• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3  */
4 
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6  * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7  * spent some effort to ensure the datapath with redirect maps does not use
8  * any locking. This is a quick note on the details.
9  *
10  * We have three possible paths to get into the devmap control plane bpf
11  * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12  * will invoke an update, delete, or lookup operation. To ensure updates and
13  * deletes appear atomic from the datapath side xchg() is used to modify the
14  * netdev_map array. Then because the datapath does a lookup into the netdev_map
15  * array (read-only) from an RCU critical section we use call_rcu() to wait for
16  * an rcu grace period before free'ing the old data structures. This ensures the
17  * datapath always has a valid copy. However, the datapath does a "flush"
18  * operation that pushes any pending packets in the driver outside the RCU
19  * critical section. Each bpf_dtab_netdev tracks these pending operations using
20  * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed  until
21  * this list is empty, indicating outstanding flush operations have completed.
22  *
23  * BPF syscalls may race with BPF program calls on any of the update, delete
24  * or lookup operations. As noted above the xchg() operation also keep the
25  * netdev_map consistent in this case. From the devmap side BPF programs
26  * calling into these operations are the same as multiple user space threads
27  * making system calls.
28  *
29  * Finally, any of the above may race with a netdev_unregister notifier. The
30  * unregister notifier must search for net devices in the map structure that
31  * contain a reference to the net device and remove them. This is a two step
32  * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33  * check to see if the ifindex is the same as the net_device being removed.
34  * When removing the dev a cmpxchg() is used to ensure the correct dev is
35  * removed, in the case of a concurrent update or delete operation it is
36  * possible that the initially referenced dev is no longer in the map. As the
37  * notifier hook walks the map we know that new dev references can not be
38  * added by the user because core infrastructure ensures dev_get_by_index()
39  * calls will fail at this point.
40  *
41  * The devmap_hash type is a map type which interprets keys as ifindexes and
42  * indexes these using a hashmap. This allows maps that use ifindex as key to be
43  * densely packed instead of having holes in the lookup array for unused
44  * ifindexes. The setup and packet enqueue/send code is shared between the two
45  * types of devmap; only the lookup and insertion is different.
46  */
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
51 
52 #define DEV_CREATE_FLAG_MASK \
53 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
54 
55 #define DEV_MAP_BULK_SIZE 16
56 struct bpf_dtab_netdev;
57 
58 struct xdp_bulk_queue {
59 	struct xdp_frame *q[DEV_MAP_BULK_SIZE];
60 	struct list_head flush_node;
61 	struct net_device *dev_rx;
62 	struct bpf_dtab_netdev *obj;
63 	unsigned int count;
64 };
65 
66 struct bpf_dtab_netdev {
67 	struct net_device *dev; /* must be first member, due to tracepoint */
68 	struct hlist_node index_hlist;
69 	struct bpf_dtab *dtab;
70 	struct xdp_bulk_queue __percpu *bulkq;
71 	struct rcu_head rcu;
72 	unsigned int idx; /* keep track of map index for tracepoint */
73 };
74 
75 struct bpf_dtab {
76 	struct bpf_map map;
77 	struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */
78 	struct list_head __percpu *flush_list;
79 	struct list_head list;
80 
81 	/* these are only used for DEVMAP_HASH type maps */
82 	struct hlist_head *dev_index_head;
83 	spinlock_t index_lock;
84 	unsigned int items;
85 	u32 n_buckets;
86 };
87 
88 static DEFINE_SPINLOCK(dev_map_lock);
89 static LIST_HEAD(dev_map_list);
90 
dev_map_create_hash(unsigned int entries,int numa_node)91 static struct hlist_head *dev_map_create_hash(unsigned int entries,
92 					      int numa_node)
93 {
94 	int i;
95 	struct hlist_head *hash;
96 
