• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *		Probes initial implementation (includes suggestions from
10  *		Rusty Russell).
11  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *		hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *		interface to access function arguments.
15  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *		exceptions notifier to be first on the priority list.
17  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *		<prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 
39 #include <asm/sections.h>
40 #include <asm/cacheflush.h>
41 #include <asm/errno.h>
42 #include <linux/uaccess.h>
43 
44 #define KPROBE_HASH_BITS 6
45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
46 
47 
48 static int kprobes_initialized;
49 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
50 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
51 
52 /* NOTE: change this value only with kprobe_mutex held */
53 static bool kprobes_all_disarmed;
54 
55 /* This protects kprobe_table and optimizing_list */
56 static DEFINE_MUTEX(kprobe_mutex);
57 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
58 static struct {
59 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
60 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
61 
kprobe_lookup_name(const char * name,unsigned int __unused)62 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
63 					unsigned int __unused)
64 {
65 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
66 }
67 
kretprobe_table_lock_ptr(unsigned long hash)68 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
69 {
70 	return &(kretprobe_table_locks[hash].lock);
71 }
72 
73 /* Blacklist -- list of struct kprobe_blacklist_entry */
74 static LIST_HEAD(kprobe_blacklist);
75 
76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
77 /*
78  * kprobe->ainsn.insn points to the copy of the instruction to be
79  * single-stepped. x86_64, POWER4 and above have no-exec support and
80  * stepping on the instruction on a vmalloced/kmalloced/data page
81  * is a recipe for disaster
82  */
83 struct kprobe_insn_page {
84 	struct list_head list;
85 	kprobe_opcode_t *insns;		/* Page of instruction slots */
86 	struct kprobe_insn_cache *cache;
87 	int nused;
88 	int ngarbage;
89 	char slot_used[];
90 };
91 
92 #define KPROBE_INSN_PAGE_SIZE(slots)			\
93 	(offsetof(struct kprobe_insn_page, slot_used) +	\
94 	 (sizeof(char) * (slots)))
95 
slots_per_page(struct kprobe_insn_cache * c)96 static int slots_per_page(struct kprobe_insn_cache *c)
97 {
98 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
99 }
100 
101 enum kprobe_slot_state {
102 	SLOT_CLEAN = 0,
103 	SLOT_DIRTY = 1,
104 	SLOT_USED = 2,
105 };
106 
alloc_insn_page(void)107 void __weak *alloc_insn_page(void)
108 {
109 	return module_alloc(PAGE_SIZE);
110 }
111 
free_insn_page(void * page)112 void __weak free_insn_page(void *page)
113 {
114 	module_memfree(page);
115 }
116 
117 struct kprobe_insn_cache kprobe_insn_slots = {
118 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
119 	.alloc = alloc_insn_page,
120 	.free = free_insn_page,
121 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
122 	.insn_size = MAX_INSN_SIZE,
123 	.nr_garbage = 0,
124 };
125 static int collect_garbage_slots(struct kprobe_insn_cache *c);
126 
127 /**
128  * __get_insn_slot() - Find a slot on an executable page for an instruction.
129  * We allocate an executable page if there's no room on existing ones.
130  */
__get_insn_slot(struct kprobe_insn_cache * c)131 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
132 {
133 	struct kprobe_insn_page *kip;
134 	kprobe_opcode_t *slot = NULL;
135 
136 	/* Since the slot array is not protected by rcu, we need a mutex */
137 	mutex_lock(&c->mutex);
138  retry:
139 	rcu_read_lock();
140 	list_for_each_entry_rcu(kip, &c->pages, list) {
141 		if (kip->nused < slots_per_page(c)) {
142 			int i;
143 			for (i = 0; i < slots_per_page(c); i++) {
144 				if (kip->slot_used[i] == SLOT_CLEAN) {
145 					kip->slot_used[i] = SLOT_USED;
146 					kip->nused++;
147 					slot = kip->insns + (i * c->insn_size);
148 					rcu_read_unlock();
149 					goto out;
150 				}
151 			}
152 			/* kip->nused is broken. Fix it. */
153 			kip->nused = slots_per_page(c);
154 			WARN_ON(1);
155 		}
156 	}
157 	rcu_read_unlock();
158 
159 	/* If there are any garbage slots, collect it and try again. */
160 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
161 		goto retry;
162 
163 	/* All out of space.  Need to allocate a new page. */
164 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
165 	if (!kip)
166 		goto out;
167 
168 	/*
169 	 * Use module_alloc so this page is within +/- 2GB of where the
170 	 * kernel image and loaded module images reside. This is required
171 	 * so x86_64 can correctly handle the %rip-relative fixups.
172 	 */
173 	kip->insns = c->alloc();
174 	if (!kip->insns) {
175 		kfree(kip);
176 		goto out;
177 	}
178 	INIT_LIST_HEAD(&kip->list);
179 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180 	kip->slot_used[0] = SLOT_USED;
181 	kip->nused = 1;
182 	kip->ngarbage = 0;
183 	kip->cache = c;
184 	list_add_rcu(&kip->list, &c->pages);
185 	slot = kip->insns;
186 out:
187 	mutex_unlock(&c->mutex);
188 	return slot;
189 }
190 
191 /* Return 1 if all garbages are collected, otherwise 0. */
collect_one_slot(struct kprobe_insn_page * kip,int idx)192 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
193 {
194 	kip->slot_used[idx] = SLOT_CLEAN;
195 	kip->nused--;
196 	if (kip->nused == 0) {
197 		/*
198 		 * Page is no longer in use.  Free it unless
199 		 * it's the last one.  We keep the last one
200 		 * so as not to have to set it up again the
201 		 * next time somebody inserts a probe.
202 		 */
203 		if (!list_is_singular(&kip->list)) {
204 			list_del_rcu(&kip->list);
205 			synchronize_rcu();
206 			kip->cache->free(kip->insns);
207 			kfree(kip);
208 		}
209 		return 1;
210 	}
211 	return 0;
212 }
213 
collect_garbage_slots(struct kprobe_insn_cache * c)214 static int collect_garbage_slots(struct kprobe_insn_cache *c)
215 {
216 	struct kprobe_insn_page *kip, *next;
217 
218 	/* Ensure no-one is interrupted on the garbages */
219 	synchronize_rcu();
220 
221 	list_for_each_entry_safe(kip, next, &c->pages, list) {
222 		int i;
223 		if (kip->ngarbage == 0)
224 			continue;
225 		kip->ngarbage = 0;	/* we will collect all garbages */
226 		for (i = 0; i < slots_per_page(c); i++) {
227 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
228 				break;
229 		}
230 	}
231 	c->nr_garbage = 0;
232 	return 0;
233 }
234 
__free_insn_slot(struct kprobe_insn_cache * c,kprobe_opcode_t * slot,int dirty)235 void __free_insn_slot(struct kprobe_insn_cache *c,
236 		      kprobe_opcode_t *slot, int dirty)
237 {
238 	struct kprobe_insn_page *kip;
239 	long idx;
240 
241 	mutex_lock(&c->mutex);
242 	rcu_read_lock();
243 	list_for_each_entry_rcu(kip, &c->pages, list) {
244 		idx = ((long)slot - (long)kip->insns) /
245 			(c->insn_size * sizeof(kprobe_opcode_t));
246 		if (idx >= 0 && idx < slots_per_page(c))
247 			goto out;
248 	}
249 	/* Could not find this slot. */
250 	WARN_ON(1);
251 	kip = NULL;
252 out:
253 	rcu_read_unlock();
254 	/* Mark and sweep: this may sleep */
255 	if (kip) {
256 		/* Check double free */
257 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 		if (dirty) {
259 			kip->slot_used[idx] = SLOT_DIRTY;
260 			kip->ngarbage++;
261 			if (++c->nr_garbage > slots_per_page(c))
262 				collect_garbage_slots(c);
263 		} else {
264 			collect_one_slot(kip, idx);
265 		}
266 	}
267 	mutex_unlock(&c->mutex);
268 }
269 
270 /*
271  * Check given address is on the page of kprobe instruction slots.
272  * This will be used for checking whether the address on a stack
273  * is on a text area or not.
274  */
__is_insn_slot_addr(struct kprobe_insn_cache * c,unsigned long addr)275 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
276 {
277 	struct kprobe_insn_page *kip;
278 	bool ret = false;
279 
280 	rcu_read_lock();
281 	list_for_each_entry_rcu(kip, &c->pages, list) {
282 		if (addr >= (unsigned long)kip->insns &&
283 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
284 			ret = true;
285 			break;
286 		}
287 	}
288 	rcu_read_unlock();
289 
290 	return ret;
291 }
292 
293 #ifdef CONFIG_OPTPROBES
294 /* For optimized_kprobe buffer */
295 struct kprobe_insn_cache kprobe_optinsn_slots = {
296 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
297 	.alloc = alloc_insn_page,
298 	.free = free_insn_page,
299 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
300 	/* .insn_size is initialized later */
301 	.nr_garbage = 0,
302 };
303 #endif
304 #endif
305 
306 /* We have preemption disabled.. so it is safe to use __ versions */
set_kprobe_instance(struct kprobe * kp)307 static inline void set_kprobe_instance(struct kprobe *kp)
308 {
309 	__this_cpu_write(kprobe_instance, kp);
310 }
311 
reset_kprobe_instance(void)312 static inline void reset_kprobe_instance(void)
313 {
314 	__this_cpu_write(kprobe_instance, NULL);
315 }
316 
317 /*
318  * This routine is called either:
319  * 	- under the kprobe_mutex - during kprobe_[un]register()
320  * 				OR
321  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
322  */
get_kprobe(void * addr)323 struct kprobe *get_kprobe(void *addr)
324 {
325 	struct hlist_head *head;
326 	struct kprobe *p;
327 
328 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
329 	hlist_for_each_entry_rcu(p, head, hlist,
330 				 lockdep_is_held(&kprobe_mutex)) {
331 		if (p->addr == addr)
332 			return p;
333 	}
334 
335 	return NULL;
336 }
337 NOKPROBE_SYMBOL(get_kprobe);
338 
339 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
340 
341 /* Return true if the kprobe is an aggregator */
kprobe_aggrprobe(struct kprobe * p)342 static inline int kprobe_aggrprobe(struct kprobe *p)
343 {
344 	return p->pre_handler == aggr_pre_handler;
345 }
346 
347 /* Return true(!0) if the kprobe is unused */
kprobe_unused(struct kprobe * p)348 static inline int kprobe_unused(struct kprobe *p)
349 {
350 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
351 	       list_empty(&p->list);
352 }
353 
354 /*
355  * Keep all fields in the kprobe consistent
356  */
copy_kprobe(struct kprobe * ap,struct kprobe * p)357 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
358 {
359 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
360 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
361 }
362 
363 #ifdef CONFIG_OPTPROBES
364 /* NOTE: change this value only with kprobe_mutex held */
365 static bool kprobes_allow_optimization;
366 
367 /*
368  * Call all pre_handler on the list, but ignores its return value.
369  * This must be called from arch-dep optimized caller.
