• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/percpu-rwsem.h>
35 #include <linux/cpuset.h>
36 #include <linux/random.h>
37 
38 #include <trace/events/power.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/cpuhp.h>
41 
42 #include "smpboot.h"
43 
44 /**
45  * cpuhp_cpu_state - Per cpu hotplug state storage
46  * @state:	The current cpu state
47  * @target:	The target state
48  * @thread:	Pointer to the hotplug thread
49  * @should_run:	Thread should execute
50  * @rollback:	Perform a rollback
51  * @single:	Single callback invocation
52  * @bringup:	Single callback bringup or teardown selector
53  * @cb_state:	The state for a single callback (install/uninstall)
54  * @result:	Result of the operation
55  * @done_up:	Signal completion to the issuer of the task for cpu-up
56  * @done_down:	Signal completion to the issuer of the task for cpu-down
57  */
58 struct cpuhp_cpu_state {
59 	enum cpuhp_state	state;
60 	enum cpuhp_state	target;
61 	enum cpuhp_state	fail;
62 #ifdef CONFIG_SMP
63 	struct task_struct	*thread;
64 	bool			should_run;
65 	bool			rollback;
66 	bool			single;
67 	bool			bringup;
68 	struct hlist_node	*node;
69 	struct hlist_node	*last;
70 	enum cpuhp_state	cb_state;
71 	int			result;
72 	struct completion	done_up;
73 	struct completion	done_down;
74 #endif
75 };
76 
77 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
78 	.fail = CPUHP_INVALID,
79 };
80 
81 #ifdef CONFIG_SMP
82 cpumask_t cpus_booted_once_mask;
83 #endif
84 
85 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
86 static struct lockdep_map cpuhp_state_up_map =
87 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
88 static struct lockdep_map cpuhp_state_down_map =
89 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
90 
91 
cpuhp_lock_acquire(bool bringup)92 static inline void cpuhp_lock_acquire(bool bringup)
93 {
94 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
95 }
96 
cpuhp_lock_release(bool bringup)97 static inline void cpuhp_lock_release(bool bringup)
98 {
99 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
100 }
101 #else
102 
cpuhp_lock_acquire(bool bringup)103 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)104 static inline void cpuhp_lock_release(bool bringup) { }
105 
106 #endif
107 
108 /**
109  * cpuhp_step - Hotplug state machine step
110  * @name:	Name of the step
111  * @startup:	Startup function of the step
112  * @teardown:	Teardown function of the step
113  * @cant_stop:	Bringup/teardown can't be stopped at this step
114  */
115 struct cpuhp_step {
116 	const char		*name;
117 	union {
118 		int		(*single)(unsigned int cpu);
119 		int		(*multi)(unsigned int cpu,
120 					 struct hlist_node *node);
121 	} startup;
122 	union {
123 		int		(*single)(unsigned int cpu);
124 		int		(*multi)(unsigned int cpu,
125 					 struct hlist_node *node);
126 	} teardown;
127 	struct hlist_head	list;
128 	bool			cant_stop;
129 	bool			multi_instance;
130 };
131 
132 static DEFINE_MUTEX(cpuhp_state_mutex);
133 static struct cpuhp_step cpuhp_hp_states[];
134 
cpuhp_get_step(enum cpuhp_state state)135 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
136 {
137 	return cpuhp_hp_states + state;
138 }
139 
140 /**
141  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
142  * @cpu:	The cpu for which the callback should be invoked
143  * @state:	The state to do callbacks for
144  * @bringup:	True if the bringup callback should be invoked
145  * @node:	For multi-instance, do a single entry callback for install/remove
146  * @lastp:	For multi-instance rollback, remember how far we got
147  *
148  * Called from cpu hotplug and from the state register machinery.
149  */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)150 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
151 				 bool bringup, struct hlist_node *node,
152 				 struct hlist_node **lastp)
153 {
154 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
155 	struct cpuhp_step *step = cpuhp_get_step(state);
156 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
157 	int (*cb)(unsigned int cpu);
158 	int ret, cnt;
159 
160 	if (st->fail == state) {
161 		st->fail = CPUHP_INVALID;
162 
163 		if (!(bringup ? step->startup.single : step->teardown.single))
164 			return 0;
165 
166 		return -EAGAIN;
167 	}
168 
169 	if (!step->multi_instance) {
170 		WARN_ON_ONCE(lastp && *lastp);
171 		cb = bringup ? step->startup.single : step->teardown.single;
172 		if (!cb)
173 			return 0;
174 		trace_cpuhp_enter(cpu, st->target, state, cb);
175 		ret = cb(cpu);
176 		trace_cpuhp_exit(cpu, st->state, state, ret);
177 		return ret;
178 	}
179 	cbm = bringup ? step->startup.multi : step->teardown.multi;
180 	if (!cbm)
181 		return 0;
182 
183 	/* Single invocation for instance add/remove */
184 	if (node) {
185 		WARN_ON_ONCE(lastp && *lastp);
186 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
187 		ret = cbm(cpu, node);
188 		trace_cpuhp_exit(cpu, st->state, state, ret);
189 		return ret;
190 	}
191 
192 	/* State transition. Invoke on all instances */
193 	cnt = 0;
194 	hlist_for_each(node, &step->list) {
195 		if (lastp && node == *lastp)
196 			break;
197 
198 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
199 		ret = cbm(cpu, node);
200 		trace_cpuhp_exit(cpu, st->state, state, ret);
201 		if (ret) {
202 			if (!lastp)
203 				goto err;
204 
205 			*lastp = node;
206 			return ret;
207 		}
208 		cnt++;
209 	}
210 	if (lastp)
211 		*lastp = NULL;
212 	return 0;
213 err:
214 	/* Rollback the instances if one failed */
215 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
216 	if (!cbm)
217 		return ret;
218 
219 	hlist_for_each(node, &step->list) {
220 		if (!cnt--)
221 			break;
222 
223 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
224 		ret = cbm(cpu, node);
225 		trace_cpuhp_exit(cpu, st->state, state, ret);
226 		/*
227 		 * Rollback must not fail,
228 		 */
229 		WARN_ON_ONCE(ret);
230 	}
231 	return ret;
232 }
233 
234 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)235 static bool cpuhp_is_ap_state(enum cpuhp_state state)
236 {
237 	/*
238 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
239 	 * purposes as that state is handled explicitly in cpu_down.
240 	 */
241 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
242 }
243 
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)244 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
245 {
246 	struct completion *done = bringup ? &st->done_up : &st->done_down;
247 	wait_for_completion(done);
248 }
249 
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)250 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
251 {
252 	struct completion *done = bringup ? &st->done_up : &st->done_down;
253 	complete(done);
254 }
255 
256 /*
257  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
258  */
cpuhp_is_atomic_state(enum cpuhp_state state)259 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
260 {
261 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
262 }
263 
264 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
265 static DEFINE_MUTEX(cpu_add_remove_lock);
266 bool cpuhp_tasks_frozen;
267 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
268 
269 /*
270  * The following two APIs (cpu_maps_update_begin/done) must be used when
271  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
272  */
cpu_maps_update_begin(void)273 void cpu_maps_update_begin(void)
274 {
275 	mutex_lock(&cpu_add_remove_lock);
276 }
277 
cpu_maps_update_done(void)278 void cpu_maps_update_done(void)
279 {
280 	mutex_unlock(&cpu_add_remove_lock);
281 }
282 
283 /*
284  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
285  * Should always be manipulated under cpu_add_remove_lock
286  */
287 static int cpu_hotplug_disabled;
288 
289 #ifdef CONFIG_HOTPLUG_CPU
290 
291 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
292 
cpus_read_lock(void)293 void cpus_read_lock(void)
294 {
295 	percpu_down_read(&cpu_hotplug_lock);
296 }
297 EXPORT_SYMBOL_GPL(cpus_read_lock);
298 
cpus_read_trylock(void)299 int cpus_read_trylock(void)
300 {
301 	return percpu_down_read_trylock(&cpu_hotplug_lock);
302 }
303 EXPORT_SYMBOL_GPL(cpus_read_trylock);
304 
cpus_read_unlock(void)305 void cpus_read_unlock(void)
306 {
307 	percpu_up_read(&cpu_hotplug_lock);
308 }
309 EXPORT_SYMBOL_GPL(cpus_read_unlock);
310 
cpus_write_lock(void)311 void cpus_write_lock(void)
312 {
313 	percpu_down_write(&cpu_hotplug_lock);
314 }
315 
cpus_write_unlock(void)316 void cpus_write_unlock(void)
317 {
318 	percpu_up_write(&cpu_hotplug_lock);
319 }
320 
lockdep_assert_cpus_held(void)321 void lockdep_assert_cpus_held(void)
322 {
323 	/*
324 	 * We can't have hotplug operations before userspace starts running,
325 	 * and some init codepaths will knowingly not take the hotplug lock.
326 	 * This is all valid, so mute lockdep until it makes sense to report
327 	 * unheld locks.
328 	 */
329 	if (system_state < SYSTEM_RUNNING)
330 		return;
331 
332 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
333 }
334 
lockdep_acquire_cpus_lock(void)335 static void lockdep_acquire_cpus_lock(void)
336 {
337 	rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
338 }
339 
lockdep_release_cpus_lock(void)340 static void lockdep_release_cpus_lock(void)
341 {
342 	rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
343 }
344 
345 /*
346  * Wait for currently running CPU hotplug operations to complete (if any) and
347  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
348  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
349  * hotplug path before performing hotplug operations. So acquiring that lock
350  * guarantees mutual exclusion from any currently running hotplug operations.