97 	hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node);
98 	if (hash != NULL)
99 		for (i = 0; i < entries; i++)
100 			INIT_HLIST_HEAD(&hash[i]);
101 
102 	return hash;
103 }
104 
dev_map_index_hash(struct bpf_dtab * dtab,int idx)105 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
106 						    int idx)
107 {
108 	return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
109 }
110 
dev_map_init_map(struct bpf_dtab * dtab,union bpf_attr * attr)111 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
112 {
113 	int err, cpu;
114 	u64 cost;
115 
116 	/* check sanity of attributes */
117 	if (attr->max_entries == 0 || attr->key_size != 4 ||
118 	    attr->value_size != 4 || attr->map_flags & ~DEV_CREATE_FLAG_MASK)
119 		return -EINVAL;
120 
121 	/* Lookup returns a pointer straight to dev->ifindex, so make sure the
122 	 * verifier prevents writes from the BPF side
123 	 */
124 	attr->map_flags |= BPF_F_RDONLY_PROG;
125 
126 
127 	bpf_map_init_from_attr(&dtab->map, attr);
128 
129 	/* make sure page count doesn't overflow */
130 	cost = (u64) sizeof(struct list_head) * num_possible_cpus();
131 
132 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
133 		dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
134 
135 		if (!dtab->n_buckets) /* Overflow check */
136 			return -EINVAL;
137 		cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets;
138 	} else {
139 		cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
140 	}
141 
142 	/* if map size is larger than memlock limit, reject it */
143 	err = bpf_map_charge_init(&dtab->map.memory, cost);
144 	if (err)
145 		return -EINVAL;
146 
147 	dtab->flush_list = alloc_percpu(struct list_head);
148 	if (!dtab->flush_list)
149 		goto free_charge;
150 
151 	for_each_possible_cpu(cpu)
152 		INIT_LIST_HEAD(per_cpu_ptr(dtab->flush_list, cpu));
153 
154 	if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
155 		dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets,
156 							   dtab->map.numa_node);
157 		if (!dtab->dev_index_head)
158 			goto free_percpu;
159 
160 		spin_lock_init(&dtab->index_lock);
161 	} else {
162 		dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries *
163 						      sizeof(struct bpf_dtab_netdev *),
164 						      dtab->map.numa_node);
165 		if (!dtab->netdev_map)
166 			goto free_percpu;
167 	}
168 
169 	return 0;
170 
171 free_percpu:
172 	free_percpu(dtab->flush_list);
173 free_charge:
174 	bpf_map_charge_finish(&dtab->map.memory);
175 	return -ENOMEM;
176 }
177 
dev_map_alloc(union bpf_attr * attr)178 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
179 {
180 	struct bpf_dtab *dtab;
181 	int err;
182 
183 	if (!capable(CAP_NET_ADMIN))
184 		return ERR_PTR(-EPERM);
185 
186 	dtab = kzalloc(sizeof(*dtab), GFP_USER);
187 	if (!dtab)
188 		return ERR_PTR(-ENOMEM);
189 
190 	err = dev_map_init_map(dtab, attr);
191 	if (err) {
192 		kfree(dtab);
193 		return ERR_PTR(err);
194 	}
195 
196 	spin_lock(&dev_map_lock);
197 	list_add_tail_rcu(&dtab->list, &dev_map_list);
198 	spin_unlock(&dev_map_lock);
199 
200 	return &dtab->map;
201 }
202 
dev_map_free(struct bpf_map * map)203 static void dev_map_free(struct bpf_map *map)
204 {
205 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
206 	int i, cpu;
207 
208 	/* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
209 	 * so the programs (can be more than one that used this map) were
210 	 * disconnected from events. Wait for outstanding critical sections in
211 	 * these programs to complete. The rcu critical section only guarantees
212 	 * no further reads against netdev_map. It does __not__ ensure pending
213 	 * flush operations (if any) are complete.
214 	 */
215 
216 	spin_lock(&dev_map_lock);
217 	list_del_rcu(&dtab->list);
218 	spin_unlock(&dev_map_lock);
219 
220 	bpf_clear_redirect_map(map);
221 	synchronize_rcu();
222 
223 	/* Make sure prior __dev_map_entry_free() have completed. */
224 	rcu_barrier();
225 
226 	/* To ensure all pending flush operations have completed wait for flush
227 	 * list to empty on _all_ cpus.
228 	 * Because the above synchronize_rcu() ensures the map is disconnected
229 	 * from the program we can assume no new items will be added.