370  */
opt_pre_handler(struct kprobe * p,struct pt_regs * regs)371 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
372 {
373 	struct kprobe *kp;
374 
375 	list_for_each_entry_rcu(kp, &p->list, list) {
376 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
377 			set_kprobe_instance(kp);
378 			kp->pre_handler(kp, regs);
379 		}
380 		reset_kprobe_instance();
381 	}
382 }
383 NOKPROBE_SYMBOL(opt_pre_handler);
384 
385 /* Free optimized instructions and optimized_kprobe */
free_aggr_kprobe(struct kprobe * p)386 static void free_aggr_kprobe(struct kprobe *p)
387 {
388 	struct optimized_kprobe *op;
389 
390 	op = container_of(p, struct optimized_kprobe, kp);
391 	arch_remove_optimized_kprobe(op);
392 	arch_remove_kprobe(p);
393 	kfree(op);
394 }
395 
396 /* Return true(!0) if the kprobe is ready for optimization. */
kprobe_optready(struct kprobe * p)397 static inline int kprobe_optready(struct kprobe *p)
398 {
399 	struct optimized_kprobe *op;
400 
401 	if (kprobe_aggrprobe(p)) {
402 		op = container_of(p, struct optimized_kprobe, kp);
403 		return arch_prepared_optinsn(&op->optinsn);
404 	}
405 
406 	return 0;
407 }
408 
409 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
kprobe_disarmed(struct kprobe * p)410 bool kprobe_disarmed(struct kprobe *p)
411 {
412 	struct optimized_kprobe *op;
413 
414 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
415 	if (!kprobe_aggrprobe(p))
416 		return kprobe_disabled(p);
417 
418 	op = container_of(p, struct optimized_kprobe, kp);
419 
420 	return kprobe_disabled(p) && list_empty(&op->list);
421 }
422 
423 /* Return true(!0) if the probe is queued on (un)optimizing lists */
kprobe_queued(struct kprobe * p)424 static int kprobe_queued(struct kprobe *p)
425 {
426 	struct optimized_kprobe *op;
427 
428 	if (kprobe_aggrprobe(p)) {
429 		op = container_of(p, struct optimized_kprobe, kp);
430 		if (!list_empty(&op->list))
431 			return 1;
432 	}
433 	return 0;
434 }
435 
436 /*
437  * Return an optimized kprobe whose optimizing code replaces
438  * instructions including addr (exclude breakpoint).
439  */
get_optimized_kprobe(unsigned long addr)440 static struct kprobe *get_optimized_kprobe(unsigned long addr)
441 {
442 	int i;
443 	struct kprobe *p = NULL;
444 	struct optimized_kprobe *op;
445 
446 	/* Don't check i == 0, since that is a breakpoint case. */
447 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
448 		p = get_kprobe((void *)(addr - i));
449 
450 	if (p && kprobe_optready(p)) {
451 		op = container_of(p, struct optimized_kprobe, kp);
452 		if (arch_within_optimized_kprobe(op, addr))
453 			return p;
454 	}
455 
456 	return NULL;
457 }
458 
459 /* Optimization staging list, protected by kprobe_mutex */
460 static LIST_HEAD(optimizing_list);
461 static LIST_HEAD(unoptimizing_list);
462 static LIST_HEAD(freeing_list);
463 
464 static void kprobe_optimizer(struct work_struct *work);
465 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
466 #define OPTIMIZE_DELAY 5
467 
468 /*
469  * Optimize (replace a breakpoint with a jump) kprobes listed on
470  * optimizing_list.
471  */
do_optimize_kprobes(void)472 static void do_optimize_kprobes(void)
473 {
474 	lockdep_assert_held(&text_mutex);
475 	/*
476 	 * The optimization/unoptimization refers online_cpus via
477 	 * stop_machine() and cpu-hotplug modifies online_cpus.
478 	 * And same time, text_mutex will be held in cpu-hotplug and here.
479 	 * This combination can cause a deadlock (cpu-hotplug try to lock
480 	 * text_mutex but stop_machine can not be done because online_cpus
481 	 * has been changed)
482 	 * To avoid this deadlock, caller must have locked cpu hotplug
483 	 * for preventing cpu-hotplug outside of text_mutex locking.
484 	 */
485 	lockdep_assert_cpus_held();
486 
487 	/* Optimization never be done when disarmed */
488 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
489 	    list_empty(&optimizing_list))
490 		return;
491 
492 	arch_optimize_kprobes(&optimizing_list);
493 }
494 
495 /*
496  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
497  * if need) kprobes listed on unoptimizing_list.
498  */
do_unoptimize_kprobes(void)499 static void do_unoptimize_kprobes(void)
500 {
501 	struct optimized_kprobe *op, *tmp;
502 
503 	lockdep_assert_held(&text_mutex);
504 	/* See comment in do_optimize_kprobes() */
505 	lockdep_assert_cpus_held();
506 
507 	/* Unoptimization must be done anytime */
508 	if (list_empty(&unoptimizing_list))
509 		return;
510 
511 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
512 	/* Loop free_list for disarming */
513 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
514 		/* Switching from detour code to origin */
515 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
516 		/* Disarm probes if marked disabled */
517 		if (kprobe_disabled(&op->kp))
518 			arch_disarm_kprobe(&op->kp);
519 		if (kprobe_unused(&op->kp)) {
520 			/*
521 			 * Remove unused probes from hash list. After waiting
522 			 * for synchronization, these probes are reclaimed.
523 			 * (reclaiming is done by do_free_cleaned_kprobes.)
524 			 */
525 			hlist_del_rcu(&op->kp.hlist);
526 		} else
527 			list_del_init(&op->list);
528 	}
529 }
530 
531 /* Reclaim all kprobes on the free_list */
do_free_cleaned_kprobes(void)532 static void do_free_cleaned_kprobes(void)
533 {
534 	struct optimized_kprobe *op, *tmp;
535 
536 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
537 		list_del_init(&op->list);
538 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
539 			/*
540 			 * This must not happen, but if there is a kprobe
541 			 * still in use, keep it on kprobes hash list.
542 			 */
543 			continue;
544 		}
545 		free_aggr_kprobe(&op->kp);
546 	}
547 }
548 
549 /* Start optimizer after OPTIMIZE_DELAY passed */
kick_kprobe_optimizer(void)550 static void kick_kprobe_optimizer(void)
551 {
552 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
553 }
554 
555 /* Kprobe jump optimizer */
kprobe_optimizer(struct work_struct * work)556 static void kprobe_optimizer(struct work_struct *work)
557 {
558 	mutex_lock(&kprobe_mutex);
559 	cpus_read_lock();
560 	mutex_lock(&text_mutex);
561 	/* Lock modules while optimizing kprobes */
562 	mutex_lock(&module_mutex);
563 
564 	/*
565 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
566 	 * kprobes before waiting for quiesence period.
567 	 */
568 	do_unoptimize_kprobes();
569 
570 	/*
571 	 * Step 2: Wait for quiesence period to ensure all potentially
572 	 * preempted tasks to have normally scheduled. Because optprobe
573 	 * may modify multiple instructions, there is a chance that Nth
574 	 * instruction is preempted. In that case, such tasks can return
575 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
576 	 * Note that on non-preemptive kernel, this is transparently converted
577 	 * to synchronoze_sched() to wait for all interrupts to have completed.
578 	 */
579 	synchronize_rcu_tasks();
580 
581 	/* Step 3: Optimize kprobes after quiesence period */
582 	do_optimize_kprobes();
583 
584 	/* Step 4: Free cleaned kprobes after quiesence period */
585 	do_free_cleaned_kprobes();
586 
587 	mutex_unlock(&module_mutex);
588 	mutex_unlock(&text_mutex);
589 	cpus_read_unlock();
590 
591 	/* Step 5: Kick optimizer again if needed */
592 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
593 		kick_kprobe_optimizer();
594 
595 	mutex_unlock(&kprobe_mutex);
596 }
597 
598 /* Wait for completing optimization and unoptimization */
wait_for_kprobe_optimizer(void)599 void wait_for_kprobe_optimizer(void)
600 {
601 	mutex_lock(&kprobe_mutex);
602 
603 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
604 		mutex_unlock(&kprobe_mutex);
605 
606 		/* this will also make optimizing_work execute immmediately */
607 		flush_delayed_work(&optimizing_work);
608 		/* @optimizing_work might not have been queued yet, relax */
609 		cpu_relax();
610 
611 		mutex_lock(&kprobe_mutex);
612 	}
613 
614 	mutex_unlock(&kprobe_mutex);
615 }
616 
optprobe_queued_unopt(struct optimized_kprobe * op)617 bool optprobe_queued_unopt(struct optimized_kprobe *op)
618 {
619 	struct optimized_kprobe *_op;
620 
621 	list_for_each_entry(_op, &unoptimizing_list, list) {
622 		if (op == _op)
623 			return true;
624 	}
625 
626 	return false;
627 }
628 
629 /* Optimize kprobe if p is ready to be optimized */
optimize_kprobe(struct kprobe * p)630 static void optimize_kprobe(struct kprobe *p)
631 {
632 	struct optimized_kprobe *op;
633 
634 	/* Check if the kprobe is disabled or not ready for optimization. */
635 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
636 	    (kprobe_disabled(p) || kprobes_all_disarmed))
637 		return;
638 
639 	/* kprobes with post_handler can not be optimized */
640 	if (p->post_handler)
641 		return;
642 
643 	op = container_of(p, struct optimized_kprobe, kp);
644 
645 	/* Check there is no other kprobes at the optimized instructions */
646 	if (arch_check_optimized_kprobe(op) < 0)
647 		return;
648 
649 	/* Check if it is already optimized. */
650 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
651 		if (optprobe_queued_unopt(op)) {
652 			/* This is under unoptimizing. Just dequeue the probe */
653 			list_del_init(&op->list);
654 		}
655 		return;
656 	}
657 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
658 
659 	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
660 	if (WARN_ON_ONCE(!list_empty(&op->list)))
661 		return;
662 
663 	list_add(&op->list, &optimizing_list);
664 	kick_kprobe_optimizer();
665 }
666 
667 /* Short cut to direct unoptimizing */
force_unoptimize_kprobe(struct optimized_kprobe * op)668 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
669 {
670 	lockdep_assert_cpus_held();
671 	arch_unoptimize_kprobe(op);
672 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
673 	if (kprobe_disabled(&op->kp))
674 		arch_disarm_kprobe(&op->kp);
675 }
676 
677 /* Unoptimize a kprobe if p is optimized */
unoptimize_kprobe(struct kprobe * p,bool force)678 static void unoptimize_kprobe(struct kprobe *p, bool force)
679 {
680 	struct optimized_kprobe *op;
681 
682 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
683 		return; /* This is not an optprobe nor optimized */
684 
685 	op = container_of(p, struct optimized_kprobe, kp);
686 	if (!kprobe_optimized(p))
687 		return;
688 
689 	if (!list_empty(&op->list)) {
690 		if (optprobe_queued_unopt(op)) {
691 			/* Queued in unoptimizing queue */
692 			if (force) {
693 				/*
694 				 * Forcibly unoptimize the kprobe here, and queue it
695 				 * in the freeing list for release afterwards.
696 				 */
697 				force_unoptimize_kprobe(op);
698 				list_move(&op->list, &freeing_list);
699 			}
700 		} else {
701 			/* Dequeue from the optimizing queue */
702 			list_del_init(&op->list);
703 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
704 		}
705 		return;
706 	}
707 
708 	/* Optimized kprobe case */
709 	if (force) {
710 		/* Forcibly update the code: this is a special case */
711 		force_unoptimize_kprobe(op);
712 	} else {
713 		list_add(&op->list, &unoptimizing_list);
714 		kick_kprobe_optimizer();
715 	}
716 }
717 
718 /* Cancel unoptimizing for reusing */
reuse_unused_kprobe(struct kprobe * ap)719 static int reuse_unused_kprobe(struct kprobe *ap)
720 {
721 	struct optimized_kprobe *op;
722 
723 	/*
724 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
725 	 * there is still a relative jump) and disabled.