351  */
cpu_hotplug_disable(void)352 void cpu_hotplug_disable(void)
353 {
354 	cpu_maps_update_begin();
355 	cpu_hotplug_disabled++;
356 	cpu_maps_update_done();
357 }
358 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
359 
__cpu_hotplug_enable(void)360 static void __cpu_hotplug_enable(void)
361 {
362 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
363 		return;
364 	cpu_hotplug_disabled--;
365 }
366 
cpu_hotplug_enable(void)367 void cpu_hotplug_enable(void)
368 {
369 	cpu_maps_update_begin();
370 	__cpu_hotplug_enable();
371 	cpu_maps_update_done();
372 }
373 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
374 
375 #else
376 
lockdep_acquire_cpus_lock(void)377 static void lockdep_acquire_cpus_lock(void)
378 {
379 }
380 
lockdep_release_cpus_lock(void)381 static void lockdep_release_cpus_lock(void)
382 {
383 }
384 
385 #endif	/* CONFIG_HOTPLUG_CPU */
386 
387 /*
388  * Architectures that need SMT-specific errata handling during SMT hotplug
389  * should override this.
390  */
arch_smt_update(void)391 void __weak arch_smt_update(void) { }
392 
393 #ifdef CONFIG_HOTPLUG_SMT
394 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
395 
cpu_smt_disable(bool force)396 void __init cpu_smt_disable(bool force)
397 {
398 	if (!cpu_smt_possible())
399 		return;
400 
401 	if (force) {
402 		pr_info("SMT: Force disabled\n");
403 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
404 	} else {
405 		pr_info("SMT: disabled\n");
406 		cpu_smt_control = CPU_SMT_DISABLED;
407 	}
408 }
409 
410 /*
411  * The decision whether SMT is supported can only be done after the full
412  * CPU identification. Called from architecture code.
413  */
cpu_smt_check_topology(void)414 void __init cpu_smt_check_topology(void)
415 {
416 	if (!topology_smt_supported())
417 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
418 }
419 
smt_cmdline_disable(char * str)420 static int __init smt_cmdline_disable(char *str)
421 {
422 	cpu_smt_disable(str && !strcmp(str, "force"));
423 	return 0;
424 }
425 early_param("nosmt", smt_cmdline_disable);
426 
cpu_smt_allowed(unsigned int cpu)427 static inline bool cpu_smt_allowed(unsigned int cpu)
428 {
429 	if (cpu_smt_control == CPU_SMT_ENABLED)
430 		return true;
431 
432 	if (topology_is_primary_thread(cpu))
433 		return true;
434 
435 	/*
436 	 * On x86 it's required to boot all logical CPUs at least once so
437 	 * that the init code can get a chance to set CR4.MCE on each
438 	 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
439 	 * core will shutdown the machine.
440 	 */
441 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
442 }
443 
444 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
cpu_smt_possible(void)445 bool cpu_smt_possible(void)
446 {
447 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
448 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
449 }
450 EXPORT_SYMBOL_GPL(cpu_smt_possible);
451 #else
cpu_smt_allowed(unsigned int cpu)452 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
453 #endif
454 
455 static inline enum cpuhp_state
cpuhp_set_state(struct cpuhp_cpu_state * st,enum cpuhp_state target)456 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
457 {
458 	enum cpuhp_state prev_state = st->state;
459 
460 	st->rollback = false;
461 	st->last = NULL;
462 
463 	st->target = target;
464 	st->single = false;
465 	st->bringup = st->state < target;
466 
467 	return prev_state;
468 }
469 
470 static inline void
cpuhp_reset_state(struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)471 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
472 {
473 	st->rollback = true;
474 
475 	/*
476 	 * If we have st->last we need to undo partial multi_instance of this
477 	 * state first. Otherwise start undo at the previous state.
478 	 */
479 	if (!st->last) {
480 		if (st->bringup)
481 			st->state--;
482 		else
483 			st->state++;
484 	}
485 
486 	st->target = prev_state;
487 	st->bringup = !st->bringup;
488 }
489 
490 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)491 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
492 {
493 	if (!st->single && st->state == st->target)
494 		return;
495 
496 	st->result = 0;
497 	/*
498 	 * Make sure the above stores are visible before should_run becomes
499 	 * true. Paired with the mb() above in cpuhp_thread_fun()
500 	 */
501 	smp_mb();
502 	st->should_run = true;
503 	wake_up_process(st->thread);
504 	wait_for_ap_thread(st, st->bringup);
505 }
506 
cpuhp_kick_ap(struct cpuhp_cpu_state * st,enum cpuhp_state target)507 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
508 {
509 	enum cpuhp_state prev_state;
510 	int ret;
511 
512 	prev_state = cpuhp_set_state(st, target);
513 	__cpuhp_kick_ap(st);
514 	if ((ret = st->result)) {
515 		cpuhp_reset_state(st, prev_state);
516 		__cpuhp_kick_ap(st);
517 	}
518 
519 	return ret;
520 }
521 
bringup_wait_for_ap(unsigned int cpu)522 static int bringup_wait_for_ap(unsigned int cpu)
523 {
524 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
525 
526 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
527 	wait_for_ap_thread(st, true);
528 	if (WARN_ON_ONCE((!cpu_online(cpu))))
529 		return -ECANCELED;
530 
531 	/* Unpark the hotplug thread of the target cpu */
532 	kthread_unpark(st->thread);
533 
534 	/*
535 	 * SMT soft disabling on X86 requires to bring the CPU out of the
536 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
537 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
538 	 * cpu_smt_allowed() check will now return false if this is not the
539 	 * primary sibling.
540 	 */
541 	if (!cpu_smt_allowed(cpu))
542 		return -ECANCELED;
543 
544 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
545 		return 0;
546 
547 	return cpuhp_kick_ap(st, st->target);
548 }
549 
bringup_cpu(unsigned int cpu)550 static int bringup_cpu(unsigned int cpu)
551 {
552 	struct task_struct *idle = idle_thread_get(cpu);
553 	int ret;
554 
555 	/*
556 	 * Some architectures have to walk the irq descriptors to
557 	 * setup the vector space for the cpu which comes online.
558 	 * Prevent irq alloc/free across the bringup.
559 	 */
560 	irq_lock_sparse();
561 
562 	/* Arch-specific enabling code. */
563 	ret = __cpu_up(cpu, idle);
564 	irq_unlock_sparse();
565 	if (ret)
566 		return ret;
567 	return bringup_wait_for_ap(cpu);
568 }
569 
finish_cpu(unsigned int cpu)570 static int finish_cpu(unsigned int cpu)
571 {
572 	struct task_struct *idle = idle_thread_get(cpu);
573 	struct mm_struct *mm = idle->active_mm;
574 
575 	/*
576 	 * idle_task_exit() will have switched to &init_mm, now
577 	 * clean up any remaining active_mm state.
578 	 */
579 	if (mm != &init_mm)
580 		idle->active_mm = &init_mm;
581 	mmdrop(mm);
582 	return 0;
583 }
584 
585 /*
586  * Hotplug state machine related functions
587  */
588 
undo_cpu_up(unsigned int cpu,struct cpuhp_cpu_state * st)589 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
590 {
591 	for (st->state--; st->state > st->target; st->state--)
592 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
593 }
594 
can_rollback_cpu(struct cpuhp_cpu_state * st)595 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
596 {
597 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
598 		return true;
599 	/*
600 	 * When CPU hotplug is disabled, then taking the CPU down is not
601 	 * possible because takedown_cpu() and the architecture and
602 	 * subsystem specific mechanisms are not available. So the CPU
603 	 * which would be completely unplugged again needs to stay around
604 	 * in the current state.
605 	 */
606 	return st->state <= CPUHP_BRINGUP_CPU;
607 }
608 
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)609 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
610 			      enum cpuhp_state target)
611 {
612 	enum cpuhp_state prev_state = st->state;
613 	int ret = 0;
614 
615 	while (st->state < target) {
616 		st->state++;
617 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
618 		if (ret) {
619 			if (can_rollback_cpu(st)) {
620 				st->target = prev_state;
621 				undo_cpu_up(cpu, st);
622 			}
623 			break;
624 		}
625 	}
626 	return ret;
627 }
628 
629 /*
630  * The cpu hotplug threads manage the bringup and teardown of the cpus
631  */
cpuhp_create(unsigned int cpu)632 static void cpuhp_create(unsigned int cpu)
633 {
634 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
635 
636 	init_completion(&st->done_up);
637 	init_completion(&st->done_down);
638 }
639 
cpuhp_should_run(unsigned int cpu)640 static int cpuhp_should_run(unsigned int cpu)
641 {
642 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
643 
644 	return st->should_run;
645 }
646 
647 /*
648  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
649  * callbacks when a state gets [un]installed at runtime.
650  *
651  * Each invocation of this function by the smpboot thread does a single AP
652  * state callback.
653  *
654  * It has 3 modes of operation:
655  *  - single: runs st->cb_state
656  *  - up:     runs ++st->state, while st->state < st->target
657  *  - down:   runs st->state--, while st->state > st->target
658  *
659  * When complete or on error, should_run is cleared and the completion is fired.
660  */
cpuhp_thread_fun(unsigned int cpu)661 static void cpuhp_thread_fun(unsigned int cpu)
662 {
663 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
664 	bool bringup = st->bringup;
665 	enum cpuhp_state state;
666 
667 	if (WARN_ON_ONCE(!st->should_run))
668 		return;
669 
670 	/*
671 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
672 	 * that if we see ->should_run we also see the rest of the state.
673 	 */
674 	smp_mb();
675 
676 	/*
677 	 * The BP holds the hotplug lock, but we're now running on the AP,
678 	 * ensure that anybody asserting the lock is held, will actually find
679 	 * it so.