230 	 */
231 	for_each_online_cpu(cpu) {
232 		struct list_head *flush_list = per_cpu_ptr(dtab->flush_list, cpu);
233 
234 		while (!list_empty(flush_list))
235 			cond_resched();
236 	}
237 
238 	if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
239 		for (i = 0; i < dtab->n_buckets; i++) {
240 			struct bpf_dtab_netdev *dev;
241 			struct hlist_head *head;
242 			struct hlist_node *next;
243 
244 			head = dev_map_index_hash(dtab, i);
245 
246 			hlist_for_each_entry_safe(dev, next, head, index_hlist) {
247 				hlist_del_rcu(&dev->index_hlist);
248 				free_percpu(dev->bulkq);
249 				dev_put(dev->dev);
250 				kfree(dev);
251 			}
252 		}
253 
254 		bpf_map_area_free(dtab->dev_index_head);
255 	} else {
256 		for (i = 0; i < dtab->map.max_entries; i++) {
257 			struct bpf_dtab_netdev *dev;
258 
259 			dev = dtab->netdev_map[i];
260 			if (!dev)
261 				continue;
262 
263 			free_percpu(dev->bulkq);
264 			dev_put(dev->dev);
265 			kfree(dev);
266 		}
267 
268 		bpf_map_area_free(dtab->netdev_map);
269 	}
270 
271 	free_percpu(dtab->flush_list);
272 	kfree(dtab);
273 }
274 
dev_map_get_next_key(struct bpf_map * map,void * key,void * next_key)275 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
276 {
277 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
278 	u32 index = key ? *(u32 *)key : U32_MAX;
279 	u32 *next = next_key;
280 
281 	if (index >= dtab->map.max_entries) {
282 		*next = 0;
283 		return 0;
284 	}
285 
286 	if (index == dtab->map.max_entries - 1)
287 		return -ENOENT;
288 	*next = index + 1;
289 	return 0;
290 }
291 
__dev_map_hash_lookup_elem(struct bpf_map * map,u32 key)292 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
293 {
294 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
295 	struct hlist_head *head = dev_map_index_hash(dtab, key);
296 	struct bpf_dtab_netdev *dev;
297 
298 	hlist_for_each_entry_rcu(dev, head, index_hlist,
299 				 lockdep_is_held(&dtab->index_lock))
300 		if (dev->idx == key)
301 			return dev;
302 
303 	return NULL;
304 }
305 
dev_map_hash_get_next_key(struct bpf_map * map,void * key,void * next_key)306 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
307 				    void *next_key)
308 {
309 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
310 	u32 idx, *next = next_key;
311 	struct bpf_dtab_netdev *dev, *next_dev;
312 	struct hlist_head *head;
313 	int i = 0;
314 
315 	if (!key)
316 		goto find_first;
317 
318 	idx = *(u32 *)key;
319 
320 	dev = __dev_map_hash_lookup_elem(map, idx);
321 	if (!dev)
322 		goto find_first;
323 
324 	next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
325 				    struct bpf_dtab_netdev, index_hlist);
326 
327 	if (next_dev) {
328 		*next = next_dev->idx;
329 		return 0;
330 	}
331 
332 	i = idx & (dtab->n_buckets - 1);
333 	i++;
334 
335  find_first:
336 	for (; i < dtab->n_buckets; i++) {
337 		head = dev_map_index_hash(dtab, i);
338 
339 		next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
340 					    struct bpf_dtab_netdev,
341 					    index_hlist);
342 		if (next_dev) {
343 			*next = next_dev->idx;
344 			return 0;
345 		}
346 	}
347 
348 	return -ENOENT;
349 }
350 
bq_xmit_all(struct xdp_bulk_queue * bq,u32 flags,bool in_napi_ctx)351 static int bq_xmit_all(struct xdp_bulk_queue *bq, u32 flags,
352 		       bool in_napi_ctx)
353 {
354 	struct bpf_dtab_netdev *obj = bq->obj;
355 	struct net_device *dev = obj->dev;
356 	int sent = 0, drops = 0, err = 0;
357 	int i;
358 
359 	if (unlikely(!bq->count))
360 		return 0;
361 
362 	for (i = 0; i < bq->count; i++) {
363 		struct xdp_frame *xdpf = bq->q[i];
364 
365 		prefetch(xdpf);
366 	}
367 
368 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
369 	if (sent < 0) {
370 		err = sent;
371 		sent = 0;
372 		goto error;
373 	}
374 	drops = bq->count - sent;
375 out:
376 	bq->count = 0;
377 
378 	trace_xdp_devmap_xmit(&obj->dtab->map, obj->idx,
379 			      sent, drops, bq->dev_rx, dev, err);
380 	bq->dev_rx = NULL;
381 	__list_del_clearprev(&bq->flush_node);
382 	return 0;
383 error:
384 	/* If ndo_xdp_xmit fails with an errno, no frames have been
385 	 * xmit'ed and it's our responsibility to them free all.