726 	 */
727 	op = container_of(ap, struct optimized_kprobe, kp);
728 	WARN_ON_ONCE(list_empty(&op->list));
729 	/* Enable the probe again */
730 	ap->flags &= ~KPROBE_FLAG_DISABLED;
731 	/* Optimize it again (remove from op->list) */
732 	if (!kprobe_optready(ap))
733 		return -EINVAL;
734 
735 	optimize_kprobe(ap);
736 	return 0;
737 }
738 
739 /* Remove optimized instructions */
kill_optimized_kprobe(struct kprobe * p)740 static void kill_optimized_kprobe(struct kprobe *p)
741 {
742 	struct optimized_kprobe *op;
743 
744 	op = container_of(p, struct optimized_kprobe, kp);
745 	if (!list_empty(&op->list))
746 		/* Dequeue from the (un)optimization queue */
747 		list_del_init(&op->list);
748 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
749 
750 	if (kprobe_unused(p)) {
751 		/* Enqueue if it is unused */
752 		list_add(&op->list, &freeing_list);
753 		/*
754 		 * Remove unused probes from the hash list. After waiting
755 		 * for synchronization, this probe is reclaimed.
756 		 * (reclaiming is done by do_free_cleaned_kprobes().)
757 		 */
758 		hlist_del_rcu(&op->kp.hlist);
759 	}
760 
761 	/* Don't touch the code, because it is already freed. */
762 	arch_remove_optimized_kprobe(op);
763 }
764 
765 static inline
__prepare_optimized_kprobe(struct optimized_kprobe * op,struct kprobe * p)766 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
767 {
768 	if (!kprobe_ftrace(p))
769 		arch_prepare_optimized_kprobe(op, p);
770 }
771 
772 /* Try to prepare optimized instructions */
prepare_optimized_kprobe(struct kprobe * p)773 static void prepare_optimized_kprobe(struct kprobe *p)
774 {
775 	struct optimized_kprobe *op;
776 
777 	op = container_of(p, struct optimized_kprobe, kp);
778 	__prepare_optimized_kprobe(op, p);
779 }
780 
781 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
alloc_aggr_kprobe(struct kprobe * p)782 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
783 {
784 	struct optimized_kprobe *op;
785 
786 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
787 	if (!op)
788 		return NULL;
789 
790 	INIT_LIST_HEAD(&op->list);
791 	op->kp.addr = p->addr;
792 	__prepare_optimized_kprobe(op, p);
793 
794 	return &op->kp;
795 }
796 
797 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
798 
799 /*
800  * Prepare an optimized_kprobe and optimize it
801  * NOTE: p must be a normal registered kprobe
802  */
try_to_optimize_kprobe(struct kprobe * p)803 static void try_to_optimize_kprobe(struct kprobe *p)
804 {
805 	struct kprobe *ap;
806 	struct optimized_kprobe *op;
807 
808 	/* Impossible to optimize ftrace-based kprobe */
809 	if (kprobe_ftrace(p))
810 		return;
811 
812 	/* For preparing optimization, jump_label_text_reserved() is called */
813 	cpus_read_lock();
814 	jump_label_lock();
815 	mutex_lock(&text_mutex);
816 
817 	ap = alloc_aggr_kprobe(p);
818 	if (!ap)
819 		goto out;
820 
821 	op = container_of(ap, struct optimized_kprobe, kp);
822 	if (!arch_prepared_optinsn(&op->optinsn)) {
823 		/* If failed to setup optimizing, fallback to kprobe */
824 		arch_remove_optimized_kprobe(op);
825 		kfree(op);
826 		goto out;
827 	}
828 
829 	init_aggr_kprobe(ap, p);
830 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
831 
832 out:
833 	mutex_unlock(&text_mutex);
834 	jump_label_unlock();
835 	cpus_read_unlock();
836 }
837 
838 #ifdef CONFIG_SYSCTL
optimize_all_kprobes(void)839 static void optimize_all_kprobes(void)
840 {
841 	struct hlist_head *head;
842 	struct kprobe *p;
843 	unsigned int i;
844 
845 	mutex_lock(&kprobe_mutex);
846 	/* If optimization is already allowed, just return */
847 	if (kprobes_allow_optimization)
848 		goto out;
849 
850 	cpus_read_lock();
851 	kprobes_allow_optimization = true;
852 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
853 		head = &kprobe_table[i];
854 		hlist_for_each_entry_rcu(p, head, hlist)
855 			if (!kprobe_disabled(p))
856 				optimize_kprobe(p);
857 	}
858 	cpus_read_unlock();
859 	printk(KERN_INFO "Kprobes globally optimized\n");
860 out:
861 	mutex_unlock(&kprobe_mutex);
862 }
863 
unoptimize_all_kprobes(void)864 static void unoptimize_all_kprobes(void)
865 {
866 	struct hlist_head *head;
867 	struct kprobe *p;
868 	unsigned int i;
869 
870 	mutex_lock(&kprobe_mutex);
871 	/* If optimization is already prohibited, just return */
872 	if (!kprobes_allow_optimization) {
873 		mutex_unlock(&kprobe_mutex);
874 		return;
875 	}
876 
877 	cpus_read_lock();
878 	kprobes_allow_optimization = false;
879 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
880 		head = &kprobe_table[i];
881 		hlist_for_each_entry_rcu(p, head, hlist) {
882 			if (!kprobe_disabled(p))
883 				unoptimize_kprobe(p, false);
884 		}
885 	}
886 	cpus_read_unlock();
887 	mutex_unlock(&kprobe_mutex);
888 
889 	/* Wait for unoptimizing completion */
890 	wait_for_kprobe_optimizer();
891 	printk(KERN_INFO "Kprobes globally unoptimized\n");
892 }
893 
894 static DEFINE_MUTEX(kprobe_sysctl_mutex);
895 int sysctl_kprobes_optimization;
proc_kprobes_optimization_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)896 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
897 				      void __user *buffer, size_t *length,
898 				      loff_t *ppos)
899 {
900 	int ret;
901 
902 	mutex_lock(&kprobe_sysctl_mutex);
903 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
904 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
905 
906 	if (sysctl_kprobes_optimization)
907 		optimize_all_kprobes();
908 	else
909 		unoptimize_all_kprobes();
910 	mutex_unlock(&kprobe_sysctl_mutex);
911 
912 	return ret;
913 }
914 #endif /* CONFIG_SYSCTL */
915 
916 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
__arm_kprobe(struct kprobe * p)917 static void __arm_kprobe(struct kprobe *p)
918 {
919 	struct kprobe *_p;
920 
921 	/* Check collision with other optimized kprobes */
922 	_p = get_optimized_kprobe((unsigned long)p->addr);
923 	if (unlikely(_p))
924 		/* Fallback to unoptimized kprobe */
925 		unoptimize_kprobe(_p, true);
926 
927 	arch_arm_kprobe(p);
928 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
929 }
930 
931 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
__disarm_kprobe(struct kprobe * p,bool reopt)932 static void __disarm_kprobe(struct kprobe *p, bool reopt)
933 {
934 	struct kprobe *_p;
935 
936 	/* Try to unoptimize */
937 	unoptimize_kprobe(p, kprobes_all_disarmed);
938 
939 	if (!kprobe_queued(p)) {
940 		arch_disarm_kprobe(p);
941 		/* If another kprobe was blocked, optimize it. */
942 		_p = get_optimized_kprobe((unsigned long)p->addr);
943 		if (unlikely(_p) && reopt)
944 			optimize_kprobe(_p);
945 	}
946 	/* TODO: reoptimize others after unoptimized this probe */
947 }
948 
949 #else /* !CONFIG_OPTPROBES */
950 
951 #define optimize_kprobe(p)			do {} while (0)
952 #define unoptimize_kprobe(p, f)			do {} while (0)
953 #define kill_optimized_kprobe(p)		do {} while (0)
954 #define prepare_optimized_kprobe(p)		do {} while (0)
955 #define try_to_optimize_kprobe(p)		do {} while (0)
956 #define __arm_kprobe(p)				arch_arm_kprobe(p)
957 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
958 #define kprobe_disarmed(p)			kprobe_disabled(p)
959 #define wait_for_kprobe_optimizer()		do {} while (0)
960 
reuse_unused_kprobe(struct kprobe * ap)961 static int reuse_unused_kprobe(struct kprobe *ap)
962 {
963 	/*
964 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
965 	 * released at the same time that the last aggregated kprobe is
966 	 * unregistered.
967 	 * Thus there should be no chance to reuse unused kprobe.
968 	 */
969 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
970 	return -EINVAL;
971 }
972 
free_aggr_kprobe(struct kprobe * p)973 static void free_aggr_kprobe(struct kprobe *p)
974 {
975 	arch_remove_kprobe(p);
976 	kfree(p);
977 }
978 
alloc_aggr_kprobe(struct kprobe * p)979 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
980 {
981 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
982 }
983 #endif /* CONFIG_OPTPROBES */
984 
985 #ifdef CONFIG_KPROBES_ON_FTRACE
986 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
987 	.func = kprobe_ftrace_handler,
988 	.flags = FTRACE_OPS_FL_SAVE_REGS,
989 };
990 
991 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
992 	.func = kprobe_ftrace_handler,
993 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
994 };
995 
996 static int kprobe_ipmodify_enabled;
997 static int kprobe_ftrace_enabled;
998 
999 /* Must ensure p->addr is really on ftrace */
prepare_kprobe(struct kprobe * p)1000 static int prepare_kprobe(struct kprobe *p)
1001 {
1002 	if (!kprobe_ftrace(p))
1003 		return arch_prepare_kprobe(p);
1004 
1005 	return arch_prepare_kprobe_ftrace(p);
1006 }
1007 
1008 /* Caller must lock kprobe_mutex */
__arm_kprobe_ftrace(struct kprobe * p,struct ftrace_ops * ops,int * cnt)1009 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1010 			       int *cnt)
1011 {
1012 	int ret = 0;
1013 
1014 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1015 	if (ret) {
1016 		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1017 			 p->addr, ret);
1018 		return ret;
1019 	}
1020 
1021 	if (*cnt == 0) {
1022 		ret = register_ftrace_function(ops);
1023 		if (ret) {
1024 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1025 			goto err_ftrace;
1026 		}
1027 	}
1028 
1029 	(*cnt)++;
1030 	return ret;
1031 
1032 err_ftrace:
1033 	/*
1034 	 * At this point, sinec ops is not registered, we should be sefe from
1035 	 * registering empty filter.