680 	 */
681 	lockdep_acquire_cpus_lock();
682 	cpuhp_lock_acquire(bringup);
683 
684 	if (st->single) {
685 		state = st->cb_state;
686 		st->should_run = false;
687 	} else {
688 		if (bringup) {
689 			st->state++;
690 			state = st->state;
691 			st->should_run = (st->state < st->target);
692 			WARN_ON_ONCE(st->state > st->target);
693 		} else {
694 			state = st->state;
695 			st->state--;
696 			st->should_run = (st->state > st->target);
697 			WARN_ON_ONCE(st->state < st->target);
698 		}
699 	}
700 
701 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
702 
703 	if (cpuhp_is_atomic_state(state)) {
704 		local_irq_disable();
705 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
706 		local_irq_enable();
707 
708 		/*
709 		 * STARTING/DYING must not fail!
710 		 */
711 		WARN_ON_ONCE(st->result);
712 	} else {
713 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
714 	}
715 
716 	if (st->result) {
717 		/*
718 		 * If we fail on a rollback, we're up a creek without no
719 		 * paddle, no way forward, no way back. We loose, thanks for
720 		 * playing.
721 		 */
722 		WARN_ON_ONCE(st->rollback);
723 		st->should_run = false;
724 	}
725 
726 	cpuhp_lock_release(bringup);
727 	lockdep_release_cpus_lock();
728 
729 	if (!st->should_run)
730 		complete_ap_thread(st, bringup);
731 }
732 
733 /* Invoke a single callback on a remote cpu */
734 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)735 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
736 			 struct hlist_node *node)
737 {
738 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
739 	int ret;
740 
741 	if (!cpu_online(cpu))
742 		return 0;
743 
744 	cpuhp_lock_acquire(false);
745 	cpuhp_lock_release(false);
746 
747 	cpuhp_lock_acquire(true);
748 	cpuhp_lock_release(true);
749 
750 	/*
751 	 * If we are up and running, use the hotplug thread. For early calls
752 	 * we invoke the thread function directly.
753 	 */
754 	if (!st->thread)
755 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
756 
757 	st->rollback = false;
758 	st->last = NULL;
759 
760 	st->node = node;
761 	st->bringup = bringup;
762 	st->cb_state = state;
763 	st->single = true;
764 
765 	__cpuhp_kick_ap(st);
766 
767 	/*
768 	 * If we failed and did a partial, do a rollback.
769 	 */
770 	if ((ret = st->result) && st->last) {
771 		st->rollback = true;
772 		st->bringup = !bringup;
773 
774 		__cpuhp_kick_ap(st);
775 	}
776 
777 	/*
778 	 * Clean up the leftovers so the next hotplug operation wont use stale
779 	 * data.
780 	 */
781 	st->node = st->last = NULL;
782 	return ret;
783 }
784 
cpuhp_kick_ap_work(unsigned int cpu)785 static int cpuhp_kick_ap_work(unsigned int cpu)
786 {
787 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
788 	enum cpuhp_state prev_state = st->state;
789 	int ret;
790 
791 	cpuhp_lock_acquire(false);
792 	cpuhp_lock_release(false);
793 
794 	cpuhp_lock_acquire(true);
795 	cpuhp_lock_release(true);
796 
797 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
798 	ret = cpuhp_kick_ap(st, st->target);
799 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
800 
801 	return ret;
802 }
803 
804 static struct smp_hotplug_thread cpuhp_threads = {
805 	.store			= &cpuhp_state.thread,
806 	.create			= &cpuhp_create,
807 	.thread_should_run	= cpuhp_should_run,
808 	.thread_fn		= cpuhp_thread_fun,
809 	.thread_comm		= "cpuhp/%u",
810 	.selfparking		= true,
811 };
812 
cpuhp_threads_init(void)813 void __init cpuhp_threads_init(void)
814 {
815 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
816 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
817 }
818 
819 /*
820  *
821  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
822  * protected region.
823  *
824  * The operation is still serialized against concurrent CPU hotplug via
825  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
826  * serialized against other hotplug related activity like adding or
827  * removing of state callbacks and state instances, which invoke either the
828  * startup or the teardown callback of the affected state.
829  *
830  * This is required for subsystems which are unfixable vs. CPU hotplug and
831  * evade lock inversion problems by scheduling work which has to be
832  * completed _before_ cpu_up()/_cpu_down() returns.
833  *
834  * Don't even think about adding anything to this for any new code or even
835  * drivers. It's only purpose is to keep existing lock order trainwrecks
836  * working.
837  *
838  * For cpu_down() there might be valid reasons to finish cleanups which are
839  * not required to be done under cpu_hotplug_lock, but that's a different
840  * story and would be not invoked via this.
841  */
cpu_up_down_serialize_trainwrecks(bool tasks_frozen)842 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
843 {
844 	/*
845 	 * cpusets delegate hotplug operations to a worker to "solve" the
846 	 * lock order problems. Wait for the worker, but only if tasks are
847 	 * _not_ frozen (suspend, hibernate) as that would wait forever.
848 	 *
849 	 * The wait is required because otherwise the hotplug operation
850 	 * returns with inconsistent state, which could even be observed in
851 	 * user space when a new CPU is brought up. The CPU plug uevent
852 	 * would be delivered and user space reacting on it would fail to
853 	 * move tasks to the newly plugged CPU up to the point where the
854 	 * work has finished because up to that point the newly plugged CPU
855 	 * is not assignable in cpusets/cgroups. On unplug that's not
856 	 * necessarily a visible issue, but it is still inconsistent state,
857 	 * which is the real problem which needs to be "fixed". This can't
858 	 * prevent the transient state between scheduling the work and
859 	 * returning from waiting for it.
860 	 */
861 	if (!tasks_frozen)
862 		cpuset_wait_for_hotplug();
863 }
864 
865 #ifdef CONFIG_HOTPLUG_CPU
866 #ifndef arch_clear_mm_cpumask_cpu
867 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
868 #endif
869 
870 /**
871  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
872  * @cpu: a CPU id
873  *
874  * This function walks all processes, finds a valid mm struct for each one and
875  * then clears a corresponding bit in mm's cpumask.  While this all sounds
876  * trivial, there are various non-obvious corner cases, which this function
877  * tries to solve in a safe manner.
878  *
879  * Also note that the function uses a somewhat relaxed locking scheme, so it may
880  * be called only for an already offlined CPU.
881  */
clear_tasks_mm_cpumask(int cpu)882 void clear_tasks_mm_cpumask(int cpu)
883 {
884 	struct task_struct *p;
885 
886 	/*
887 	 * This function is called after the cpu is taken down and marked
888 	 * offline, so its not like new tasks will ever get this cpu set in
889 	 * their mm mask. -- Peter Zijlstra
890 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
891 	 * full-fledged tasklist_lock.
892 	 */
893 	WARN_ON(cpu_online(cpu));
894 	rcu_read_lock();
895 	for_each_process(p) {
896 		struct task_struct *t;
897 
898 		/*
899 		 * Main thread might exit, but other threads may still have
900 		 * a valid mm. Find one.
901 		 */
902 		t = find_lock_task_mm(p);
903 		if (!t)
904 			continue;
905 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
906 		task_unlock(t);
907 	}
908 	rcu_read_unlock();
909 }
910 
911 /* Take this CPU down. */
take_cpu_down(void * _param)912 static int take_cpu_down(void *_param)
913 {
914 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
915 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
916 	int err, cpu = smp_processor_id();
917 	int ret;
918 
919 	/* Ensure this CPU doesn't handle any more interrupts. */
920 	err = __cpu_disable();
921 	if (err < 0)
922 		return err;
923 
924 	/*
925 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
926 	 * do this step again.
927 	 */
928 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
929 	st->state--;
930 	/* Invoke the former CPU_DYING callbacks */
931 	for (; st->state > target; st->state--) {
932 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
933 		/*
934 		 * DYING must not fail!
935 		 */
936 		WARN_ON_ONCE(ret);
937 	}
938 
939 	/* Give up timekeeping duties */
940 	tick_handover_do_timer();
941 	/* Remove CPU from timer broadcasting */
942 	tick_offline_cpu(cpu);
943 	/* Park the stopper thread */
944 	stop_machine_park(cpu);
945 	return 0;
946 }
947 
takedown_cpu(unsigned int cpu)948 static int takedown_cpu(unsigned int cpu)
949 {
950 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
951 	int err;
952 
953 	/* Park the smpboot threads */
954 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
955 
956 	/*
957 	 * Prevent irq alloc/free while the dying cpu reorganizes the
958 	 * interrupt affinities.
959 	 */
960 	irq_lock_sparse();
961 
962 	/*
963 	 * So now all preempt/rcu users must observe !cpu_active().
964 	 */
965 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
966 	if (err) {
967 		/* CPU refused to die */
968 		irq_unlock_sparse();
969 		/* Unpark the hotplug thread so we can rollback there */
970 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
971 		return err;
972 	}
973 	BUG_ON(cpu_online(cpu));
974 
975 	/*
976 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
977 	 * all runnable tasks from the CPU, there's only the idle task left now
978 	 * that the migration thread is done doing the stop_machine thing.
979 	 *
980 	 * Wait for the stop thread to go away.
981 	 */
982 	wait_for_ap_thread(st, false);
983 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
984 
985 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
986 	irq_unlock_sparse();
987 
988 	hotplug_cpu__broadcast_tick_pull(cpu);
989 	/* This actually kills the CPU. */
990 	__cpu_die(cpu);
991 
992 	tick_cleanup_dead_cpu(cpu);
993 	rcutree_migrate_callbacks(cpu);
994 	return 0;
995 }
996 
cpuhp_complete_idle_dead(void * arg)997 static void cpuhp_complete_idle_dead(void *arg)
998 {
999 	struct cpuhp_cpu_state *st = arg;
1000 
1001 	complete_ap_thread(st, false);
1002 }
1003 
cpuhp_report_idle_dead(void)1004 void cpuhp_report_idle_dead(void)
1005 {
1006 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1007 
1008 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1009 	rcu_report_dead(smp_processor_id());
1010 	st->state = CPUHP_AP_IDLE_DEAD;
1011 	/*
1012 	 * We cannot call complete after rcu_report_dead() so we delegate it
1013 	 * to an online cpu.