386 	 */
387 	for (i = 0; i < bq->count; i++) {
388 		struct xdp_frame *xdpf = bq->q[i];
389 
390 		/* RX path under NAPI protection, can return frames faster */
391 		if (likely(in_napi_ctx))
392 			xdp_return_frame_rx_napi(xdpf);
393 		else
394 			xdp_return_frame(xdpf);
395 		drops++;
396 	}
397 	goto out;
398 }
399 
400 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
401  * from the driver before returning from its napi->poll() routine. The poll()
402  * routine is called either from busy_poll context or net_rx_action signaled
403  * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
404  * net device can be torn down. On devmap tear down we ensure the flush list
405  * is empty before completing to ensure all flush operations have completed.
406  */
__dev_map_flush(struct bpf_map * map)407 void __dev_map_flush(struct bpf_map *map)
408 {
409 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
410 	struct list_head *flush_list = this_cpu_ptr(dtab->flush_list);
411 	struct xdp_bulk_queue *bq, *tmp;
412 
413 	rcu_read_lock();
414 	list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
415 		bq_xmit_all(bq, XDP_XMIT_FLUSH, true);
416 	rcu_read_unlock();
417 }
418 
419 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
420  * update happens in parallel here a dev_put wont happen until after reading the
421  * ifindex.
422  */
__dev_map_lookup_elem(struct bpf_map * map,u32 key)423 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
424 {
425 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
426 	struct bpf_dtab_netdev *obj;
427 
428 	if (key >= map->max_entries)
429 		return NULL;
430 
431 	obj = READ_ONCE(dtab->netdev_map[key]);
432 	return obj;
433 }
434 
435 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
436  * Thus, safe percpu variable access.
437  */
bq_enqueue(struct bpf_dtab_netdev * obj,struct xdp_frame * xdpf,struct net_device * dev_rx)438 static int bq_enqueue(struct bpf_dtab_netdev *obj, struct xdp_frame *xdpf,
439 		      struct net_device *dev_rx)
440 
441 {
442 	struct list_head *flush_list = this_cpu_ptr(obj->dtab->flush_list);
443 	struct xdp_bulk_queue *bq = this_cpu_ptr(obj->bulkq);
444 
445 	if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
446 		bq_xmit_all(bq, 0, true);
447 
448 	/* Ingress dev_rx will be the same for all xdp_frame's in
449 	 * bulk_queue, because bq stored per-CPU and must be flushed
450 	 * from net_device drivers NAPI func end.