1036 	 */
1037 	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1038 	return ret;
1039 }
1040 
arm_kprobe_ftrace(struct kprobe * p)1041 static int arm_kprobe_ftrace(struct kprobe *p)
1042 {
1043 	bool ipmodify = (p->post_handler != NULL);
1044 
1045 	return __arm_kprobe_ftrace(p,
1046 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1047 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1048 }
1049 
1050 /* Caller must lock kprobe_mutex */
__disarm_kprobe_ftrace(struct kprobe * p,struct ftrace_ops * ops,int * cnt)1051 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1052 				  int *cnt)
1053 {
1054 	int ret = 0;
1055 
1056 	if (*cnt == 1) {
1057 		ret = unregister_ftrace_function(ops);
1058 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1059 			return ret;
1060 	}
1061 
1062 	(*cnt)--;
1063 
1064 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1065 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1066 		  p->addr, ret);
1067 	return ret;
1068 }
1069 
disarm_kprobe_ftrace(struct kprobe * p)1070 static int disarm_kprobe_ftrace(struct kprobe *p)
1071 {
1072 	bool ipmodify = (p->post_handler != NULL);
1073 
1074 	return __disarm_kprobe_ftrace(p,
1075 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1076 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1077 }
1078 #else	/* !CONFIG_KPROBES_ON_FTRACE */
prepare_kprobe(struct kprobe * p)1079 static inline int prepare_kprobe(struct kprobe *p)
1080 {
1081 	return arch_prepare_kprobe(p);
1082 }
1083 
arm_kprobe_ftrace(struct kprobe * p)1084 static inline int arm_kprobe_ftrace(struct kprobe *p)
1085 {
1086 	return -ENODEV;
1087 }
1088 
disarm_kprobe_ftrace(struct kprobe * p)1089 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1090 {
1091 	return -ENODEV;
1092 }
1093 #endif
1094 
1095 /* Arm a kprobe with text_mutex */
arm_kprobe(struct kprobe * kp)1096 static int arm_kprobe(struct kprobe *kp)
1097 {
1098 	if (unlikely(kprobe_ftrace(kp)))
1099 		return arm_kprobe_ftrace(kp);
1100 
1101 	cpus_read_lock();
1102 	mutex_lock(&text_mutex);
1103 	__arm_kprobe(kp);
1104 	mutex_unlock(&text_mutex);
1105 	cpus_read_unlock();
1106 
1107 	return 0;
1108 }
1109 
1110 /* Disarm a kprobe with text_mutex */
disarm_kprobe(struct kprobe * kp,bool reopt)1111 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1112 {
1113 	if (unlikely(kprobe_ftrace(kp)))
1114 		return disarm_kprobe_ftrace(kp);
1115 
1116 	cpus_read_lock();
1117 	mutex_lock(&text_mutex);
1118 	__disarm_kprobe(kp, reopt);
1119 	mutex_unlock(&text_mutex);
1120 	cpus_read_unlock();
1121 
1122 	return 0;
1123 }
1124 
1125 /*
1126  * Aggregate handlers for multiple kprobes support - these handlers
1127  * take care of invoking the individual kprobe handlers on p->list
1128  */
aggr_pre_handler(struct kprobe * p,struct pt_regs * regs)1129 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1130 {
1131 	struct kprobe *kp;
1132 
1133 	list_for_each_entry_rcu(kp, &p->list, list) {
1134 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1135 			set_kprobe_instance(kp);
1136 			if (kp->pre_handler(kp, regs))
1137 				return 1;
1138 		}
1139 		reset_kprobe_instance();
1140 	}
1141 	return 0;
1142 }
1143 NOKPROBE_SYMBOL(aggr_pre_handler);
1144 
aggr_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)1145 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1146 			      unsigned long flags)
1147 {
1148 	struct kprobe *kp;
1149 
1150 	list_for_each_entry_rcu(kp, &p->list, list) {
1151 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1152 			set_kprobe_instance(kp);
1153 			kp->post_handler(kp, regs, flags);
1154 			reset_kprobe_instance();
1155 		}
1156 	}
1157 }
1158 NOKPROBE_SYMBOL(aggr_post_handler);
1159 
aggr_fault_handler(struct kprobe * p,struct pt_regs * regs,int trapnr)1160 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1161 			      int trapnr)
1162 {
1163 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1164 
1165 	/*
1166 	 * if we faulted "during" the execution of a user specified
1167 	 * probe handler, invoke just that probe's fault handler
1168 	 */
1169 	if (cur && cur->fault_handler) {
1170 		if (cur->fault_handler(cur, regs, trapnr))
1171 			return 1;
1172 	}
1173 	return 0;
1174 }
1175 NOKPROBE_SYMBOL(aggr_fault_handler);
1176 
1177 /* Walks the list and increments nmissed count for multiprobe case */
kprobes_inc_nmissed_count(struct kprobe * p)1178 void kprobes_inc_nmissed_count(struct kprobe *p)
1179 {
1180 	struct kprobe *kp;
1181 	if (!kprobe_aggrprobe(p)) {
1182 		p->nmissed++;
1183 	} else {
1184 		list_for_each_entry_rcu(kp, &p->list, list)
1185 			kp->nmissed++;
1186 	}
1187 	return;
1188 }
1189 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1190 
recycle_rp_inst(struct kretprobe_instance * ri,struct hlist_head * head)1191 void recycle_rp_inst(struct kretprobe_instance *ri,
1192 		     struct hlist_head *head)
1193 {
1194 	struct kretprobe *rp = ri->rp;
1195 
1196 	/* remove rp inst off the rprobe_inst_table */
1197 	hlist_del(&ri->hlist);
1198 	INIT_HLIST_NODE(&ri->hlist);
1199 	if (likely(rp)) {
1200 		raw_spin_lock(&rp->lock);
1201 		hlist_add_head(&ri->hlist, &rp->free_instances);
1202 		raw_spin_unlock(&rp->lock);
1203 	} else
1204 		/* Unregistering */
1205 		hlist_add_head(&ri->hlist, head);
1206 }
1207 NOKPROBE_SYMBOL(recycle_rp_inst);
1208 
kretprobe_hash_lock(struct task_struct * tsk,struct hlist_head ** head,unsigned long * flags)1209 void kretprobe_hash_lock(struct task_struct *tsk,
1210 			 struct hlist_head **head, unsigned long *flags)
1211 __acquires(hlist_lock)
1212 {
1213 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1214 	raw_spinlock_t *hlist_lock;
1215 
1216 	*head = &kretprobe_inst_table[hash];
1217 	hlist_lock = kretprobe_table_lock_ptr(hash);
1218 	raw_spin_lock_irqsave(hlist_lock, *flags);
1219 }
1220 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1221 
kretprobe_table_lock(unsigned long hash,unsigned long * flags)1222 static void kretprobe_table_lock(unsigned long hash,
1223 				 unsigned long *flags)
1224 __acquires(hlist_lock)
1225 {
1226 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1227 	raw_spin_lock_irqsave(hlist_lock, *flags);
1228 }
1229 NOKPROBE_SYMBOL(kretprobe_table_lock);
1230 
kretprobe_hash_unlock(struct task_struct * tsk,unsigned long * flags)1231 void kretprobe_hash_unlock(struct task_struct *tsk,
1232 			   unsigned long *flags)
1233 __releases(hlist_lock)
1234 {
1235 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1236 	raw_spinlock_t *hlist_lock;
1237 
1238 	hlist_lock = kretprobe_table_lock_ptr(hash);
1239 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1240 }
1241 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1242 
kretprobe_table_unlock(unsigned long hash,unsigned long * flags)1243 static void kretprobe_table_unlock(unsigned long hash,
1244 				   unsigned long *flags)
1245 __releases(hlist_lock)
1246 {
1247 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1248 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1249 }
1250 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1251 
1252 struct kprobe kprobe_busy = {
1253 	.addr = (void *) get_kprobe,
1254 };
1255 
kprobe_busy_begin(void)1256 void kprobe_busy_begin(void)
1257 {
1258 	struct kprobe_ctlblk *kcb;
1259 
1260 	preempt_disable();
1261 	__this_cpu_write(current_kprobe, &kprobe_busy);
1262 	kcb = get_kprobe_ctlblk();
1263 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1264 }
1265 
kprobe_busy_end(void)1266 void kprobe_busy_end(void)
1267 {
1268 	__this_cpu_write(current_kprobe, NULL);
1269 	preempt_enable();
1270 }
1271 
1272 /*
1273  * This function is called from finish_task_switch when task tk becomes dead,
1274  * so that we can recycle any function-return probe instances associated
1275  * with this task. These left over instances represent probed functions
1276  * that have been called but will never return.
1277  */
kprobe_flush_task(struct task_struct * tk)1278 void kprobe_flush_task(struct task_struct *tk)
1279 {
1280 	struct kretprobe_instance *ri;
1281 	struct hlist_head *head, empty_rp;
1282 	struct hlist_node *tmp;
1283 	unsigned long hash, flags = 0;
1284 
1285 	if (unlikely(!kprobes_initialized))
1286 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1287 		return;
1288 
1289 	kprobe_busy_begin();
1290 
1291 	INIT_HLIST_HEAD(&empty_rp);
1292 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1293 	head = &kretprobe_inst_table[hash];
1294 	kretprobe_table_lock(hash, &flags);
1295 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1296 		if (ri->task == tk)
1297 			recycle_rp_inst(ri, &empty_rp);
1298 	}
1299 	kretprobe_table_unlock(hash, &flags);
1300 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1301 		hlist_del(&ri->hlist);
1302 		kfree(ri);
1303 	}
1304 
1305 	kprobe_busy_end();
1306 }
1307 NOKPROBE_SYMBOL(kprobe_flush_task);
1308 
free_rp_inst(struct kretprobe * rp)1309 static inline void free_rp_inst(struct kretprobe *rp)
1310 {
1311 	struct kretprobe_instance *ri;
1312 	struct hlist_node *next;
1313 
1314 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1315 		hlist_del(&ri->hlist);
1316 		kfree(ri);
1317 	}
1318 }
1319 
cleanup_rp_inst(struct kretprobe * rp)1320 static void cleanup_rp_inst(struct kretprobe *rp)
1321 {
1322 	unsigned long flags, hash;
1323 	struct kretprobe_instance *ri;
1324 	struct hlist_node *next;
1325 	struct hlist_head *head;
1326 
1327 	/* No race here */
1328 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1329 		kretprobe_table_lock(hash, &flags);
1330 		head = &kretprobe_inst_table[hash];
1331 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1332 			if (ri->rp == rp)
1333 				ri->rp = NULL;
1334 		}
1335 		kretprobe_table_unlock(hash, &flags);
1336 	}
1337 	free_rp_inst(rp);
1338 }
1339 NOKPROBE_SYMBOL(cleanup_rp_inst);
1340 
1341 /* Add the new probe to ap->list */
add_new_kprobe(struct kprobe * ap,struct kprobe * p)1342 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1343 {
1344 	if (p->post_handler)
1345 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1346 
1347 	list_add_rcu(&p->list, &ap->list);
1348 	if (p->post_handler && !ap->post_handler)
1349 		ap->post_handler = aggr_post_handler;
1350 
1351 	return 0;
1352 }
1353 
1354 /*
1355  * Fill in the required fields of the "manager kprobe". Replace the
1356  * earlier kprobe in the hlist with the manager kprobe
1357  */
init_aggr_kprobe(struct kprobe * ap,struct kprobe * p)1358 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1359 {
1360 	/* Copy p's insn slot to ap */
1361 	copy_kprobe(p, ap);
1362 	flush_insn_slot(ap);
1363 	ap->addr = p->addr;
1364 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1365 	ap->pre_handler = aggr_pre_handler;
1366 	ap->fault_handler = aggr_fault_handler;
1367 	/* We don't care the kprobe which has gone. */
1368 	if (p->post_handler && !kprobe_gone(p))
1369 		ap->post_handler = aggr_post_handler;
1370 
1371 	INIT_LIST_HEAD(&ap->list);
1372 	INIT_HLIST_NODE(&ap->hlist);
1373 
1374 	list_add_rcu(&p->list, &ap->list);
1375 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1376 }
1377 
1378 /*
1379  * This is the second or subsequent kprobe at the address - handle
1380  * the intricacies
1381  */
register_aggr_kprobe(struct kprobe * orig_p,struct kprobe * p)1382 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1383 {
1384 	int ret = 0;
1385 	struct kprobe *ap = orig_p;
1386 
1387 	cpus_read_lock();
1388 
1389 	/* For preparing optimization, jump_label_text_reserved() is called */
1390 	jump_label_lock();
1391 	mutex_lock(&text_mutex);
1392 
1393 	if (!kprobe_aggrprobe(orig_p)) {
1394 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1395 		ap = alloc_aggr_kprobe(orig_p);
1396 		if (!ap) {
1397 			ret = -ENOMEM;
1398 			goto out;
1399 		}
1400 		init_aggr_kprobe(ap, orig_p);
1401 	} else if (kprobe_unused(ap)) {
1402 		/* This probe is going to die. Rescue it */
1403 		ret = reuse_unused_kprobe(ap);
1404 		if (ret)
1405 			goto out;
1406 	}
1407 
1408 	if (kprobe_gone(ap)) {
1409 		/*
1410 		 * Attempting to insert new probe at the same location that
1411 		 * had a probe in the module vaddr area which already
1412 		 * freed. So, the instruction slot has already been
1413 		 * released. We need a new slot for the new probe.