1014 	 */
1015 	smp_call_function_single(cpumask_first(cpu_online_mask),
1016 				 cpuhp_complete_idle_dead, st, 0);
1017 }
1018 
undo_cpu_down(unsigned int cpu,struct cpuhp_cpu_state * st)1019 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
1020 {
1021 	for (st->state++; st->state < st->target; st->state++)
1022 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1023 }
1024 
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1025 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1026 				enum cpuhp_state target)
1027 {
1028 	enum cpuhp_state prev_state = st->state;
1029 	int ret = 0;
1030 
1031 	for (; st->state > target; st->state--) {
1032 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
1033 		if (ret) {
1034 			st->target = prev_state;
1035 			if (st->state < prev_state)
1036 				undo_cpu_down(cpu, st);
1037 			break;
1038 		}
1039 	}
1040 	return ret;
1041 }
1042 
1043 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1044 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1045 			   enum cpuhp_state target)
1046 {
1047 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1048 	int prev_state, ret = 0;
1049 
1050 	if (num_online_cpus() == 1)
1051 		return -EBUSY;
1052 
1053 	if (!cpu_present(cpu))
1054 		return -EINVAL;
1055 
1056 	cpus_write_lock();
1057 
1058 	cpuhp_tasks_frozen = tasks_frozen;
1059 
1060 	prev_state = cpuhp_set_state(st, target);
1061 	/*
1062 	 * If the current CPU state is in the range of the AP hotplug thread,
1063 	 * then we need to kick the thread.
1064 	 */
1065 	if (st->state > CPUHP_TEARDOWN_CPU) {
1066 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1067 		ret = cpuhp_kick_ap_work(cpu);
1068 		/*
1069 		 * The AP side has done the error rollback already. Just
1070 		 * return the error code..
1071 		 */
1072 		if (ret)
1073 			goto out;
1074 
1075 		/*
1076 		 * We might have stopped still in the range of the AP hotplug
1077 		 * thread. Nothing to do anymore.
1078 		 */
1079 		if (st->state > CPUHP_TEARDOWN_CPU)
1080 			goto out;
1081 
1082 		st->target = target;
1083 	}
1084 	/*
1085 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1086 	 * to do the further cleanups.
1087 	 */
1088 	ret = cpuhp_down_callbacks(cpu, st, target);
1089 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1090 		cpuhp_reset_state(st, prev_state);
1091 		__cpuhp_kick_ap(st);
1092 	}
1093 
1094 out:
1095 	cpus_write_unlock();
1096 	/*
1097 	 * Do post unplug cleanup. This is still protected against
1098 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1099 	 */
1100 	lockup_detector_cleanup();
1101 	arch_smt_update();
1102 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1103 	return ret;
1104 }
1105 
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1106 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1107 {
1108 	if (cpu_hotplug_disabled)
1109 		return -EBUSY;
1110 	return _cpu_down(cpu, 0, target);
1111 }
1112 
do_cpu_down(unsigned int cpu,enum cpuhp_state target)1113 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1114 {
1115 	int err;
1116 
1117 	cpu_maps_update_begin();
1118 	err = cpu_down_maps_locked(cpu, target);
1119 	cpu_maps_update_done();
1120 	return err;
1121 }
1122 
cpu_down(unsigned int cpu)1123 int cpu_down(unsigned int cpu)
1124 {
1125 	return do_cpu_down(cpu, CPUHP_OFFLINE);
1126 }
1127 EXPORT_SYMBOL(cpu_down);
1128 
1129 #else
1130 #define takedown_cpu		NULL
1131 #endif /*CONFIG_HOTPLUG_CPU*/
1132 
1133 /**
1134  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1135  * @cpu: cpu that just started
1136  *
1137  * It must be called by the arch code on the new cpu, before the new cpu
1138  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1139  */
notify_cpu_starting(unsigned int cpu)1140 void notify_cpu_starting(unsigned int cpu)
1141 {
1142 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1143 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1144 	int ret;
1145 
1146 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1147 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1148 	while (st->state < target) {
1149 		st->state++;
1150 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1151 		/*
1152 		 * STARTING must not fail!
1153 		 */
1154 		WARN_ON_ONCE(ret);
1155 	}
1156 }
1157 
1158 /*
1159  * Called from the idle task. Wake up the controlling task which brings the
1160  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1161  * online bringup to the hotplug thread.
1162  */
cpuhp_online_idle(enum cpuhp_state state)1163 void cpuhp_online_idle(enum cpuhp_state state)
1164 {
1165 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1166 
1167 	/* Happens for the boot cpu */
1168 	if (state != CPUHP_AP_ONLINE_IDLE)
1169 		return;
1170 
1171 	/*
1172 	 * Unpart the stopper thread before we start the idle loop (and start
1173 	 * scheduling); this ensures the stopper task is always available.
1174 	 */
1175 	stop_machine_unpark(smp_processor_id());
1176 
1177 	st->state = CPUHP_AP_ONLINE_IDLE;
1178 	complete_ap_thread(st, true);
1179 }
1180 
1181 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1182 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1183 {
1184 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1185 	struct task_struct *idle;
1186 	int ret = 0;
1187 
1188 	cpus_write_lock();
1189 
1190 	if (!cpu_present(cpu)) {
1191 		ret = -EINVAL;
1192 		goto out;
1193 	}
1194 
1195 	/*
1196 	 * The caller of do_cpu_up might have raced with another
1197 	 * caller. Ignore it for now.
1198 	 */
1199 	if (st->state >= target)
1200 		goto out;
1201 
1202 	if (st->state == CPUHP_OFFLINE) {
1203 		/* Let it fail before we try to bring the cpu up */
1204 		idle = idle_thread_get(cpu);
1205 		if (IS_ERR(idle)) {
1206 			ret = PTR_ERR(idle);
1207 			goto out;
1208 		}
1209 	}
1210 
1211 	cpuhp_tasks_frozen = tasks_frozen;
1212 
1213 	cpuhp_set_state(st, target);
1214 	/*
1215 	 * If the current CPU state is in the range of the AP hotplug thread,
1216 	 * then we need to kick the thread once more.
1217 	 */
1218 	if (st->state > CPUHP_BRINGUP_CPU) {
1219 		ret = cpuhp_kick_ap_work(cpu);
1220 		/*
1221 		 * The AP side has done the error rollback already. Just
1222 		 * return the error code..
1223 		 */
1224 		if (ret)
1225 			goto out;
1226 	}
1227 
1228 	/*
1229 	 * Try to reach the target state. We max out on the BP at
1230 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1231 	 * responsible for bringing it up to the target state.
1232 	 */
1233 	target = min((int)target, CPUHP_BRINGUP_CPU);
1234 	ret = cpuhp_up_callbacks(cpu, st, target);
1235 out:
1236 	cpus_write_unlock();
1237 	arch_smt_update();
1238 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1239 	return ret;
1240 }
1241 
do_cpu_up(unsigned int cpu,enum cpuhp_state target)1242 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1243 {
1244 	int err = 0;
1245 
1246 	if (!cpu_possible(cpu)) {
1247 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1248 		       cpu);
1249 #if defined(CONFIG_IA64)
1250 		pr_err("please check additional_cpus= boot parameter\n");
1251 #endif
1252 		return -EINVAL;
1253 	}
1254 
1255 	err = try_online_node(cpu_to_node(cpu));
1256 	if (err)
1257 		return err;
1258 
1259 	cpu_maps_update_begin();
1260 
1261 	if (cpu_hotplug_disabled) {
1262 		err = -EBUSY;
1263 		goto out;
1264 	}
1265 	if (!cpu_smt_allowed(cpu)) {
1266 		err = -EPERM;
1267 		goto out;
1268 	}
1269 
1270 	err = _cpu_up(cpu, 0, target);
1271 out:
1272 	cpu_maps_update_done();
1273 	return err;
1274 }
1275 
cpu_up(unsigned int cpu)1276 int cpu_up(unsigned int cpu)
1277 {
1278 	return do_cpu_up(cpu, CPUHP_ONLINE);
1279 }
1280 EXPORT_SYMBOL_GPL(cpu_up);
1281 
1282 #ifdef CONFIG_PM_SLEEP_SMP
1283 static cpumask_var_t frozen_cpus;
1284 
__freeze_secondary_cpus(int primary,bool suspend)1285 int __freeze_secondary_cpus(int primary, bool suspend)
1286 {
1287 	int cpu, error = 0;
1288 
1289 	cpu_maps_update_begin();
1290 	if (primary == -1) {
1291 		primary = cpumask_first(cpu_online_mask);
1292 		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1293 			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1294 	} else {
1295 		if (!cpu_online(primary))
1296 			primary = cpumask_first(cpu_online_mask);
1297 	}
1298 
1299 	/*
1300 	 * We take down all of the non-boot CPUs in one shot to avoid races
1301 	 * with the userspace trying to use the CPU hotplug at the same time
1302 	 */
1303 	cpumask_clear(frozen_cpus);
1304 
1305 	pr_info("Disabling non-boot CPUs ...\n");
1306 	for_each_online_cpu(cpu) {
1307 		if (cpu == primary)
1308 			continue;
1309 
1310 		if (suspend && pm_wakeup_pending()) {
1311 			pr_info("Wakeup pending. Abort CPU freeze\n");
1312 			error = -EBUSY;
1313 			break;
1314 		}
1315 
1316 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1317 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1318 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1319 		if (!error)
1320 			cpumask_set_cpu(cpu, frozen_cpus);
1321 		else {
1322 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1323 			break;
1324 		}
1325 	}
1326 
1327 	if (!error)
1328 		BUG_ON(num_online_cpus() > 1);
1329 	else
1330 		pr_err("Non-boot CPUs are not disabled\n");
1331 
1332 	/*
1333 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1334 	 * this even in case of failure as all disable_nonboot_cpus() users are
1335 	 * supposed to do enable_nonboot_cpus() on the failure path.