451 	 */
452 	if (!bq->dev_rx)
453 		bq->dev_rx = dev_rx;
454 
455 	bq->q[bq->count++] = xdpf;
456 
457 	if (!bq->flush_node.prev)
458 		list_add(&bq->flush_node, flush_list);
459 
460 	return 0;
461 }
462 
dev_map_enqueue(struct bpf_dtab_netdev * dst,struct xdp_buff * xdp,struct net_device * dev_rx)463 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
464 		    struct net_device *dev_rx)
465 {
466 	struct net_device *dev = dst->dev;
467 	struct xdp_frame *xdpf;
468 	int err;
469 
470 	if (!dev->netdev_ops->ndo_xdp_xmit)
471 		return -EOPNOTSUPP;
472 
473 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
474 	if (unlikely(err))
475 		return err;
476 
477 	xdpf = convert_to_xdp_frame(xdp);
478 	if (unlikely(!xdpf))
479 		return -EOVERFLOW;
480 
481 	return bq_enqueue(dst, xdpf, dev_rx);
482 }
483 
dev_map_generic_redirect(struct bpf_dtab_netdev * dst,struct sk_buff * skb,struct bpf_prog * xdp_prog)484 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
485 			     struct bpf_prog *xdp_prog)
486 {
487 	int err;
488 
489 	err = xdp_ok_fwd_dev(dst->dev, skb->len);
490 	if (unlikely(err))
491 		return err;
492 	skb->dev = dst->dev;
493 	generic_xdp_tx(skb, xdp_prog);
494 
495 	return 0;
496 }
497 
dev_map_lookup_elem(struct bpf_map * map,void * key)498 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
499 {
500 	struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
501 	struct net_device *dev = obj ? obj->dev : NULL;
502 
503 	return dev ? &dev->ifindex : NULL;
504 }
505 
dev_map_hash_lookup_elem(struct bpf_map * map,void * key)506 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
507 {
508 	struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
509 								*(u32 *)key);
510 	struct net_device *dev = obj ? obj->dev : NULL;
511 
512 	return dev ? &dev->ifindex : NULL;
513 }
514 
dev_map_flush_old(struct bpf_dtab_netdev * dev)515 static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
516 {
517 	if (dev->dev->netdev_ops->ndo_xdp_xmit) {
518 		struct xdp_bulk_queue *bq;
519 		int cpu;
520 
521 		rcu_read_lock();
522 		for_each_online_cpu(cpu) {
523 			bq = per_cpu_ptr(dev->bulkq, cpu);
524 			bq_xmit_all(bq, XDP_XMIT_FLUSH, false);
525 		}
526 		rcu_read_unlock();
527 	}
528 }
529 
__dev_map_entry_free(struct rcu_head * rcu)530 static void __dev_map_entry_free(struct rcu_head *rcu)
531 {
532 	struct bpf_dtab_netdev *dev;
533 
534 	dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
535 	dev_map_flush_old(dev);
536 	free_percpu(dev->bulkq);
537 	dev_put(dev->dev);
538 	kfree(dev);
539 }
540 
dev_map_delete_elem(struct bpf_map * map,void * key)541 static int dev_map_delete_elem(struct bpf_map *map, void *key)
542 {
543 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
544 	struct bpf_dtab_netdev *old_dev;
545 	int k = *(u32 *)key;
546 
547 	if (k >= map->max_entries)
548 		return -EINVAL;
549 
550 	/* Use call_rcu() here to ensure any rcu critical sections have
551 	 * completed, but this does not guarantee a flush has happened
552 	 * yet. Because driver side rcu_read_lock/unlock only protects the
553 	 * running XDP program. However, for pending flush operations the
554 	 * dev and ctx are stored in another per cpu map. And additionally,
555 	 * the driver tear down ensures all soft irqs are complete before
556 	 * removing the net device in the case of dev_put equals zero.
557 	 */
558 	old_dev = xchg(&dtab->netdev_map[k], NULL);
559 	if (old_dev)
560 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
561 	return 0;
562 }
563 
dev_map_hash_delete_elem(struct bpf_map * map,void * key)564 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
565 {
566 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
567 	struct bpf_dtab_netdev *old_dev;
568 	int k = *(u32 *)key;
569 	unsigned long flags;
570 	int ret = -ENOENT;
571 
572 	spin_lock_irqsave(&dtab->index_lock, flags);
