• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38 
39 #include <trace/events/kmem.h>
40 
41 #include "internal.h"
42 
43 /*
44  * Lock order:
45  *   1. slab_mutex (Global Mutex)
46  *   2. node->list_lock
47  *   3. slab_lock(page) (Only on some arches and for debugging)
48  *
49  *   slab_mutex
50  *
51  *   The role of the slab_mutex is to protect the list of all the slabs
52  *   and to synchronize major metadata changes to slab cache structures.
53  *
54  *   The slab_lock is only used for debugging and on arches that do not
55  *   have the ability to do a cmpxchg_double. It only protects:
56  *	A. page->freelist	-> List of object free in a page
57  *	B. page->inuse		-> Number of objects in use
58  *	C. page->objects	-> Number of objects in page
59  *	D. page->frozen		-> frozen state
60  *
61  *   If a slab is frozen then it is exempt from list management. It is not
62  *   on any list except per cpu partial list. The processor that froze the
63  *   slab is the one who can perform list operations on the page. Other
64  *   processors may put objects onto the freelist but the processor that
65  *   froze the slab is the only one that can retrieve the objects from the
66  *   page's freelist.
67  *
68  *   The list_lock protects the partial and full list on each node and
69  *   the partial slab counter. If taken then no new slabs may be added or
70  *   removed from the lists nor make the number of partial slabs be modified.
71  *   (Note that the total number of slabs is an atomic value that may be
72  *   modified without taking the list lock).
73  *
74  *   The list_lock is a centralized lock and thus we avoid taking it as
75  *   much as possible. As long as SLUB does not have to handle partial
76  *   slabs, operations can continue without any centralized lock. F.e.
77  *   allocating a long series of objects that fill up slabs does not require
78  *   the list lock.
79  *   Interrupts are disabled during allocation and deallocation in order to
80  *   make the slab allocator safe to use in the context of an irq. In addition
81  *   interrupts are disabled to ensure that the processor does not change
82  *   while handling per_cpu slabs, due to kernel preemption.
83  *
84  * SLUB assigns one slab for allocation to each processor.
85  * Allocations only occur from these slabs called cpu slabs.
86  *
87  * Slabs with free elements are kept on a partial list and during regular
88  * operations no list for full slabs is used. If an object in a full slab is
89  * freed then the slab will show up again on the partial lists.
90  * We track full slabs for debugging purposes though because otherwise we
91  * cannot scan all objects.
92  *
93  * Slabs are freed when they become empty. Teardown and setup is
94  * minimal so we rely on the page allocators per cpu caches for
95  * fast frees and allocs.
96  *
97  * Overloading of page flags that are otherwise used for LRU management.
98  *
99  * PageActive 		The slab is frozen and exempt from list processing.
100  * 			This means that the slab is dedicated to a purpose
101  * 			such as satisfying allocations for a specific
102  * 			processor. Objects may be freed in the slab while
103  * 			it is frozen but slab_free will then skip the usual
104  * 			list operations. It is up to the processor holding
105  * 			the slab to integrate the slab into the slab lists
106  * 			when the slab is no longer needed.
107  *
108  * 			One use of this flag is to mark slabs that are
109  * 			used for allocations. Then such a slab becomes a cpu
110  * 			slab. The cpu slab may be equipped with an additional
111  * 			freelist that allows lockless access to
112  * 			free objects in addition to the regular freelist
113  * 			that requires the slab lock.
114  *
115  * PageError		Slab requires special handling due to debug
116  * 			options set. This moves	slab handling out of
117  * 			the fast path and disables lockless freelists.
118  */
119 
kmem_cache_debug(struct kmem_cache * s)120 static inline int kmem_cache_debug(struct kmem_cache *s)
121 {
122 #ifdef CONFIG_SLUB_DEBUG
123 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
124 #else
125 	return 0;
126 #endif
127 }
128 
fixup_red_left(struct kmem_cache * s,void * p)129 void *fixup_red_left(struct kmem_cache *s, void *p)
130 {
131 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
132 		p += s->red_left_pad;
133 
134 	return p;
135 }
136 
kmem_cache_has_cpu_partial(struct kmem_cache * s)137 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
138 {
139 #ifdef CONFIG_SLUB_CPU_PARTIAL
140 	return !kmem_cache_debug(s);
141 #else
142 	return false;
143 #endif
144 }
145 
146 /*
147  * Issues still to be resolved:
148  *
149  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
150  *
151  * - Variable sizing of the per node arrays
152  */
153 
154 /* Enable to test recovery from slab corruption on boot */
155 #undef SLUB_RESILIENCY_TEST
156 
157 /* Enable to log cmpxchg failures */
158 #undef SLUB_DEBUG_CMPXCHG
159 
160 /*
161  * Mininum number of partial slabs. These will be left on the partial
162  * lists even if they are empty. kmem_cache_shrink may reclaim them.
163  */
164 #define MIN_PARTIAL 5
165 
166 /*
167  * Maximum number of desirable partial slabs.