1336 	 */
1337 	cpu_hotplug_disabled++;
1338 
1339 	cpu_maps_update_done();
1340 	return error;
1341 }
1342 
arch_enable_nonboot_cpus_begin(void)1343 void __weak arch_enable_nonboot_cpus_begin(void)
1344 {
1345 }
1346 
arch_enable_nonboot_cpus_end(void)1347 void __weak arch_enable_nonboot_cpus_end(void)
1348 {
1349 }
1350 
enable_nonboot_cpus(void)1351 void enable_nonboot_cpus(void)
1352 {
1353 	int cpu, error;
1354 	struct device *cpu_device;
1355 
1356 	/* Allow everyone to use the CPU hotplug again */
1357 	cpu_maps_update_begin();
1358 	__cpu_hotplug_enable();
1359 	if (cpumask_empty(frozen_cpus))
1360 		goto out;
1361 
1362 	pr_info("Enabling non-boot CPUs ...\n");
1363 
1364 	arch_enable_nonboot_cpus_begin();
1365 
1366 	for_each_cpu(cpu, frozen_cpus) {
1367 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1368 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1369 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1370 		if (!error) {
1371 			pr_info("CPU%d is up\n", cpu);
1372 			cpu_device = get_cpu_device(cpu);
1373 			if (!cpu_device)
1374 				pr_err("%s: failed to get cpu%d device\n",
1375 				       __func__, cpu);
1376 			else
1377 				kobject_uevent(&cpu_device->kobj, KOBJ_ONLINE);
1378 			continue;
1379 		}
1380 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1381 	}
1382 
1383 	arch_enable_nonboot_cpus_end();
1384 
1385 	cpumask_clear(frozen_cpus);
1386 out:
1387 	cpu_maps_update_done();
1388 }
1389 
alloc_frozen_cpus(void)1390 static int __init alloc_frozen_cpus(void)
1391 {
1392 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1393 		return -ENOMEM;
1394 	return 0;
1395 }
1396 core_initcall(alloc_frozen_cpus);
1397 
1398 /*
1399  * When callbacks for CPU hotplug notifications are being executed, we must
1400  * ensure that the state of the system with respect to the tasks being frozen
1401  * or not, as reported by the notification, remains unchanged *throughout the
1402  * duration* of the execution of the callbacks.
1403  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1404  *
1405  * This synchronization is implemented by mutually excluding regular CPU
1406  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1407  * Hibernate notifications.
1408  */
1409 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1410 cpu_hotplug_pm_callback(struct notifier_block *nb,
1411 			unsigned long action, void *ptr)
1412 {
1413 	switch (action) {
1414 
1415 	case PM_SUSPEND_PREPARE:
1416 	case PM_HIBERNATION_PREPARE:
1417 		cpu_hotplug_disable();
1418 		break;
1419 
1420 	case PM_POST_SUSPEND:
1421 	case PM_POST_HIBERNATION:
1422 		cpu_hotplug_enable();
1423 		break;
1424 
1425 	default:
1426 		return NOTIFY_DONE;
1427 	}
1428 
1429 	return NOTIFY_OK;
1430 }
1431 
1432 
cpu_hotplug_pm_sync_init(void)1433 static int __init cpu_hotplug_pm_sync_init(void)
1434 {
1435 	/*
1436 	 * cpu_hotplug_pm_callback has higher priority than x86
1437 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1438 	 * to disable cpu hotplug to avoid cpu hotplug race.
1439 	 */
1440 	pm_notifier(cpu_hotplug_pm_callback, 0);
1441 	return 0;
1442 }
1443 core_initcall(cpu_hotplug_pm_sync_init);
1444 
1445 #endif /* CONFIG_PM_SLEEP_SMP */
1446 
1447 int __boot_cpu_id;
1448 
1449 /* Horrific hacks because we can't add more to cpuhp_hp_states. */
random_and_perf_prepare_fusion(unsigned int cpu)1450 static int random_and_perf_prepare_fusion(unsigned int cpu)
1451 {
1452 #ifdef CONFIG_PERF_EVENTS
1453 	perf_event_init_cpu(cpu);
1454 #endif
1455 	random_prepare_cpu(cpu);
1456 	return 0;
1457 }
random_and_workqueue_online_fusion(unsigned int cpu)1458 static int random_and_workqueue_online_fusion(unsigned int cpu)
1459 {
1460 	workqueue_online_cpu(cpu);
1461 	random_online_cpu(cpu);
1462 	return 0;
1463 }
1464 
1465 #endif /* CONFIG_SMP */
1466 
1467 /* Boot processor state steps */
1468 static struct cpuhp_step cpuhp_hp_states[] = {
1469 	[CPUHP_OFFLINE] = {
1470 		.name			= "offline",
1471 		.startup.single		= NULL,
1472 		.teardown.single	= NULL,
1473 	},
1474 #ifdef CONFIG_SMP
1475 	[CPUHP_CREATE_THREADS]= {
1476 		.name			= "threads:prepare",
1477 		.startup.single		= smpboot_create_threads,
1478 		.teardown.single	= NULL,
1479 		.cant_stop		= true,
1480 	},
1481 	[CPUHP_PERF_PREPARE] = {
1482 		.name			= "perf:prepare",
1483 		.startup.single		= random_and_perf_prepare_fusion,
1484 		.teardown.single	= perf_event_exit_cpu,
1485 	},
1486 	[CPUHP_WORKQUEUE_PREP] = {
1487 		.name			= "workqueue:prepare",
1488 		.startup.single		= workqueue_prepare_cpu,
1489 		.teardown.single	= NULL,
1490 	},
1491 	[CPUHP_HRTIMERS_PREPARE] = {
1492 		.name			= "hrtimers:prepare",
1493 		.startup.single		= hrtimers_prepare_cpu,
1494 		.teardown.single	= hrtimers_dead_cpu,
1495 	},
1496 	[CPUHP_SMPCFD_PREPARE] = {
1497 		.name			= "smpcfd:prepare",
1498 		.startup.single		= smpcfd_prepare_cpu,
1499 		.teardown.single	= smpcfd_dead_cpu,
1500 	},
1501 	[CPUHP_RELAY_PREPARE] = {
1502 		.name			= "relay:prepare",
1503 		.startup.single		= relay_prepare_cpu,
1504 		.teardown.single	= NULL,
1505 	},
1506 	[CPUHP_SLAB_PREPARE] = {
1507 		.name			= "slab:prepare",
1508 		.startup.single		= slab_prepare_cpu,
1509 		.teardown.single	= slab_dead_cpu,
1510 	},
1511 	[CPUHP_RCUTREE_PREP] = {
1512 		.name			= "RCU/tree:prepare",
1513 		.startup.single		= rcutree_prepare_cpu,
1514 		.teardown.single	= rcutree_dead_cpu,
1515 	},
1516 	/*
1517 	 * On the tear-down path, timers_dead_cpu() must be invoked
1518 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1519 	 * otherwise a RCU stall occurs.
1520 	 */
1521 	[CPUHP_TIMERS_PREPARE] = {
1522 		.name			= "timers:prepare",
1523 		.startup.single		= timers_prepare_cpu,
1524 		.teardown.single	= timers_dead_cpu,
1525 	},
1526 	/* Kicks the plugged cpu into life */
1527 	[CPUHP_BRINGUP_CPU] = {
1528 		.name			= "cpu:bringup",
1529 		.startup.single		= bringup_cpu,
1530 		.teardown.single	= finish_cpu,
1531 		.cant_stop		= true,
1532 	},
1533 	/* Final state before CPU kills itself */
1534 	[CPUHP_AP_IDLE_DEAD] = {
1535 		.name			= "idle:dead",
1536 	},
1537 	/*
1538 	 * Last state before CPU enters the idle loop to die. Transient state
1539 	 * for synchronization.
1540 	 */
1541 	[CPUHP_AP_OFFLINE] = {
1542 		.name			= "ap:offline",
1543 		.cant_stop		= true,
1544 	},
1545 	/* First state is scheduler control. Interrupts are disabled */
1546 	[CPUHP_AP_SCHED_STARTING] = {
1547 		.name			= "sched:starting",
1548 		.startup.single		= sched_cpu_starting,
1549 		.teardown.single	= sched_cpu_dying,
1550 	},
1551 	[CPUHP_AP_RCUTREE_DYING] = {
1552 		.name			= "RCU/tree:dying",
1553 		.startup.single		= NULL,
1554 		.teardown.single	= rcutree_dying_cpu,
1555 	},
1556 	[CPUHP_AP_SMPCFD_DYING] = {
1557 		.name			= "smpcfd:dying",
1558 		.startup.single		= NULL,
1559 		.teardown.single	= smpcfd_dying_cpu,
1560 	},
1561 	/* Entry state on starting. Interrupts enabled from here on. Transient
1562 	 * state for synchronsization */
1563 	[CPUHP_AP_ONLINE] = {
1564 		.name			= "ap:online",
1565 	},
1566 	/*
1567 	 * Handled on controll processor until the plugged processor manages
1568 	 * this itself.