573 
574 	old_dev = __dev_map_hash_lookup_elem(map, k);
575 	if (old_dev) {
576 		dtab->items--;
577 		hlist_del_init_rcu(&old_dev->index_hlist);
578 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
579 		ret = 0;
580 	}
581 	spin_unlock_irqrestore(&dtab->index_lock, flags);
582 
583 	return ret;
584 }
585 
__dev_map_alloc_node(struct net * net,struct bpf_dtab * dtab,u32 ifindex,unsigned int idx)586 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
587 						    struct bpf_dtab *dtab,
588 						    u32 ifindex,
589 						    unsigned int idx)
590 {
591 	gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
592 	struct bpf_dtab_netdev *dev;
593 	struct xdp_bulk_queue *bq;
594 	int cpu;
595 
596 	dev = kmalloc_node(sizeof(*dev), gfp, dtab->map.numa_node);
597 	if (!dev)
598 		return ERR_PTR(-ENOMEM);
599 
600 	dev->bulkq = __alloc_percpu_gfp(sizeof(*dev->bulkq),
601 					sizeof(void *), gfp);
602 	if (!dev->bulkq) {
603 		kfree(dev);
604 		return ERR_PTR(-ENOMEM);
605 	}
606 
607 	for_each_possible_cpu(cpu) {
608 		bq = per_cpu_ptr(dev->bulkq, cpu);
609 		bq->obj = dev;
610 	}
611 
612 	dev->dev = dev_get_by_index(net, ifindex);
613 	if (!dev->dev) {
614 		free_percpu(dev->bulkq);
615 		kfree(dev);
616 		return ERR_PTR(-EINVAL);
617 	}
618 
619 	dev->idx = idx;
620 	dev->dtab = dtab;
621 
622 	return dev;
623 }
624 
__dev_map_update_elem(struct net * net,struct bpf_map * map,void * key,void * value,u64 map_flags)625 static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
626 				 void *key, void *value, u64 map_flags)
627 {
628 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
629 	struct bpf_dtab_netdev *dev, *old_dev;
630 	u32 ifindex = *(u32 *)value;
631 	u32 i = *(u32 *)key;
632 
633 	if (unlikely(map_flags > BPF_EXIST))
634 		return -EINVAL;
635 	if (unlikely(i >= dtab->map.max_entries))
636 		return -E2BIG;
637 	if (unlikely(map_flags == BPF_NOEXIST))
638 		return -EEXIST;
639 
640 	if (!ifindex) {
641 		dev = NULL;
642 	} else {
643 		dev = __dev_map_alloc_node(net, dtab, ifindex, i);
644 		if (IS_ERR(dev))
645 			return PTR_ERR(dev);
646 	}
647 
648 	/* Use call_rcu() here to ensure rcu critical sections have completed
649 	 * Remembering the driver side flush operation will happen before the
650 	 * net device is removed.
651 	 */
652 	old_dev = xchg(&dtab->netdev_map[i], dev);
653 	if (old_dev)
654 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
655 
656 	return 0;
657 }
658 
dev_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)659 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
660 			       u64 map_flags)
661 {
662 	return __dev_map_update_elem(current->nsproxy->net_ns,
663 				     map, key, value, map_flags);
664 }
665 
__dev_map_hash_update_elem(struct net * net,struct bpf_map * map,void * key,void * value,u64 map_flags)666 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
667 				     void *key, void *value, u64 map_flags)
668 {
669 	struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
670 	struct bpf_dtab_netdev *dev, *old_dev;
671 	u32 ifindex = *(u32 *)value;
672 	u32 idx = *(u32 *)key;
673 	unsigned long flags;
674 	int err = -EEXIST;
675 
676 	if (unlikely(map_flags > BPF_EXIST || !ifindex))
677 		return -EINVAL;
678 
679 	spin_lock_irqsave(&dtab->index_lock, flags);
680 
681 	old_dev = __dev_map_hash_lookup_elem(map, idx);
682 	if (old_dev && (map_flags & BPF_NOEXIST))
683 		goto out_err;
684 
685 	dev = __dev_map_alloc_node(net, dtab, ifindex, idx);
686 	if (IS_ERR(dev)) {
687 		err = PTR_ERR(dev);
688 		goto out_err;
689 	}
690 
691 	if (old_dev) {
692 		hlist_del_rcu(&old_dev->index_hlist);
693 	} else {
694 		if (dtab->items >= dtab->map.max_entries) {
695 			spin_unlock_irqrestore(&dtab->index_lock, flags);
696 			call_rcu(&dev->rcu, __dev_map_entry_free);
697 			return -E2BIG;
698 		}
699 		dtab->items++;
700 	}
701 
