• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>		/* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
22 #include <linux/swap.h>		/* try_to_free_swap */
23 #include <linux/ptrace.h>	/* user_enable_single_step */
24 #include <linux/kdebug.h>	/* notifier mechanism */
25 #include "../../mm/internal.h"	/* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/khugepaged.h>
30 
31 #include <linux/uprobes.h>
32 
33 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
35 
36 static struct rb_root uprobes_tree = RB_ROOT;
37 /*
38  * allows us to skip the uprobe_mmap if there are no uprobe events active
39  * at this time.  Probably a fine grained per inode count is better?
40  */
41 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
42 
43 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
44 
45 #define UPROBES_HASH_SZ	13
46 /* serialize uprobe->pending_list */
47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49 
50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51 
52 /* Have a copy of original instruction */
53 #define UPROBE_COPY_INSN	0
54 
55 struct uprobe {
56 	struct rb_node		rb_node;	/* node in the rb tree */
57 	refcount_t		ref;
58 	struct rw_semaphore	register_rwsem;
59 	struct rw_semaphore	consumer_rwsem;
60 	struct list_head	pending_list;
61 	struct uprobe_consumer	*consumers;
62 	struct inode		*inode;		/* Also hold a ref to inode */
63 	loff_t			offset;
64 	loff_t			ref_ctr_offset;
65 	unsigned long		flags;
66 
67 	/*
68 	 * The generic code assumes that it has two members of unknown type
69 	 * owned by the arch-specific code:
70 	 *
71 	 * 	insn -	copy_insn() saves the original instruction here for
72 	 *		arch_uprobe_analyze_insn().
73 	 *
74 	 *	ixol -	potentially modified instruction to execute out of
75 	 *		line, copied to xol_area by xol_get_insn_slot().
76 	 */
77 	struct arch_uprobe	arch;
78 };
79 
80 struct delayed_uprobe {
81 	struct list_head list;
82 	struct uprobe *uprobe;
83 	struct mm_struct *mm;
84 };
85 
86 static DEFINE_MUTEX(delayed_uprobe_lock);
87 static LIST_HEAD(delayed_uprobe_list);
88 
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99 	wait_queue_head_t 		wq;		/* if all slots are busy */
100 	atomic_t 			slot_count;	/* number of in-use slots */
101 	unsigned long 			*bitmap;	/* 0 = free slot */
102 
103 	struct vm_special_mapping	xol_mapping;
104 	struct page 			*pages[2];
105 	/*
106 	 * We keep the vma's vm_start rather than a pointer to the vma
107 	 * itself.  The probed process or a naughty kernel module could make
108 	 * the vma go away, and we must handle that reasonably gracefully.
109 	 */
110 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
111 };
112 
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *	- is_register: indicates if we are in register context.
118  *	- Return 1 if the specified virtual address is in an
119  *	  executable vma.
120  */
valid_vma(struct vm_area_struct * vma,bool is_register)121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124 
125 	if (is_register)
126 		flags |= VM_WRITE;
127 
128 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130 
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135 
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140 
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @old_page: the page we are replacing by new_page
148  * @new_page: the modified page we replace page by
149  *
150  * If @new_page is NULL, only unmap @old_page.
151  *
152  * Returns 0 on success, negative error code otherwise.
153  */
__replace_page(struct vm_area_struct * vma,unsigned long addr,struct page * old_page,struct page * new_page)154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155 				struct page *old_page, struct page *new_page)
156 {
157 	struct mm_struct *mm = vma->vm_mm;
158 	struct page_vma_mapped_walk pvmw = {
159 		.page = compound_head(old_page),
160 		.vma = vma,
161 		.address = addr,
162 	};
163 	int err;
164 	struct mmu_notifier_range range;
165 	struct mem_cgroup *memcg;
166 
167 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
168 				addr + PAGE_SIZE);
169 
170 	if (new_page) {
171 		err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
172 					    &memcg, false);
173 		if (err)
174 			return err;
175 	}
176 
177 	/* For try_to_free_swap() and munlock_vma_page() below */
178 	lock_page(old_page);
179 
180 	mmu_notifier_invalidate_range_start(&range);
181 	err = -EAGAIN;
182 	if (!page_vma_mapped_walk(&pvmw)) {
183 		if (new_page)
184 			mem_cgroup_cancel_charge(new_page, memcg, false);
185 		goto unlock;
186 	}
187 	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
188 
189 	if (new_page) {
190 		get_page(new_page);
191 		page_add_new_anon_rmap(new_page, vma, addr, false);
192 		mem_cgroup_commit_charge(new_page, memcg, false, false);
193 		lru_cache_add_active_or_unevictable(new_page, vma);
194 	} else
195 		/* no new page, just dec_mm_counter for old_page */
196 		dec_mm_counter(mm, MM_ANONPAGES);
197 
198 	if (!PageAnon(old_page)) {
199 		dec_mm_counter(mm, mm_counter_file(old_page));
200 		inc_mm_counter(mm, MM_ANONPAGES);
201 	}
202 
203 	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
204 	ptep_clear_flush_notify(vma, addr, pvmw.pte);
205 	if (new_page)
206 		set_pte_at_notify(mm, addr, pvmw.pte,
207 				  mk_pte(new_page, vma->vm_page_prot));
208 
209 	page_remove_rmap(old_page, false);
210 	if (!page_mapped(old_page))
211 		try_to_free_swap(old_page);
212 	page_vma_mapped_walk_done(&pvmw);
213 
214 	if ((vma->vm_flags & VM_LOCKED) && !PageCompound(old_page))
215 		munlock_vma_page(old_page);
216 	put_page(old_page);
217 
218 	err = 0;
219  unlock:
220 	mmu_notifier_invalidate_range_end(&range);
221 	unlock_page(old_page);
222 	return err;
223 }
224 
225 /**
226  * is_swbp_insn - check if instruction is breakpoint instruction.
227  * @insn: instruction to be checked.
228  * Default implementation of is_swbp_insn
229  * Returns true if @insn is a breakpoint instruction.
230  */
is_swbp_insn(uprobe_opcode_t * insn)231 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
232 {
233 	return *insn == UPROBE_SWBP_INSN;
234 }
235 
236 /**
237  * is_trap_insn - check if instruction is breakpoint instruction.
238  * @insn: instruction to be checked.
239  * Default implementation of is_trap_insn
240  * Returns true if @insn is a breakpoint instruction.
241  *
242  * This function is needed for the case where an architecture has multiple
243  * trap instructions (like powerpc).
244  */
is_trap_insn(uprobe_opcode_t * insn)245 bool __weak is_trap_insn(uprobe_opcode_t *insn)
246 {
247 	return is_swbp_insn(insn);
248 }
249 
copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)250 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
251 {
252 	void *kaddr = kmap_atomic(page);
253 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
254 	kunmap_atomic(kaddr);
255 }
256 
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)257 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
258 {
259 	void *kaddr = kmap_atomic(page);
260 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
261 	kunmap_atomic(kaddr);
262 }
263 
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * new_opcode)264 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
265 {
266 	uprobe_opcode_t old_opcode;
267 	bool is_swbp;
268 
269 	/*
270 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
271 	 * We do not check if it is any other 'trap variant' which could
272 	 * be conditional trap instruction such as the one powerpc supports.
273 	 *
274 	 * The logic is that we do not care if the underlying instruction
275 	 * is a trap variant; uprobes always wins over any other (gdb)
276 	 * breakpoint.