1414 		 */
1415 		ret = arch_prepare_kprobe(ap);
1416 		if (ret)
1417 			/*
1418 			 * Even if fail to allocate new slot, don't need to
1419 			 * free aggr_probe. It will be used next time, or
1420 			 * freed by unregister_kprobe.
1421 			 */
1422 			goto out;
1423 
1424 		/* Prepare optimized instructions if possible. */
1425 		prepare_optimized_kprobe(ap);
1426 
1427 		/*
1428 		 * Clear gone flag to prevent allocating new slot again, and
1429 		 * set disabled flag because it is not armed yet.
1430 		 */
1431 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1432 			    | KPROBE_FLAG_DISABLED;
1433 	}
1434 
1435 	/* Copy ap's insn slot to p */
1436 	copy_kprobe(ap, p);
1437 	ret = add_new_kprobe(ap, p);
1438 
1439 out:
1440 	mutex_unlock(&text_mutex);
1441 	jump_label_unlock();
1442 	cpus_read_unlock();
1443 
1444 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1445 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1446 		if (!kprobes_all_disarmed) {
1447 			/* Arm the breakpoint again. */
1448 			ret = arm_kprobe(ap);
1449 			if (ret) {
1450 				ap->flags |= KPROBE_FLAG_DISABLED;
1451 				list_del_rcu(&p->list);
1452 				synchronize_rcu();
1453 			}
1454 		}
1455 	}
1456 	return ret;
1457 }
1458 
arch_within_kprobe_blacklist(unsigned long addr)1459 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1460 {
1461 	/* The __kprobes marked functions and entry code must not be probed */
1462 	return addr >= (unsigned long)__kprobes_text_start &&
1463 	       addr < (unsigned long)__kprobes_text_end;
1464 }
1465 
__within_kprobe_blacklist(unsigned long addr)1466 static bool __within_kprobe_blacklist(unsigned long addr)
1467 {
1468 	struct kprobe_blacklist_entry *ent;
1469 
1470 	if (arch_within_kprobe_blacklist(addr))
1471 		return true;
1472 	/*
1473 	 * If there exists a kprobe_blacklist, verify and
1474 	 * fail any probe registration in the prohibited area
1475 	 */
1476 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1477 		if (addr >= ent->start_addr && addr < ent->end_addr)
1478 			return true;
1479 	}
1480 	return false;
1481 }
1482 
within_kprobe_blacklist(unsigned long addr)1483 bool within_kprobe_blacklist(unsigned long addr)
1484 {
1485 	char symname[KSYM_NAME_LEN], *p;
1486 
1487 	if (__within_kprobe_blacklist(addr))
1488 		return true;
1489 
1490 	/* Check if the address is on a suffixed-symbol */
1491 	if (!lookup_symbol_name(addr, symname)) {
1492 		p = strchr(symname, '.');
1493 		if (!p)
1494 			return false;
1495 		*p = '\0';
1496 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1497 		if (addr)
1498 			return __within_kprobe_blacklist(addr);
1499 	}
1500 	return false;
1501 }
1502 
1503 /*
1504  * If we have a symbol_name argument, look it up and add the offset field
1505  * to it. This way, we can specify a relative address to a symbol.
1506  * This returns encoded errors if it fails to look up symbol or invalid
1507  * combination of parameters.
1508  */
_kprobe_addr(kprobe_opcode_t * addr,const char * symbol_name,unsigned int offset)1509 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1510 			const char *symbol_name, unsigned int offset)
1511 {
1512 	if ((symbol_name && addr) || (!symbol_name && !addr))
1513 		goto invalid;
1514 
1515 	if (symbol_name) {
1516 		addr = kprobe_lookup_name(symbol_name, offset);
1517 		if (!addr)
1518 			return ERR_PTR(-ENOENT);
1519 	}
1520 
1521 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1522 	if (addr)
1523 		return addr;
1524 
1525 invalid:
1526 	return ERR_PTR(-EINVAL);
1527 }
1528 
kprobe_addr(struct kprobe * p)1529 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1530 {
1531 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1532 }
1533 
1534 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
__get_valid_kprobe(struct kprobe * p)1535 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1536 {
1537 	struct kprobe *ap, *list_p;
1538 
1539 	ap = get_kprobe(p->addr);
1540 	if (unlikely(!ap))
1541 		return NULL;
1542 
1543 	if (p != ap) {
1544 		list_for_each_entry_rcu(list_p, &ap->list, list)
1545 			if (list_p == p)
1546 			/* kprobe p is a valid probe */
1547 				goto valid;
1548 		return NULL;
1549 	}
1550 valid:
1551 	return ap;
1552 }
1553 
1554 /* Return error if the kprobe is being re-registered */
check_kprobe_rereg(struct kprobe * p)1555 static inline int check_kprobe_rereg(struct kprobe *p)
1556 {
1557 	int ret = 0;
1558 
1559 	mutex_lock(&kprobe_mutex);
1560 	if (__get_valid_kprobe(p))
1561 		ret = -EINVAL;
1562 	mutex_unlock(&kprobe_mutex);
1563 
1564 	return ret;
1565 }
1566 
arch_check_ftrace_location(struct kprobe * p)1567 int __weak arch_check_ftrace_location(struct kprobe *p)
1568 {
1569 	unsigned long ftrace_addr;
1570 
1571 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1572 	if (ftrace_addr) {
1573 #ifdef CONFIG_KPROBES_ON_FTRACE
1574 		/* Given address is not on the instruction boundary */
1575 		if ((unsigned long)p->addr != ftrace_addr)
1576 			return -EILSEQ;
1577 		p->flags |= KPROBE_FLAG_FTRACE;
1578 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1579 		return -EINVAL;
1580 #endif
1581 	}
1582 	return 0;
1583 }
1584 
check_kprobe_address_safe(struct kprobe * p,struct module ** probed_mod)1585 static int check_kprobe_address_safe(struct kprobe *p,
1586 				     struct module **probed_mod)
1587 {
1588 	int ret;
1589 
1590 	ret = arch_check_ftrace_location(p);
1591 	if (ret)
1592 		return ret;
1593 	jump_label_lock();
1594 	preempt_disable();
1595 
1596 	/* Ensure it is not in reserved area nor out of text */
1597 	if (!(core_kernel_text((unsigned long) p->addr) ||
1598 	    is_module_text_address((unsigned long) p->addr)) ||
1599 	    in_gate_area_no_mm((unsigned long) p->addr) ||
1600 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1601 	    jump_label_text_reserved(p->addr, p->addr) ||
1602 	    find_bug((unsigned long)p->addr)) {
1603 		ret = -EINVAL;
1604 		goto out;
1605 	}
1606 
1607 	/* Check if are we probing a module */
1608 	*probed_mod = __module_text_address((unsigned long) p->addr);
1609 	if (*probed_mod) {
1610 		/*
1611 		 * We must hold a refcount of the probed module while updating
1612 		 * its code to prohibit unexpected unloading.
1613 		 */
1614 		if (unlikely(!try_module_get(*probed_mod))) {
1615 			ret = -ENOENT;
1616 			goto out;
1617 		}
1618 
1619 		/*
1620 		 * If the module freed .init.text, we couldn't insert
1621 		 * kprobes in there.
1622 		 */
1623 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1624 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1625 			module_put(*probed_mod);
1626 			*probed_mod = NULL;
1627 			ret = -ENOENT;
1628 		}
1629 	}
1630 out:
1631 	preempt_enable();
1632 	jump_label_unlock();
1633 
1634 	return ret;
1635 }
1636 
register_kprobe(struct kprobe * p)1637 int register_kprobe(struct kprobe *p)
1638 {
1639 	int ret;
1640 	struct kprobe *old_p;
1641 	struct module *probed_mod;
1642 	kprobe_opcode_t *addr;
1643 
1644 	/* Adjust probe address from symbol */
1645 	addr = kprobe_addr(p);
1646 	if (IS_ERR(addr))
1647 		return PTR_ERR(addr);
1648 	p->addr = addr;
1649 
1650 	ret = check_kprobe_rereg(p);
1651 	if (ret)
1652 		return ret;
1653 
1654 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1655 	p->flags &= KPROBE_FLAG_DISABLED;
1656 	p->nmissed = 0;
1657 	INIT_LIST_HEAD(&p->list);
1658 
1659 	ret = check_kprobe_address_safe(p, &probed_mod);
1660 	if (ret)
1661 		return ret;
1662 
1663 	mutex_lock(&kprobe_mutex);
1664 
1665 	old_p = get_kprobe(p->addr);
1666 	if (old_p) {
1667 		/* Since this may unoptimize old_p, locking text_mutex. */
1668 		ret = register_aggr_kprobe(old_p, p);
1669 		goto out;
1670 	}
1671 
1672 	cpus_read_lock();
1673 	/* Prevent text modification */
1674 	mutex_lock(&text_mutex);
1675 	ret = prepare_kprobe(p);
1676 	mutex_unlock(&text_mutex);
1677 	cpus_read_unlock();
1678 	if (ret)
1679 		goto out;
1680 
1681 	INIT_HLIST_NODE(&p->hlist);
1682 	hlist_add_head_rcu(&p->hlist,
1683 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1684 
1685 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1686 		ret = arm_kprobe(p);
1687 		if (ret) {
1688 			hlist_del_rcu(&p->hlist);
1689 			synchronize_rcu();
1690 			goto out;
1691 		}
1692 	}
1693 
1694 	/* Try to optimize kprobe */
1695 	try_to_optimize_kprobe(p);
1696 out:
1697 	mutex_unlock(&kprobe_mutex);
1698 
1699 	if (probed_mod)
1700 		module_put(probed_mod);
1701 
1702 	return ret;
1703 }
1704 EXPORT_SYMBOL_GPL(register_kprobe);
1705 
1706 /* Check if all probes on the aggrprobe are disabled */
aggr_kprobe_disabled(struct kprobe * ap)1707 static int aggr_kprobe_disabled(struct kprobe *ap)
1708 {
1709 	struct kprobe *kp;
1710 
1711 	list_for_each_entry_rcu(kp, &ap->list, list)
1712 		if (!kprobe_disabled(kp))
1713 			/*
1714 			 * There is an active probe on the list.
1715 			 * We can't disable this ap.
1716 			 */
1717 			return 0;
1718 
1719 	return 1;
1720 }
1721 
1722 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
__disable_kprobe(struct kprobe * p)1723 static struct kprobe *__disable_kprobe(struct kprobe *p)
1724 {
1725 	struct kprobe *orig_p;
1726 	int ret;
1727 
1728 	/* Get an original kprobe for return */
1729 	orig_p = __get_valid_kprobe(p);
1730 	if (unlikely(orig_p == NULL))
1731 		return ERR_PTR(-EINVAL);
1732 
1733 	if (!kprobe_disabled(p)) {
1734 		/* Disable probe if it is a child probe */
1735 		if (p != orig_p)
1736 			p->flags |= KPROBE_FLAG_DISABLED;
1737 
1738 		/* Try to disarm and disable this/parent probe */
1739 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1740 			/*
1741 			 * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1742 			 * is false, 'orig_p' might not have been armed yet.