168  * The existence of more partial slabs makes kmem_cache_shrink
169  * sort the partial list by the number of objects in use.
170  */
171 #define MAX_PARTIAL 10
172 
173 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
174 				SLAB_POISON | SLAB_STORE_USER)
175 
176 /*
177  * These debug flags cannot use CMPXCHG because there might be consistency
178  * issues when checking or reading debug information
179  */
180 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
181 				SLAB_TRACE)
182 
183 
184 /*
185  * Debugging flags that require metadata to be stored in the slab.  These get
186  * disabled when slub_debug=O is used and a cache's min order increases with
187  * metadata.
188  */
189 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
190 
191 #define OO_SHIFT	16
192 #define OO_MASK		((1 << OO_SHIFT) - 1)
193 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
194 
195 /* Internal SLUB flags */
196 /* Poison object */
197 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
198 /* Use cmpxchg_double */
199 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
200 
201 /*
202  * Tracking user of a slab.
203  */
204 #define TRACK_ADDRS_COUNT 16
205 struct track {
206 	unsigned long addr;	/* Called from address */
207 #ifdef CONFIG_STACKTRACE
208 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
209 #endif
210 	int cpu;		/* Was running on cpu */
211 	int pid;		/* Pid context */
212 	unsigned long when;	/* When did the operation occur */
213 };
214 
215 enum track_item { TRACK_ALLOC, TRACK_FREE };
216 
217 #ifdef CONFIG_SYSFS
218 static int sysfs_slab_add(struct kmem_cache *);
219 static int sysfs_slab_alias(struct kmem_cache *, const char *);
220 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
221 static void sysfs_slab_remove(struct kmem_cache *s);
222 #else
sysfs_slab_add(struct kmem_cache * s)223 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)224 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 							{ return 0; }
memcg_propagate_slab_attrs(struct kmem_cache * s)226 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
sysfs_slab_remove(struct kmem_cache * s)227 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
228 #endif
229 
stat(const struct kmem_cache * s,enum stat_item si)230 static inline void stat(const struct kmem_cache *s, enum stat_item si)
231 {
232 #ifdef CONFIG_SLUB_STATS
233 	/*
234 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
235 	 * avoid this_cpu_add()'s irq-disable overhead.
236 	 */
237 	raw_cpu_inc(s->cpu_slab->stat[si]);
238 #endif
239 }
240 
241 /********************************************************************
242  * 			Core slab cache functions
243  *******************************************************************/
244 
245 /*
246  * Returns freelist pointer (ptr). With hardening, this is obfuscated
247  * with an XOR of the address where the pointer is held and a per-cache
248  * random number.
249  */
freelist_ptr(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)250 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
251 				 unsigned long ptr_addr)
252 {
253 #ifdef CONFIG_SLAB_FREELIST_HARDENED
254 	/*
255 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
256 	 * Normally, this doesn't cause any issues, as both set_freepointer()
257 	 * and get_freepointer() are called with a pointer with the same tag.
258 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
259 	 * example, when __free_slub() iterates over objects in a cache, it
260 	 * passes untagged pointers to check_object(). check_object() in turns
261 	 * calls get_freepointer() with an untagged pointer, which causes the
262 	 * freepointer to be restored incorrectly.
263 	 */
264 	return (void *)((unsigned long)ptr ^ s->random ^
265 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
266 #else
267 	return ptr;
268 #endif
269 }
270 
271 /* Returns the freelist pointer recorded at location ptr_addr. */
freelist_dereference(const struct kmem_cache * s,void * ptr_addr)272 static inline void *freelist_dereference(const struct kmem_cache *s,
273 					 void *ptr_addr)
274 {
275 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
276 			    (unsigned long)ptr_addr);
277 }
278 
get_freepointer(struct kmem_cache * s,void * object)279 static inline void *get_freepointer(struct kmem_cache *s, void *object)
280 {
281 	return freelist_dereference(s, object + s->offset);
282 }
283 
prefetch_freepointer(const struct kmem_cache * s,void * object)284 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
285 {
286 	prefetch(object + s->offset);
287 }
288 
get_freepointer_safe(struct kmem_cache * s,void * object)289 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
290 {
291 	unsigned long freepointer_addr;
292 	void *p;
293 
294 	if (!debug_pagealloc_enabled_static())
295 		return get_freepointer(s, object);
296 
297 	freepointer_addr = (unsigned long)object + s->offset;
298 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
299 	return freelist_ptr(s, p, freepointer_addr);
300 }
301 
set_freepointer(struct kmem_cache * s,void * object,void * fp)302 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
303 {
304 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
305 
