1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105
106 #include "internal.h"
107
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114
115 /* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117 enum zone_type policy_zone = 0;
118
119 /*
120 * run-time system-wide default policy => local allocation
121 */
122 static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
126 };
127
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129
get_task_policy(struct task_struct * p)130 struct mempolicy *get_task_policy(struct task_struct *p)
131 {
132 struct mempolicy *pol = p->mempolicy;
133 int node;
134
135 if (pol)
136 return pol;
137
138 node = numa_node_id();
139 if (node != NUMA_NO_NODE) {
140 pol = &preferred_node_policy[node];
141 /* preferred_node_policy is not initialised early in boot */
142 if (pol->mode)
143 return pol;
144 }
145
146 return &default_policy;
147 }
148
149 static const struct mempolicy_operations {
150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
153
mpol_store_user_nodemask(const struct mempolicy * pol)154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155 {
156 return pol->flags & MPOL_MODE_FLAGS;
157 }
158
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 const nodemask_t *rel)
161 {
162 nodemask_t tmp;
163 nodes_fold(tmp, *orig, nodes_weight(*rel));
164 nodes_onto(*ret, tmp, *rel);
165 }
166
mpol_new_interleave(struct mempolicy * pol,const nodemask_t * nodes)167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168 {
169 if (nodes_empty(*nodes))
170 return -EINVAL;
171 pol->v.nodes = *nodes;
172 return 0;
173 }
174
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 if (!nodes)
178 pol->flags |= MPOL_F_LOCAL; /* local allocation */
179 else if (nodes_empty(*nodes))
180 return -EINVAL; /* no allowed nodes */
181 else
182 pol->v.preferred_node = first_node(*nodes);
183 return 0;
184 }
185
mpol_new_bind(struct mempolicy * pol,const nodemask_t * nodes)186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 if (nodes_empty(*nodes))
189 return -EINVAL;
190 pol->v.nodes = *nodes;
191 return 0;
192 }
193
194 /*
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
199 *
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
202 */
mpol_set_nodemask(struct mempolicy * pol,const nodemask_t * nodes,struct nodemask_scratch * nsc)203 static int mpol_set_nodemask(struct mempolicy *pol,
204 const nodemask_t *nodes, struct nodemask_scratch *nsc)
205 {
206 int ret;
207
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 if (pol == NULL)
210 return 0;
211 /* Check N_MEMORY */
212 nodes_and(nsc->mask1,
213 cpuset_current_mems_allowed, node_states[N_MEMORY]);
214
215 VM_BUG_ON(!nodes);
216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 nodes = NULL; /* explicit local allocation */
218 else {
219 if (pol->flags & MPOL_F_RELATIVE_NODES)
220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 else
222 nodes_and(nsc->mask2, *nodes, nsc->mask1);
223
224 if (mpol_store_user_nodemask(pol))
225 pol->w.user_nodemask = *nodes;
226 else
227 pol->w.cpuset_mems_allowed =
228 cpuset_current_mems_allowed;
229 }
230
231 if (nodes)
232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 else
234 ret = mpol_ops[pol->mode].create(pol, NULL);
235 return ret;
236 }
237
238 /*
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
241 */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 nodemask_t *nodes)
244 {
245 struct mempolicy *policy;
246
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249
250 if (mode == MPOL_DEFAULT) {
251 if (nodes && !nodes_empty(*nodes))
252 return ERR_PTR(-EINVAL);
253 return NULL;
254 }
255 VM_BUG_ON(!nodes);
256
257 /*
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
261 */
262 if (mode == MPOL_PREFERRED) {
263 if (nodes_empty(*nodes)) {
264 if (((flags & MPOL_F_STATIC_NODES) ||
265 (flags & MPOL_F_RELATIVE_NODES)))
266 return ERR_PTR(-EINVAL);
267 }
268 } else if (mode == MPOL_LOCAL) {
269 if (!nodes_empty(*nodes) ||
270 (flags & MPOL_F_STATIC_NODES) ||
271 (flags & MPOL_F_RELATIVE_NODES))
272 return ERR_PTR(-EINVAL);
273 mode = MPOL_PREFERRED;
274 } else if (nodes_empty(*nodes))
275 return ERR_PTR(-EINVAL);
276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 if (!policy)
278 return ERR_PTR(-ENOMEM);
279 atomic_set(&policy->refcnt, 1);
280 policy->mode = mode;
281 policy->flags = flags;
282
283 return policy;
284 }
285
286 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * p)287 void __mpol_put(struct mempolicy *p)
288 {
289 if (!atomic_dec_and_test(&p->refcnt))
290 return;
291 kmem_cache_free(policy_cache, p);
292 }
293
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes)294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295 {
296 }
297
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes)298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299 {
300 nodemask_t tmp;
301
302 if (pol->flags & MPOL_F_STATIC_NODES)
303 nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 else {
307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 *nodes);
309 pol->w.cpuset_mems_allowed = *nodes;
310 }
311
312 if (nodes_empty(tmp))
313 tmp = *nodes;
314
315 pol->v.nodes = tmp;
316 }
317
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes)318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 const nodemask_t *nodes)
320 {
321 nodemask_t tmp;
322
323 if (pol->flags & MPOL_F_STATIC_NODES) {
324 int node = first_node(pol->w.user_nodemask);
325
326 if (node_isset(node, *nodes)) {
327 pol->v.preferred_node = node;
328 pol->flags &= ~MPOL_F_LOCAL;
329 } else
330 pol->flags |= MPOL_F_LOCAL;
331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 pol->v.preferred_node = first_node(tmp);
334 } else if (!(pol->flags & MPOL_F_LOCAL)) {
335 pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 pol->w.cpuset_mems_allowed,
337 *nodes);
338 pol->w.cpuset_mems_allowed = *nodes;
339 }
340 }
341
342 /*
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
344 *
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
348 */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask)349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350 {
351 if (!pol || pol->mode == MPOL_LOCAL)
352 return;
353 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 return;
356
357 mpol_ops[pol->mode].rebind(pol, newmask);
358 }
359
360 /*
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
363 *
364 * Called with task's alloc_lock held.
365 */
366
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new)367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368 {
369 mpol_rebind_policy(tsk->mempolicy, new);
370 }
371
372 /*
373 * Rebind each vma in mm to new nodemask.
374 *
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
376 */
377
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379 {
380 struct vm_area_struct *vma;
381
382 down_write(&mm->mmap_sem);
383 for (vma = mm->mmap; vma; vma = vma->vm_next)
384 mpol_rebind_policy(vma->vm_policy, new);
385 up_write(&mm->mmap_sem);
386 }
387
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 [MPOL_DEFAULT] = {
390 .rebind = mpol_rebind_default,
391 },
392 [MPOL_INTERLEAVE] = {
393 .create = mpol_new_interleave,
394 .rebind = mpol_rebind_nodemask,
395 },
396 [MPOL_PREFERRED] = {
397 .create = mpol_new_preferred,
398 .rebind = mpol_rebind_preferred,
399 },
400 [MPOL_BIND] = {
401 .create = mpol_new_bind,
402 .rebind = mpol_rebind_nodemask,
403 },
404 };
405
406 static int migrate_page_add(struct page *page, struct list_head *pagelist,
407 unsigned long flags);
408
409 struct queue_pages {
410 struct list_head *pagelist;
411 unsigned long flags;
412 nodemask_t *nmask;
413 struct vm_area_struct *prev;
414 };
415
416 /*
417 * Check if the page's nid is in qp->nmask.
418 *
419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420 * in the invert of qp->nmask.
421 */
queue_pages_required(struct page * page,struct queue_pages * qp)422 static inline bool queue_pages_required(struct page *page,
423 struct queue_pages *qp)
424 {
425 int nid = page_to_nid(page);
426 unsigned long flags = qp->flags;
427
428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
429 }
430
431 /*
432 * queue_pages_pmd() has four possible return values:
433 * 0 - pages are placed on the right node or queued successfully.
434 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
435 * specified.
436 * 2 - THP was split.
437 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
438 * existing page was already on a node that does not follow the
439 * policy.
440 */
queue_pages_pmd(pmd_t * pmd,spinlock_t * ptl,unsigned long addr,unsigned long end,struct mm_walk * walk)441 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
442 unsigned long end, struct mm_walk *walk)
443 {
444 int ret = 0;
445 struct page *page;
446 struct queue_pages *qp = walk->private;
447 unsigned long flags;
448
449 if (unlikely(is_pmd_migration_entry(*pmd))) {
450 ret = -EIO;
451 goto unlock;
452 }
453 page = pmd_page(*pmd);
454 if (is_huge_zero_page(page)) {
455 spin_unlock(ptl);
456 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
457 ret = 2;
458 goto out;
459 }
460 if (!queue_pages_required(page, qp))
461 goto unlock;
462
463 flags = qp->flags;
464 /* go to thp migration */
465 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
466 if (!vma_migratable(walk->vma) ||
467 migrate_page_add(page, qp->pagelist, flags)) {
468 ret = 1;
469 goto unlock;
470 }
471 } else
472 ret = -EIO;
473 unlock:
474 spin_unlock(ptl);
475 out:
476 return ret;
477 }
478
479 /*
480 * Scan through pages checking if pages follow certain conditions,
481 * and move them to the pagelist if they do.
482 *
483 * queue_pages_pte_range() has three possible return values:
484 * 0 - pages are placed on the right node or queued successfully.
485 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
486 * specified.
487 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
488 * on a node that does not follow the policy.
489 */
queue_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)490 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
491 unsigned long end, struct mm_walk *walk)
492 {
493 struct vm_area_struct *vma = walk->vma;
494 struct page *page;
495 struct queue_pages *qp = walk->private;
496 unsigned long flags = qp->flags;
497 int ret;
498 bool has_unmovable = false;
499 pte_t *pte, *mapped_pte;
500 spinlock_t *ptl;
501
502 ptl = pmd_trans_huge_lock(pmd, vma);
503 if (ptl) {
504 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
505 if (ret != 2)
506 return ret;
507 }
508 /* THP was split, fall through to pte walk */
509
510 if (pmd_trans_unstable(pmd))
511 return 0;
512
513 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
514 for (; addr != end; pte++, addr += PAGE_SIZE) {
515 if (!pte_present(*pte))
516 continue;
517 page = vm_normal_page(vma, addr, *pte);
518 if (!page)
519 continue;
520 /*
521 * vm_normal_page() filters out zero pages, but there might
522 * still be PageReserved pages to skip, perhaps in a VDSO.