1569 	 */
1570 	[CPUHP_TEARDOWN_CPU] = {
1571 		.name			= "cpu:teardown",
1572 		.startup.single		= NULL,
1573 		.teardown.single	= takedown_cpu,
1574 		.cant_stop		= true,
1575 	},
1576 	/* Handle smpboot threads park/unpark */
1577 	[CPUHP_AP_SMPBOOT_THREADS] = {
1578 		.name			= "smpboot/threads:online",
1579 		.startup.single		= smpboot_unpark_threads,
1580 		.teardown.single	= smpboot_park_threads,
1581 	},
1582 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1583 		.name			= "irq/affinity:online",
1584 		.startup.single		= irq_affinity_online_cpu,
1585 		.teardown.single	= NULL,
1586 	},
1587 	[CPUHP_AP_PERF_ONLINE] = {
1588 		.name			= "perf:online",
1589 		.startup.single		= perf_event_init_cpu,
1590 		.teardown.single	= perf_event_exit_cpu,
1591 	},
1592 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1593 		.name			= "lockup_detector:online",
1594 		.startup.single		= lockup_detector_online_cpu,
1595 		.teardown.single	= lockup_detector_offline_cpu,
1596 	},
1597 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1598 		.name			= "workqueue:online",
1599 		.startup.single		= random_and_workqueue_online_fusion,
1600 		.teardown.single	= workqueue_offline_cpu,
1601 	},
1602 	[CPUHP_AP_RCUTREE_ONLINE] = {
1603 		.name			= "RCU/tree:online",
1604 		.startup.single		= rcutree_online_cpu,
1605 		.teardown.single	= rcutree_offline_cpu,
1606 	},
1607 #endif
1608 	/*
1609 	 * The dynamically registered state space is here
1610 	 */
1611 
1612 #ifdef CONFIG_SMP
1613 	/* Last state is scheduler control setting the cpu active */
1614 	[CPUHP_AP_ACTIVE] = {
1615 		.name			= "sched:active",
1616 		.startup.single		= sched_cpu_activate,
1617 		.teardown.single	= sched_cpu_deactivate,
1618 	},
1619 #endif
1620 
1621 	/* CPU is fully up and running. */
1622 	[CPUHP_ONLINE] = {
1623 		.name			= "online",
1624 		.startup.single		= NULL,
1625 		.teardown.single	= NULL,
1626 	},
1627 };
1628 
1629 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1630 static int cpuhp_cb_check(enum cpuhp_state state)
1631 {
1632 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1633 		return -EINVAL;
1634 	return 0;
1635 }
1636 
1637 /*
1638  * Returns a free for dynamic slot assignment of the Online state. The states
1639  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1640  * by having no name assigned.
1641  */
cpuhp_reserve_state(enum cpuhp_state state)1642 static int cpuhp_reserve_state(enum cpuhp_state state)
1643 {
1644 	enum cpuhp_state i, end;
1645 	struct cpuhp_step *step;
1646 
1647 	switch (state) {
1648 	case CPUHP_AP_ONLINE_DYN:
1649 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1650 		end = CPUHP_AP_ONLINE_DYN_END;
1651 		break;
1652 	case CPUHP_BP_PREPARE_DYN:
1653 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1654 		end = CPUHP_BP_PREPARE_DYN_END;
1655 		break;
1656 	default:
1657 		return -EINVAL;
1658 	}
1659 
1660 	for (i = state; i <= end; i++, step++) {
1661 		if (!step->name)
1662 			return i;
1663 	}
1664 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1665 	return -ENOSPC;
1666 }
1667 
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1668 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1669 				 int (*startup)(unsigned int cpu),
1670 				 int (*teardown)(unsigned int cpu),
1671 				 bool multi_instance)
1672 {
1673 	/* (Un)Install the callbacks for further cpu hotplug operations */
1674 	struct cpuhp_step *sp;
1675 	int ret = 0;
1676 
1677 	/*
1678 	 * If name is NULL, then the state gets removed.
1679 	 *
1680 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1681 	 * the first allocation from these dynamic ranges, so the removal
1682 	 * would trigger a new allocation and clear the wrong (already
1683 	 * empty) state, leaving the callbacks of the to be cleared state
1684 	 * dangling, which causes wreckage on the next hotplug operation.
1685 	 */
1686 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1687 		     state == CPUHP_BP_PREPARE_DYN)) {
1688 		ret = cpuhp_reserve_state(state);
1689 		if (ret < 0)
1690 			return ret;
1691 		state = ret;
1692 	}
1693 	sp = cpuhp_get_step(state);
1694 	if (name && sp->name)
1695 		return -EBUSY;
1696 
1697 	sp->startup.single = startup;
1698 	sp->teardown.single = teardown;
1699 	sp->name = name;
1700 	sp->multi_instance = multi_instance;
1701 	INIT_HLIST_HEAD(&sp->list);
1702 	return ret;
1703 }
1704 
cpuhp_get_teardown_cb(enum cpuhp_state state)1705 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1706 {
1707 	return cpuhp_get_step(state)->teardown.single;
1708 }
1709 
1710 /*
1711  * Call the startup/teardown function for a step either on the AP or
1712  * on the current CPU.
1713  */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1714 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1715 			    struct hlist_node *node)
1716 {
1717 	struct cpuhp_step *sp = cpuhp_get_step(state);
1718 	int ret;
1719 
1720 	/*
1721 	 * If there's nothing to do, we done.
1722 	 * Relies on the union for multi_instance.
1723 	 */
1724 	if ((bringup && !sp->startup.single) ||
1725 	    (!bringup && !sp->teardown.single))
1726 		return 0;
1727 	/*
1728 	 * The non AP bound callbacks can fail on bringup. On teardown
1729 	 * e.g. module removal we crash for now.
1730 	 */
1731 #ifdef CONFIG_SMP
1732 	if (cpuhp_is_ap_state(state))
1733 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1734 	else
1735 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1736 #else
1737 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1738 #endif
1739 	BUG_ON(ret && !bringup);
1740 	return ret;
1741 }
1742 
1743 /*
1744  * Called from __cpuhp_setup_state on a recoverable failure.
1745  *
1746  * Note: The teardown callbacks for rollback are not allowed to fail!
1747  */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)1748 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1749 				   struct hlist_node *node)
1750 {
1751 	int cpu;
1752 
1753 	/* Roll back the already executed steps on the other cpus */
1754 	for_each_present_cpu(cpu) {
1755 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1756 		int cpustate = st->state;
1757 
1758 		if (cpu >= failedcpu)
1759 			break;
1760 
1761 		/* Did we invoke the startup call on that cpu ? */
1762 		if (cpustate >= state)
1763 			cpuhp_issue_call(cpu, state, false, node);
1764 	}
1765 }
1766 
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)1767 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1768 					  struct hlist_node *node,
1769 					  bool invoke)
1770 {
1771 	struct cpuhp_step *sp;
1772 	int cpu;
1773 	int ret;
1774 
1775 	lockdep_assert_cpus_held();
1776 
1777 	sp = cpuhp_get_step(state);
1778 	if (sp->multi_instance == false)
1779 		return -EINVAL;
1780 
1781 	mutex_lock(&cpuhp_state_mutex);
1782 
1783 	if (!invoke || !sp->startup.multi)
1784 		goto add_node;
1785 
1786 	/*
1787 	 * Try to call the startup callback for each present cpu
1788 	 * depending on the hotplug state of the cpu.
1789 	 */
1790 	for_each_present_cpu(cpu) {
1791 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1792 		int cpustate = st->state;
1793 
1794 		if (cpustate < state)
1795 			continue;
1796 
1797 		ret = cpuhp_issue_call(cpu, state, true, node);
1798 		if (ret) {
1799 			if (sp->teardown.multi)
1800 				cpuhp_rollback_install(cpu, state, node);
1801 			goto unlock;
1802 		}
1803 	}
1804 add_node:
1805 	ret = 0;
1806 	hlist_add_head(node, &sp->list);
1807 unlock:
1808 	mutex_unlock(&cpuhp_state_mutex);
1809 	return ret;
1810 }
1811 
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1812 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1813 			       bool invoke)
1814 {
1815 	int ret;
1816 
1817 	cpus_read_lock();
1818 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1819 	cpus_read_unlock();
1820 	return ret;
1821 }
1822 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1823 
1824 /**
1825  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1826  * @state:		The state to setup
1827  * @invoke:		If true, the startup function is invoked for cpus where
1828  *			cpu state >= @state
1829  * @startup:		startup callback function
1830  * @teardown:		teardown callback function
1831  * @multi_instance:	State is set up for multiple instances which get
1832  *			added afterwards.
1833  *
1834  * The caller needs to hold cpus read locked while calling this function.
1835  * Returns:
1836  *   On success:
1837  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1838  *      0 for all other states
1839  *   On failure: proper (negative) error code
1840  */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1841 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1842 				   const char *name, bool invoke,
1843 				   int (*startup)(unsigned int cpu),
1844 				   int (*teardown)(unsigned int cpu),
1845 				   bool multi_instance)
1846 {
1847 	int cpu, ret = 0;
1848 	bool dynstate;
1849 
1850 	lockdep_assert_cpus_held();
1851 
1852 	if (cpuhp_cb_check(state) || !name)
1853 		return -EINVAL;
1854 
1855 	mutex_lock(&cpuhp_state_mutex);
1856 
1857 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1858 				    multi_instance);
1859 
1860 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1861 	if (ret > 0 && dynstate) {
1862 		state = ret;
1863 		ret = 0;
1864 	}
1865 
1866 	if (ret || !invoke || !startup)
1867 		goto out;
1868 
1869 	/*
1870 	 * Try to call the startup callback for each present cpu
1871 	 * depending on the hotplug state of the cpu.
1872 	 */
1873 	for_each_present_cpu(cpu) {
1874 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1875 		int cpustate = st->state;
1876 
1877 		if (cpustate < state)
1878 			continue;
1879 
1880 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1881 		if (ret) {
1882 			if (teardown)
1883 				cpuhp_rollback_install(cpu, state, NULL);
1884 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1885 			goto out;
1886 		}
1887 	}
1888 out:
1889 	mutex_unlock(&cpuhp_state_mutex);
1890 	/*
1891 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1892 	 * dynamically allocated state in case of success.