277 	 */
278 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
279 	is_swbp = is_swbp_insn(&old_opcode);
280 
281 	if (is_swbp_insn(new_opcode)) {
282 		if (is_swbp)		/* register: already installed? */
283 			return 0;
284 	} else {
285 		if (!is_swbp)		/* unregister: was it changed by us? */
286 			return 0;
287 	}
288 
289 	return 1;
290 }
291 
292 static struct delayed_uprobe *
delayed_uprobe_check(struct uprobe * uprobe,struct mm_struct * mm)293 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
294 {
295 	struct delayed_uprobe *du;
296 
297 	list_for_each_entry(du, &delayed_uprobe_list, list)
298 		if (du->uprobe == uprobe && du->mm == mm)
299 			return du;
300 	return NULL;
301 }
302 
delayed_uprobe_add(struct uprobe * uprobe,struct mm_struct * mm)303 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
304 {
305 	struct delayed_uprobe *du;
306 
307 	if (delayed_uprobe_check(uprobe, mm))
308 		return 0;
309 
310 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
311 	if (!du)
312 		return -ENOMEM;
313 
314 	du->uprobe = uprobe;
315 	du->mm = mm;
316 	list_add(&du->list, &delayed_uprobe_list);
317 	return 0;
318 }
319 
delayed_uprobe_delete(struct delayed_uprobe * du)320 static void delayed_uprobe_delete(struct delayed_uprobe *du)
321 {
322 	if (WARN_ON(!du))
323 		return;
324 	list_del(&du->list);
325 	kfree(du);
326 }
327 
delayed_uprobe_remove(struct uprobe * uprobe,struct mm_struct * mm)328 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
329 {
330 	struct list_head *pos, *q;
331 	struct delayed_uprobe *du;
332 
333 	if (!uprobe && !mm)
334 		return;
335 
336 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
337 		du = list_entry(pos, struct delayed_uprobe, list);
338 
339 		if (uprobe && du->uprobe != uprobe)
340 			continue;
341 		if (mm && du->mm != mm)
342 			continue;
343 
344 		delayed_uprobe_delete(du);
345 	}
346 }
347 
valid_ref_ctr_vma(struct uprobe * uprobe,struct vm_area_struct * vma)348 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
349 			      struct vm_area_struct *vma)
350 {
351 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
352 
353 	return uprobe->ref_ctr_offset &&
354 		vma->vm_file &&
355 		file_inode(vma->vm_file) == uprobe->inode &&
356 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
357 		vma->vm_start <= vaddr &&
358 		vma->vm_end > vaddr;
359 }
360 
361 static struct vm_area_struct *
find_ref_ctr_vma(struct uprobe * uprobe,struct mm_struct * mm)362 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
363 {
364 	struct vm_area_struct *tmp;
365 
366 	for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
367 		if (valid_ref_ctr_vma(uprobe, tmp))
368 			return tmp;
369 
370 	return NULL;
371 }
372 
373 static int
__update_ref_ctr(struct mm_struct * mm,unsigned long vaddr,short d)374 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
375 {
376 	void *kaddr;
377 	struct page *page;
378 	struct vm_area_struct *vma;
379 	int ret;
380 	short *ptr;
381 
382 	if (!vaddr || !d)
383 		return -EINVAL;
384 
385 	ret = get_user_pages_remote(NULL, mm, vaddr, 1,
386 			FOLL_WRITE, &page, &vma, NULL);
387 	if (unlikely(ret <= 0)) {
388 		/*
389 		 * We are asking for 1 page. If get_user_pages_remote() fails,
390 		 * it may return 0, in that case we have to return error.
391 		 */
392 		return ret == 0 ? -EBUSY : ret;
393 	}
394 
395 	kaddr = kmap_atomic(page);
396 	ptr = kaddr + (vaddr & ~PAGE_MASK);
397 
398 	if (unlikely(*ptr + d < 0)) {
399 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
400 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
401 		ret = -EINVAL;
402 		goto out;
403 	}
404 
405 	*ptr += d;
406 	ret = 0;
407 out:
408 	kunmap_atomic(kaddr);
409 	put_page(page);
410 	return ret;
411 }
412 
update_ref_ctr_warn(struct uprobe * uprobe,struct mm_struct * mm,short d)413 static void update_ref_ctr_warn(struct uprobe *uprobe,
414 				struct mm_struct *mm, short d)
415 {
416 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
417 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
418 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
419 		(unsigned long long) uprobe->offset,
420 		(unsigned long long) uprobe->ref_ctr_offset, mm);
421 }
422 
update_ref_ctr(struct uprobe * uprobe,struct mm_struct * mm,short d)423 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
424 			  short d)
425 {
426 	struct vm_area_struct *rc_vma;
427 	unsigned long rc_vaddr;
428 	int ret = 0;
429 
430 	rc_vma = find_ref_ctr_vma(uprobe, mm);
431 
432 	if (rc_vma) {
433 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
434 		ret = __update_ref_ctr(mm, rc_vaddr, d);
435 		if (ret)
436 			update_ref_ctr_warn(uprobe, mm, d);
437 
438 		if (d > 0)
439 			return ret;
440 	}
441 
442 	mutex_lock(&delayed_uprobe_lock);
443 	if (d > 0)
444 		ret = delayed_uprobe_add(uprobe, mm);
445 	else
446 		delayed_uprobe_remove(uprobe, mm);
447 	mutex_unlock(&delayed_uprobe_lock);
448 
449 	return ret;
450 }
451 
452 /*
453  * NOTE:
454  * Expect the breakpoint instruction to be the smallest size instruction for
455  * the architecture. If an arch has variable length instruction and the
456  * breakpoint instruction is not of the smallest length instruction
457  * supported by that architecture then we need to modify is_trap_at_addr and
458  * uprobe_write_opcode accordingly. This would never be a problem for archs
459  * that have fixed length instructions.
460  *
461  * uprobe_write_opcode - write the opcode at a given virtual address.
462  * @mm: the probed process address space.
463  * @vaddr: the virtual address to store the opcode.
464  * @opcode: opcode to be written at @vaddr.
465  *
466  * Called with mm->mmap_sem held for write.
467  * Return 0 (success) or a negative errno.
468  */
uprobe_write_opcode(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr,uprobe_opcode_t opcode)469 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
470 			unsigned long vaddr, uprobe_opcode_t opcode)
471 {
472 	struct uprobe *uprobe;
473 	struct page *old_page, *new_page;
474 	struct vm_area_struct *vma;
475 	int ret, is_register, ref_ctr_updated = 0;
476 	bool orig_page_huge = false;
477 	unsigned int gup_flags = FOLL_FORCE;
478 
479 	is_register = is_swbp_insn(&opcode);
480 	uprobe = container_of(auprobe, struct uprobe, arch);
481 
482 retry:
483 	if (is_register)
484 		gup_flags |= FOLL_SPLIT_PMD;
485 	/* Read the page with vaddr into memory */
486 	ret = get_user_pages_remote(NULL, mm, vaddr, 1, gup_flags,
487 				    &old_page, &vma, NULL);
488 	if (ret <= 0)
489 		return ret;
490 
491 	ret = verify_opcode(old_page, vaddr, &opcode);
492 	if (ret <= 0)
493 		goto put_old;
494 
495 	if (WARN(!is_register && PageCompound(old_page),
496 		 "uprobe unregister should never work on compound page\n")) {
497 		ret = -EINVAL;
498 		goto put_old;
499 	}
500 
501 	/* We are going to replace instruction, update ref_ctr. */
502 	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
503 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
504 		if (ret)
505 			goto put_old;
506 
507 		ref_ctr_updated = 1;
508 	}
509 
510 	ret = 0;
511 	if (!is_register && !PageAnon(old_page))
512 		goto put_old;
513 
514 	ret = anon_vma_prepare(vma);
515 	if (ret)
516 		goto put_old;
517 
518 	ret = -ENOMEM;
519 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
520 	if (!new_page)
521 		goto put_old;
522 
523 	__SetPageUptodate(new_page);
524 	copy_highpage(new_page, old_page);
525 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
526 
527 	if (!is_register) {
528 		struct page *orig_page;
529 		pgoff_t index;
530 
531 		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
532 
533 		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
534 		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
535 					  index);
536 
537 		if (orig_page) {
538 			if (PageUptodate(orig_page) &&
539 			    pages_identical(new_page, orig_page)) {
540 				/* let go new_page */
541 				put_page(new_page);
542 				new_page = NULL;
543 
544 				if (PageCompound(orig_page))
545 					orig_page_huge = true;
546 			}
547 			put_page(orig_page);
548 		}
549 	}
550 
551 	ret = __replace_page(vma, vaddr, old_page, new_page);
552 	if (new_page)
553 		put_page(new_page);
554 put_old:
555 	put_page(old_page);
556 
557 	if (unlikely(ret == -EAGAIN))
558 		goto retry;
559 
560 	/* Revert back reference counter if instruction update failed. */
561 	if (ret && is_register && ref_ctr_updated)
562 		update_ref_ctr(uprobe, mm, -1);
563 
564 	/* try collapse pmd for compound page */
565 	if (!ret && orig_page_huge)
566 		collapse_pte_mapped_thp(mm, vaddr);
567 
568 	return ret;
569 }
570 
571 /**
572  * set_swbp - store breakpoint at a given address.
573  * @auprobe: arch specific probepoint information.
574  * @mm: the probed process address space.
575  * @vaddr: the virtual address to insert the opcode.
576  *
577  * For mm @mm, store the breakpoint instruction at @vaddr.
578  * Return 0 (success) or a negative errno.
579  */
set_swbp(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)580 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
581 {
582 	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
583 }
584 
585 /**
586  * set_orig_insn - Restore the original instruction.
587  * @mm: the probed process address space.
588  * @auprobe: arch specific probepoint information.
589  * @vaddr: the virtual address to insert the opcode.
590  *
591  * For mm @mm, restore the original opcode (opcode) at @vaddr.
592  * Return 0 (success) or a negative errno.