1743 			 * Note arm_all_kprobes() __tries__ to arm all kprobes
1744 			 * on the best effort basis.
1745 			 */
1746 			if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1747 				ret = disarm_kprobe(orig_p, true);
1748 				if (ret) {
1749 					p->flags &= ~KPROBE_FLAG_DISABLED;
1750 					return ERR_PTR(ret);
1751 				}
1752 			}
1753 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1754 		}
1755 	}
1756 
1757 	return orig_p;
1758 }
1759 
1760 /*
1761  * Unregister a kprobe without a scheduler synchronization.
1762  */
__unregister_kprobe_top(struct kprobe * p)1763 static int __unregister_kprobe_top(struct kprobe *p)
1764 {
1765 	struct kprobe *ap, *list_p;
1766 
1767 	/* Disable kprobe. This will disarm it if needed. */
1768 	ap = __disable_kprobe(p);
1769 	if (IS_ERR(ap))
1770 		return PTR_ERR(ap);
1771 
1772 	if (ap == p)
1773 		/*
1774 		 * This probe is an independent(and non-optimized) kprobe
1775 		 * (not an aggrprobe). Remove from the hash list.
1776 		 */
1777 		goto disarmed;
1778 
1779 	/* Following process expects this probe is an aggrprobe */
1780 	WARN_ON(!kprobe_aggrprobe(ap));
1781 
1782 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1783 		/*
1784 		 * !disarmed could be happen if the probe is under delayed
1785 		 * unoptimizing.
1786 		 */
1787 		goto disarmed;
1788 	else {
1789 		/* If disabling probe has special handlers, update aggrprobe */
1790 		if (p->post_handler && !kprobe_gone(p)) {
1791 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1792 				if ((list_p != p) && (list_p->post_handler))
1793 					goto noclean;
1794 			}
1795 			/*
1796 			 * For the kprobe-on-ftrace case, we keep the
1797 			 * post_handler setting to identify this aggrprobe
1798 			 * armed with kprobe_ipmodify_ops.
1799 			 */
1800 			if (!kprobe_ftrace(ap))
1801 				ap->post_handler = NULL;
1802 		}
1803 noclean:
1804 		/*
1805 		 * Remove from the aggrprobe: this path will do nothing in
1806 		 * __unregister_kprobe_bottom().
1807 		 */
1808 		list_del_rcu(&p->list);
1809 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1810 			/*
1811 			 * Try to optimize this probe again, because post
1812 			 * handler may have been changed.
1813 			 */
1814 			optimize_kprobe(ap);
1815 	}
1816 	return 0;
1817 
1818 disarmed:
1819 	hlist_del_rcu(&ap->hlist);
1820 	return 0;
1821 }
1822 
__unregister_kprobe_bottom(struct kprobe * p)1823 static void __unregister_kprobe_bottom(struct kprobe *p)
1824 {
1825 	struct kprobe *ap;
1826 
1827 	if (list_empty(&p->list))
1828 		/* This is an independent kprobe */
1829 		arch_remove_kprobe(p);
1830 	else if (list_is_singular(&p->list)) {
1831 		/* This is the last child of an aggrprobe */
1832 		ap = list_entry(p->list.next, struct kprobe, list);
1833 		list_del(&p->list);
1834 		free_aggr_kprobe(ap);
1835 	}
1836 	/* Otherwise, do nothing. */
1837 }
1838 
register_kprobes(struct kprobe ** kps,int num)1839 int register_kprobes(struct kprobe **kps, int num)
1840 {
1841 	int i, ret = 0;
1842 
1843 	if (num <= 0)
1844 		return -EINVAL;
1845 	for (i = 0; i < num; i++) {
1846 		ret = register_kprobe(kps[i]);
1847 		if (ret < 0) {
1848 			if (i > 0)
1849 				unregister_kprobes(kps, i);
1850 			break;
1851 		}
1852 	}
1853 	return ret;
1854 }
1855 EXPORT_SYMBOL_GPL(register_kprobes);
1856 
unregister_kprobe(struct kprobe * p)1857 void unregister_kprobe(struct kprobe *p)
1858 {
1859 	unregister_kprobes(&p, 1);
1860 }
1861 EXPORT_SYMBOL_GPL(unregister_kprobe);
1862 
unregister_kprobes(struct kprobe ** kps,int num)1863 void unregister_kprobes(struct kprobe **kps, int num)
1864 {
1865 	int i;
1866 
1867 	if (num <= 0)
1868 		return;
1869 	mutex_lock(&kprobe_mutex);
1870 	for (i = 0; i < num; i++)
1871 		if (__unregister_kprobe_top(kps[i]) < 0)
1872 			kps[i]->addr = NULL;
1873 	mutex_unlock(&kprobe_mutex);
1874 
1875 	synchronize_rcu();
1876 	for (i = 0; i < num; i++)
1877 		if (kps[i]->addr)
1878 			__unregister_kprobe_bottom(kps[i]);
1879 }
1880 EXPORT_SYMBOL_GPL(unregister_kprobes);
1881 
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)1882 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1883 					unsigned long val, void *data)
1884 {
1885 	return NOTIFY_DONE;
1886 }
1887 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1888 
1889 static struct notifier_block kprobe_exceptions_nb = {
1890 	.notifier_call = kprobe_exceptions_notify,
1891 	.priority = 0x7fffffff /* we need to be notified first */
1892 };
1893 
arch_deref_entry_point(void * entry)1894 unsigned long __weak arch_deref_entry_point(void *entry)
1895 {
1896 	return (unsigned long)entry;
1897 }
1898 
1899 #ifdef CONFIG_KRETPROBES
1900 /*
1901  * This kprobe pre_handler is registered with every kretprobe. When probe
1902  * hits it will set up the return probe.
1903  */
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)1904 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1905 {
1906 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1907 	unsigned long hash, flags = 0;
1908 	struct kretprobe_instance *ri;
1909 
1910 	/*
1911 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1912 	 * just skip the probe and increase the (inexact) 'nmissed'
1913 	 * statistical counter, so that the user is informed that
1914 	 * something happened:
1915 	 */
1916 	if (unlikely(in_nmi())) {
1917 		rp->nmissed++;
1918 		return 0;
1919 	}
1920 
1921 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1922 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1923 	raw_spin_lock_irqsave(&rp->lock, flags);
1924 	if (!hlist_empty(&rp->free_instances)) {
1925 		ri = hlist_entry(rp->free_instances.first,
1926 				struct kretprobe_instance, hlist);
1927 		hlist_del(&ri->hlist);
1928 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1929 
1930 		ri->rp = rp;
1931 		ri->task = current;
1932 
1933 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1934 			raw_spin_lock_irqsave(&rp->lock, flags);
1935 			hlist_add_head(&ri->hlist, &rp->free_instances);
1936 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1937 			return 0;
1938 		}
1939 
1940 		arch_prepare_kretprobe(ri, regs);
1941 
1942 		/* XXX(hch): why is there no hlist_move_head? */
1943 		INIT_HLIST_NODE(&ri->hlist);
1944 		kretprobe_table_lock(hash, &flags);
1945 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1946 		kretprobe_table_unlock(hash, &flags);
1947 	} else {
1948 		rp->nmissed++;
1949 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1950 	}
1951 	return 0;
1952 }
1953 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1954 
arch_kprobe_on_func_entry(unsigned long offset)1955 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1956 {
1957 	return !offset;
1958 }
1959 
1960 /**
1961  * kprobe_on_func_entry() -- check whether given address is function entry
1962  * @addr: Target address
1963  * @sym:  Target symbol name
1964  * @offset: The offset from the symbol or the address
1965  *
1966  * This checks whether the given @addr+@offset or @sym+@offset is on the
1967  * function entry address or not.
1968  * This returns 0 if it is the function entry, or -EINVAL if it is not.
1969  * And also it returns -ENOENT if it fails the symbol or address lookup.
1970  * Caller must pass @addr or @sym (either one must be NULL), or this
1971  * returns -EINVAL.
1972  */
kprobe_on_func_entry(kprobe_opcode_t * addr,const char * sym,unsigned long offset)1973 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1974 {
1975 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1976 
1977 	if (IS_ERR(kp_addr))
1978 		return PTR_ERR(kp_addr);
1979 
1980 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1981 		return -ENOENT;
1982 
1983 	if (!arch_kprobe_on_func_entry(offset))
1984 		return -EINVAL;
1985 
1986 	return 0;
1987 }
1988 
register_kretprobe(struct kretprobe * rp)1989 int register_kretprobe(struct kretprobe *rp)
1990 {
1991 	int ret;
1992 	struct kretprobe_instance *inst;
1993 	int i;
1994 	void *addr;
1995 
1996 	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1997 	if (ret)
1998 		return ret;
1999 
2000 	/* If only rp->kp.addr is specified, check reregistering kprobes */
2001 	if (rp->kp.addr && check_kprobe_rereg(&rp->kp))
2002 		return -EINVAL;
2003 
2004 	if (kretprobe_blacklist_size) {
2005 		addr = kprobe_addr(&rp->kp);
2006 		if (IS_ERR(addr))
2007 			return PTR_ERR(addr);
2008 
2009 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2010 			if (kretprobe_blacklist[i].addr == addr)
2011 				return -EINVAL;
2012 		}
2013 	}
2014 
2015 	if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2016 		return -E2BIG;
2017 
2018 	rp->kp.pre_handler = pre_handler_kretprobe;
2019 	rp->kp.post_handler = NULL;
2020 	rp->kp.fault_handler = NULL;
2021 
2022 	/* Pre-allocate memory for max kretprobe instances */
2023 	if (rp->maxactive <= 0) {
2024 #ifdef CONFIG_PREEMPTION
2025 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2026 #else
2027 		rp->maxactive = num_possible_cpus();
2028 #endif
2029 	}
2030 	raw_spin_lock_init(&rp->lock);
2031 	INIT_HLIST_HEAD(&rp->free_instances);
2032 	for (i = 0; i < rp->maxactive; i++) {
2033 		inst = kmalloc(sizeof(struct kretprobe_instance) +
2034 			       rp->data_size, GFP_KERNEL);
2035 		if (inst == NULL) {
2036 			free_rp_inst(rp);
2037 			return -ENOMEM;
2038 		}
2039 		INIT_HLIST_NODE(&inst->hlist);
2040 		hlist_add_head(&inst->hlist, &rp->free_instances);
2041 	}
2042 
2043 	rp->nmissed = 0;
2044 	/* Establish function entry probe point */
2045 	ret = register_kprobe(&rp->kp);
2046 	if (ret != 0)
2047 		free_rp_inst(rp);
2048 	return ret;
2049 }
2050 EXPORT_SYMBOL_GPL(register_kretprobe);
2051 
register_kretprobes(struct kretprobe ** rps,int num)2052 int register_kretprobes(struct kretprobe **rps, int num)
2053 {
2054 	int ret = 0, i;
2055 
2056 	if (num <= 0)
2057 		return -EINVAL;
2058 	for (i = 0; i < num; i++) {
2059 		ret = register_kretprobe(rps[i]);
2060 		if (ret < 0) {
2061 			if (i > 0)
2062 				unregister_kretprobes(rps, i);
2063 			break;
2064 		}
2065 	}
2066 	return ret;
2067 }
2068 EXPORT_SYMBOL_GPL(register_kretprobes);
2069 
unregister_kretprobe(struct kretprobe * rp)2070 void unregister_kretprobe(struct kretprobe *rp)
2071 {
2072 	unregister_kretprobes(&rp, 1);
2073 }
2074 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2075 
unregister_kretprobes(struct kretprobe ** rps,int num)2076 void unregister_kretprobes(struct kretprobe **rps, int num)
2077 {
2078 	int i;
2079 
2080 	if (num <= 0)
2081 		return;
2082 	mutex_lock(&kprobe_mutex);
2083 	for (i = 0; i < num; i++)
2084 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2085 			rps[i]->kp.addr = NULL;
2086 	mutex_unlock(&kprobe_mutex);
2087 
2088 	synchronize_rcu();
2089 	for (i = 0; i < num; i++) {
2090 		if (rps[i]->kp.addr) {
2091 			__unregister_kprobe_bottom(&rps[i]->kp);
2092 			cleanup_rp_inst(rps[i]);
2093 		}
2094 	}
2095 }
2096 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2097 
2098 #else /* CONFIG_KRETPROBES */
register_kretprobe(struct kretprobe * rp)2099 int register_kretprobe(struct kretprobe *rp)
2100 {
2101 	return -ENOSYS;
2102 }
2103 EXPORT_SYMBOL_GPL(register_kretprobe);
2104 
register_kretprobes(struct kretprobe ** rps,int num)2105 int register_kretprobes(struct kretprobe **rps, int num)
2106 {
2107 	return -ENOSYS;
2108 }
2109 EXPORT_SYMBOL_GPL(register_kretprobes);
2110 
unregister_kretprobe(struct kretprobe * rp)2111 void unregister_kretprobe(struct kretprobe *rp)
2112 {
2113 }
2114 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2115 
unregister_kretprobes(struct kretprobe ** rps,int num)2116 void unregister_kretprobes(struct kretprobe **rps, int num)
2117 {
2118 }
2119 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2120 
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)2121 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2122 {
2123 	return 0;
2124 }
2125 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2126 
2127 #endif /* CONFIG_KRETPROBES */
2128 
2129 /* Set the kprobe gone and remove its instruction buffer. */
kill_kprobe(struct kprobe * p)2130 static void kill_kprobe(struct kprobe *p)
2131 {
2132 	struct kprobe *kp;
2133 
2134 	if (WARN_ON_ONCE(kprobe_gone(p)))
2135 		return;
2136 
2137 	p->flags |= KPROBE_FLAG_GONE;
2138 	if (kprobe_aggrprobe(p)) {
2139 		/*
2140 		 * If this is an aggr_kprobe, we have to list all the
2141 		 * chained probes and mark them GONE.