523 */
524 if (PageReserved(page))
525 continue;
526 if (!queue_pages_required(page, qp))
527 continue;
528 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
529 /* MPOL_MF_STRICT must be specified if we get here */
530 if (!vma_migratable(vma)) {
531 has_unmovable = true;
532 break;
533 }
534
535 /*
536 * Do not abort immediately since there may be
537 * temporary off LRU pages in the range. Still
538 * need migrate other LRU pages.
539 */
540 if (migrate_page_add(page, qp->pagelist, flags))
541 has_unmovable = true;
542 } else
543 break;
544 }
545 pte_unmap_unlock(mapped_pte, ptl);
546 cond_resched();
547
548 if (has_unmovable)
549 return 1;
550
551 return addr != end ? -EIO : 0;
552 }
553
queue_pages_hugetlb(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)554 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
555 unsigned long addr, unsigned long end,
556 struct mm_walk *walk)
557 {
558 #ifdef CONFIG_HUGETLB_PAGE
559 struct queue_pages *qp = walk->private;
560 unsigned long flags = qp->flags;
561 struct page *page;
562 spinlock_t *ptl;
563 pte_t entry;
564
565 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
566 entry = huge_ptep_get(pte);
567 if (!pte_present(entry))
568 goto unlock;
569 page = pte_page(entry);
570 if (!queue_pages_required(page, qp))
571 goto unlock;
572 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
573 if (flags & (MPOL_MF_MOVE_ALL) ||
574 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1 &&
575 !hugetlb_pmd_shared(pte)))
576 isolate_huge_page(page, qp->pagelist);
577 unlock:
578 spin_unlock(ptl);
579 #else
580 BUG();
581 #endif
582 return 0;
583 }
584
585 #ifdef CONFIG_NUMA_BALANCING
586 /*
587 * This is used to mark a range of virtual addresses to be inaccessible.
588 * These are later cleared by a NUMA hinting fault. Depending on these
589 * faults, pages may be migrated for better NUMA placement.
590 *
591 * This is assuming that NUMA faults are handled using PROT_NONE. If
592 * an architecture makes a different choice, it will need further
593 * changes to the core.
594 */
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)595 unsigned long change_prot_numa(struct vm_area_struct *vma,
596 unsigned long addr, unsigned long end)
597 {
598 int nr_updated;
599
600 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
601 if (nr_updated)
602 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
603
604 return nr_updated;
605 }
606 #else
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)607 static unsigned long change_prot_numa(struct vm_area_struct *vma,
608 unsigned long addr, unsigned long end)
609 {
610 return 0;
611 }
612 #endif /* CONFIG_NUMA_BALANCING */
613
queue_pages_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)614 static int queue_pages_test_walk(unsigned long start, unsigned long end,
615 struct mm_walk *walk)
616 {
617 struct vm_area_struct *vma = walk->vma;
618 struct queue_pages *qp = walk->private;
619 unsigned long endvma = vma->vm_end;
620 unsigned long flags = qp->flags;
621
622 /*
623 * Need check MPOL_MF_STRICT to return -EIO if possible
624 * regardless of vma_migratable
625 */
626 if (!vma_migratable(vma) &&
627 !(flags & MPOL_MF_STRICT))
628 return 1;
629
630 if (endvma > end)
631 endvma = end;
632 if (vma->vm_start > start)
633 start = vma->vm_start;
634
635 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
636 if (!vma->vm_next && vma->vm_end < end)
637 return -EFAULT;
638 if (qp->prev && qp->prev->vm_end < vma->vm_start)
639 return -EFAULT;
640 }
641
642 qp->prev = vma;
643
644 if (flags & MPOL_MF_LAZY) {
645 /* Similar to task_numa_work, skip inaccessible VMAs */
646 if (!is_vm_hugetlb_page(vma) &&
647 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
648 !(vma->vm_flags & VM_MIXEDMAP))
649 change_prot_numa(vma, start, endvma);
650 return 1;
651 }
652
653 /* queue pages from current vma */
654 if (flags & MPOL_MF_VALID)
655 return 0;
656 return 1;
657 }
658
659 static const struct mm_walk_ops queue_pages_walk_ops = {
660 .hugetlb_entry = queue_pages_hugetlb,
661 .pmd_entry = queue_pages_pte_range,
662 .test_walk = queue_pages_test_walk,
663 };
664
665 /*
666 * Walk through page tables and collect pages to be migrated.
667 *
668 * If pages found in a given range are on a set of nodes (determined by
669 * @nodes and @flags,) it's isolated and queued to the pagelist which is
670 * passed via @private.
671 *
672 * queue_pages_range() has three possible return values:
673 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
674 * specified.
675 * 0 - queue pages successfully or no misplaced page.
676 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
677 * memory range specified by nodemask and maxnode points outside
678 * your accessible address space (-EFAULT)
679 */
680 static int
queue_pages_range(struct mm_struct * mm,unsigned long start,unsigned long end,nodemask_t * nodes,unsigned long flags,struct list_head * pagelist)681 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
682 nodemask_t *nodes, unsigned long flags,
683 struct list_head *pagelist)
684 {
685 struct queue_pages qp = {
686 .pagelist = pagelist,
687 .flags = flags,
688 .nmask = nodes,
689 .prev = NULL,
690 };
691
692 return walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
693 }
694
695 /*
696 * Apply policy to a single VMA
697 * This must be called with the mmap_sem held for writing.
698 */
vma_replace_policy(struct vm_area_struct * vma,struct mempolicy * pol)699 static int vma_replace_policy(struct vm_area_struct *vma,
700 struct mempolicy *pol)
701 {
702 int err;
703 struct mempolicy *old;
704 struct mempolicy *new;
705
706 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
707 vma->vm_start, vma->vm_end, vma->vm_pgoff,
708 vma->vm_ops, vma->vm_file,
709 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
710
711 new = mpol_dup(pol);
712 if (IS_ERR(new))
713 return PTR_ERR(new);
714
715 if (vma->vm_ops && vma->vm_ops->set_policy) {
716 err = vma->vm_ops->set_policy(vma, new);
717 if (err)
718 goto err_out;
719 }
720
721 old = vma->vm_policy;
722 vma->vm_policy = new; /* protected by mmap_sem */
723 mpol_put(old);
724
725 return 0;
726 err_out:
727 mpol_put(new);
728 return err;
729 }
730
731 /* Step 2: apply policy to a range and do splits. */
mbind_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct mempolicy * new_pol)732 static int mbind_range(struct mm_struct *mm, unsigned long start,
733 unsigned long end, struct mempolicy *new_pol)
734 {
735 struct vm_area_struct *prev;
736 struct vm_area_struct *vma;
737 int err = 0;
738 pgoff_t pgoff;
739 unsigned long vmstart;
740 unsigned long vmend;
741
742 vma = find_vma(mm, start);
743 if (!vma || vma->vm_start > start)
744 return -EFAULT;
745
746 prev = vma->vm_prev;
747 if (start > vma->vm_start)
748 prev = vma;
749
750 for (; vma && vma->vm_start < end; prev = vma, vma = vma->vm_next) {
751 vmstart = max(start, vma->vm_start);
752 vmend = min(end, vma->vm_end);
753
754 if (mpol_equal(vma_policy(vma), new_pol))
755 continue;
756
757 pgoff = vma->vm_pgoff +
758 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
759 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
760 vma->anon_vma, vma->vm_file, pgoff,
761 new_pol, vma->vm_userfaultfd_ctx,
762 vma_get_anon_name(vma));
763 if (prev) {
764 vma = prev;
765 goto replace;
766 }
767 if (vma->vm_start != vmstart) {
768 err = split_vma(vma->vm_mm, vma, vmstart, 1);
769 if (err)
770 goto out;
771 }
772 if (vma->vm_end != vmend) {
773 err = split_vma(vma->vm_mm, vma, vmend, 0);
774 if (err)
775 goto out;
776 }
777 replace:
778 err = vma_replace_policy(vma, new_pol);
779 if (err)
780 goto out;
781 }
782
783 out:
784 return err;
785 }
786
787 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)788 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
789 nodemask_t *nodes)
790 {
791 struct mempolicy *new, *old;
792 NODEMASK_SCRATCH(scratch);
793 int ret;
794
795 if (!scratch)
796 return -ENOMEM;
797
798 new = mpol_new(mode, flags, nodes);
799 if (IS_ERR(new)) {
800 ret = PTR_ERR(new);
801 goto out;
802 }
803
804 task_lock(current);
805 ret = mpol_set_nodemask(new, nodes, scratch);
806 if (ret) {
807 task_unlock(current);
808 mpol_put(new);
809 goto out;
810 }
811 old = current->mempolicy;
812 current->mempolicy = new;
813 if (new && new->mode == MPOL_INTERLEAVE)
814 current->il_prev = MAX_NUMNODES-1;
815 task_unlock(current);
816 mpol_put(old);
817 ret = 0;
818 out:
819 NODEMASK_SCRATCH_FREE(scratch);
820 return ret;
821 }
822
823 /*
824 * Return nodemask for policy for get_mempolicy() query
825 *
826 * Called with task's alloc_lock held
827 */
get_policy_nodemask(struct mempolicy * p,nodemask_t * nodes)828 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
829 {
830 nodes_clear(*nodes);
831 if (p == &default_policy)
832 return;
833
834 switch (p->mode) {
835 case MPOL_BIND:
836 /* Fall through */
837 case MPOL_INTERLEAVE:
838 *nodes = p->v.nodes;
839 break;
840 case MPOL_PREFERRED:
841 if (!(p->flags & MPOL_F_LOCAL))
842 node_set(p->v.preferred_node, *nodes);
843 /* else return empty node mask for local allocation */
844 break;
845 default:
846 BUG();
847 }
848 }
849
lookup_node(struct mm_struct * mm,unsigned long addr)850 static int lookup_node(struct mm_struct *mm, unsigned long addr)
851 {
852 struct page *p;
853 int err;
854
855 int locked = 1;
856 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
857 if (err >= 0) {
858 err = page_to_nid(p);
859 put_page(p);
860 }
861 if (locked)
862 up_read(&mm->mmap_sem);
863 return err;
864 }
865
866 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)867 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
868 unsigned long addr, unsigned long flags)
869 {
870 int err;
871 struct mm_struct *mm = current->mm;
872 struct vm_area_struct *vma = NULL;
873 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
874
875 if (flags &
876 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
877 return -EINVAL;
878
879 if (flags & MPOL_F_MEMS_ALLOWED) {
880 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
881 return -EINVAL;
882 *policy = 0; /* just so it's initialized */
883 task_lock(current);
884 *nmask = cpuset_current_mems_allowed;
885 task_unlock(current);
886 return 0;
887 }
888
889 if (flags & MPOL_F_ADDR) {
890 /*
891 * Do NOT fall back to task policy if the
892 * vma/shared policy at addr is NULL. We
893 * want to return MPOL_DEFAULT in this case.