593  */
594 int __weak
set_orig_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)595 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
596 {
597 	return uprobe_write_opcode(auprobe, mm, vaddr,
598 			*(uprobe_opcode_t *)&auprobe->insn);
599 }
600 
get_uprobe(struct uprobe * uprobe)601 static struct uprobe *get_uprobe(struct uprobe *uprobe)
602 {
603 	refcount_inc(&uprobe->ref);
604 	return uprobe;
605 }
606 
put_uprobe(struct uprobe * uprobe)607 static void put_uprobe(struct uprobe *uprobe)
608 {
609 	if (refcount_dec_and_test(&uprobe->ref)) {
610 		/*
611 		 * If application munmap(exec_vma) before uprobe_unregister()
612 		 * gets called, we don't get a chance to remove uprobe from
613 		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
614 		 */
615 		mutex_lock(&delayed_uprobe_lock);
616 		delayed_uprobe_remove(uprobe, NULL);
617 		mutex_unlock(&delayed_uprobe_lock);
618 		kfree(uprobe);
619 	}
620 }
621 
match_uprobe(struct uprobe * l,struct uprobe * r)622 static int match_uprobe(struct uprobe *l, struct uprobe *r)
623 {
624 	if (l->inode < r->inode)
625 		return -1;
626 
627 	if (l->inode > r->inode)
628 		return 1;
629 
630 	if (l->offset < r->offset)
631 		return -1;
632 
633 	if (l->offset > r->offset)
634 		return 1;
635 
636 	return 0;
637 }
638 
__find_uprobe(struct inode * inode,loff_t offset)639 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
640 {
641 	struct uprobe u = { .inode = inode, .offset = offset };
642 	struct rb_node *n = uprobes_tree.rb_node;
643 	struct uprobe *uprobe;
644 	int match;
645 
646 	while (n) {
647 		uprobe = rb_entry(n, struct uprobe, rb_node);
648 		match = match_uprobe(&u, uprobe);
649 		if (!match)
650 			return get_uprobe(uprobe);
651 
652 		if (match < 0)
653 			n = n->rb_left;
654 		else
655 			n = n->rb_right;
656 	}
657 	return NULL;
658 }
659 
660 /*
661  * Find a uprobe corresponding to a given inode:offset
662  * Acquires uprobes_treelock
663  */
find_uprobe(struct inode * inode,loff_t offset)664 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
665 {
666 	struct uprobe *uprobe;
667 
668 	spin_lock(&uprobes_treelock);
669 	uprobe = __find_uprobe(inode, offset);
670 	spin_unlock(&uprobes_treelock);
671 
672 	return uprobe;
673 }
674 
__insert_uprobe(struct uprobe * uprobe)675 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
676 {
677 	struct rb_node **p = &uprobes_tree.rb_node;
678 	struct rb_node *parent = NULL;
679 	struct uprobe *u;
680 	int match;
681 
682 	while (*p) {
683 		parent = *p;
684 		u = rb_entry(parent, struct uprobe, rb_node);
685 		match = match_uprobe(uprobe, u);
686 		if (!match)
687 			return get_uprobe(u);
688 
689 		if (match < 0)
690 			p = &parent->rb_left;
691 		else
692 			p = &parent->rb_right;
693 
694 	}
695 
696 	u = NULL;
697 	rb_link_node(&uprobe->rb_node, parent, p);
698 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
699 	/* get access + creation ref */
700 	refcount_set(&uprobe->ref, 2);
701 
702 	return u;
703 }
704 
705 /*
706  * Acquire uprobes_treelock.
707  * Matching uprobe already exists in rbtree;
708  *	increment (access refcount) and return the matching uprobe.
709  *
710  * No matching uprobe; insert the uprobe in rb_tree;
711  *	get a double refcount (access + creation) and return NULL.
712  */
insert_uprobe(struct uprobe * uprobe)713 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
714 {
715 	struct uprobe *u;
716 
717 	spin_lock(&uprobes_treelock);
718 	u = __insert_uprobe(uprobe);
719 	spin_unlock(&uprobes_treelock);
720 
721 	return u;
722 }
723 
724 static void
ref_ctr_mismatch_warn(struct uprobe * cur_uprobe,struct uprobe * uprobe)725 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
726 {
727 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
728 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
729 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
730 		(unsigned long long) cur_uprobe->ref_ctr_offset,
731 		(unsigned long long) uprobe->ref_ctr_offset);
732 }
733 
alloc_uprobe(struct inode * inode,loff_t offset,loff_t ref_ctr_offset)734 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
735 				   loff_t ref_ctr_offset)
736 {
737 	struct uprobe *uprobe, *cur_uprobe;
738 
739 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
740 	if (!uprobe)
741 		return NULL;
742 
743 	uprobe->inode = inode;
744 	uprobe->offset = offset;
745 	uprobe->ref_ctr_offset = ref_ctr_offset;
746 	init_rwsem(&uprobe->register_rwsem);
747 	init_rwsem(&uprobe->consumer_rwsem);
748 
749 	/* add to uprobes_tree, sorted on inode:offset */
750 	cur_uprobe = insert_uprobe(uprobe);
751 	/* a uprobe exists for this inode:offset combination */
752 	if (cur_uprobe) {
753 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
754 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
755 			put_uprobe(cur_uprobe);
756 			kfree(uprobe);
757 			return ERR_PTR(-EINVAL);
758 		}
759 		kfree(uprobe);
760 		uprobe = cur_uprobe;
761 	}
762 
763 	return uprobe;
764 }
765 
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)766 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
767 {
768 	down_write(&uprobe->consumer_rwsem);
769 	uc->next = uprobe->consumers;
770 	uprobe->consumers = uc;
771 	up_write(&uprobe->consumer_rwsem);
772 }
773 
774 /*
775  * For uprobe @uprobe, delete the consumer @uc.
776  * Return true if the @uc is deleted successfully
777  * or return false.
778  */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)779 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
780 {
781 	struct uprobe_consumer **con;
782 	bool ret = false;
783 
784 	down_write(&uprobe->consumer_rwsem);
785 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
786 		if (*con == uc) {
787 			*con = uc->next;
788 			ret = true;
789 			break;
790 		}
791 	}
792 	up_write(&uprobe->consumer_rwsem);
793 
794 	return ret;
795 }
796 
__copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)797 static int __copy_insn(struct address_space *mapping, struct file *filp,
798 			void *insn, int nbytes, loff_t offset)
799 {
800 	struct page *page;
801 	/*
802 	 * Ensure that the page that has the original instruction is populated
803 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
804 	 * see uprobe_register().
805 	 */
806 	if (mapping->a_ops->readpage)
807 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
808 	else
809 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
810 	if (IS_ERR(page))
811 		return PTR_ERR(page);
812 
813 	copy_from_page(page, offset, insn, nbytes);
814 	put_page(page);
815 
816 	return 0;
817 }
818 
copy_insn(struct uprobe * uprobe,struct file * filp)819 static int copy_insn(struct uprobe *uprobe, struct file *filp)
820 {
821 	struct address_space *mapping = uprobe->inode->i_mapping;
822 	loff_t offs = uprobe->offset;
823 	void *insn = &uprobe->arch.insn;
824 	int size = sizeof(uprobe->arch.insn);
825 	int len, err = -EIO;
826 
827 	/* Copy only available bytes, -EIO if nothing was read */
828 	do {
829 		if (offs >= i_size_read(uprobe->inode))
830 			break;
831 
832 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
833 		err = __copy_insn(mapping, filp, insn, len, offs);
834 		if (err)
835 			break;
836 
837 		insn += len;
838 		offs += len;
839 		size -= len;
840 	} while (size);
841 
842 	return err;
843 }
844 
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)845 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
846 				struct mm_struct *mm, unsigned long vaddr)
847 {
848 	int ret = 0;
849 
850 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
851 		return ret;
852 
853 	/* TODO: move this into _register, until then we abuse this sem. */
854 	down_write(&uprobe->consumer_rwsem);
855 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
856 		goto out;
857 
858 	ret = copy_insn(uprobe, file);
859 	if (ret)
860 		goto out;
861 
862 	ret = -ENOTSUPP;
863 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
864 		goto out;
865 
866 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
867 	if (ret)
868 		goto out;
869 
870 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
871 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
872 
873  out:
874 	up_write(&uprobe->consumer_rwsem);
875 
876 	return ret;
877 }
878 
consumer_filter(struct uprobe_consumer * uc,enum uprobe_filter_ctx ctx,struct mm_struct * mm)879 static inline bool consumer_filter(struct uprobe_consumer *uc,
880 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
881 {
882 	return !uc->filter || uc->filter(uc, ctx, mm);
883 }
884 
filter_chain(struct uprobe * uprobe,enum uprobe_filter_ctx ctx,struct mm_struct * mm)885 static bool filter_chain(struct uprobe *uprobe,
886 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
887 {
888 	struct uprobe_consumer *uc;
889 	bool ret = false;
890 
891 	down_read(&uprobe->consumer_rwsem);
892 	for (uc = uprobe->consumers; uc; uc = uc->next) {
893 		ret = consumer_filter(uc, ctx, mm);
894 		if (ret)
895 			break;
896 	}
897 	up_read(&uprobe->consumer_rwsem);
898 
899 	return ret;
900 }
901 
902 static int
install_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long vaddr)903 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
904 			struct vm_area_struct *vma, unsigned long vaddr)
905 {
906 	bool first_uprobe;
907 	int ret;
908 
909 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
910 	if (ret)
911 		return ret;
912 
913 	/*
914 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
915 	 * the task can hit this breakpoint right after __replace_page().