1893 	 */
1894 	if (!ret && dynstate)
1895 		return state;
1896 	return ret;
1897 }
1898 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1899 
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1900 int __cpuhp_setup_state(enum cpuhp_state state,
1901 			const char *name, bool invoke,
1902 			int (*startup)(unsigned int cpu),
1903 			int (*teardown)(unsigned int cpu),
1904 			bool multi_instance)
1905 {
1906 	int ret;
1907 
1908 	cpus_read_lock();
1909 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1910 					     teardown, multi_instance);
1911 	cpus_read_unlock();
1912 	return ret;
1913 }
1914 EXPORT_SYMBOL(__cpuhp_setup_state);
1915 
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1916 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1917 				  struct hlist_node *node, bool invoke)
1918 {
1919 	struct cpuhp_step *sp = cpuhp_get_step(state);
1920 	int cpu;
1921 
1922 	BUG_ON(cpuhp_cb_check(state));
1923 
1924 	if (!sp->multi_instance)
1925 		return -EINVAL;
1926 
1927 	cpus_read_lock();
1928 	mutex_lock(&cpuhp_state_mutex);
1929 
1930 	if (!invoke || !cpuhp_get_teardown_cb(state))
1931 		goto remove;
1932 	/*
1933 	 * Call the teardown callback for each present cpu depending
1934 	 * on the hotplug state of the cpu. This function is not
1935 	 * allowed to fail currently!
1936 	 */
1937 	for_each_present_cpu(cpu) {
1938 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1939 		int cpustate = st->state;
1940 
1941 		if (cpustate >= state)
1942 			cpuhp_issue_call(cpu, state, false, node);
1943 	}
1944 
1945 remove:
1946 	hlist_del(node);
1947 	mutex_unlock(&cpuhp_state_mutex);
1948 	cpus_read_unlock();
1949 
1950 	return 0;
1951 }
1952 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1953 
1954 /**
1955  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1956  * @state:	The state to remove
1957  * @invoke:	If true, the teardown function is invoked for cpus where
1958  *		cpu state >= @state
1959  *
1960  * The caller needs to hold cpus read locked while calling this function.
1961  * The teardown callback is currently not allowed to fail. Think
1962  * about module removal!
1963  */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)1964 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1965 {
1966 	struct cpuhp_step *sp = cpuhp_get_step(state);
1967 	int cpu;
1968 
1969 	BUG_ON(cpuhp_cb_check(state));
1970 
1971 	lockdep_assert_cpus_held();
1972 
1973 	mutex_lock(&cpuhp_state_mutex);
1974 	if (sp->multi_instance) {
1975 		WARN(!hlist_empty(&sp->list),
1976 		     "Error: Removing state %d which has instances left.\n",
1977 		     state);
1978 		goto remove;
1979 	}
1980 
1981 	if (!invoke || !cpuhp_get_teardown_cb(state))
1982 		goto remove;
1983 
1984 	/*
1985 	 * Call the teardown callback for each present cpu depending
1986 	 * on the hotplug state of the cpu. This function is not
1987 	 * allowed to fail currently!
1988 	 */
1989 	for_each_present_cpu(cpu) {
1990 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1991 		int cpustate = st->state;
1992 
1993 		if (cpustate >= state)
1994 			cpuhp_issue_call(cpu, state, false, NULL);
1995 	}
1996 remove:
1997 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1998 	mutex_unlock(&cpuhp_state_mutex);
1999 }
2000 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2001 
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2002 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2003 {
2004 	cpus_read_lock();
2005 	__cpuhp_remove_state_cpuslocked(state, invoke);
2006 	cpus_read_unlock();
2007 }
2008 EXPORT_SYMBOL(__cpuhp_remove_state);
2009 
2010 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2011 static void cpuhp_offline_cpu_device(unsigned int cpu)
2012 {
2013 	struct device *dev = get_cpu_device(cpu);
2014 
2015 	dev->offline = true;
2016 	/* Tell user space about the state change */
2017 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2018 }
2019 
cpuhp_online_cpu_device(unsigned int cpu)2020 static void cpuhp_online_cpu_device(unsigned int cpu)
2021 {
2022 	struct device *dev = get_cpu_device(cpu);
2023 
2024 	dev->offline = false;
2025 	/* Tell user space about the state change */
2026 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2027 }
2028 
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2029 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2030 {
2031 	int cpu, ret = 0;
2032 
2033 	cpu_maps_update_begin();
2034 	for_each_online_cpu(cpu) {
2035 		if (topology_is_primary_thread(cpu))
2036 			continue;
2037 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2038 		if (ret)
2039 			break;
2040 		/*
2041 		 * As this needs to hold the cpu maps lock it's impossible
2042 		 * to call device_offline() because that ends up calling
2043 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2044 		 * needs to be held as this might race against in kernel
2045 		 * abusers of the hotplug machinery (thermal management).
2046 		 *
2047 		 * So nothing would update device:offline state. That would
2048 		 * leave the sysfs entry stale and prevent onlining after
2049 		 * smt control has been changed to 'off' again. This is
2050 		 * called under the sysfs hotplug lock, so it is properly
2051 		 * serialized against the regular offline usage.
2052 		 */
2053 		cpuhp_offline_cpu_device(cpu);
2054 	}
2055 	if (!ret)
2056 		cpu_smt_control = ctrlval;
2057 	cpu_maps_update_done();
2058 	return ret;
2059 }
2060 
cpuhp_smt_enable(void)2061 int cpuhp_smt_enable(void)
2062 {
2063 	int cpu, ret = 0;
2064 
2065 	cpu_maps_update_begin();
2066 	cpu_smt_control = CPU_SMT_ENABLED;
2067 	for_each_present_cpu(cpu) {
2068 		/* Skip online CPUs and CPUs on offline nodes */
2069 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2070 			continue;
2071 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2072 		if (ret)
2073 			break;
2074 		/* See comment in cpuhp_smt_disable() */
2075 		cpuhp_online_cpu_device(cpu);
2076 	}
2077 	cpu_maps_update_done();
2078 	return ret;
2079 }
2080 #endif
2081 
2082 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
show_cpuhp_state(struct device * dev,struct device_attribute * attr,char * buf)2083 static ssize_t show_cpuhp_state(struct device *dev,
2084 				struct device_attribute *attr, char *buf)
2085 {
2086 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2087 
2088 	return sprintf(buf, "%d\n", st->state);
2089 }
2090 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2091 
write_cpuhp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2092 static ssize_t write_cpuhp_target(struct device *dev,
2093 				  struct device_attribute *attr,
2094 				  const char *buf, size_t count)
2095 {
2096 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2097 	struct cpuhp_step *sp;
2098 	int target, ret;
2099 
2100 	ret = kstrtoint(buf, 10, &target);
2101 	if (ret)
2102 		return ret;
2103 
2104 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2105 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2106 		return -EINVAL;
2107 #else
2108 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2109 		return -EINVAL;
2110 #endif
2111 
2112 	ret = lock_device_hotplug_sysfs();
2113 	if (ret)
2114 		return ret;
2115 
2116 	mutex_lock(&cpuhp_state_mutex);
2117 	sp = cpuhp_get_step(target);
2118 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2119 	mutex_unlock(&cpuhp_state_mutex);
2120 	if (ret)
2121 		goto out;
2122 
2123 	if (st->state < target)
2124 		ret = do_cpu_up(dev->id, target);
2125 	else
2126 		ret = do_cpu_down(dev->id, target);
2127 out:
2128 	unlock_device_hotplug();
2129 	return ret ? ret : count;
2130 }
2131 
show_cpuhp_target(struct device * dev,struct device_attribute * attr,char * buf)2132 static ssize_t show_cpuhp_target(struct device *dev,
2133 				 struct device_attribute *attr, char *buf)
2134 {
2135 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2136 
2137 	return sprintf(buf, "%d\n", st->target);
2138 }
2139 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2140 
2141 
write_cpuhp_fail(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2142 static ssize_t write_cpuhp_fail(struct device *dev,
2143 				struct device_attribute *attr,
2144 				const char *buf, size_t count)
2145 {
2146 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2147 	struct cpuhp_step *sp;
2148 	int fail, ret;
2149 
2150 	ret = kstrtoint(buf, 10, &fail);
2151 	if (ret)
2152 		return ret;
2153 
2154 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2155 		return -EINVAL;
2156 
2157 	/*
2158 	 * Cannot fail STARTING/DYING callbacks.
2159 	 */
2160 	if (cpuhp_is_atomic_state(fail))
2161 		return -EINVAL;
2162 
2163 	/*
2164 	 * Cannot fail anything that doesn't have callbacks.