894 */
895 down_read(&mm->mmap_sem);
896 vma = find_vma_intersection(mm, addr, addr+1);
897 if (!vma) {
898 up_read(&mm->mmap_sem);
899 return -EFAULT;
900 }
901 if (vma->vm_ops && vma->vm_ops->get_policy)
902 pol = vma->vm_ops->get_policy(vma, addr);
903 else
904 pol = vma->vm_policy;
905 } else if (addr)
906 return -EINVAL;
907
908 if (!pol)
909 pol = &default_policy; /* indicates default behavior */
910
911 if (flags & MPOL_F_NODE) {
912 if (flags & MPOL_F_ADDR) {
913 /*
914 * Take a refcount on the mpol, lookup_node()
915 * wil drop the mmap_sem, so after calling
916 * lookup_node() only "pol" remains valid, "vma"
917 * is stale.
918 */
919 pol_refcount = pol;
920 vma = NULL;
921 mpol_get(pol);
922 err = lookup_node(mm, addr);
923 if (err < 0)
924 goto out;
925 *policy = err;
926 } else if (pol == current->mempolicy &&
927 pol->mode == MPOL_INTERLEAVE) {
928 *policy = next_node_in(current->il_prev, pol->v.nodes);
929 } else {
930 err = -EINVAL;
931 goto out;
932 }
933 } else {
934 *policy = pol == &default_policy ? MPOL_DEFAULT :
935 pol->mode;
936 /*
937 * Internal mempolicy flags must be masked off before exposing
938 * the policy to userspace.
939 */
940 *policy |= (pol->flags & MPOL_MODE_FLAGS);
941 }
942
943 err = 0;
944 if (nmask) {
945 if (mpol_store_user_nodemask(pol)) {
946 *nmask = pol->w.user_nodemask;
947 } else {
948 task_lock(current);
949 get_policy_nodemask(pol, nmask);
950 task_unlock(current);
951 }
952 }
953
954 out:
955 mpol_cond_put(pol);
956 if (vma)
957 up_read(&mm->mmap_sem);
958 if (pol_refcount)
959 mpol_put(pol_refcount);
960 return err;
961 }
962
963 #ifdef CONFIG_MIGRATION
964 /*
965 * page migration, thp tail pages can be passed.
966 */
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)967 static int migrate_page_add(struct page *page, struct list_head *pagelist,
968 unsigned long flags)
969 {
970 struct page *head = compound_head(page);
971 /*
972 * Avoid migrating a page that is shared with others.
973 */
974 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
975 if (!isolate_lru_page(head)) {
976 list_add_tail(&head->lru, pagelist);
977 mod_node_page_state(page_pgdat(head),
978 NR_ISOLATED_ANON + page_is_file_cache(head),
979 hpage_nr_pages(head));
980 } else if (flags & MPOL_MF_STRICT) {
981 /*
982 * Non-movable page may reach here. And, there may be
983 * temporary off LRU pages or non-LRU movable pages.
984 * Treat them as unmovable pages since they can't be
985 * isolated, so they can't be moved at the moment. It
986 * should return -EIO for this case too.
987 */
988 return -EIO;
989 }
990 }
991
992 return 0;
993 }
994
995 /* page allocation callback for NUMA node migration */
alloc_new_node_page(struct page * page,unsigned long node)996 struct page *alloc_new_node_page(struct page *page, unsigned long node)
997 {
998 if (PageHuge(page))
999 return alloc_huge_page_node(page_hstate(compound_head(page)),
1000 node);
1001 else if (PageTransHuge(page)) {
1002 struct page *thp;
1003
1004 thp = alloc_pages_node(node,
1005 (GFP_TRANSHUGE | __GFP_THISNODE),
1006 HPAGE_PMD_ORDER);
1007 if (!thp)
1008 return NULL;
1009 prep_transhuge_page(thp);
1010 return thp;
1011 } else
1012 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1013 __GFP_THISNODE, 0);
1014 }
1015
1016 /*
1017 * Migrate pages from one node to a target node.
1018 * Returns error or the number of pages not migrated.
1019 */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)1020 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1021 int flags)
1022 {
1023 nodemask_t nmask;
1024 LIST_HEAD(pagelist);
1025 int err = 0;
1026
1027 nodes_clear(nmask);
1028 node_set(source, nmask);
1029
1030 /*
1031 * This does not "check" the range but isolates all pages that
1032 * need migration. Between passing in the full user address
1033 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1034 */
1035 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1036 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1037 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1038
1039 if (!list_empty(&pagelist)) {
1040 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1041 MIGRATE_SYNC, MR_SYSCALL);
1042 if (err)
1043 putback_movable_pages(&pagelist);
1044 }
1045
1046 return err;
1047 }
1048
1049 /*
1050 * Move pages between the two nodesets so as to preserve the physical
1051 * layout as much as possible.
1052 *
1053 * Returns the number of page that could not be moved.
1054 */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1055 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1056 const nodemask_t *to, int flags)
1057 {
1058 int busy = 0;
1059 int err;
1060 nodemask_t tmp;
1061
1062 err = migrate_prep();
1063 if (err)
1064 return err;
1065
1066 down_read(&mm->mmap_sem);
1067
1068 /*
1069 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1070 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1071 * bit in 'tmp', and return that <source, dest> pair for migration.
1072 * The pair of nodemasks 'to' and 'from' define the map.
1073 *
1074 * If no pair of bits is found that way, fallback to picking some
1075 * pair of 'source' and 'dest' bits that are not the same. If the
1076 * 'source' and 'dest' bits are the same, this represents a node
1077 * that will be migrating to itself, so no pages need move.
1078 *
1079 * If no bits are left in 'tmp', or if all remaining bits left
1080 * in 'tmp' correspond to the same bit in 'to', return false
1081 * (nothing left to migrate).
1082 *
1083 * This lets us pick a pair of nodes to migrate between, such that
1084 * if possible the dest node is not already occupied by some other
1085 * source node, minimizing the risk of overloading the memory on a
1086 * node that would happen if we migrated incoming memory to a node
1087 * before migrating outgoing memory source that same node.
1088 *
1089 * A single scan of tmp is sufficient. As we go, we remember the
1090 * most recent <s, d> pair that moved (s != d). If we find a pair
1091 * that not only moved, but what's better, moved to an empty slot
1092 * (d is not set in tmp), then we break out then, with that pair.
1093 * Otherwise when we finish scanning from_tmp, we at least have the
1094 * most recent <s, d> pair that moved. If we get all the way through
1095 * the scan of tmp without finding any node that moved, much less
1096 * moved to an empty node, then there is nothing left worth migrating.
1097 */
1098
1099 tmp = *from;
1100 while (!nodes_empty(tmp)) {
1101 int s,d;
1102 int source = NUMA_NO_NODE;
1103 int dest = 0;
1104
1105 for_each_node_mask(s, tmp) {
1106
1107 /*
1108 * do_migrate_pages() tries to maintain the relative
1109 * node relationship of the pages established between
1110 * threads and memory areas.
1111 *
1112 * However if the number of source nodes is not equal to
1113 * the number of destination nodes we can not preserve
1114 * this node relative relationship. In that case, skip
1115 * copying memory from a node that is in the destination
1116 * mask.
1117 *
1118 * Example: [2,3,4] -> [3,4,5] moves everything.
1119 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1120 */
1121
1122 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1123 (node_isset(s, *to)))
1124 continue;
1125
1126 d = node_remap(s, *from, *to);
1127 if (s == d)
1128 continue;
1129
1130 source = s; /* Node moved. Memorize */
1131 dest = d;
1132
1133 /* dest not in remaining from nodes? */
1134 if (!node_isset(dest, tmp))
1135 break;
1136 }
1137 if (source == NUMA_NO_NODE)
1138 break;
1139
1140 node_clear(source, tmp);
1141 err = migrate_to_node(mm, source, dest, flags);
1142 if (err > 0)
1143 busy += err;
1144 if (err < 0)
1145 break;
1146 }
1147 up_read(&mm->mmap_sem);
1148 if (err < 0)
1149 return err;
1150 return busy;
1151
1152 }
1153
1154 /*
1155 * Allocate a new page for page migration based on vma policy.
1156 * Start by assuming the page is mapped by the same vma as contains @start.
1157 * Search forward from there, if not. N.B., this assumes that the
1158 * list of pages handed to migrate_pages()--which is how we get here--
1159 * is in virtual address order.
1160 */
new_page(struct page * page,unsigned long start)1161 static struct page *new_page(struct page *page, unsigned long start)
1162 {
1163 struct vm_area_struct *vma;
1164 unsigned long address;
1165
1166 vma = find_vma(current->mm, start);
1167 while (vma) {
1168 address = page_address_in_vma(page, vma);
1169 if (address != -EFAULT)
1170 break;
1171 vma = vma->vm_next;
1172 }
1173
1174 if (PageHuge(page)) {
1175 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1176 vma, address);
1177 } else if (PageTransHuge(page)) {
1178 struct page *thp;
1179
1180 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1181 HPAGE_PMD_ORDER);
1182 if (!thp)
1183 return NULL;
1184 prep_transhuge_page(thp);
1185 return thp;
1186 }
1187 /*
1188 * if !vma, alloc_page_vma() will use task or system default policy
1189 */
1190 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1191 vma, address);
1192 }
1193 #else
1194
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1195 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1196 unsigned long flags)
1197 {
1198 return -EIO;
1199 }
1200
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1201 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1202 const nodemask_t *to, int flags)
1203 {
1204 return -ENOSYS;
1205 }
1206
new_page(struct page * page,unsigned long start)1207 static struct page *new_page(struct page *page, unsigned long start)
1208 {
1209 return NULL;
1210 }
1211 #endif
1212
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)1213 static long do_mbind(unsigned long start, unsigned long len,
1214 unsigned short mode, unsigned short mode_flags,
1215 nodemask_t *nmask, unsigned long flags)
1216 {
1217 struct mm_struct *mm = current->mm;
1218 struct mempolicy *new;
1219 unsigned long end;
1220 int err;
1221 int ret;
1222 LIST_HEAD(pagelist);
1223
1224 if (flags & ~(unsigned long)MPOL_MF_VALID)
1225 return -EINVAL;
1226 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1227 return -EPERM;
1228
1229 if (start & ~PAGE_MASK)
1230 return -EINVAL;
1231
1232 if (mode == MPOL_DEFAULT)
1233 flags &= ~MPOL_MF_STRICT;
1234
1235 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1236 end = start + len;
1237
1238 if (end < start)
1239 return -EINVAL;
1240 if (end == start)
1241 return 0;
1242
1243 new = mpol_new(mode, mode_flags, nmask);
1244 if (IS_ERR(new))
1245 return PTR_ERR(new);
1246
1247 if (flags & MPOL_MF_LAZY)
1248 new->flags |= MPOL_F_MOF;
1249
1250 /*
1251 * If we are using the default policy then operation
1252 * on discontinuous address spaces is okay after all
1253 */
1254 if (!new)
1255 flags |= MPOL_MF_DISCONTIG_OK;
1256
1257 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1258 start, start + len, mode, mode_flags,
1259 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1260
1261 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1262
1263 err = migrate_prep();
1264 if (err)
1265 goto mpol_out;
1266 }
1267 {
1268 NODEMASK_SCRATCH(scratch);
1269 if (scratch) {
1270 down_write(&mm->mmap_sem);
1271 task_lock(current);
1272 err = mpol_set_nodemask(new, nmask, scratch);
1273 task_unlock(current);
1274 if (err)
1275 up_write(&mm->mmap_sem);
1276 } else
1277 err = -ENOMEM;
1278 NODEMASK_SCRATCH_FREE(scratch);
1279 }
1280 if (err)
1281 goto mpol_out;
1282
1283 ret = queue_pages_range(mm, start, end, nmask,
1284 flags | MPOL_MF_INVERT, &pagelist);
1285
1286 if (ret < 0) {
1287 err = ret;
1288 goto up_out;
1289 }
1290
1291 err = mbind_range(mm, start, end, new);
1292
1293 if (!err) {
1294 int nr_failed = 0;
1295
1296 if (!list_empty(&pagelist)) {
1297 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1298 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1299 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1300 if (nr_failed)
1301 putback_movable_pages(&pagelist);
1302 }
1303
1304 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1305 err = -EIO;
1306 } else {
1307 up_out:
1308 if (!list_empty(&pagelist))
1309 putback_movable_pages(&pagelist);
1310 }
1311
1312 up_write(&mm->mmap_sem);
1313 mpol_out:
1314 mpol_put(new);
1315 return err;
1316 }
1317
1318 /*
1319 * User space interface with variable sized bitmaps for nodelists.