916 	 */
917 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
918 	if (first_uprobe)
919 		set_bit(MMF_HAS_UPROBES, &mm->flags);
920 
921 	ret = set_swbp(&uprobe->arch, mm, vaddr);
922 	if (!ret)
923 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
924 	else if (first_uprobe)
925 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
926 
927 	return ret;
928 }
929 
930 static int
remove_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,unsigned long vaddr)931 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
932 {
933 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
934 	return set_orig_insn(&uprobe->arch, mm, vaddr);
935 }
936 
uprobe_is_active(struct uprobe * uprobe)937 static inline bool uprobe_is_active(struct uprobe *uprobe)
938 {
939 	return !RB_EMPTY_NODE(&uprobe->rb_node);
940 }
941 /*
942  * There could be threads that have already hit the breakpoint. They
943  * will recheck the current insn and restart if find_uprobe() fails.
944  * See find_active_uprobe().
945  */
delete_uprobe(struct uprobe * uprobe)946 static void delete_uprobe(struct uprobe *uprobe)
947 {
948 	if (WARN_ON(!uprobe_is_active(uprobe)))
949 		return;
950 
951 	spin_lock(&uprobes_treelock);
952 	rb_erase(&uprobe->rb_node, &uprobes_tree);
953 	spin_unlock(&uprobes_treelock);
954 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
955 	put_uprobe(uprobe);
956 }
957 
958 struct map_info {
959 	struct map_info *next;
960 	struct mm_struct *mm;
961 	unsigned long vaddr;
962 };
963 
free_map_info(struct map_info * info)964 static inline struct map_info *free_map_info(struct map_info *info)
965 {
966 	struct map_info *next = info->next;
967 	kfree(info);
968 	return next;
969 }
970 
971 static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)972 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
973 {
974 	unsigned long pgoff = offset >> PAGE_SHIFT;
975 	struct vm_area_struct *vma;
976 	struct map_info *curr = NULL;
977 	struct map_info *prev = NULL;
978 	struct map_info *info;
979 	int more = 0;
980 
981  again:
982 	i_mmap_lock_read(mapping);
983 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
984 		if (!valid_vma(vma, is_register))
985 			continue;
986 
987 		if (!prev && !more) {
988 			/*
989 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
990 			 * reclaim. This is optimistic, no harm done if it fails.
991 			 */
992 			prev = kmalloc(sizeof(struct map_info),
993 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
994 			if (prev)
995 				prev->next = NULL;
996 		}
997 		if (!prev) {
998 			more++;
999 			continue;
1000 		}
1001 
1002 		if (!mmget_not_zero(vma->vm_mm))
1003 			continue;
1004 
1005 		info = prev;
1006 		prev = prev->next;
1007 		info->next = curr;
1008 		curr = info;
1009 
1010 		info->mm = vma->vm_mm;
1011 		info->vaddr = offset_to_vaddr(vma, offset);
1012 	}
1013 	i_mmap_unlock_read(mapping);
1014 
1015 	if (!more)
1016 		goto out;
1017 
1018 	prev = curr;
1019 	while (curr) {
1020 		mmput(curr->mm);
1021 		curr = curr->next;
1022 	}
1023 
1024 	do {
1025 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1026 		if (!info) {
1027 			curr = ERR_PTR(-ENOMEM);
1028 			goto out;
1029 		}
1030 		info->next = prev;
1031 		prev = info;
1032 	} while (--more);
1033 
1034 	goto again;
1035  out:
1036 	while (prev)
1037 		prev = free_map_info(prev);
1038 	return curr;
1039 }
1040 
1041 static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)1042 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1043 {
1044 	bool is_register = !!new;
1045 	struct map_info *info;
1046 	int err = 0;
1047 
1048 	percpu_down_write(&dup_mmap_sem);
1049 	info = build_map_info(uprobe->inode->i_mapping,
1050 					uprobe->offset, is_register);
1051 	if (IS_ERR(info)) {
1052 		err = PTR_ERR(info);
1053 		goto out;
1054 	}
1055 
1056 	while (info) {
1057 		struct mm_struct *mm = info->mm;
1058 		struct vm_area_struct *vma;
1059 
1060 		if (err && is_register)
1061 			goto free;
1062 
1063 		down_write(&mm->mmap_sem);
1064 		vma = find_vma(mm, info->vaddr);
1065 		if (!vma || !valid_vma(vma, is_register) ||
1066 		    file_inode(vma->vm_file) != uprobe->inode)
1067 			goto unlock;
1068 
1069 		if (vma->vm_start > info->vaddr ||
1070 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1071 			goto unlock;
1072 
1073 		if (is_register) {
1074 			/* consult only the "caller", new consumer. */
1075 			if (consumer_filter(new,
1076 					UPROBE_FILTER_REGISTER, mm))
1077 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1078 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1079 			if (!filter_chain(uprobe,
1080 					UPROBE_FILTER_UNREGISTER, mm))
1081 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1082 		}
1083 
1084  unlock:
1085 		up_write(&mm->mmap_sem);
1086  free:
1087 		mmput(mm);
1088 		info = free_map_info(info);
1089 	}
1090  out:
1091 	percpu_up_write(&dup_mmap_sem);
1092 	return err;
1093 }
1094 
1095 static void
__uprobe_unregister(struct uprobe * uprobe,struct uprobe_consumer * uc)1096 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1097 {
1098 	int err;
1099 
1100 	if (WARN_ON(!consumer_del(uprobe, uc)))
1101 		return;
1102 
1103 	err = register_for_each_vma(uprobe, NULL);
1104 	/* TODO : cant unregister? schedule a worker thread */
1105 	if (!uprobe->consumers && !err)
1106 		delete_uprobe(uprobe);
1107 }
1108 
1109 /*
1110  * uprobe_unregister - unregister an already registered probe.
1111  * @inode: the file in which the probe has to be removed.
1112  * @offset: offset from the start of the file.
1113  * @uc: identify which probe if multiple probes are colocated.
1114  */
uprobe_unregister(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)1115 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1116 {
1117 	struct uprobe *uprobe;
1118 
1119 	uprobe = find_uprobe(inode, offset);
1120 	if (WARN_ON(!uprobe))
1121 		return;
1122 
1123 	down_write(&uprobe->register_rwsem);
1124 	__uprobe_unregister(uprobe, uc);
1125 	up_write(&uprobe->register_rwsem);
1126 	put_uprobe(uprobe);
1127 }
1128 EXPORT_SYMBOL_GPL(uprobe_unregister);
1129 
1130 /*
1131  * __uprobe_register - register a probe
1132  * @inode: the file in which the probe has to be placed.
1133  * @offset: offset from the start of the file.
1134  * @uc: information on howto handle the probe..
1135  *
1136  * Apart from the access refcount, __uprobe_register() takes a creation
1137  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1138  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1139  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1140  * @uprobe even before the register operation is complete. Creation
1141  * refcount is released when the last @uc for the @uprobe
1142  * unregisters. Caller of __uprobe_register() is required to keep @inode
1143  * (and the containing mount) referenced.
1144  *
1145  * Return errno if it cannot successully install probes
1146  * else return 0 (success)
1147  */
__uprobe_register(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1148 static int __uprobe_register(struct inode *inode, loff_t offset,
1149 			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1150 {
1151 	struct uprobe *uprobe;
1152 	int ret;
1153 
1154 	/* Uprobe must have at least one set consumer */
1155 	if (!uc->handler && !uc->ret_handler)
1156 		return -EINVAL;
1157 
1158 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1159 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1160 		return -EIO;
1161 	/* Racy, just to catch the obvious mistakes */
1162 	if (offset > i_size_read(inode))
1163 		return -EINVAL;
1164 
1165 	/*
1166 	 * This ensures that copy_from_page(), copy_to_page() and
1167 	 * __update_ref_ctr() can't cross page boundary.
1168 	 */
1169 	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1170 		return -EINVAL;
1171 	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1172 		return -EINVAL;
1173 
1174  retry:
1175 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1176 	if (!uprobe)
1177 		return -ENOMEM;
1178 	if (IS_ERR(uprobe))
1179 		return PTR_ERR(uprobe);
1180 
1181 	/*
1182 	 * We can race with uprobe_unregister()->delete_uprobe().
1183 	 * Check uprobe_is_active() and retry if it is false.