702 	hlist_add_head_rcu(&dev->index_hlist,
703 			   dev_map_index_hash(dtab, idx));
704 	spin_unlock_irqrestore(&dtab->index_lock, flags);
705 
706 	if (old_dev)
707 		call_rcu(&old_dev->rcu, __dev_map_entry_free);
708 
709 	return 0;
710 
711 out_err:
712 	spin_unlock_irqrestore(&dtab->index_lock, flags);
713 	return err;
714 }
715 
dev_map_hash_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)716 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
717 				   u64 map_flags)
718 {
719 	return __dev_map_hash_update_elem(current->nsproxy->net_ns,
720 					 map, key, value, map_flags);
721 }
722 
723 const struct bpf_map_ops dev_map_ops = {
724 	.map_alloc = dev_map_alloc,
725 	.map_free = dev_map_free,
726 	.map_get_next_key = dev_map_get_next_key,
727 	.map_lookup_elem = dev_map_lookup_elem,
728 	.map_update_elem = dev_map_update_elem,
729 	.map_delete_elem = dev_map_delete_elem,
730 	.map_check_btf = map_check_no_btf,
731 };
732 
733 const struct bpf_map_ops dev_map_hash_ops = {
734 	.map_alloc = dev_map_alloc,
735 	.map_free = dev_map_free,
736 	.map_get_next_key = dev_map_hash_get_next_key,
737 	.map_lookup_elem = dev_map_hash_lookup_elem,
738 	.map_update_elem = dev_map_hash_update_elem,
739 	.map_delete_elem = dev_map_hash_delete_elem,
740 	.map_check_btf = map_check_no_btf,
741 };
742 
dev_map_hash_remove_netdev(struct bpf_dtab * dtab,struct net_device * netdev)743 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
744 				       struct net_device *netdev)
745 {
746 	unsigned long flags;
747 	u32 i;
748 
749 	spin_lock_irqsave(&dtab->index_lock, flags);
750 	for (i = 0; i < dtab->n_buckets; i++) {
751 		struct bpf_dtab_netdev *dev;
752 		struct hlist_head *head;
753 		struct hlist_node *next;
754 
755 		head = dev_map_index_hash(dtab, i);
756 
757 		hlist_for_each_entry_safe(dev, next, head, index_hlist) {
758 			if (netdev != dev->dev)
759 				continue;
760 
761 			dtab->items--;
762 			hlist_del_rcu(&dev->index_hlist);
763 			call_rcu(&dev->rcu, __dev_map_entry_free);
764 		}
765 	}
766 	spin_unlock_irqrestore(&dtab->index_lock, flags);
767 }
768 
dev_map_notification(struct notifier_block * notifier,ulong event,void * ptr)769 static int dev_map_notification(struct notifier_block *notifier,
770 				ulong event, void *ptr)
771 {
772 	struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
773 	struct bpf_dtab *dtab;
774 	int i;
775 
776 	switch (event) {
777 	case NETDEV_UNREGISTER:
778 		/* This rcu_read_lock/unlock pair is needed because
779 		 * dev_map_list is an RCU list AND to ensure a delete
780 		 * operation does not free a netdev_map entry while we
781 		 * are comparing it against the netdev being unregistered.
782 		 */
783 		rcu_read_lock();
784 		list_for_each_entry_rcu(dtab, &dev_map_list, list) {
785 			if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
786 				dev_map_hash_remove_netdev(dtab, netdev);
787 				continue;
788 			}
789 
790 			for (i = 0; i < dtab->map.max_entries; i++) {
791 				struct bpf_dtab_netdev *dev, *odev;
792 
793 				dev = READ_ONCE(dtab->netdev_map[i]);
794 				if (!dev || netdev != dev->dev)
795 					continue;
796 				odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
797 				if (dev == odev)
798 					call_rcu(&dev->rcu,
799 						 __dev_map_entry_free);
800 			}
801 		}
802 		rcu_read_unlock();
803 		break;
804 	default:
805 		break;
806 	}
807 	return NOTIFY_OK;
808 }
809 
810 static struct notifier_block dev_map_notifier = {
811 	.notifier_call = dev_map_notification,
812 };
813 
dev_map_init(void)814 static int __init dev_map_init(void)
815 {
816 	/* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
817 	BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
818 		     offsetof(struct _bpf_dtab_netdev, dev));
819 	register_netdevice_notifier(&dev_map_notifier);
820 	return 0;
821 }
822 
823 subsys_initcall(dev_map_init);
824