1320 */
1321
1322 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1323 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1324 unsigned long maxnode)
1325 {
1326 unsigned long k;
1327 unsigned long t;
1328 unsigned long nlongs;
1329 unsigned long endmask;
1330
1331 --maxnode;
1332 nodes_clear(*nodes);
1333 if (maxnode == 0 || !nmask)
1334 return 0;
1335 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1336 return -EINVAL;
1337
1338 nlongs = BITS_TO_LONGS(maxnode);
1339 if ((maxnode % BITS_PER_LONG) == 0)
1340 endmask = ~0UL;
1341 else
1342 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1343
1344 /*
1345 * When the user specified more nodes than supported just check
1346 * if the non supported part is all zero.
1347 *
1348 * If maxnode have more longs than MAX_NUMNODES, check
1349 * the bits in that area first. And then go through to
1350 * check the rest bits which equal or bigger than MAX_NUMNODES.
1351 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1352 */
1353 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1354 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1355 if (get_user(t, nmask + k))
1356 return -EFAULT;
1357 if (k == nlongs - 1) {
1358 if (t & endmask)
1359 return -EINVAL;
1360 } else if (t)
1361 return -EINVAL;
1362 }
1363 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1364 endmask = ~0UL;
1365 }
1366
1367 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1368 unsigned long valid_mask = endmask;
1369
1370 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1371 if (get_user(t, nmask + nlongs - 1))
1372 return -EFAULT;
1373 if (t & valid_mask)
1374 return -EINVAL;
1375 }
1376
1377 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1378 return -EFAULT;
1379 nodes_addr(*nodes)[nlongs-1] &= endmask;
1380 return 0;
1381 }
1382
1383 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1384 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1385 nodemask_t *nodes)
1386 {
1387 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1388 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1389
1390 if (copy > nbytes) {
1391 if (copy > PAGE_SIZE)
1392 return -EINVAL;
1393 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1394 return -EFAULT;
1395 copy = nbytes;
1396 }
1397 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1398 }
1399
kernel_mbind(unsigned long start,unsigned long len,unsigned long mode,const unsigned long __user * nmask,unsigned long maxnode,unsigned int flags)1400 static long kernel_mbind(unsigned long start, unsigned long len,
1401 unsigned long mode, const unsigned long __user *nmask,
1402 unsigned long maxnode, unsigned int flags)
1403 {
1404 nodemask_t nodes;
1405 int err;
1406 unsigned short mode_flags;
1407
1408 start = untagged_addr(start);
1409 mode_flags = mode & MPOL_MODE_FLAGS;
1410 mode &= ~MPOL_MODE_FLAGS;
1411 if (mode >= MPOL_MAX)
1412 return -EINVAL;
1413 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1414 (mode_flags & MPOL_F_RELATIVE_NODES))
1415 return -EINVAL;
1416 err = get_nodes(&nodes, nmask, maxnode);
1417 if (err)
1418 return err;
1419 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1420 }
1421
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,const unsigned long __user *,nmask,unsigned long,maxnode,unsigned int,flags)1422 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1423 unsigned long, mode, const unsigned long __user *, nmask,
1424 unsigned long, maxnode, unsigned int, flags)
1425 {
1426 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1427 }
1428
1429 /* Set the process memory policy */
kernel_set_mempolicy(int mode,const unsigned long __user * nmask,unsigned long maxnode)1430 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1431 unsigned long maxnode)
1432 {
1433 int err;
1434 nodemask_t nodes;
1435 unsigned short flags;
1436
1437 flags = mode & MPOL_MODE_FLAGS;
1438 mode &= ~MPOL_MODE_FLAGS;
1439 if ((unsigned int)mode >= MPOL_MAX)
1440 return -EINVAL;
1441 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1442 return -EINVAL;
1443 err = get_nodes(&nodes, nmask, maxnode);
1444 if (err)
1445 return err;
1446 return do_set_mempolicy(mode, flags, &nodes);
1447 }
1448
SYSCALL_DEFINE3(set_mempolicy,int,mode,const unsigned long __user *,nmask,unsigned long,maxnode)1449 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1450 unsigned long, maxnode)
1451 {
1452 return kernel_set_mempolicy(mode, nmask, maxnode);
1453 }
1454
kernel_migrate_pages(pid_t pid,unsigned long maxnode,const unsigned long __user * old_nodes,const unsigned long __user * new_nodes)1455 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1456 const unsigned long __user *old_nodes,
1457 const unsigned long __user *new_nodes)
1458 {
1459 struct mm_struct *mm = NULL;
1460 struct task_struct *task;
1461 nodemask_t task_nodes;
1462 int err;
1463 nodemask_t *old;
1464 nodemask_t *new;
1465 NODEMASK_SCRATCH(scratch);
1466
1467 if (!scratch)
1468 return -ENOMEM;
1469
1470 old = &scratch->mask1;
1471 new = &scratch->mask2;
1472
1473 err = get_nodes(old, old_nodes, maxnode);
1474 if (err)
1475 goto out;
1476
1477 err = get_nodes(new, new_nodes, maxnode);
1478 if (err)
1479 goto out;
1480
1481 /* Find the mm_struct */
1482 rcu_read_lock();
1483 task = pid ? find_task_by_vpid(pid) : current;
1484 if (!task) {
1485 rcu_read_unlock();
1486 err = -ESRCH;
1487 goto out;
1488 }
1489 get_task_struct(task);
1490
1491 err = -EINVAL;
1492
1493 /*
1494 * Check if this process has the right to modify the specified process.
1495 * Use the regular "ptrace_may_access()" checks.