2142 		 */
2143 		list_for_each_entry_rcu(kp, &p->list, list)
2144 			kp->flags |= KPROBE_FLAG_GONE;
2145 		p->post_handler = NULL;
2146 		kill_optimized_kprobe(p);
2147 	}
2148 	/*
2149 	 * Here, we can remove insn_slot safely, because no thread calls
2150 	 * the original probed function (which will be freed soon) any more.
2151 	 */
2152 	arch_remove_kprobe(p);
2153 
2154 	/*
2155 	 * The module is going away. We should disarm the kprobe which
2156 	 * is using ftrace, because ftrace framework is still available at
2157 	 * MODULE_STATE_GOING notification.
2158 	 */
2159 	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2160 		disarm_kprobe_ftrace(p);
2161 }
2162 
2163 /* Disable one kprobe */
disable_kprobe(struct kprobe * kp)2164 int disable_kprobe(struct kprobe *kp)
2165 {
2166 	int ret = 0;
2167 	struct kprobe *p;
2168 
2169 	mutex_lock(&kprobe_mutex);
2170 
2171 	/* Disable this kprobe */
2172 	p = __disable_kprobe(kp);
2173 	if (IS_ERR(p))
2174 		ret = PTR_ERR(p);
2175 
2176 	mutex_unlock(&kprobe_mutex);
2177 	return ret;
2178 }
2179 EXPORT_SYMBOL_GPL(disable_kprobe);
2180 
2181 /* Enable one kprobe */
enable_kprobe(struct kprobe * kp)2182 int enable_kprobe(struct kprobe *kp)
2183 {
2184 	int ret = 0;
2185 	struct kprobe *p;
2186 
2187 	mutex_lock(&kprobe_mutex);
2188 
2189 	/* Check whether specified probe is valid. */
2190 	p = __get_valid_kprobe(kp);
2191 	if (unlikely(p == NULL)) {
2192 		ret = -EINVAL;
2193 		goto out;
2194 	}
2195 
2196 	if (kprobe_gone(kp)) {
2197 		/* This kprobe has gone, we couldn't enable it. */
2198 		ret = -EINVAL;
2199 		goto out;
2200 	}
2201 
2202 	if (p != kp)
2203 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2204 
2205 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2206 		p->flags &= ~KPROBE_FLAG_DISABLED;
2207 		ret = arm_kprobe(p);
2208 		if (ret) {
2209 			p->flags |= KPROBE_FLAG_DISABLED;
2210 			if (p != kp)
2211 				kp->flags |= KPROBE_FLAG_DISABLED;
2212 		}
2213 	}
2214 out:
2215 	mutex_unlock(&kprobe_mutex);
2216 	return ret;
2217 }
2218 EXPORT_SYMBOL_GPL(enable_kprobe);
2219 
2220 /* Caller must NOT call this in usual path. This is only for critical case */
dump_kprobe(struct kprobe * kp)2221 void dump_kprobe(struct kprobe *kp)
2222 {
2223 	pr_err("Dumping kprobe:\n");
2224 	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2225 	       kp->symbol_name, kp->offset, kp->addr);
2226 }
2227 NOKPROBE_SYMBOL(dump_kprobe);
2228 
kprobe_add_ksym_blacklist(unsigned long entry)2229 int kprobe_add_ksym_blacklist(unsigned long entry)
2230 {
2231 	struct kprobe_blacklist_entry *ent;
2232 	unsigned long offset = 0, size = 0;
2233 
2234 	if (!kernel_text_address(entry) ||
2235 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2236 		return -EINVAL;
2237 
2238 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2239 	if (!ent)
2240 		return -ENOMEM;
2241 	ent->start_addr = entry;
2242 	ent->end_addr = entry + size;
2243 	INIT_LIST_HEAD(&ent->list);
2244 	list_add_tail(&ent->list, &kprobe_blacklist);
2245 
2246 	return (int)size;
2247 }
2248 
2249 /* Add all symbols in given area into kprobe blacklist */
kprobe_add_area_blacklist(unsigned long start,unsigned long end)2250 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2251 {
2252 	unsigned long entry;
2253 	int ret = 0;
2254 
2255 	for (entry = start; entry < end; entry += ret) {
2256 		ret = kprobe_add_ksym_blacklist(entry);
2257 		if (ret < 0)
2258 			return ret;
2259 		if (ret == 0)	/* In case of alias symbol */
2260 			ret = 1;
2261 	}
2262 	return 0;
2263 }
2264 
arch_populate_kprobe_blacklist(void)2265 int __init __weak arch_populate_kprobe_blacklist(void)
2266 {
2267 	return 0;
2268 }
2269 
2270 /*
2271  * Lookup and populate the kprobe_blacklist.
2272  *
2273  * Unlike the kretprobe blacklist, we'll need to determine
2274  * the range of addresses that belong to the said functions,
2275  * since a kprobe need not necessarily be at the beginning
2276  * of a function.
2277  */
populate_kprobe_blacklist(unsigned long * start,unsigned long * end)2278 static int __init populate_kprobe_blacklist(unsigned long *start,
2279 					     unsigned long *end)
2280 {
2281 	unsigned long entry;
2282 	unsigned long *iter;
2283 	int ret;
2284 
2285 	for (iter = start; iter < end; iter++) {
2286 		entry = arch_deref_entry_point((void *)*iter);
2287 		ret = kprobe_add_ksym_blacklist(entry);
2288 		if (ret == -EINVAL)
2289 			continue;
2290 		if (ret < 0)
2291 			return ret;
2292 	}
2293 
2294 	/* Symbols in __kprobes_text are blacklisted */
2295 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2296 					(unsigned long)__kprobes_text_end);
2297 
2298 	return ret ? : arch_populate_kprobe_blacklist();
2299 }
2300 
2301 /* Module notifier call back, checking kprobes on the module */
kprobes_module_callback(struct notifier_block * nb,unsigned long val,void * data)2302 static int kprobes_module_callback(struct notifier_block *nb,
2303 				   unsigned long val, void *data)
2304 {
2305 	struct module *mod = data;
2306 	struct hlist_head *head;
2307 	struct kprobe *p;
2308 	unsigned int i;
2309 	int checkcore = (val == MODULE_STATE_GOING);
2310 
2311 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2312 		return NOTIFY_DONE;
2313 
2314 	/*
2315 	 * When MODULE_STATE_GOING was notified, both of module .text and
2316 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2317 	 * notified, only .init.text section would be freed. We need to
2318 	 * disable kprobes which have been inserted in the sections.
2319 	 */
2320 	mutex_lock(&kprobe_mutex);
2321 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2322 		head = &kprobe_table[i];
2323 		hlist_for_each_entry_rcu(p, head, hlist) {
2324 			if (kprobe_gone(p))
2325 				continue;
2326 
2327 			if (within_module_init((unsigned long)p->addr, mod) ||
2328 			    (checkcore &&
2329 			     within_module_core((unsigned long)p->addr, mod))) {
2330 				/*
2331 				 * The vaddr this probe is installed will soon
2332 				 * be vfreed buy not synced to disk. Hence,
2333 				 * disarming the breakpoint isn't needed.
2334 				 *
2335 				 * Note, this will also move any optimized probes
2336 				 * that are pending to be removed from their
2337 				 * corresponding lists to the freeing_list and
2338 				 * will not be touched by the delayed
2339 				 * kprobe_optimizer work handler.
