = new->cap_inheritable;
2525 	ax->new_pcap.effective   = new->cap_effective;
2526 	ax->new_pcap.ambient     = new->cap_ambient;
2527 	return 0;
2528 }
2529 
2530 /**
2531  * __audit_log_capset - store information about the arguments to the capset syscall
2532  * @new: the new credentials
2533  * @old: the old (current) credentials
2534  *
2535  * Record the arguments userspace sent to sys_capset for later printing by the
2536  * audit system if applicable
2537  */
__audit_log_capset(const struct cred * new,const struct cred * old)2538 void __audit_log_capset(const struct cred *new, const struct cred *old)
2539 {
2540 	struct audit_context *context = audit_context();
2541 	context->capset.pid = task_tgid_nr(current);
2542 	context->capset.cap.effective   = new->cap_effective;
2543 	context->capset.cap.inheritable = new->cap_effective;
2544 	context->capset.cap.permitted   = new->cap_permitted;
2545 	context->capset.cap.ambient     = new->cap_ambient;
2546 	context->type = AUDIT_CAPSET;
2547 }
2548 
__audit_mmap_fd(int fd,int flags)2549 void __audit_mmap_fd(int fd, int flags)
2550 {
2551 	struct audit_context *context = audit_context();
2552 	context->mmap.fd = fd;
2553 	context->mmap.flags = flags;
2554 	context->type = AUDIT_MMAP;
2555 }
2556 
__audit_log_kern_module(char * name)2557 void __audit_log_kern_module(char *name)
2558 {
2559 	struct audit_context *context = audit_context();
2560 
2561 	context->module.name = kstrdup(name, GFP_KERNEL);
2562 	if (!context->module.name)
2563 		audit_log_lost("out of memory in __audit_log_kern_module");
2564 	context->type = AUDIT_KERN_MODULE;
2565 }
2566 
__audit_fanotify(unsigned int response)2567 void __audit_fanotify(unsigned int response)
2568 {
2569 	audit_log(audit_context(), GFP_KERNEL,
2570 		AUDIT_FANOTIFY,	"resp=%u", response);
2571 }
2572 
__audit_tk_injoffset(struct timespec64 offset)2573 void __audit_tk_injoffset(struct timespec64 offset)
2574 {
2575 	struct audit_context *context = audit_context();
2576 
2577 	/* only set type if not already set by NTP */
2578 	if (!context->type)
2579 		context->type = AUDIT_TIME_INJOFFSET;
2580 	memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2581 }
2582 
__audit_ntp_log(const struct audit_ntp_data * ad)2583 void __audit_ntp_log(const struct audit_ntp_data *ad)
2584 {
2585 	struct audit_context *context = audit_context();
2586 	int type;
2587 
2588 	for (type = 0; type < AUDIT_NTP_NVALS; type++)
2589 		if (ad->vals[type].newval != ad->vals[type].oldval) {
2590 			/* unconditionally set type, overwriting TK */
2591 			context->type = AUDIT_TIME_ADJNTPVAL;
2592 			memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2593 			break;
2594 		}
2595 }
2596 
audit_log_task(struct audit_buffer * ab)2597 static void audit_log_task(struct audit_buffer *ab)
2598 {
2599 	kuid_t auid, uid;
2600 	kgid_t gid;
2601 	unsigned int sessionid;
2602 	char comm[sizeof(current->comm)];
2603 
2604 	auid = audit_get_loginuid(current);
2605 	sessionid = audit_get_sessionid(current);
2606 	current_uid_gid(&uid, &gid);
2607 
2608 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2609 			 from_kuid(&init_user_ns, auid),
2610 			 from_kuid(&init_user_ns, uid),
2611 			 from_kgid(&init_user_ns, gid),
2612 			 sessionid);
2613 	audit_log_task_context(ab);
2614 	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2615 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2616 	audit_log_d_path_exe(ab, current->mm);
2617 }
2618 
2619 /**
2620  * audit_core_dumps - record information about processes that end abnormally
2621  * @signr: signal value
2622  *
2623  * If a process ends with a core dump, something fishy is going on and we
2624  * should record the event for investigation.
2625  */
audit_core_dumps(long signr)2626 void audit_core_dumps(long signr)
2627 {
2628 	struct audit_buffer *ab;
2629 
2630 	if (!audit_enabled)
2631 		return;
2632 
2633 	if (signr == SIGQUIT)	/* don't care for those */
2634 		return;
2635 
2636 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2637 	if (unlikely(!ab))
2638 		return;
2639 	audit_log_task(ab);
2640 	audit_log_format(ab, " sig=%ld res=1", signr);
2641 	audit_log_end(ab);
2642 }
2643 
2644 /**
2645  * audit_seccomp - record information about a seccomp action
2646  * @syscall: syscall number
2647  * @signr: signal value
2648  * @code: the seccomp action
2649  *
2650  * Record the information associated with a seccomp action. Event filtering for
2651  * seccomp actions that are not to be logged is done in seccomp_log().
2652  * Therefore, this function forces auditing independent of the audit_enabled
2653  * and dummy context state because seccomp actions should be logged even when
2654  * audit is not in use.
2655  */
audit_seccomp(unsigned long syscall,long signr,int code)2656 void audit_seccomp(unsigned long syscall, long signr, int code)
2657 {
2658 	struct audit_buffer *ab;
2659 
2660 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2661 	if (unlikely(!ab))
2662 		return;
2663 	audit_log_task(ab);
2664 	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2665 			 signr, syscall_get_arch(current), syscall,
2666 			 in_compat_syscall(), KSTK_EIP(current), code);
2667 	audit_log_end(ab);
2668 }
2669 
audit_seccomp_actions_logged(const char * names,const char * old_names,int res)2670 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2671 				  int res)
2672 {
2673 	struct audit_buffer *ab;
2674 
2675 	if (!audit_enabled)
2676 		return;
2677 
2678 	ab = audit_log_start(audit_context(), GFP_KERNEL,
2679 			     AUDIT_CONFIG_CHANGE);
2680 	if (unlikely(!ab))
2681 		return;
2682 
2683 	audit_log_format(ab,
2684 			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2685 			 names, old_names, res);
2686 	audit_log_end(ab);
2687 }
2688 
audit_killed_trees(void)2689 struct list_head *audit_killed_trees(void)
2690 {
2691 	struct audit_context *ctx = audit_context();
2692 	if (likely(!ctx || !ctx->in_syscall))
2693 		return NULL;
2694 	return &ctx->killed_trees;
2695 }
2696