1184 	 */
1185 	down_write(&uprobe->register_rwsem);
1186 	ret = -EAGAIN;
1187 	if (likely(uprobe_is_active(uprobe))) {
1188 		consumer_add(uprobe, uc);
1189 		ret = register_for_each_vma(uprobe, uc);
1190 		if (ret)
1191 			__uprobe_unregister(uprobe, uc);
1192 	}
1193 	up_write(&uprobe->register_rwsem);
1194 	put_uprobe(uprobe);
1195 
1196 	if (unlikely(ret == -EAGAIN))
1197 		goto retry;
1198 	return ret;
1199 }
1200 
uprobe_register(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)1201 int uprobe_register(struct inode *inode, loff_t offset,
1202 		    struct uprobe_consumer *uc)
1203 {
1204 	return __uprobe_register(inode, offset, 0, uc);
1205 }
1206 EXPORT_SYMBOL_GPL(uprobe_register);
1207 
uprobe_register_refctr(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1208 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1209 			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1210 {
1211 	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1212 }
1213 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1214 
1215 /*
1216  * uprobe_apply - unregister an already registered probe.
1217  * @inode: the file in which the probe has to be removed.
1218  * @offset: offset from the start of the file.
1219  * @uc: consumer which wants to add more or remove some breakpoints
1220  * @add: add or remove the breakpoints
1221  */
uprobe_apply(struct inode * inode,loff_t offset,struct uprobe_consumer * uc,bool add)1222 int uprobe_apply(struct inode *inode, loff_t offset,
1223 			struct uprobe_consumer *uc, bool add)
1224 {
1225 	struct uprobe *uprobe;
1226 	struct uprobe_consumer *con;
1227 	int ret = -ENOENT;
1228 
1229 	uprobe = find_uprobe(inode, offset);
1230 	if (WARN_ON(!uprobe))
1231 		return ret;
1232 
1233 	down_write(&uprobe->register_rwsem);
1234 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1235 		;
1236 	if (con)
1237 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1238 	up_write(&uprobe->register_rwsem);
1239 	put_uprobe(uprobe);
1240 
1241 	return ret;
1242 }
1243 
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)1244 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1245 {
1246 	struct vm_area_struct *vma;
1247 	int err = 0;
1248 
1249 	down_read(&mm->mmap_sem);
1250 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1251 		unsigned long vaddr;
1252 		loff_t offset;
1253 
1254 		if (!valid_vma(vma, false) ||
1255 		    file_inode(vma->vm_file) != uprobe->inode)
1256 			continue;
1257 
1258 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1259 		if (uprobe->offset <  offset ||
1260 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1261 			continue;
1262 
1263 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1264 		err |= remove_breakpoint(uprobe, mm, vaddr);
1265 	}
1266 	up_read(&mm->mmap_sem);
1267 
1268 	return err;
1269 }
1270 
1271 static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)1272 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1273 {
1274 	struct rb_node *n = uprobes_tree.rb_node;
1275 
1276 	while (n) {
1277 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1278 
1279 		if (inode < u->inode) {
1280 			n = n->rb_left;
1281 		} else if (inode > u->inode) {
1282 			n = n->rb_right;
1283 		} else {
1284 			if (max < u->offset)
1285 				n = n->rb_left;
1286 			else if (min > u->offset)
1287 				n = n->rb_right;
1288 			else
1289 				break;
1290 		}
1291 	}
1292 
1293 	return n;
1294 }
1295 
1296 /*
1297  * For a given range in vma, build a list of probes that need to be inserted.
1298  */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1299 static void build_probe_list(struct inode *inode,
1300 				struct vm_area_struct *vma,
1301 				unsigned long start, unsigned long end,
1302 				struct list_head *head)
1303 {
1304 	loff_t min, max;
1305 	struct rb_node *n, *t;
1306 	struct uprobe *u;
1307 
1308 	INIT_LIST_HEAD(head);
1309 	min = vaddr_to_offset(vma, start);
1310 	max = min + (end - start) - 1;
1311 
1312 	spin_lock(&uprobes_treelock);
1313 	n = find_node_in_range(inode, min, max);
1314 	if (n) {
1315 		for (t = n; t; t = rb_prev(t)) {
1316 			u = rb_entry(t, struct uprobe, rb_node);
1317 			if (u->inode != inode || u->offset < min)
1318 				break;
1319 			list_add(&u->pending_list, head);
1320 			get_uprobe(u);
1321 		}
1322 		for (t = n; (t = rb_next(t)); ) {
1323 			u = rb_entry(t, struct uprobe, rb_node);
1324 			if (u->inode != inode || u->offset > max)
1325 				break;
1326 			list_add(&u->pending_list, head);
1327 			get_uprobe(u);
1328 		}
1329 	}
1330 	spin_unlock(&uprobes_treelock);
1331 }
1332 
1333 /* @vma contains reference counter, not the probed instruction. */
delayed_ref_ctr_inc(struct vm_area_struct * vma)1334 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1335 {
1336 	struct list_head *pos, *q;
1337 	struct delayed_uprobe *du;
1338 	unsigned long vaddr;
1339 	int ret = 0, err = 0;
1340 
1341 	mutex_lock(&delayed_uprobe_lock);
1342 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1343 		du = list_entry(pos, struct delayed_uprobe, list);
1344 
1345 		if (du->mm != vma->vm_mm ||
1346 		    !valid_ref_ctr_vma(du->uprobe, vma))
1347 			continue;
1348 
1349 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1350 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1351 		if (ret) {
1352 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1353 			if (!err)
1354 				err = ret;
1355 		}
1356 		delayed_uprobe_delete(du);
1357 	}
1358 	mutex_unlock(&delayed_uprobe_lock);
1359 	return err;
1360 }
1361 
1362 /*
1363  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1364  *
1365  * Currently we ignore all errors and always return 0, the callers
1366  * can't handle the failure anyway.
1367  */
uprobe_mmap(struct vm_area_struct * vma)1368 int uprobe_mmap(struct vm_area_struct *vma)
1369 {
1370 	struct list_head tmp_list;
1371 	struct uprobe *uprobe, *u;
1372 	struct inode *inode;
1373 
1374 	if (no_uprobe_events())
1375 		return 0;
1376 
1377 	if (vma->vm_file &&
1378 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1379 	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1380 		delayed_ref_ctr_inc(vma);
1381 
1382 	if (!valid_vma(vma, true))
1383 		return 0;
1384 
1385 	inode = file_inode(vma->vm_file);
1386 	if (!inode)
1387 		return 0;
1388 
1389 	mutex_lock(uprobes_mmap_hash(inode));
1390 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1391 	/*
1392 	 * We can race with uprobe_unregister(), this uprobe can be already
1393 	 * removed. But in this case filter_chain() must return false, all
1394 	 * consumers have gone away.
1395 	 */
1396 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1397 		if (!fatal_signal_pending(current) &&
1398 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1399 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1400 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1401 		}
1402 		put_uprobe(uprobe);
1403 	}
1404 	mutex_unlock(uprobes_mmap_hash(inode));
1405 
1406 	return 0;
1407 }
1408 
1409 static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1410 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1411 {
1412 	loff_t min, max;
1413 	struct inode *inode;
1414 	struct rb_node *n;
1415 
1416 	inode = file_inode(vma->vm_file);
1417 
1418 	min = vaddr_to_offset(vma, start);
1419 	max = min + (end - start) - 1;
1420 
1421 	spin_lock(&uprobes_treelock);
1422 	n = find_node_in_range(inode, min, max);
1423 	spin_unlock(&uprobes_treelock);
1424 
1425 	return !!n;
1426 }
1427 
1428 /*
1429  * Called in context of a munmap of a vma.
1430  */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1431 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1432 {
1433 	if (no_uprobe_events() || !valid_vma(vma, false))
1434 		return;
1435 
1436 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1437 		return;
1438 
1439 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1440 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1441 		return;
1442 
1443 	if (vma_has_uprobes(vma, start, end))
1444 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1445 }
1446 
1447 /* Slot allocation for XOL */
xol_add_vma(struct mm_struct * mm,struct xol_area * area)1448 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1449 {
1450 	struct vm_area_struct *vma;
1451 	int ret;
1452 
1453 	if (down_write_killable(&mm->mmap_sem))
1454 		return -EINTR;
1455 
1456 	if (mm->uprobes_state.xol_area) {
1457 		ret = -EALREADY;
1458 		goto fail;
1459 	}
1460 
1461 	if (!area->vaddr) {
1462 		/* Try to map as high as possible, this is only a hint. */
1463 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1464 						PAGE_SIZE, 0, 0);
1465 		if (area->vaddr & ~PAGE_MASK) {
1466 			ret = area->vaddr;
1467 			goto fail;
1468 		}
1469 	}
1470 
1471 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1472 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1473 				&area->xol_mapping);
1474 	if (IS_ERR(vma)) {
1475 		ret = PTR_ERR(vma);
1476 		goto fail;
1477 	}
1478 
1479 	ret = 0;
1480 	/* pairs with get_xol_area() */
1481 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1482  fail:
1483 	up_write(&mm->mmap_sem);
1484 
1485 	return ret;
1486 }
1487 
__create_xol_area(unsigned long vaddr)1488 static struct xol_area *__create_xol_area(unsigned long vaddr)
1489 {
1490 	struct mm_struct *mm = current->mm;
1491 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1492 	struct xol_area *area;
1493 
1494 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1495 	if (unlikely(!area))
1496 		goto out;
1497 
1498 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1499 			       GFP_KERNEL);
1500 	if (!area->bitmap)
1501 		goto free_area;
1502 
1503 	area->xol_mapping.name = "[uprobes]";
1504 	area->xol_mapping.fault = NULL;
1505 	area->xol_mapping.pages = area->pages;
1506 	area->pages[0] = alloc_page(GFP_HIGHUSER);
1507 	if (!area->pages[0])
1508 		goto free_bitmap;
1509 	area->pages[1] = NULL;
1510 
1511 	area->vaddr = vaddr;
1512 	init_waitqueue_head(&area->wq);
1513 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1514 	set_bit(0, area->bitmap);
1515 	atomic_set(&area->slot_count, 1);
1516 	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1517 
1518 	if (!xol_add_vma(mm, area))
1519 		return area;
1520 
1521 	__free_page(area->pages[0]);
1522  free_bitmap:
1523 	kfree(area->bitmap);
1524  free_area:
1525 	kfree(area);
1526  out:
1527 	return NULL;
1528 }
1529 
1530 /*
1531  * get_xol_area - Allocate process's xol_area if necessary.