1496 */
1497 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1498 rcu_read_unlock();
1499 err = -EPERM;
1500 goto out_put;
1501 }
1502 rcu_read_unlock();
1503
1504 task_nodes = cpuset_mems_allowed(task);
1505 /* Is the user allowed to access the target nodes? */
1506 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1507 err = -EPERM;
1508 goto out_put;
1509 }
1510
1511 task_nodes = cpuset_mems_allowed(current);
1512 nodes_and(*new, *new, task_nodes);
1513 if (nodes_empty(*new))
1514 goto out_put;
1515
1516 err = security_task_movememory(task);
1517 if (err)
1518 goto out_put;
1519
1520 mm = get_task_mm(task);
1521 put_task_struct(task);
1522
1523 if (!mm) {
1524 err = -EINVAL;
1525 goto out;
1526 }
1527
1528 err = do_migrate_pages(mm, old, new,
1529 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1530
1531 mmput(mm);
1532 out:
1533 NODEMASK_SCRATCH_FREE(scratch);
1534
1535 return err;
1536
1537 out_put:
1538 put_task_struct(task);
1539 goto out;
1540
1541 }
1542
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1543 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1544 const unsigned long __user *, old_nodes,
1545 const unsigned long __user *, new_nodes)
1546 {
1547 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1548 }
1549
1550
1551 /* Retrieve NUMA policy */
kernel_get_mempolicy(int __user * policy,unsigned long __user * nmask,unsigned long maxnode,unsigned long addr,unsigned long flags)1552 static int kernel_get_mempolicy(int __user *policy,
1553 unsigned long __user *nmask,
1554 unsigned long maxnode,
1555 unsigned long addr,
1556 unsigned long flags)
1557 {
1558 int err;
1559 int pval;
1560 nodemask_t nodes;
1561
1562 addr = untagged_addr(addr);
1563
1564 if (nmask != NULL && maxnode < nr_node_ids)
1565 return -EINVAL;
1566
1567 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1568
1569 if (err)
1570 return err;
1571
1572 if (policy && put_user(pval, policy))
1573 return -EFAULT;
1574
1575 if (nmask)
1576 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1577
1578 return err;
1579 }
1580
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1581 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1582 unsigned long __user *, nmask, unsigned long, maxnode,
1583 unsigned long, addr, unsigned long, flags)
1584 {
1585 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1586 }
1587
1588 #ifdef CONFIG_COMPAT
1589
COMPAT_SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,addr,compat_ulong_t,flags)1590 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1591 compat_ulong_t __user *, nmask,
1592 compat_ulong_t, maxnode,
1593 compat_ulong_t, addr, compat_ulong_t, flags)
1594 {
1595 long err;
1596 unsigned long __user *nm = NULL;
1597 unsigned long nr_bits, alloc_size;
1598 DECLARE_BITMAP(bm, MAX_NUMNODES);
1599
1600 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1601 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1602
1603 if (nmask)
1604 nm = compat_alloc_user_space(alloc_size);
1605
1606 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1607
1608 if (!err && nmask) {
1609 unsigned long copy_size;
1610 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1611 err = copy_from_user(bm, nm, copy_size);
1612 /* ensure entire bitmap is zeroed */
1613 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1614 err |= compat_put_bitmap(nmask, bm, nr_bits);
1615 }
1616
1617 return err;
1618 }
1619
COMPAT_SYSCALL_DEFINE3(set_mempolicy,int,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode)1620 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1621 compat_ulong_t, maxnode)
1622 {
1623 unsigned long __user *nm = NULL;
1624 unsigned long nr_bits, alloc_size;
1625 DECLARE_BITMAP(bm, MAX_NUMNODES);
1626
1627 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1628 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1629
1630 if (nmask) {
1631 if (compat_get_bitmap(bm, nmask, nr_bits))
1632 return -EFAULT;
1633 nm = compat_alloc_user_space(alloc_size);
1634 if (copy_to_user(nm, bm, alloc_size))
1635 return -EFAULT;
1636 }
1637
1638 return kernel_set_mempolicy(mode, nm, nr_bits+1);
1639 }
1640
COMPAT_SYSCALL_DEFINE6(mbind,compat_ulong_t,start,compat_ulong_t,len,compat_ulong_t,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,flags)1641 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1642 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1643 compat_ulong_t, maxnode, compat_ulong_t, flags)
1644 {
1645 unsigned long __user *nm = NULL;
1646 unsigned long nr_bits, alloc_size;
1647 nodemask_t bm;
1648
1649 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1650 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1651
1652 if (nmask) {
1653 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1654 return -EFAULT;
1655 nm = compat_alloc_user_space(alloc_size);
1656 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1657 return -EFAULT;
1658 }
1659
1660 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1661 }
1662
COMPAT_SYSCALL_DEFINE4(migrate_pages,compat_pid_t,pid,compat_ulong_t,maxnode,const compat_ulong_t __user *,old_nodes,const compat_ulong_t __user *,new_nodes)1663 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1664 compat_ulong_t, maxnode,
1665 const compat_ulong_t __user *, old_nodes,
1666 const compat_ulong_t __user *, new_nodes)
1667 {
1668 unsigned long __user *old = NULL;
1669 unsigned long __user *new = NULL;
1670 nodemask_t tmp_mask;
1671 unsigned long nr_bits;
1672 unsigned long size;
1673
1674 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1675 size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1676 if (old_nodes) {
1677 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1678 return -EFAULT;
1679 old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1680 if (new_nodes)
1681 new = old + size / sizeof(unsigned long);
1682 if (copy_to_user(old, nodes_addr(tmp_mask), size))
1683 return -EFAULT;
1684 }
1685 if (new_nodes) {
1686 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1687 return -EFAULT;
1688 if (new == NULL)
1689 new = compat_alloc_user_space(size);
1690 if (copy_to_user(new, nodes_addr(tmp_mask), size))
1691 return -EFAULT;
1692 }
1693 return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1694 }
1695
1696 #endif /* CONFIG_COMPAT */
1697
__get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1698 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1699 unsigned long addr)
1700 {
1701 struct mempolicy *pol = NULL;
1702
1703 if (vma) {
1704 if (vma->vm_ops && vma->vm_ops->get_policy) {
1705 pol = vma->vm_ops->get_policy(vma, addr);
1706 } else if (vma->vm_policy) {
1707 pol = vma->vm_policy;
1708
1709 /*
1710 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1711 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1712 * count on these policies which will be dropped by
1713 * mpol_cond_put() later
1714 */
1715 if (mpol_needs_cond_ref(pol))
1716 mpol_get(pol);
1717 }
1718 }
1719
1720 return pol;
1721 }
1722
1723 /*
1724 * get_vma_policy(@vma, @addr)
1725 * @vma: virtual memory area whose policy is sought
1726 * @addr: address in @vma for shared policy lookup
1727 *
1728 * Returns effective policy for a VMA at specified address.
1729 * Falls back to current->mempolicy or system default policy, as necessary.
1730 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1731 * count--added by the get_policy() vm_op, as appropriate--to protect against
1732 * freeing by another task. It is the caller's responsibility to free the
1733 * extra reference for shared policies.
1734 */
get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1735 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1736 unsigned long addr)
1737 {
1738 struct mempolicy *pol = __get_vma_policy(vma, addr);
1739
1740 if (!pol)
1741 pol = get_task_policy(current);
1742
1743 return pol;
1744 }
1745
vma_policy_mof(struct vm_area_struct * vma)1746 bool vma_policy_mof(struct vm_area_struct *vma)
1747 {
1748 struct mempolicy *pol;
1749
1750 if (vma->vm_ops && vma->vm_ops->get_policy) {
1751 bool ret = false;
1752
1753 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1754 if (pol && (pol->flags & MPOL_F_MOF))
1755 ret = true;
1756 mpol_cond_put(pol);
1757
1758 return ret;
1759 }
1760
1761 pol = vma->vm_policy;
1762 if (!pol)
1763 pol = get_task_policy(current);
1764
1765 return pol->flags & MPOL_F_MOF;
1766 }
1767
apply_policy_zone(struct mempolicy * policy,enum zone_type zone)1768 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1769 {
1770 enum zone_type dynamic_policy_zone = policy_zone;
1771
1772 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1773
1774 /*
1775 * if policy->v.nodes has movable memory only,
1776 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1777 *
1778 * policy->v.nodes is intersect with node_states[N_MEMORY].
1779 * so if the following test faile, it implies
1780 * policy->v.nodes has movable memory only.
1781 */
1782 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1783 dynamic_policy_zone = ZONE_MOVABLE;
1784
1785 return zone >= dynamic_policy_zone;
1786 }
1787
1788 /*
1789 * Return a nodemask representing a mempolicy for filtering nodes for
1790 * page allocation
1791 */
policy_nodemask(gfp_t gfp,struct mempolicy * policy)1792 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1793 {
1794 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1795 if (unlikely(policy->mode == MPOL_BIND) &&
1796 apply_policy_zone(policy, gfp_zone(gfp)) &&
1797 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1798 return &policy->v.nodes;
1799
1800 return NULL;
1801 }
1802
1803 /* Return the node id preferred by the given mempolicy, or the given id */
policy_node(gfp_t gfp,struct mempolicy * policy,int nd)1804 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1805 int nd)
1806 {
1807 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1808 nd = policy->v.preferred_node;
1809 else {
1810 /*
1811 * __GFP_THISNODE shouldn't even be used with the bind policy
1812 * because we might easily break the expectation to stay on the
1813 * requested node and not break the policy.
1814 */
1815 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1816 }
1817
1818 return nd;
1819 }
1820
1821 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)1822 static unsigned interleave_nodes(struct mempolicy *policy)
1823 {
1824 unsigned next;
1825 struct task_struct *me = current;
1826
1827 next = next_node_in(me->il_prev, policy->v.nodes);
1828 if (next < MAX_NUMNODES)
1829 me->il_prev = next;
1830 return next;
1831 }
1832
1833 /*
1834 * Depending on the memory policy provide a node from which to allocate the
1835 * next slab entry.
1836 */
mempolicy_slab_node(void)1837 unsigned int mempolicy_slab_node(void)
1838 {
1839 struct mempolicy *policy;
1840 int node = numa_mem_id();
1841
1842 if (in_interrupt())
1843 return node;
1844
1845 policy = current->mempolicy;
1846 if (!policy || policy->flags & MPOL_F_LOCAL)
1847 return node;
1848
1849 switch (policy->mode) {
1850 case MPOL_PREFERRED:
1851 /*
1852 * handled MPOL_F_LOCAL above
1853 */
1854 return policy->v.preferred_node;
1855
1856 case MPOL_INTERLEAVE:
1857 return interleave_nodes(policy);
1858
1859 case MPOL_BIND: {
1860 struct zoneref *z;
1861
1862 /*
1863 * Follow bind policy behavior and start allocation at the
1864 * first node.
1865 */
1866 struct zonelist *zonelist;
1867 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1868 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1869 z = first_zones_zonelist(zonelist, highest_zoneidx,
1870 &policy->v.nodes);
1871 return z->zone ? zone_to_nid(z->zone) : node;
1872 }
1873
1874 default:
1875 BUG();
1876 }
1877 }
1878
1879 /*
1880 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1881 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1882 * number of present nodes.
1883 */
offset_il_node(struct mempolicy * pol,unsigned long n)1884 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1885 {
1886 unsigned nnodes = nodes_weight(pol->v.nodes);
1887 unsigned target;
1888 int i;
1889 int nid;
1890
1891 if (!nnodes)
1892 return numa_node_id();
1893 target = (unsigned int)n % nnodes;
1894 nid = first_node(pol->v.nodes);
1895 for (i = 0; i < target; i++)
1896 nid = next_node(nid, pol->v.nodes);
1897 return nid;
1898 }
1899
1900 /* Determine a node number for interleave */
interleave_nid(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long addr,int shift)1901 static inline unsigned interleave_nid(struct mempolicy *pol,
1902 struct vm_area_struct *vma, unsigned long addr, int shift)
1903 {
1904 if (vma) {
1905 unsigned long off;
1906
1907 /*
1908 * for small pages, there is no difference between
1909 * shift and PAGE_SHIFT, so the bit-shift is safe.
1910 * for huge pages, since vm_pgoff is in units of small
1911 * pages, we need to shift off the always 0 bits to get
1912 * a useful offset.
1913 */
1914 BUG_ON(shift < PAGE_SHIFT);
1915 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1916 off += (addr - vma->vm_start) >> shift;
1917 return offset_il_node(pol, off);
1918 } else
1919 return interleave_nodes(pol);
1920 }
1921
1922 #ifdef CONFIG_HUGETLBFS
1923 /*
1924 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1925 * @vma: virtual memory area whose policy is sought
1926 * @addr: address in @vma for shared policy lookup and interleave policy
1927 * @gfp_flags: for requested zone
1928 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1929 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1930 *
1931 * Returns a nid suitable for a huge page allocation and a pointer
1932 * to the struct mempolicy for conditional unref after allocation.
1933 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1934 * @nodemask for filtering the zonelist.
1935 *
1936 * Must be protected by read_mems_allowed_begin()
1937 */
huge_node(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)1938 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1939 struct mempolicy **mpol, nodemask_t **nodemask)
1940 {
1941 int nid;
1942
1943 *mpol = get_vma_policy(vma, addr);
1944 *nodemask = NULL; /* assume !MPOL_BIND */
1945
1946 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1947 nid = interleave_nid(*mpol, vma, addr,
1948 huge_page_shift(hstate_vma(vma)));
1949 } else {
1950 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1951 if ((*mpol)->mode == MPOL_BIND)
1952 *nodemask = &(*mpol)->v.nodes;
1953 }
1954 return nid;
1955 }
1956
1957 /*
1958 * init_nodemask_of_mempolicy
1959 *
1960 * If the current task's mempolicy is "default" [NULL], return 'false'
1961 * to indicate default policy. Otherwise, extract the policy nodemask
1962 * for 'bind' or 'interleave' policy into the argument nodemask, or
1963 * initialize the argument nodemask to contain the single node for
1964 * 'preferred' or 'local' policy and return 'true' to indicate presence
1965 * of non-default mempolicy.