2340 				 */
2341 				kill_kprobe(p);
2342 			}
2343 		}
2344 	}
2345 	mutex_unlock(&kprobe_mutex);
2346 	return NOTIFY_DONE;
2347 }
2348 
2349 static struct notifier_block kprobe_module_nb = {
2350 	.notifier_call = kprobes_module_callback,
2351 	.priority = 0
2352 };
2353 
2354 /* Markers of _kprobe_blacklist section */
2355 extern unsigned long __start_kprobe_blacklist[];
2356 extern unsigned long __stop_kprobe_blacklist[];
2357 
kprobe_free_init_mem(void)2358 void kprobe_free_init_mem(void)
2359 {
2360 	void *start = (void *)(&__init_begin);
2361 	void *end = (void *)(&__init_end);
2362 	struct hlist_head *head;
2363 	struct kprobe *p;
2364 	int i;
2365 
2366 	mutex_lock(&kprobe_mutex);
2367 
2368 	/* Kill all kprobes on initmem */
2369 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2370 		head = &kprobe_table[i];
2371 		hlist_for_each_entry(p, head, hlist) {
2372 			if (start <= (void *)p->addr && (void *)p->addr < end)
2373 				kill_kprobe(p);
2374 		}
2375 	}
2376 
2377 	mutex_unlock(&kprobe_mutex);
2378 }
2379 
init_kprobes(void)2380 static int __init init_kprobes(void)
2381 {
2382 	int i, err = 0;
2383 
2384 	/* FIXME allocate the probe table, currently defined statically */
2385 	/* initialize all list heads */
2386 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2387 		INIT_HLIST_HEAD(&kprobe_table[i]);
2388 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2389 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2390 	}
2391 
2392 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2393 					__stop_kprobe_blacklist);
2394 	if (err) {
2395 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2396 		pr_err("Please take care of using kprobes.\n");
2397 	}
2398 
2399 	if (kretprobe_blacklist_size) {
2400 		/* lookup the function address from its name */
2401 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2402 			kretprobe_blacklist[i].addr =
2403 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2404 			if (!kretprobe_blacklist[i].addr)
2405 				printk("kretprobe: lookup failed: %s\n",
2406 				       kretprobe_blacklist[i].name);
2407 		}
2408 	}
2409 
2410 #if defined(CONFIG_OPTPROBES)
2411 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2412 	/* Init kprobe_optinsn_slots */
2413 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2414 #endif
2415 	/* By default, kprobes can be optimized */
2416 	kprobes_allow_optimization = true;
2417 #endif
2418 
2419 	/* By default, kprobes are armed */
2420 	kprobes_all_disarmed = false;
2421 
2422 	err = arch_init_kprobes();
2423 	if (!err)
2424 		err = register_die_notifier(&kprobe_exceptions_nb);
2425 	if (!err)
2426 		err = register_module_notifier(&kprobe_module_nb);
2427 
2428 	kprobes_initialized = (err == 0);
2429 
2430 	if (!err)
2431 		init_test_probes();
2432 	return err;
2433 }
2434 subsys_initcall(init_kprobes);
2435 
2436 #ifdef CONFIG_DEBUG_FS
report_probe(struct seq_file * pi,struct kprobe * p,const char * sym,int offset,char * modname,struct kprobe * pp)2437 static void report_probe(struct seq_file *pi, struct kprobe *p,
2438 		const char *sym, int offset, char *modname, struct kprobe *pp)
2439 {
2440 	char *kprobe_type;
2441 	void *addr = p->addr;
2442 
2443 	if (p->pre_handler == pre_handler_kretprobe)
2444 		kprobe_type = "r";
2445 	else
2446 		kprobe_type = "k";
2447 
2448 	if (!kallsyms_show_value(pi->file->f_cred))
2449 		addr = NULL;
2450 
2451 	if (sym)
2452 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2453 			addr, kprobe_type, sym, offset,
2454 			(modname ? modname : " "));
2455 	else	/* try to use %pS */
2456 		seq_printf(pi, "%px  %s  %pS ",
2457 			addr, kprobe_type, p->addr);
2458 
2459 	if (!pp)
2460 		pp = p;
2461 	seq_printf(pi, "%s%s%s%s\n",
2462 		(kprobe_gone(p) ? "[GONE]" : ""),
2463 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2464 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2465 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2466 }
2467 
kprobe_seq_start(struct seq_file * f,loff_t * pos)2468 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2469 {
2470 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2471 }
2472 
kprobe_seq_next(struct seq_file * f,void * v,loff_t * pos)2473 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2474 {
2475 	(*pos)++;
2476 	if (*pos >= KPROBE_TABLE_SIZE)
2477 		return NULL;
2478 	return pos;
2479 }
2480 
kprobe_seq_stop(struct seq_file * f,void * v)2481 static void kprobe_seq_stop(struct seq_file *f, void *v)
2482 {
2483 	/* Nothing to do */
2484 }
2485 
show_kprobe_addr(struct seq_file * pi,void * v)2486 static int show_kprobe_addr(struct seq_file *pi, void *v)
2487 {
2488 	struct hlist_head *head;
2489 	struct kprobe *p, *kp;
2490 	const char *sym = NULL;
2491 	unsigned int i = *(loff_t *) v;
2492 	unsigned long offset = 0;
2493 	char *modname, namebuf[KSYM_NAME_LEN];
2494 
2495 	head = &kprobe_table[i];
2496 	preempt_disable();
2497 	hlist_for_each_entry_rcu(p, head, hlist) {
2498 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2499 					&offset, &modname, namebuf);
2500 		if (kprobe_aggrprobe(p)) {
2501 			list_for_each_entry_rcu(kp, &p->list, list)
2502 				report_probe(pi, kp, sym, offset, modname, p);
2503 		} else
2504 			report_probe(pi, p, sym, offset, modname, NULL);
2505 	}
2506 	preempt_enable();
2507 	return 0;
2508 }
2509 
2510 static const struct seq_operations kprobes_seq_ops = {
2511 	.start = kprobe_seq_start,
2512 	.next  = kprobe_seq_next,
2513 	.stop  = kprobe_seq_stop,
2514 	.show  = show_kprobe_addr
2515 };
2516 
kprobes_open(struct inode * inode,struct file * filp)2517 static int kprobes_open(struct inode *inode, struct file *filp)
2518 {
2519 	return seq_open(filp, &kprobes_seq_ops);
2520 }
2521 
2522 static const struct file_operations debugfs_kprobes_operations = {
2523 	.open           = kprobes_open,
2524 	.read           = seq_read,
2525 	.llseek         = seq_lseek,
2526 	.release        = seq_release,
2527 };
2528 
2529 /* kprobes/blacklist -- shows which functions can not be probed */
kprobe_blacklist_seq_start(struct seq_file * m,loff_t * pos)2530 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2531 {
2532 	return seq_list_start(&kprobe_blacklist, *pos);
2533 }
2534 
kprobe_blacklist_seq_next(struct seq_file * m,void * v,loff_t * pos)2535 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2536 {
2537 	return seq_list_next(v, &kprobe_blacklist, pos);
2538 }
2539 
kprobe_blacklist_seq_show(struct seq_file * m,void * v)2540 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2541 {
2542 	struct kprobe_blacklist_entry *ent =
2543 		list_entry(v, struct kprobe_blacklist_entry, list);
2544 
2545 	/*
2546 	 * If /proc/kallsyms is not showing kernel address, we won't
2547 	 * show them here either.
2548 	 */
2549 	if (!kallsyms_show_value(m->file->f_cred))
2550 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2551 			   (void *)ent->start_addr);
2552 	else
2553 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2554 			   (void *)ent->end_addr, (void *)ent->start_addr);
2555 	return 0;
2556 }
2557 
2558 static const struct seq_operations kprobe_blacklist_seq_ops = {
2559 	.start = kprobe_blacklist_seq_start,
2560 	.next  = kprobe_blacklist_seq_next,
2561 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2562 	.show  = kprobe_blacklist_seq_show,
2563 };
2564 
kprobe_blacklist_open(struct inode * inode,struct file * filp)2565 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2566 {
2567 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2568 }
2569 
2570 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2571 	.open           = kprobe_blacklist_open,
2572 	.read           = seq_read,
2573 	.llseek         = seq_lseek,
2574 	.release        = seq_release,
2575 };
2576 
arm_all_kprobes(void)2577 static int arm_all_kprobes(void)
2578 {
2579 	struct hlist_head *head;
2580 	struct kprobe *p;
2581 	unsigned int i, total = 0, errors = 0;
2582 	int err, ret = 0;
2583 
2584 	mutex_lock(&kprobe_mutex);
2585 
2586 	/* If kprobes are armed, just return */
2587 	if (!kprobes_all_disarmed)
2588 		goto already_enabled;
2589 
2590 	/*
2591 	 * optimize_kprobe() called by arm_kprobe() checks
2592 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2593 	 * arm_kprobe.
2594 	 */
2595 	kprobes_all_disarmed = false;
2596 	/* Arming kprobes doesn't optimize kprobe itself */
2597 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2598 		head = &kprobe_table[i];
2599 		/* Arm all kprobes on a best-effort basis */
2600 		hlist_for_each_entry_rcu(p, head, hlist) {
2601 			if (!kprobe_disabled(p)) {
2602 				err = arm_kprobe(p);
2603 				if (err)  {
2604 					errors++;
2605 					ret = err;
2606 				}
2607 				total++;
2608 			}
2609 		}
2610 	}
2611 
2612 	if (errors)
2613 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2614 			errors, total);
2615 	else
2616 		pr_info("Kprobes globally enabled\n");
2617 
2618 already_enabled:
2619 	mutex_unlock(&kprobe_mutex);
2620 	return ret;
2621 }
2622 
disarm_all_kprobes(void)2623 static int disarm_all_kprobes(void)
2624 {
2625 	struct hlist_head *head;
2626 	struct kprobe *p;
2627 	unsigned int i, total = 0, errors = 0;
2628 	int err, ret = 0;
2629 
2630 	mutex_lock(&kprobe_mutex);
2631 
2632 	/* If kprobes are already disarmed, just return */
2633 	if (kprobes_all_disarmed) {
2634 		mutex_unlock(&kprobe_mutex);
2635 		return 0;
2636 	}
2637 
2638 	kprobes_all_disarmed = true;
2639 
2640 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2641 		head = &kprobe_table[i];
2642 		/* Disarm all kprobes on a best-effort basis */
2643 		hlist_for_each_entry_rcu(p, head, hlist) {
2644 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2645 				err = disarm_kprobe(p, false);
2646 				if (err) {
2647 					errors++;
2648 					ret = err;
2649 				}
2650 				total++;
2651 			}
2652 		}
2653 	}
2654 
2655 	if (errors)
2656 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2657 			errors, total);
2658 	else
2659 		pr_info("Kprobes globally disabled\n");
2660 
2661 	mutex_unlock(&kprobe_mutex);
2662 
2663 	/* Wait for disarming all kprobes by optimizer */
2664 	wait_for_kprobe_optimizer();
2665 
2666 	return ret;
2667 }
2668 
2669 /*
2670  * XXX: The debugfs bool file interface doesn't allow for callbacks
2671  * when the bool state is switched. We can reuse that facility when
2672  * available
2673  */
read_enabled_file_bool(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)2674 static ssize_t read_enabled_file_bool(struct file *file,
2675 	       char __user *user_buf, size_t count, loff_t *ppos)
2676 {
2677 	char buf[3];
2678 
2679 	if (!kprobes_all_disarmed)
2680 		buf[0] = '1';
2681 	else
2682 		buf[0] = '0';
2683 	buf[1] = '\n';
2684 	buf[2] = 0x00;
2685 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2686 }
2687 
write_enabled_file_bool(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)2688 static ssize_t write_enabled_file_bool(struct file *file,
2689 	       const char __user *user_buf, size_t count, loff_t *ppos)
2690 {
2691 	char buf[32];
2692 	size_t buf_size;
2693 	int ret = 0;
2694 
2695 	buf_size = min(count, (sizeof(buf)-1));
2696 	if (copy_from_user(buf, user_buf, buf_size))
2697 		return -EFAULT;
2698 
2699 	buf[buf_size] = '\0';
2700 	switch (buf[0]) {
2701 	case 'y':
2702 	case 'Y':
2703 	case '1':
2704 		ret = arm_all_kprobes();
2705 		break;
2706 	case 'n':
2707 	case 'N':
2708 	case '0':
2709 		ret = disarm_all_kprobes();
2710 		break;
2711 	default:
2712 		return -EINVAL;
2713 	}
2714 
2715 	if (ret)
2716 		return ret;
2717 
2718 	return count;
2719 }
2720 
2721 static const struct file_operations fops_kp = {
2722 	.read =         read_enabled_file_bool,
2723 	.write =        write_enabled_file_bool,
2724 	.llseek =	default_llseek,
2725 };
2726 
debugfs_kprobe_init(void)2727 static int __init debugfs_kprobe_init(void)
2728 {
2729 	struct dentry *dir;
2730 
2731 	dir = debugfs_create_dir("kprobes", NULL);
2732 
2733 	debugfs_create_file("list", 0400, dir, NULL,
2734 			    &debugfs_kprobes_operations);
2735 
2736 	debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
2737 
2738 	debugfs_create_file("blacklist", 0400, dir, NULL,
2739 			    &debugfs_kprobe_blacklist_ops);
2740 
2741 	return 0;
2742 }
2743 
2744 late_initcall(debugfs_kprobe_init);
2745 #endif /* CONFIG_DEBUG_FS */
2746