1532  * This area will be used for storing instructions for execution out of line.
1533  *
1534  * Returns the allocated area or NULL.
1535  */
get_xol_area(void)1536 static struct xol_area *get_xol_area(void)
1537 {
1538 	struct mm_struct *mm = current->mm;
1539 	struct xol_area *area;
1540 
1541 	if (!mm->uprobes_state.xol_area)
1542 		__create_xol_area(0);
1543 
1544 	/* Pairs with xol_add_vma() smp_store_release() */
1545 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1546 	return area;
1547 }
1548 
1549 /*
1550  * uprobe_clear_state - Free the area allocated for slots.
1551  */
uprobe_clear_state(struct mm_struct * mm)1552 void uprobe_clear_state(struct mm_struct *mm)
1553 {
1554 	struct xol_area *area = mm->uprobes_state.xol_area;
1555 
1556 	mutex_lock(&delayed_uprobe_lock);
1557 	delayed_uprobe_remove(NULL, mm);
1558 	mutex_unlock(&delayed_uprobe_lock);
1559 
1560 	if (!area)
1561 		return;
1562 
1563 	put_page(area->pages[0]);
1564 	kfree(area->bitmap);
1565 	kfree(area);
1566 }
1567 
uprobe_start_dup_mmap(void)1568 void uprobe_start_dup_mmap(void)
1569 {
1570 	percpu_down_read(&dup_mmap_sem);
1571 }
1572 
uprobe_end_dup_mmap(void)1573 void uprobe_end_dup_mmap(void)
1574 {
1575 	percpu_up_read(&dup_mmap_sem);
1576 }
1577 
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1578 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1579 {
1580 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1581 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1582 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1583 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1584 	}
1585 }
1586 
1587 /*
1588  *  - search for a free slot.
1589  */
xol_take_insn_slot(struct xol_area * area)1590 static unsigned long xol_take_insn_slot(struct xol_area *area)
1591 {
1592 	unsigned long slot_addr;
1593 	int slot_nr;
1594 
1595 	do {
1596 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1597 		if (slot_nr < UINSNS_PER_PAGE) {
1598 			if (!test_and_set_bit(slot_nr, area->bitmap))
1599 				break;
1600 
1601 			slot_nr = UINSNS_PER_PAGE;
1602 			continue;
1603 		}
1604 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1605 	} while (slot_nr >= UINSNS_PER_PAGE);
1606 
1607 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1608 	atomic_inc(&area->slot_count);
1609 
1610 	return slot_addr;
1611 }
1612 
1613 /*
1614  * xol_get_insn_slot - allocate a slot for xol.
1615  * Returns the allocated slot address or 0.
1616  */
xol_get_insn_slot(struct uprobe * uprobe)1617 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1618 {
1619 	struct xol_area *area;
1620 	unsigned long xol_vaddr;
1621 
1622 	area = get_xol_area();
1623 	if (!area)
1624 		return 0;
1625 
1626 	xol_vaddr = xol_take_insn_slot(area);
1627 	if (unlikely(!xol_vaddr))
1628 		return 0;
1629 
1630 	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1631 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1632 
1633 	return xol_vaddr;
1634 }
1635 
1636 /*
1637  * xol_free_insn_slot - If slot was earlier allocated by
1638  * @xol_get_insn_slot(), make the slot available for
1639  * subsequent requests.
1640  */
xol_free_insn_slot(struct task_struct * tsk)1641 static void xol_free_insn_slot(struct task_struct *tsk)
1642 {
1643 	struct xol_area *area;
1644 	unsigned long vma_end;
1645 	unsigned long slot_addr;
1646 
1647 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1648 		return;
1649 
1650 	slot_addr = tsk->utask->xol_vaddr;
1651 	if (unlikely(!slot_addr))
1652 		return;
1653 
1654 	area = tsk->mm->uprobes_state.xol_area;
1655 	vma_end = area->vaddr + PAGE_SIZE;
1656 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1657 		unsigned long offset;
1658 		int slot_nr;
1659 
1660 		offset = slot_addr - area->vaddr;
1661 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1662 		if (slot_nr >= UINSNS_PER_PAGE)
1663 			return;
1664 
1665 		clear_bit(slot_nr, area->bitmap);
1666 		atomic_dec(&area->slot_count);
1667 		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1668 		if (waitqueue_active(&area->wq))
1669 			wake_up(&area->wq);
1670 
1671 		tsk->utask->xol_vaddr = 0;
1672 	}
1673 }
1674 
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1675 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1676 				  void *src, unsigned long len)
1677 {
1678 	/* Initialize the slot */
1679 	copy_to_page(page, vaddr, src, len);
1680 
1681 	/*
1682 	 * We probably need flush_icache_user_range() but it needs vma.
1683 	 * This should work on most of architectures by default. If
1684 	 * architecture needs to do something different it can define
1685 	 * its own version of the function.
1686 	 */
1687 	flush_dcache_page(page);
1688 }
1689 
1690 /**
1691  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1692  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1693  * instruction.
1694  * Return the address of the breakpoint instruction.
1695  */
uprobe_get_swbp_addr(struct pt_regs * regs)1696 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1697 {
1698 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1699 }
1700 
uprobe_get_trap_addr(struct pt_regs * regs)1701 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1702 {
1703 	struct uprobe_task *utask = current->utask;
1704 
1705 	if (unlikely(utask && utask->active_uprobe))
1706 		return utask->vaddr;
1707 
1708 	return instruction_pointer(regs);
1709 }
1710 
free_ret_instance(struct return_instance * ri)1711 static struct return_instance *free_ret_instance(struct return_instance *ri)
1712 {
1713 	struct return_instance *next = ri->next;
1714 	put_uprobe(ri->uprobe);
1715 	kfree(ri);
1716 	return next;
1717 }
1718 
1719 /*
1720  * Called with no locks held.
1721  * Called in context of an exiting or an exec-ing thread.
1722  */
uprobe_free_utask(struct task_struct * t)1723 void uprobe_free_utask(struct task_struct *t)
1724 {
1725 	struct uprobe_task *utask = t->utask;
1726 	struct return_instance *ri;
1727 
1728 	if (!utask)
1729 		return;
1730 
1731 	if (utask->active_uprobe)
1732 		put_uprobe(utask->active_uprobe);
1733 
1734 	ri = utask->return_instances;
1735 	while (ri)
1736 		ri = free_ret_instance(ri);
1737 
1738 	xol_free_insn_slot(t);
1739 	kfree(utask);
1740 	t->utask = NULL;
1741 }
1742 
1743 /*
1744  * Allocate a uprobe_task object for the task if if necessary.
1745  * Called when the thread hits a breakpoint.
1746  *
1747  * Returns:
1748  * - pointer to new uprobe_task on success
1749  * - NULL otherwise
1750  */
get_utask(void)1751 static struct uprobe_task *get_utask(void)
1752 {
1753 	if (!current->utask)
1754 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1755 	return current->utask;
1756 }
1757 
dup_utask(struct task_struct * t,struct uprobe_task * o_utask)1758 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1759 {
1760 	struct uprobe_task *n_utask;
1761 	struct return_instance **p, *o, *n;
1762 
1763 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1764 	if (!n_utask)
1765 		return -ENOMEM;
1766 	t->utask = n_utask;
1767 
1768 	p = &n_utask->return_instances;
1769 	for (o = o_utask->return_instances; o; o = o->next) {
1770 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1771 		if (!n)
1772 			return -ENOMEM;
1773 
1774 		*n = *o;
1775 		get_uprobe(n->uprobe);
1776 		n->next = NULL;
1777 
1778 		*p = n;
1779 		p = &n->next;
1780 		n_utask->depth++;
1781 	}
1782 
1783 	return 0;
1784 }
1785 
uprobe_warn(struct task_struct * t,const char * msg)1786 static void uprobe_warn(struct task_struct *t, const char *msg)
1787 {
1788 	pr_warn("uprobe: %s:%d failed to %s\n",
1789 			current->comm, current->pid, msg);
1790 }
1791 
dup_xol_work(struct callback_head * work)1792 static void dup_xol_work(struct callback_head *work)
1793 {
1794 	if (current->flags & PF_EXITING)
1795 		return;
1796 
1797 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1798 			!fatal_signal_pending(current))
1799 		uprobe_warn(current, "dup xol area");
1800 }
1801 
1802 /*
1803  * Called in context of a new clone/fork from copy_process.