1966 *
1967 * We don't bother with reference counting the mempolicy [mpol_get/put]
1968 * because the current task is examining it's own mempolicy and a task's
1969 * mempolicy is only ever changed by the task itself.
1970 *
1971 * N.B., it is the caller's responsibility to free a returned nodemask.
1972 */
init_nodemask_of_mempolicy(nodemask_t * mask)1973 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1974 {
1975 struct mempolicy *mempolicy;
1976 int nid;
1977
1978 if (!(mask && current->mempolicy))
1979 return false;
1980
1981 task_lock(current);
1982 mempolicy = current->mempolicy;
1983 switch (mempolicy->mode) {
1984 case MPOL_PREFERRED:
1985 if (mempolicy->flags & MPOL_F_LOCAL)
1986 nid = numa_node_id();
1987 else
1988 nid = mempolicy->v.preferred_node;
1989 init_nodemask_of_node(mask, nid);
1990 break;
1991
1992 case MPOL_BIND:
1993 /* Fall through */
1994 case MPOL_INTERLEAVE:
1995 *mask = mempolicy->v.nodes;
1996 break;
1997
1998 default:
1999 BUG();
2000 }
2001 task_unlock(current);
2002
2003 return true;
2004 }
2005 #endif
2006
2007 /*
2008 * mempolicy_nodemask_intersects
2009 *
2010 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2011 * policy. Otherwise, check for intersection between mask and the policy
2012 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
2013 * policy, always return true since it may allocate elsewhere on fallback.
2014 *
2015 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2016 */
mempolicy_nodemask_intersects(struct task_struct * tsk,const nodemask_t * mask)2017 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2018 const nodemask_t *mask)
2019 {
2020 struct mempolicy *mempolicy;
2021 bool ret = true;
2022
2023 if (!mask)
2024 return ret;
2025 task_lock(tsk);
2026 mempolicy = tsk->mempolicy;
2027 if (!mempolicy)
2028 goto out;
2029
2030 switch (mempolicy->mode) {
2031 case MPOL_PREFERRED:
2032 /*
2033 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2034 * allocate from, they may fallback to other nodes when oom.
2035 * Thus, it's possible for tsk to have allocated memory from
2036 * nodes in mask.
2037 */
2038 break;
2039 case MPOL_BIND:
2040 case MPOL_INTERLEAVE:
2041 ret = nodes_intersects(mempolicy->v.nodes, *mask);
2042 break;
2043 default:
2044 BUG();
2045 }
2046 out:
2047 task_unlock(tsk);
2048 return ret;
2049 }
2050
2051 /* Allocate a page in interleaved policy.
2052 Own path because it needs to do special accounting. */
alloc_page_interleave(gfp_t gfp,unsigned order,unsigned nid)2053 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2054 unsigned nid)
2055 {
2056 struct page *page;
2057
2058 page = __alloc_pages(gfp, order, nid);
2059 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2060 if (!static_branch_likely(&vm_numa_stat_key))
2061 return page;
2062 if (page && page_to_nid(page) == nid) {
2063 preempt_disable();
2064 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2065 preempt_enable();
2066 }
2067 return page;
2068 }
2069
2070 /**
2071 * alloc_pages_vma - Allocate a page for a VMA.
2072 *
2073 * @gfp:
2074 * %GFP_USER user allocation.
2075 * %GFP_KERNEL kernel allocations,
2076 * %GFP_HIGHMEM highmem/user allocations,
2077 * %GFP_FS allocation should not call back into a file system.
2078 * %GFP_ATOMIC don't sleep.
2079 *
2080 * @order:Order of the GFP allocation.
2081 * @vma: Pointer to VMA or NULL if not available.
2082 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2083 * @node: Which node to prefer for allocation (modulo policy).
2084 * @hugepage: for hugepages try only the preferred node if possible
2085 *
2086 * This function allocates a page from the kernel page pool and applies
2087 * a NUMA policy associated with the VMA or the current process.
2088 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2089 * mm_struct of the VMA to prevent it from going away. Should be used for
2090 * all allocations for pages that will be mapped into user space. Returns
2091 * NULL when no page can be allocated.
2092 */
2093 struct page *
alloc_pages_vma(gfp_t gfp,int order,struct vm_area_struct * vma,unsigned long addr,int node,bool hugepage)2094 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2095 unsigned long addr, int node, bool hugepage)
2096 {
2097 struct mempolicy *pol;
2098 struct page *page;
2099 int preferred_nid;
2100 nodemask_t *nmask;
2101
2102 pol = get_vma_policy(vma, addr);
2103
2104 if (pol->mode == MPOL_INTERLEAVE) {
2105 unsigned nid;
2106
2107 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2108 mpol_cond_put(pol);
2109 page = alloc_page_interleave(gfp, order, nid);
2110 goto out;
2111 }
2112
2113 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2114 int hpage_node = node;
2115
2116 /*
2117 * For hugepage allocation and non-interleave policy which
2118 * allows the current node (or other explicitly preferred
2119 * node) we only try to allocate from the current/preferred
2120 * node and don't fall back to other nodes, as the cost of
2121 * remote accesses would likely offset THP benefits.
2122 *
2123 * If the policy is interleave, or does not allow the current
2124 * node in its nodemask, we allocate the standard way.
2125 */
2126 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2127 hpage_node = pol->v.preferred_node;
2128
2129 nmask = policy_nodemask(gfp, pol);
2130 if (!nmask || node_isset(hpage_node, *nmask)) {
2131 mpol_cond_put(pol);
2132 page = __alloc_pages_node(hpage_node,
2133 gfp | __GFP_THISNODE, order);
2134
2135 /*
2136 * If hugepage allocations are configured to always
2137 * synchronous compact or the vma has been madvised
2138 * to prefer hugepage backing, retry allowing remote
2139 * memory as well.
2140 */
2141 if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2142 page = __alloc_pages_nodemask(gfp | __GFP_NORETRY,
2143 order, hpage_node,
2144 nmask);
2145
2146 goto out;
2147 }
2148 }
2149
2150 nmask = policy_nodemask(gfp, pol);
2151 preferred_nid = policy_node(gfp, pol, node);
2152 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2153 mpol_cond_put(pol);
2154 out:
2155 return page;
2156 }
2157 EXPORT_SYMBOL(alloc_pages_vma);
2158
2159 /**
2160 * alloc_pages_current - Allocate pages.
2161 *
2162 * @gfp:
2163 * %GFP_USER user allocation,
2164 * %GFP_KERNEL kernel allocation,
2165 * %GFP_HIGHMEM highmem allocation,
2166 * %GFP_FS don't call back into a file system.
2167 * %GFP_ATOMIC don't sleep.
2168 * @order: Power of two of allocation size in pages. 0 is a single page.
2169 *
2170 * Allocate a page from the kernel page pool. When not in
2171 * interrupt context and apply the current process NUMA policy.
2172 * Returns NULL when no page can be allocated.
2173 */
alloc_pages_current(gfp_t gfp,unsigned order)2174 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2175 {
2176 struct mempolicy *pol = &default_policy;
2177 struct page *page;
2178
2179 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2180 pol = get_task_policy(current);
2181
2182 /*
2183 * No reference counting needed for current->mempolicy
2184 * nor system default_policy
2185 */
2186 if (pol->mode == MPOL_INTERLEAVE)
2187 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2188 else
2189 page = __alloc_pages_nodemask(gfp, order,
2190 policy_node(gfp, pol, numa_node_id()),
2191 policy_nodemask(gfp, pol));
2192
2193 return page;
2194 }
2195 EXPORT_SYMBOL(alloc_pages_current);
2196
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)2197 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2198 {
2199 struct mempolicy *pol = mpol_dup(vma_policy(src));
2200
2201 if (IS_ERR(pol))
2202 return PTR_ERR(pol);
2203 dst->vm_policy = pol;
2204 return 0;
2205 }
2206
2207 /*
2208 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2209 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2210 * with the mems_allowed returned by cpuset_mems_allowed(). This
2211 * keeps mempolicies cpuset relative after its cpuset moves. See
2212 * further kernel/cpuset.c update_nodemask().
2213 *
2214 * current's mempolicy may be rebinded by the other task(the task that changes
2215 * cpuset's mems), so we needn't do rebind work for current task.
2216 */
2217
2218 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)2219 struct mempolicy *__mpol_dup(struct mempolicy *old)
2220 {
2221 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2222
2223 if (!new)
2224 return ERR_PTR(-ENOMEM);
2225
2226 /* task's mempolicy is protected by alloc_lock */
2227 if (old == current->mempolicy) {
2228 task_lock(current);
2229 *new = *old;
2230 task_unlock(current);
2231 } else
2232 *new = *old;
2233
2234 if (current_cpuset_is_being_rebound()) {
2235 nodemask_t mems = cpuset_mems_allowed(current);
2236 mpol_rebind_policy(new, &mems);
2237 }
2238 atomic_set(&new->refcnt, 1);
2239 return new;
2240 }
2241
2242 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)2243 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2244 {
2245 if (!a || !b)
2246 return false;
2247 if (a->mode != b->mode)
2248 return false;
2249 if (a->flags != b->flags)
2250 return false;
2251 if (mpol_store_user_nodemask(a))
2252 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2253 return false;
2254
2255 switch (a->mode) {
2256 case MPOL_BIND:
2257 /* Fall through */
2258 case MPOL_INTERLEAVE:
2259 return !!nodes_equal(a->v.nodes, b->v.nodes);
2260 case MPOL_PREFERRED:
2261 /* a's ->flags is the same as b's */
2262 if (a->flags & MPOL_F_LOCAL)
2263 return true;
2264 return a->v.preferred_node == b->v.preferred_node;
2265 default:
2266 BUG();
2267 return false;
2268 }
2269 }
2270
2271 /*
2272 * Shared memory backing store policy support.
2273 *
2274 * Remember policies even when nobody has shared memory mapped.
2275 * The policies are kept in Red-Black tree linked from the inode.
2276 * They are protected by the sp->lock rwlock, which should be held
2277 * for any accesses to the tree.