2165 	 */
2166 	mutex_lock(&cpuhp_state_mutex);
2167 	sp = cpuhp_get_step(fail);
2168 	if (!sp->startup.single && !sp->teardown.single)
2169 		ret = -EINVAL;
2170 	mutex_unlock(&cpuhp_state_mutex);
2171 	if (ret)
2172 		return ret;
2173 
2174 	st->fail = fail;
2175 
2176 	return count;
2177 }
2178 
show_cpuhp_fail(struct device * dev,struct device_attribute * attr,char * buf)2179 static ssize_t show_cpuhp_fail(struct device *dev,
2180 			       struct device_attribute *attr, char *buf)
2181 {
2182 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2183 
2184 	return sprintf(buf, "%d\n", st->fail);
2185 }
2186 
2187 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2188 
2189 static struct attribute *cpuhp_cpu_attrs[] = {
2190 	&dev_attr_state.attr,
2191 	&dev_attr_target.attr,
2192 	&dev_attr_fail.attr,
2193 	NULL
2194 };
2195 
2196 static const struct attribute_group cpuhp_cpu_attr_group = {
2197 	.attrs = cpuhp_cpu_attrs,
2198 	.name = "hotplug",
2199 	NULL
2200 };
2201 
show_cpuhp_states(struct device * dev,struct device_attribute * attr,char * buf)2202 static ssize_t show_cpuhp_states(struct device *dev,
2203 				 struct device_attribute *attr, char *buf)
2204 {
2205 	ssize_t cur, res = 0;
2206 	int i;
2207 
2208 	mutex_lock(&cpuhp_state_mutex);
2209 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2210 		struct cpuhp_step *sp = cpuhp_get_step(i);
2211 
2212 		if (sp->name) {
2213 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2214 			buf += cur;
2215 			res += cur;
2216 		}
2217 	}
2218 	mutex_unlock(&cpuhp_state_mutex);
2219 	return res;
2220 }
2221 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2222 
2223 static struct attribute *cpuhp_cpu_root_attrs[] = {
2224 	&dev_attr_states.attr,
2225 	NULL
2226 };
2227 
2228 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2229 	.attrs = cpuhp_cpu_root_attrs,
2230 	.name = "hotplug",
2231 	NULL
2232 };
2233 
2234 #ifdef CONFIG_HOTPLUG_SMT
2235 
2236 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2237 __store_smt_control(struct device *dev, struct device_attribute *attr,
2238 		    const char *buf, size_t count)
2239 {
2240 	int ctrlval, ret;
2241 
2242 	if (sysfs_streq(buf, "on"))
2243 		ctrlval = CPU_SMT_ENABLED;
2244 	else if (sysfs_streq(buf, "off"))
2245 		ctrlval = CPU_SMT_DISABLED;
2246 	else if (sysfs_streq(buf, "forceoff"))
2247 		ctrlval = CPU_SMT_FORCE_DISABLED;
2248 	else
2249 		return -EINVAL;
2250 
2251 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2252 		return -EPERM;
2253 
2254 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2255 		return -ENODEV;
2256 
2257 	ret = lock_device_hotplug_sysfs();
2258 	if (ret)
2259 		return ret;
2260 
2261 	if (ctrlval != cpu_smt_control) {
2262 		switch (ctrlval) {
2263 		case CPU_SMT_ENABLED:
2264 			ret = cpuhp_smt_enable();
2265 			break;
2266 		case CPU_SMT_DISABLED:
2267 		case CPU_SMT_FORCE_DISABLED:
2268 			ret = cpuhp_smt_disable(ctrlval);
2269 			break;
2270 		}
2271 	}
2272 
2273 	unlock_device_hotplug();
2274 	return ret ? ret : count;
2275 }
2276 
2277 #else /* !CONFIG_HOTPLUG_SMT */
2278 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2279 __store_smt_control(struct device *dev, struct device_attribute *attr,
2280 		    const char *buf, size_t count)
2281 {
2282 	return -ENODEV;
2283 }
2284 #endif /* CONFIG_HOTPLUG_SMT */
2285 
2286 static const char *smt_states[] = {
2287 	[CPU_SMT_ENABLED]		= "on",
2288 	[CPU_SMT_DISABLED]		= "off",
2289 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2290 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2291 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2292 };
2293 
2294 static ssize_t
show_smt_control(struct device * dev,struct device_attribute * attr,char * buf)2295 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2296 {
2297 	const char *state = smt_states[cpu_smt_control];
2298 
2299 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2300 }
2301 
2302 static ssize_t
store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2303 store_smt_control(struct device *dev, struct device_attribute *attr,
2304 		  const char *buf, size_t count)
2305 {
2306 	return __store_smt_control(dev, attr, buf, count);
2307 }
2308 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2309 
2310 static ssize_t
show_smt_active(struct device * dev,struct device_attribute * attr,char * buf)2311 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2312 {
2313 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2314 }
2315 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2316 
2317 static struct attribute *cpuhp_smt_attrs[] = {
2318 	&dev_attr_control.attr,
2319 	&dev_attr_active.attr,
2320 	NULL
2321 };
2322 
2323 static const struct attribute_group cpuhp_smt_attr_group = {
2324 	.attrs = cpuhp_smt_attrs,
2325 	.name = "smt",
2326 	NULL
2327 };
2328 
cpu_smt_sysfs_init(void)2329 static int __init cpu_smt_sysfs_init(void)
2330 {
2331 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2332 				  &cpuhp_smt_attr_group);
2333 }
2334 
cpuhp_sysfs_init(void)2335 static int __init cpuhp_sysfs_init(void)
2336 {
2337 	int cpu, ret;
2338 
2339 	ret = cpu_smt_sysfs_init();
2340 	if (ret)
2341 		return ret;
2342 
2343 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2344 				 &cpuhp_cpu_root_attr_group);
2345 	if (ret)
2346 		return ret;
2347 
2348 	for_each_possible_cpu(cpu) {
2349 		struct device *dev = get_cpu_device(cpu);
2350 
2351 		if (!dev)
2352 			continue;
2353 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2354 		if (ret)
2355 			return ret;
2356 	}
2357 	return 0;
2358 }
2359 device_initcall(cpuhp_sysfs_init);
2360 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2361 
2362 /*
2363  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2364  * represents all NR_CPUS bits binary values of 1<<nr.
2365  *
2366  * It is used by cpumask_of() to get a constant address to a CPU
2367  * mask value that has a single bit set only.
2368  */
2369 
2370 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2371 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2372 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2373 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2374 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2375 
2376 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2377 
2378 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2379 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2380 #if BITS_PER_LONG > 32
2381 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2382 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2383 #endif
2384 };
2385 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2386 
2387 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2388 EXPORT_SYMBOL(cpu_all_bits);
2389 
2390 #ifdef CONFIG_INIT_ALL_POSSIBLE
2391 struct cpumask __cpu_possible_mask __read_mostly
2392 	= {CPU_BITS_ALL};
2393 #else
2394 struct cpumask __cpu_possible_mask __read_mostly;
2395 #endif
2396 EXPORT_SYMBOL(__cpu_possible_mask);
2397 
2398 struct cpumask __cpu_online_mask __read_mostly;
2399 EXPORT_SYMBOL(__cpu_online_mask);
2400 
2401 struct cpumask __cpu_present_mask __read_mostly;
2402 EXPORT_SYMBOL(__cpu_present_mask);
2403 
2404 struct cpumask __cpu_active_mask __read_mostly;
2405 EXPORT_SYMBOL(__cpu_active_mask);
2406 
2407 atomic_t __num_online_cpus __read_mostly;
2408 EXPORT_SYMBOL(__num_online_cpus);
2409 
init_cpu_present(const struct cpumask * src)2410 void init_cpu_present(const struct cpumask *src)
2411 {
2412 	cpumask_copy(&__cpu_present_mask, src);
2413 }
2414 
init_cpu_possible(const struct cpumask * src)2415 void init_cpu_possible(const struct cpumask *src)
2416 {
2417 	cpumask_copy(&__cpu_possible_mask, src);
2418 }
2419 
init_cpu_online(const struct cpumask * src)2420 void init_cpu_online(const struct cpumask *src)
2421 {
2422 	cpumask_copy(&__cpu_online_mask, src);
2423 }
2424 
set_cpu_online(unsigned int cpu,bool online)2425 void set_cpu_online(unsigned int cpu, bool online)
2426 {
2427 	/*
2428 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2429 	 * function by the reboot and kexec code which invoke it from
2430 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2431 	 * regular CPU hotplug is properly serialized.
2432 	 *
2433 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2434 	 * does not protect readers which are not serialized against
2435 	 * concurrent hotplug operations.
2436 	 */
2437 	if (online) {
2438 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2439 			atomic_inc(&__num_online_cpus);
2440 	} else {
2441 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2442 			atomic_dec(&__num_online_cpus);
2443 	}
2444 }
2445 
2446 /*
2447  * Activate the first processor.
2448  */
boot_cpu_init(void)2449 void __init boot_cpu_init(void)
2450 {
2451 	int cpu = smp_processor_id();
2452 
2453 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2454 	set_cpu_online(cpu, true);
2455 	set_cpu_active(cpu, true);
2456 	set_cpu_present(cpu, true);
2457 	set_cpu_possible(cpu, true);
2458 
2459 #ifdef CONFIG_SMP
2460 	__boot_cpu_id = cpu;
2461 #endif
2462 }
2463 
2464 /*
2465  * Must be called _AFTER_ setting up the per_cpu areas
2466  */
boot_cpu_hotplug_init(void)2467 void __init boot_cpu_hotplug_init(void)
2468 {
2469 #ifdef CONFIG_SMP
2470 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2471 #endif
2472 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2473 }
2474 
2475 /*
2476  * These are used for a global "mitigations=" cmdline option for toggling
2477  * optional CPU mitigations.
2478  */
2479 enum cpu_mitigations {
2480 	CPU_MITIGATIONS_OFF,
2481 	CPU_MITIGATIONS_AUTO,
2482 	CPU_MITIGATIONS_AUTO_NOSMT,
2483 };
2484 
2485 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2486 	CPU_MITIGATIONS_AUTO;
2487 
mitigations_parse_cmdline(char * arg)2488 static int __init mitigations_parse_cmdline(char *arg)
2489 {
2490 	if (!strcmp(arg, "off"))
2491 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2492 	else if (!strcmp(arg, "auto"))
2493 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2494 	else if (!strcmp(arg, "auto,nosmt"))
2495 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2496 	else
2497 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2498 			arg);
2499 
2500 	return 0;
2501 }
2502 early_param("mitigations", mitigations_parse_cmdline);
2503 
2504 /* mitigations=off */
cpu_mitigations_off(void)2505 bool cpu_mitigations_off(void)
2506 {
2507 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2508 }
2509 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2510 
2511 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2512 bool cpu_mitigations_auto_nosmt(void)
2513 {
2514 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2515 }
2516 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2517