1804  */
uprobe_copy_process(struct task_struct * t,unsigned long flags)1805 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1806 {
1807 	struct uprobe_task *utask = current->utask;
1808 	struct mm_struct *mm = current->mm;
1809 	struct xol_area *area;
1810 
1811 	t->utask = NULL;
1812 
1813 	if (!utask || !utask->return_instances)
1814 		return;
1815 
1816 	if (mm == t->mm && !(flags & CLONE_VFORK))
1817 		return;
1818 
1819 	if (dup_utask(t, utask))
1820 		return uprobe_warn(t, "dup ret instances");
1821 
1822 	/* The task can fork() after dup_xol_work() fails */
1823 	area = mm->uprobes_state.xol_area;
1824 	if (!area)
1825 		return uprobe_warn(t, "dup xol area");
1826 
1827 	if (mm == t->mm)
1828 		return;
1829 
1830 	t->utask->dup_xol_addr = area->vaddr;
1831 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1832 	task_work_add(t, &t->utask->dup_xol_work, true);
1833 }
1834 
1835 /*
1836  * Current area->vaddr notion assume the trampoline address is always
1837  * equal area->vaddr.
1838  *
1839  * Returns -1 in case the xol_area is not allocated.
1840  */
get_trampoline_vaddr(void)1841 static unsigned long get_trampoline_vaddr(void)
1842 {
1843 	struct xol_area *area;
1844 	unsigned long trampoline_vaddr = -1;
1845 
1846 	/* Pairs with xol_add_vma() smp_store_release() */
1847 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1848 	if (area)
1849 		trampoline_vaddr = area->vaddr;
1850 
1851 	return trampoline_vaddr;
1852 }
1853 
cleanup_return_instances(struct uprobe_task * utask,bool chained,struct pt_regs * regs)1854 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1855 					struct pt_regs *regs)
1856 {
1857 	struct return_instance *ri = utask->return_instances;
1858 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1859 
1860 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1861 		ri = free_ret_instance(ri);
1862 		utask->depth--;
1863 	}
1864 	utask->return_instances = ri;
1865 }
1866 
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs)1867 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1868 {
1869 	struct return_instance *ri;
1870 	struct uprobe_task *utask;
1871 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1872 	bool chained;
1873 
1874 	if (!get_xol_area())
1875 		return;
1876 
1877 	utask = get_utask();
1878 	if (!utask)
1879 		return;
1880 
1881 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1882 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1883 				" nestedness limit pid/tgid=%d/%d\n",
1884 				current->pid, current->tgid);
1885 		return;
1886 	}
1887 
1888 	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1889 	if (!ri)
1890 		return;
1891 
1892 	trampoline_vaddr = get_trampoline_vaddr();
1893 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1894 	if (orig_ret_vaddr == -1)
1895 		goto fail;
1896 
1897 	/* drop the entries invalidated by longjmp() */
1898 	chained = (orig_ret_vaddr == trampoline_vaddr);
1899 	cleanup_return_instances(utask, chained, regs);
1900 
1901 	/*
1902 	 * We don't want to keep trampoline address in stack, rather keep the
1903 	 * original return address of first caller thru all the consequent
1904 	 * instances. This also makes breakpoint unwrapping easier.
1905 	 */
1906 	if (chained) {
1907 		if (!utask->return_instances) {
1908 			/*
1909 			 * This situation is not possible. Likely we have an
1910 			 * attack from user-space.
1911 			 */
1912 			uprobe_warn(current, "handle tail call");
1913 			goto fail;
1914 		}
1915 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1916 	}
1917 
1918 	ri->uprobe = get_uprobe(uprobe);
1919 	ri->func = instruction_pointer(regs);
1920 	ri->stack = user_stack_pointer(regs);
1921 	ri->orig_ret_vaddr = orig_ret_vaddr;
1922 	ri->chained = chained;
1923 
1924 	utask->depth++;
1925 	ri->next = utask->return_instances;
1926 	utask->return_instances = ri;
1927 
1928 	return;
1929  fail:
1930 	kfree(ri);
1931 }
1932 
1933 /* Prepare to single-step probed instruction out of line. */
1934 static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)1935 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1936 {
1937 	struct uprobe_task *utask;
1938 	unsigned long xol_vaddr;
1939 	int err;
1940 
1941 	utask = get_utask();
1942 	if (!utask)
1943 		return -ENOMEM;
1944 
1945 	xol_vaddr = xol_get_insn_slot(uprobe);
1946 	if (!xol_vaddr)
1947 		return -ENOMEM;
1948 
1949 	utask->xol_vaddr = xol_vaddr;
1950 	utask->vaddr = bp_vaddr;
1951 
1952 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1953 	if (unlikely(err)) {
1954 		xol_free_insn_slot(current);
1955 		return err;
1956 	}
1957 
1958 	utask->active_uprobe = uprobe;
1959 	utask->state = UTASK_SSTEP;
1960 	return 0;
1961 }
1962 
1963 /*
1964  * If we are singlestepping, then ensure this thread is not connected to
1965  * non-fatal signals until completion of singlestep.  When xol insn itself
1966  * triggers the signal,  restart the original insn even if the task is
1967  * already SIGKILL'ed (since coredump should report the correct ip).  This
1968  * is even more important if the task has a handler for SIGSEGV/etc, The
1969  * _same_ instruction should be repeated again after return from the signal
1970  * handler, and SSTEP can never finish in this case.
1971  */
uprobe_deny_signal(void)1972 bool uprobe_deny_signal(void)
1973 {
1974 	struct task_struct *t = current;
1975 	struct uprobe_task *utask = t->utask;
1976 
1977 	if (likely(!utask || !utask->active_uprobe))
1978 		return false;
1979 
1980 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1981 
1982 	if (signal_pending(t)) {
1983 		spin_lock_irq(&t->sighand->siglock);
1984 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1985 		spin_unlock_irq(&t->sighand->siglock);
1986 
1987 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1988 			utask->state = UTASK_SSTEP_TRAPPED;
1989 			set_tsk_thread_flag(t, TIF_UPROBE);
1990 		}
1991 	}
1992 
1993 	return true;
1994 }
1995 
mmf_recalc_uprobes(struct mm_struct * mm)1996 static void mmf_recalc_uprobes(struct mm_struct *mm)
1997 {
1998 	struct vm_area_struct *vma;
1999 
2000 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2001 		if (!valid_vma(vma, false))
2002 			continue;
2003 		/*
2004 		 * This is not strictly accurate, we can race with
2005 		 * uprobe_unregister() and see the already removed
2006 		 * uprobe if delete_uprobe() was not yet called.
2007 		 * Or this uprobe can be filtered out.
2008 		 */
2009 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2010 			return;
2011 	}
2012 
2013 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2014 }
2015 
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)2016 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2017 {
2018 	struct page *page;
2019 	uprobe_opcode_t opcode;
2020 	int result;
2021 
2022 	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2023 		return -EINVAL;
2024 
2025 	pagefault_disable();
2026 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2027 	pagefault_enable();
2028 
2029 	if (likely(result == 0))
2030 		goto out;
2031 
2032 	/*
2033 	 * The NULL 'tsk' here ensures that any faults that occur here
2034 	 * will not be accounted to the task.  'mm' *is* current->mm,
2035 	 * but we treat this as a 'remote' access since it is
2036 	 * essentially a kernel access to the memory.