2278 */
2279
2280 /*
2281 * lookup first element intersecting start-end. Caller holds sp->lock for
2282 * reading or for writing
2283 */
2284 static struct sp_node *
sp_lookup(struct shared_policy * sp,unsigned long start,unsigned long end)2285 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2286 {
2287 struct rb_node *n = sp->root.rb_node;
2288
2289 while (n) {
2290 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2291
2292 if (start >= p->end)
2293 n = n->rb_right;
2294 else if (end <= p->start)
2295 n = n->rb_left;
2296 else
2297 break;
2298 }
2299 if (!n)
2300 return NULL;
2301 for (;;) {
2302 struct sp_node *w = NULL;
2303 struct rb_node *prev = rb_prev(n);
2304 if (!prev)
2305 break;
2306 w = rb_entry(prev, struct sp_node, nd);
2307 if (w->end <= start)
2308 break;
2309 n = prev;
2310 }
2311 return rb_entry(n, struct sp_node, nd);
2312 }
2313
2314 /*
2315 * Insert a new shared policy into the list. Caller holds sp->lock for
2316 * writing.
2317 */
sp_insert(struct shared_policy * sp,struct sp_node * new)2318 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2319 {
2320 struct rb_node **p = &sp->root.rb_node;
2321 struct rb_node *parent = NULL;
2322 struct sp_node *nd;
2323
2324 while (*p) {
2325 parent = *p;
2326 nd = rb_entry(parent, struct sp_node, nd);
2327 if (new->start < nd->start)
2328 p = &(*p)->rb_left;
2329 else if (new->end > nd->end)
2330 p = &(*p)->rb_right;
2331 else
2332 BUG();
2333 }
2334 rb_link_node(&new->nd, parent, p);
2335 rb_insert_color(&new->nd, &sp->root);
2336 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2337 new->policy ? new->policy->mode : 0);
2338 }
2339
2340 /* Find shared policy intersecting idx */
2341 struct mempolicy *
mpol_shared_policy_lookup(struct shared_policy * sp,unsigned long idx)2342 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2343 {
2344 struct mempolicy *pol = NULL;
2345 struct sp_node *sn;
2346
2347 if (!sp->root.rb_node)
2348 return NULL;
2349 read_lock(&sp->lock);
2350 sn = sp_lookup(sp, idx, idx+1);
2351 if (sn) {
2352 mpol_get(sn->policy);
2353 pol = sn->policy;
2354 }
2355 read_unlock(&sp->lock);
2356 return pol;
2357 }
2358
sp_free(struct sp_node * n)2359 static void sp_free(struct sp_node *n)
2360 {
2361 mpol_put(n->policy);
2362 kmem_cache_free(sn_cache, n);
2363 }
2364
2365 /**
2366 * mpol_misplaced - check whether current page node is valid in policy
2367 *
2368 * @page: page to be checked
2369 * @vma: vm area where page mapped
2370 * @addr: virtual address where page mapped
2371 *
2372 * Lookup current policy node id for vma,addr and "compare to" page's
2373 * node id.
2374 *
2375 * Returns:
2376 * -1 - not misplaced, page is in the right node
2377 * node - node id where the page should be
2378 *
2379 * Policy determination "mimics" alloc_page_vma().
2380 * Called from fault path where we know the vma and faulting address.
2381 */
mpol_misplaced(struct page * page,struct vm_area_struct * vma,unsigned long addr)2382 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2383 {
2384 struct mempolicy *pol;
2385 struct zoneref *z;
2386 int curnid = page_to_nid(page);
2387 unsigned long pgoff;
2388 int thiscpu = raw_smp_processor_id();
2389 int thisnid = cpu_to_node(thiscpu);
2390 int polnid = NUMA_NO_NODE;
2391 int ret = -1;
2392
2393 pol = get_vma_policy(vma, addr);
2394 if (!(pol->flags & MPOL_F_MOF))
2395 goto out;
2396
2397 switch (pol->mode) {
2398 case MPOL_INTERLEAVE:
2399 pgoff = vma->vm_pgoff;
2400 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2401 polnid = offset_il_node(pol, pgoff);
2402 break;
2403
2404 case MPOL_PREFERRED:
2405 if (pol->flags & MPOL_F_LOCAL)
2406 polnid = numa_node_id();
2407 else
2408 polnid = pol->v.preferred_node;
2409 break;
2410
2411 case MPOL_BIND:
2412
2413 /*
2414 * allows binding to multiple nodes.
2415 * use current page if in policy nodemask,
2416 * else select nearest allowed node, if any.
2417 * If no allowed nodes, use current [!misplaced].
2418 */
2419 if (node_isset(curnid, pol->v.nodes))
2420 goto out;
2421 z = first_zones_zonelist(
2422 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2423 gfp_zone(GFP_HIGHUSER),
2424 &pol->v.nodes);
2425 polnid = zone_to_nid(z->zone);
2426 break;
2427
2428 default:
2429 BUG();
2430 }
2431
2432 /* Migrate the page towards the node whose CPU is referencing it */
2433 if (pol->flags & MPOL_F_MORON) {
2434 polnid = thisnid;
2435
2436 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2437 goto out;
2438 }
2439
2440 if (curnid != polnid)
2441 ret = polnid;
2442 out:
2443 mpol_cond_put(pol);
2444
2445 return ret;
2446 }
2447
2448 /*
2449 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2450 * dropped after task->mempolicy is set to NULL so that any allocation done as
2451 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2452 * policy.
2453 */
mpol_put_task_policy(struct task_struct * task)2454 void mpol_put_task_policy(struct task_struct *task)
2455 {
2456 struct mempolicy *pol;
2457
2458 task_lock(task);
2459 pol = task->mempolicy;
2460 task->mempolicy = NULL;
2461 task_unlock(task);
2462 mpol_put(pol);
2463 }
2464
sp_delete(struct shared_policy * sp,struct sp_node * n)2465 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2466 {
2467 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2468 rb_erase(&n->nd, &sp->root);
2469 sp_free(n);
2470 }
2471
sp_node_init(struct sp_node * node,unsigned long start,unsigned long end,struct mempolicy * pol)2472 static void sp_node_init(struct sp_node *node, unsigned long start,
2473 unsigned long end, struct mempolicy *pol)
2474 {
2475 node->start = start;
2476 node->end = end;
2477 node->policy = pol;
2478 }
2479
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)2480 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2481 struct mempolicy *pol)
2482 {
2483 struct sp_node *n;
2484 struct mempolicy *newpol;
2485
2486 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2487 if (!n)
2488 return NULL;
2489
2490 newpol = mpol_dup(pol);
2491 if (IS_ERR(newpol)) {
2492 kmem_cache_free(sn_cache, n);
2493 return NULL;
2494 }
2495 newpol->flags |= MPOL_F_SHARED;
2496 sp_node_init(n, start, end, newpol);
2497
2498 return n;
2499 }
2500
2501 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,unsigned long start,unsigned long end,struct sp_node * new)2502 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2503 unsigned long end, struct sp_node *new)
2504 {
2505 struct sp_node *n;
2506 struct sp_node *n_new = NULL;
2507 struct mempolicy *mpol_new = NULL;
2508 int ret = 0;
2509
2510 restart:
2511 write_lock(&sp->lock);
2512 n = sp_lookup(sp, start, end);
2513 /* Take care of old policies in the same range. */
2514 while (n && n->start < end) {
2515 struct rb_node *next = rb_next(&n->nd);
2516 if (n->start >= start) {
2517 if (n->end <= end)
2518 sp_delete(sp, n);
2519 else
2520 n->start = end;
2521 } else {
2522 /* Old policy spanning whole new range. */
2523 if (n->end > end) {
2524 if (!n_new)
2525 goto alloc_new;
2526
2527 *mpol_new = *n->policy;
2528 atomic_set(&mpol_new->refcnt, 1);
2529 sp_node_init(n_new, end, n->end, mpol_new);
2530 n->end = start;
2531 sp_insert(sp, n_new);
2532 n_new = NULL;
2533 mpol_new = NULL;
2534 break;
2535 } else
2536 n->end = start;
2537 }
2538 if (!next)
2539 break;
2540 n = rb_entry(next, struct sp_node, nd);
2541 }
2542 if (new)
2543 sp_insert(sp, new);
2544 write_unlock(&sp->lock);
2545 ret = 0;
2546
2547 err_out:
2548 if (mpol_new)
2549 mpol_put(mpol_new);
2550 if (n_new)
2551 kmem_cache_free(sn_cache, n_new);
2552
2553 return ret;
2554
2555 alloc_new:
2556 write_unlock(&sp->lock);
2557 ret = -ENOMEM;
2558 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2559 if (!n_new)
2560 goto err_out;
2561 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2562 if (!mpol_new)
2563 goto err_out;
2564 atomic_set(&mpol_new->refcnt, 1);
2565 goto restart;
2566 }
2567
2568 /**
2569 * mpol_shared_policy_init - initialize shared policy for inode
2570 * @sp: pointer to inode shared policy
2571 * @mpol: struct mempolicy to install
2572 *
2573 * Install non-NULL @mpol in inode's shared policy rb-tree.
2574 * On entry, the current task has a reference on a non-NULL @mpol.
2575 * This must be released on exit.
2576 * This is called at get_inode() calls and we can use GFP_KERNEL.
2577 */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)2578 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2579 {
2580 int ret;
2581
2582 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2583 rwlock_init(&sp->lock);
2584
2585 if (mpol) {
2586 struct vm_area_struct pvma;
2587 struct mempolicy *new;
2588 NODEMASK_SCRATCH(scratch);
2589
2590 if (!scratch)
2591 goto put_mpol;
2592 /* contextualize the tmpfs mount point mempolicy */
2593 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2594 if (IS_ERR(new))
2595 goto free_scratch; /* no valid nodemask intersection */
2596
2597 task_lock(current);
2598 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2599 task_unlock(current);
2600 if (ret)
2601 goto put_new;
2602
2603 /* Create pseudo-vma that contains just the policy */
2604 vma_init(&pvma, NULL);
2605 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2606 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2607
2608 put_new:
2609 mpol_put(new); /* drop initial ref */
2610 free_scratch:
2611 NODEMASK_SCRATCH_FREE(scratch);
2612 put_mpol:
2613 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2614 }
2615 }
2616
mpol_set_shared_policy(struct shared_policy * info,struct vm_area_struct * vma,struct mempolicy * npol)2617 int mpol_set_shared_policy(struct shared_policy *info,
2618 struct vm_area_struct *vma, struct mempolicy *npol)
2619 {
2620 int err;
2621 struct sp_node *new = NULL;
2622 unsigned long sz = vma_pages(vma);
2623
2624 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2625 vma->vm_pgoff,
2626 sz, npol ? npol->mode : -1,
2627 npol ? npol->flags : -1,
2628 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2629
2630 if (npol) {
2631 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2632 if (!new)
2633 return -ENOMEM;
2634 }
2635 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2636 if (err && new)
2637 sp_free(new);
2638 return err;
2639 }
2640
2641 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * p)2642 void mpol_free_shared_policy(struct shared_policy *p)
2643 {
2644 struct sp_node *n;
2645 struct rb_node *next;
2646
2647 if (!p->root.rb_node)
2648 return;
2649 write_lock(&p->lock);
2650 next = rb_first(&p->root);
2651 while (next) {
2652 n = rb_entry(next, struct sp_node, nd);
2653 next = rb_next(&n->nd);
2654 sp_delete(p, n);
2655 }
2656 write_unlock(&p->lock);
2657 }
2658
2659 #ifdef CONFIG_NUMA_BALANCING
2660 static int __initdata numabalancing_override;
2661
check_numabalancing_enable(void)2662 static void __init check_numabalancing_enable(void)
2663 {
2664 bool numabalancing_default = false;
2665
2666 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2667 numabalancing_default = true;
2668
2669 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2670 if (numabalancing_override)
2671 set_numabalancing_state(numabalancing_override == 1);
2672
2673 if (num_online_nodes() > 1 && !numabalancing_override) {
2674 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2675 numabalancing_default ? "Enabling" : "Disabling");
2676 set_numabalancing_state(numabalancing_default);
2677 }
2678 }
2679
setup_numabalancing(char * str)2680 static int __init setup_numabalancing(char *str)
2681 {
2682 int ret = 0;
2683 if (!str)
2684 goto out;
2685
2686 if (!strcmp(str, "enable")) {
2687 numabalancing_override = 1;
2688 ret = 1;
2689 } else if (!strcmp(str, "disable")) {
2690 numabalancing_override = -1;
2691 ret = 1;
2692 }
2693 out:
2694 if (!ret)
2695 pr_warn("Unable to parse numa_balancing=\n");
2696
2697 return ret;
2698 }
2699 __setup("numa_balancing=", setup_numabalancing);
2700 #else
check_numabalancing_enable(void)2701 static inline void __init check_numabalancing_enable(void)
2702 {
2703 }
2704 #endif /* CONFIG_NUMA_BALANCING */
2705
2706 /* assumes fs == KERNEL_DS */
numa_policy_init(void)2707 void __init numa_policy_init(void)
2708 {
2709 nodemask_t interleave_nodes;
2710 unsigned long largest = 0;
2711 int nid, prefer = 0;
2712
2713 policy_cache = kmem_cache_create("numa_policy",
2714 sizeof(struct mempolicy),
2715 0, SLAB_PANIC, NULL);
2716
2717 sn_cache = kmem_cache_create("shared_policy_node",
2718 sizeof(struct sp_node),
2719 0, SLAB_PANIC, NULL);
2720
2721 for_each_node(nid) {
2722 preferred_node_policy[nid] = (struct mempolicy) {
2723 .refcnt = ATOMIC_INIT(1),
2724 .mode = MPOL_PREFERRED,
2725 .flags = MPOL_F_MOF | MPOL_F_MORON,
2726 .v = { .preferred_node = nid, },
2727 };
2728 }
2729
2730 /*
2731 * Set interleaving policy for system init. Interleaving is only
2732 * enabled across suitably sized nodes (default is >= 16MB), or
2733 * fall back to the largest node if they're all smaller.
2734 */
2735 nodes_clear(interleave_nodes);
2736 for_each_node_state(nid, N_MEMORY) {
2737 unsigned long total_pages = node_present_pages(nid);
2738
2739 /* Preserve the largest node */
2740 if (largest < total_pages) {
2741 largest = total_pages;
2742 prefer = nid;
2743 }
2744
2745 /* Interleave this node? */
2746 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2747 node_set(nid, interleave_nodes);
2748 }
2749
2750 /* All too small, use the largest */
2751 if (unlikely(nodes_empty(interleave_nodes)))
2752 node_set(prefer, interleave_nodes);
2753
2754 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2755 pr_err("%s: interleaving failed\n", __func__);
2756
2757 check_numabalancing_enable();
2758 }
2759
2760 /* Reset policy of current process to default */
numa_default_policy(void)2761 void numa_default_policy(void)
2762 {
2763 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2764 }
2765
2766 /*
2767 * Parse and format mempolicy from/to strings
2768 */
2769
2770 /*
2771 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2772 */
2773 static const char * const policy_modes[] =
2774 {
2775 [MPOL_DEFAULT] = "default",
2776 [MPOL_PREFERRED] = "prefer",
2777 [MPOL_BIND] = "bind",
2778 [MPOL_INTERLEAVE] = "interleave",
2779 [MPOL_LOCAL] = "local",
2780 };
2781
2782
2783 #ifdef CONFIG_TMPFS
2784 /**
2785 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2786 * @str: string containing mempolicy to parse
2787 * @mpol: pointer to struct mempolicy pointer, returned on success.
2788 *
2789 * Format of input:
2790 * <mode>[=<flags>][:<nodelist>]
2791 *
2792 * On success, returns 0, else 1
2793 */
mpol_parse_str(char * str,struct mempolicy ** mpol)2794 int mpol_parse_str(char *str, struct mempolicy **mpol)
2795 {
2796 struct mempolicy *new = NULL;
2797 unsigned short mode_flags;
2798 nodemask_t nodes;
2799 char *nodelist = strchr(str, ':');
2800 char *flags = strchr(str, '=');
2801 int err = 1, mode;
2802
2803 if (flags)
2804 *flags++ = '\0'; /* terminate mode string */
2805
2806 if (nodelist) {
2807 /* NUL-terminate mode or flags string */
2808 *nodelist++ = '\0';
2809 if (nodelist_parse(nodelist, nodes))
2810 goto out;
2811 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2812 goto out;
2813 } else
2814 nodes_clear(nodes);
2815
2816 mode = match_string(policy_modes, MPOL_MAX, str);
2817 if (mode < 0)
2818 goto out;
2819
2820 switch (mode) {
2821 case MPOL_PREFERRED:
2822 /*
2823 * Insist on a nodelist of one node only, although later
2824 * we use first_node(nodes) to grab a single node, so here
2825 * nodelist (or nodes) cannot be empty.
2826 */
2827 if (nodelist) {
2828 char *rest = nodelist;
2829 while (isdigit(*rest))
2830 rest++;
2831 if (*rest)
2832 goto out;
2833 if (nodes_empty(nodes))
2834 goto out;
2835 }
2836 break;
2837 case MPOL_INTERLEAVE:
2838 /*
2839 * Default to online nodes with memory if no nodelist
2840 */
2841 if (!nodelist)
2842 nodes = node_states[N_MEMORY];
2843 break;
2844 case MPOL_LOCAL:
2845 /*
2846 * Don't allow a nodelist; mpol_new() checks flags
2847 */
2848 if (nodelist)
2849 goto out;
2850 mode = MPOL_PREFERRED;
2851 break;
2852 case MPOL_DEFAULT:
2853 /*
2854 * Insist on a empty nodelist
2855 */
2856 if (!nodelist)
2857 err = 0;
2858 goto out;
2859 case MPOL_BIND:
2860 /*
2861 * Insist on a nodelist
2862 */
2863 if (!nodelist)
2864 goto out;
2865 }
2866
2867 mode_flags = 0;
2868 if (flags) {
2869 /*
2870 * Currently, we only support two mutually exclusive
2871 * mode flags.
2872 */
2873 if (!strcmp(flags, "static"))
2874 mode_flags |= MPOL_F_STATIC_NODES;
2875 else if (!strcmp(flags, "relative"))
2876 mode_flags |= MPOL_F_RELATIVE_NODES;
2877 else
2878 goto out;
2879 }
2880
2881 new = mpol_new(mode, mode_flags, &nodes);
2882 if (IS_ERR(new))
2883 goto out;
2884
2885 /*
2886 * Save nodes for mpol_to_str() to show the tmpfs mount options
2887 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2888 */
2889 if (mode != MPOL_PREFERRED)
2890 new->v.nodes = nodes;
2891 else if (nodelist)
2892 new->v.preferred_node = first_node(nodes);
2893 else
2894 new->flags |= MPOL_F_LOCAL;
2895
2896 /*
2897 * Save nodes for contextualization: this will be used to "clone"
2898 * the mempolicy in a specific context [cpuset] at a later time.
2899 */
2900 new->w.user_nodemask = nodes;
2901
2902 err = 0;
2903
2904 out:
2905 /* Restore string for error message */
2906 if (nodelist)
2907 *--nodelist = ':';
2908 if (flags)
2909 *--flags = '=';
2910 if (!err)
2911 *mpol = new;
2912 return err;
2913 }
2914 #endif /* CONFIG_TMPFS */
2915
2916 /**
2917 * mpol_to_str - format a mempolicy structure for printing
2918 * @buffer: to contain formatted mempolicy string
2919 * @maxlen: length of @buffer
2920 * @pol: pointer to mempolicy to be formatted
2921 *
2922 * Convert @pol into a string. If @buffer is too short, truncate the string.
2923 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2924 * longest flag, "relative", and to display at least a few node ids.
2925 */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol)2926 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2927 {
2928 char *p = buffer;
2929 nodemask_t nodes = NODE_MASK_NONE;
2930 unsigned short mode = MPOL_DEFAULT;
2931 unsigned short flags = 0;
2932
2933 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2934 mode = pol->mode;
2935 flags = pol->flags;
2936 }
2937
2938 switch (mode) {
2939 case MPOL_DEFAULT:
2940 break;
2941 case MPOL_PREFERRED:
2942 if (flags & MPOL_F_LOCAL)
2943 mode = MPOL_LOCAL;
2944 else
2945 node_set(pol->v.preferred_node, nodes);
2946 break;
2947 case MPOL_BIND:
2948 case MPOL_INTERLEAVE:
2949 nodes = pol->v.nodes;
2950 break;
2951 default:
2952 WARN_ON_ONCE(1);
2953 snprintf(p, maxlen, "unknown");
2954 return;
2955 }
2956
2957 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2958
2959 if (flags & MPOL_MODE_FLAGS) {
2960 p += snprintf(p, buffer + maxlen - p, "=");
2961
2962 /*
2963 * Currently, the only defined flags are mutually exclusive
2964 */
2965 if (flags & MPOL_F_STATIC_NODES)
2966 p += snprintf(p, buffer + maxlen - p, "static");
2967 else if (flags & MPOL_F_RELATIVE_NODES)
2968 p += snprintf(p, buffer + maxlen - p, "relative");
2969 }
2970
2971 if (!nodes_empty(nodes))
2972 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2973 nodemask_pr_args(&nodes));
2974 }
2975