2037 	 */
2038 	result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
2039 			NULL, NULL);
2040 	if (result < 0)
2041 		return result;
2042 
2043 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2044 	put_page(page);
2045  out:
2046 	/* This needs to return true for any variant of the trap insn */
2047 	return is_trap_insn(&opcode);
2048 }
2049 
find_active_uprobe(unsigned long bp_vaddr,int * is_swbp)2050 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2051 {
2052 	struct mm_struct *mm = current->mm;
2053 	struct uprobe *uprobe = NULL;
2054 	struct vm_area_struct *vma;
2055 
2056 	down_read(&mm->mmap_sem);
2057 	vma = find_vma(mm, bp_vaddr);
2058 	if (vma && vma->vm_start <= bp_vaddr) {
2059 		if (valid_vma(vma, false)) {
2060 			struct inode *inode = file_inode(vma->vm_file);
2061 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2062 
2063 			uprobe = find_uprobe(inode, offset);
2064 		}
2065 
2066 		if (!uprobe)
2067 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2068 	} else {
2069 		*is_swbp = -EFAULT;
2070 	}
2071 
2072 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2073 		mmf_recalc_uprobes(mm);
2074 	up_read(&mm->mmap_sem);
2075 
2076 	return uprobe;
2077 }
2078 
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)2079 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2080 {
2081 	struct uprobe_consumer *uc;
2082 	int remove = UPROBE_HANDLER_REMOVE;
2083 	bool need_prep = false; /* prepare return uprobe, when needed */
2084 
2085 	down_read(&uprobe->register_rwsem);
2086 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2087 		int rc = 0;
2088 
2089 		if (uc->handler) {
2090 			rc = uc->handler(uc, regs);
2091 			WARN(rc & ~UPROBE_HANDLER_MASK,
2092 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2093 		}
2094 
2095 		if (uc->ret_handler)
2096 			need_prep = true;
2097 
2098 		remove &= rc;
2099 	}
2100 
2101 	if (need_prep && !remove)
2102 		prepare_uretprobe(uprobe, regs); /* put bp at return */
2103 
2104 	if (remove && uprobe->consumers) {
2105 		WARN_ON(!uprobe_is_active(uprobe));
2106 		unapply_uprobe(uprobe, current->mm);
2107 	}
2108 	up_read(&uprobe->register_rwsem);
2109 }
2110 
2111 static void
handle_uretprobe_chain(struct return_instance * ri,struct pt_regs * regs)2112 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2113 {
2114 	struct uprobe *uprobe = ri->uprobe;
2115 	struct uprobe_consumer *uc;
2116 
2117 	down_read(&uprobe->register_rwsem);
2118 	for (uc = uprobe->consumers; uc; uc = uc->next) {
2119 		if (uc->ret_handler)
2120 			uc->ret_handler(uc, ri->func, regs);
2121 	}
2122 	up_read(&uprobe->register_rwsem);
2123 }
2124 
find_next_ret_chain(struct return_instance * ri)2125 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2126 {
2127 	bool chained;
2128 
2129 	do {
2130 		chained = ri->chained;
2131 		ri = ri->next;	/* can't be NULL if chained */
2132 	} while (chained);
2133 
2134 	return ri;
2135 }
2136 
handle_trampoline(struct pt_regs * regs)2137 static void handle_trampoline(struct pt_regs *regs)
2138 {
2139 	struct uprobe_task *utask;
2140 	struct return_instance *ri, *next;
2141 	bool valid;
2142 
2143 	utask = current->utask;
2144 	if (!utask)
2145 		goto sigill;
2146 
2147 	ri = utask->return_instances;
2148 	if (!ri)
2149 		goto sigill;
2150 
2151 	do {
2152 		/*
2153 		 * We should throw out the frames invalidated by longjmp().
2154 		 * If this chain is valid, then the next one should be alive
2155 		 * or NULL; the latter case means that nobody but ri->func
2156 		 * could hit this trampoline on return. TODO: sigaltstack().
2157 		 */
2158 		next = find_next_ret_chain(ri);
2159 		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2160 
2161 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2162 		do {
2163 			if (valid)
2164 				handle_uretprobe_chain(ri, regs);
2165 			ri = free_ret_instance(ri);
2166 			utask->depth--;
2167 		} while (ri != next);
2168 	} while (!valid);
2169 
2170 	utask->return_instances = ri;
2171 	return;
2172 
2173  sigill:
2174 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2175 	force_sig(SIGILL);
2176 
2177 }
2178 
arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)2179 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2180 {
2181 	return false;
2182 }
2183 
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)2184 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2185 					struct pt_regs *regs)
2186 {
2187 	return true;
2188 }
2189 
2190 /*
2191  * Run handler and ask thread to singlestep.
2192  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2193  */
handle_swbp(struct pt_regs * regs)2194 static void handle_swbp(struct pt_regs *regs)
2195 {
2196 	struct uprobe *uprobe;
2197 	unsigned long bp_vaddr;
2198 	int is_swbp;
2199 
2200 	bp_vaddr = uprobe_get_swbp_addr(regs);
2201 	if (bp_vaddr == get_trampoline_vaddr())
2202 		return handle_trampoline(regs);
2203 
2204 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2205 	if (!uprobe) {
2206 		if (is_swbp > 0) {
2207 			/* No matching uprobe; signal SIGTRAP. */
2208 			force_sig(SIGTRAP);
2209 		} else {
2210 			/*
2211 			 * Either we raced with uprobe_unregister() or we can't
2212 			 * access this memory. The latter is only possible if
2213 			 * another thread plays with our ->mm. In both cases
2214 			 * we can simply restart. If this vma was unmapped we
2215 			 * can pretend this insn was not executed yet and get
2216 			 * the (correct) SIGSEGV after restart.
2217 			 */
2218 			instruction_pointer_set(regs, bp_vaddr);
2219 		}
2220 		return;
2221 	}
2222 
2223 	/* change it in advance for ->handler() and restart */
2224 	instruction_pointer_set(regs, bp_vaddr);
2225 
2226 	/*
2227 	 * TODO: move copy_insn/etc into _register and remove this hack.
2228 	 * After we hit the bp, _unregister + _register can install the
2229 	 * new and not-yet-analyzed uprobe at the same address, restart.
2230 	 */
2231 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2232 		goto out;
2233 
2234 	/*
2235 	 * Pairs with the smp_wmb() in prepare_uprobe().
2236 	 *
2237 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2238 	 * we must also see the stores to &uprobe->arch performed by the
2239 	 * prepare_uprobe() call.
2240 	 */
2241 	smp_rmb();
2242 
2243 	/* Tracing handlers use ->utask to communicate with fetch methods */
2244 	if (!get_utask())
2245 		goto out;
2246 
2247 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2248 		goto out;
2249 
2250 	handler_chain(uprobe, regs);
2251 
2252 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2253 		goto out;
2254 
2255 	if (!pre_ssout(uprobe, regs, bp_vaddr))
2256 		return;
2257 
2258 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2259 out:
2260 	put_uprobe(uprobe);
2261 }
2262 
2263 /*
2264  * Perform required fix-ups and disable singlestep.
2265  * Allow pending signals to take effect.
2266  */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)2267 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2268 {
2269 	struct uprobe *uprobe;
2270 	int err = 0;
2271 
2272 	uprobe = utask->active_uprobe;
2273 	if (utask->state == UTASK_SSTEP_ACK)
2274 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2275 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2276 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2277 	else
2278 		WARN_ON_ONCE(1);
2279 
2280 	put_uprobe(uprobe);
2281 	utask->active_uprobe = NULL;
2282 	utask->state = UTASK_RUNNING;
2283 	xol_free_insn_slot(current);
2284 
2285 	spin_lock_irq(&current->sighand->siglock);
2286 	recalc_sigpending(); /* see uprobe_deny_signal() */
2287 	spin_unlock_irq(&current->sighand->siglock);
2288 
2289 	if (unlikely(err)) {
2290 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2291 		force_sig(SIGILL);
2292 	}
2293 }
2294 
2295 /*
2296  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2297  * allows the thread to return from interrupt. After that handle_swbp()
2298  * sets utask->active_uprobe.
2299  *
2300  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2301  * and allows the thread to return from interrupt.
2302  *
2303  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2304  * uprobe_notify_resume().
2305  */
uprobe_notify_resume(struct pt_regs * regs)2306 void uprobe_notify_resume(struct pt_regs *regs)
2307 {
2308 	struct uprobe_task *utask;
2309 
2310 	clear_thread_flag(TIF_UPROBE);
2311 
2312 	utask = current->utask;
2313 	if (utask && utask->active_uprobe)
2314 		handle_singlestep(utask, regs);
2315 	else
2316 		handle_swbp(regs);
2317 }
2318 
2319 /*
2320  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2321  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2322  */
uprobe_pre_sstep_notifier(struct pt_regs * regs)2323 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2324 {
2325 	if (!current->mm)
2326 		return 0;
2327 
2328 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2329 	    (!current->utask || !current->utask->return_instances))
2330 		return 0;
2331 
2332 	set_thread_flag(TIF_UPROBE);
2333 	return 1;
2334 }
2335 
2336 /*
2337  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2338  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2339  */
uprobe_post_sstep_notifier(struct pt_regs * regs)2340 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2341 {
2342 	struct uprobe_task *utask = current->utask;
2343 
2344 	if (!current->mm || !utask || !utask->active_uprobe)
2345 		/* task is currently not uprobed */
2346 		return 0;
2347 
2348 	utask->state = UTASK_SSTEP_ACK;
2349 	set_thread_flag(TIF_UPROBE);
2350 	return 1;
2351 }
2352 
2353 static struct notifier_block uprobe_exception_nb = {
2354 	.notifier_call		= arch_uprobe_exception_notify,
2355 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2356 };
2357 
uprobes_init(void)2358 void __init uprobes_init(void)
2359 {
2360 	int i;
2361 
2362 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2363 		mutex_init(&uprobes_mmap_mutex[i]);
2364 
2365 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2366 }
2367