306 #ifdef CONFIG_SLAB_FREELIST_HARDENED
307 	BUG_ON(object == fp); /* naive detection of double free or corruption */
308 #endif
309 
310 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
311 }
312 
313 /* Loop over all objects in a slab */
314 #define for_each_object(__p, __s, __addr, __objects) \
315 	for (__p = fixup_red_left(__s, __addr); \
316 		__p < (__addr) + (__objects) * (__s)->size; \
317 		__p += (__s)->size)
318 
319 /* Determine object index from a given position */
slab_index(void * p,struct kmem_cache * s,void * addr)320 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
321 {
322 	return (kasan_reset_tag(p) - addr) / s->size;
323 }
324 
order_objects(unsigned int order,unsigned int size)325 static inline unsigned int order_objects(unsigned int order, unsigned int size)
326 {
327 	return ((unsigned int)PAGE_SIZE << order) / size;
328 }
329 
oo_make(unsigned int order,unsigned int size)330 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
331 		unsigned int size)
332 {
333 	struct kmem_cache_order_objects x = {
334 		(order << OO_SHIFT) + order_objects(order, size)
335 	};
336 
337 	return x;
338 }
339 
oo_order(struct kmem_cache_order_objects x)340 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
341 {
342 	return x.x >> OO_SHIFT;
343 }
344 
oo_objects(struct kmem_cache_order_objects x)345 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
346 {
347 	return x.x & OO_MASK;
348 }
349 
350 /*
351  * Per slab locking using the pagelock
352  */
slab_lock(struct page * page)353 static __always_inline void slab_lock(struct page *page)
354 {
355 	VM_BUG_ON_PAGE(PageTail(page), page);
356 	bit_spin_lock(PG_locked, &page->flags);
357 }
358 
slab_unlock(struct page * page)359 static __always_inline void slab_unlock(struct page *page)
360 {
361 	VM_BUG_ON_PAGE(PageTail(page), page);
362 	__bit_spin_unlock(PG_locked, &page->flags);
363 }
364 
365 /* Interrupts must be disabled (for the fallback code to work right) */
__cmpxchg_double_slab(struct kmem_cache * s,struct page * page,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)366 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
367 		void *freelist_old, unsigned long counters_old,
368 		void *freelist_new, unsigned long counters_new,
369 		const char *n)
370 {
371 	VM_BUG_ON(!irqs_disabled());
372 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
373     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
374 	if (s->flags & __CMPXCHG_DOUBLE) {
375 		if (cmpxchg_double(&page->freelist, &page->counters,
376 				   freelist_old, counters_old,
377 				   freelist_new, counters_new))
378 			return true;
379 	} else
380 #endif
381 	{
382 		slab_lock(page);
383 		if (page->freelist == freelist_old &&
384 					page->counters == counters_old) {
385 			page->freelist = freelist_new;
386 			page->counters = counters_new;
387 			slab_unlock(page);
388 			return true;
389 		}
390 		slab_unlock(page);
391 	}
392 
393 	cpu_relax();
394 	stat(s, CMPXCHG_DOUBLE_FAIL);
395 
396 #ifdef SLUB_DEBUG_CMPXCHG
397 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
398 #endif
399 
400 	return false;
401 }
402 
cmpxchg_double_slab(struct kmem_cache * s,struct page * page,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)403 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
404 		void *freelist_old, unsigned long counters_old,
405 		void *freelist_new, unsigned long counters_new,
406 		const char *n)
407 {
408 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
409     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
410 	if (s->flags & __CMPXCHG_DOUBLE) {
411 		if (cmpxchg_double(&page->freelist, &page->counters,
412 				   freelist_old, counters_old,
413 				   freelist_new, counters_new))
414 			return true;
415 	} else
416 #endif
417 	{
418 		unsigned long flags;
419 
420 		local_irq_save(flags);
421 		slab_lock(page);
422 		if (page->freelist == freelist_old &&
423 					page->counters == counters_old) {
424 			page->freelist = freelist_new;
425 			page->counters = counters_new;
426 			slab_unlock(page);
427 			local_irq_restore(flags);
428 			return true;
429 		}
430 		slab_unlock(page);
431 		local_irq_restore(flags);
432 	}
433 
434 	cpu_relax();
435 	stat(s, CMPXCHG_DOUBLE_FAIL);
436 
437 #ifdef SLUB_DEBUG_CMPXCHG
438 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
439 #endif
440 
441 	return false;
442 }
443 
444 #ifdef CONFIG_SLUB_DEBUG
445 /*
446  * Determine a map of object in use on a page.
447  *
448  * Node listlock must be held to guarantee that the page does
449  * not vanish from under us.
450  */
get_map(struct kmem_cache * s,struct page * page,unsigned long * map)451 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
452 {
453 	void *p;
454 	void *addr = page_address(page);
455 
456 	for (p = page->freelist; p; p = get_freepointer(s, p))
457 		set_bit(slab_index(p, s, addr), map);
458 }
459 
size_from_object(struct kmem_cache * s)460 static inline unsigned int size_from_object(struct kmem_cache *s)
461 {
462 	if (s->flags & SLAB_RED_ZONE)
463 		return s->size - s->red_left_pad;
464 
465 	return s->size;
466 }
467 
restore_red_left(struct kmem_cache * s,void * p)468 static inline void *restore_red_left(struct kmem_cache *s, void *p)
469 {
470 	if (s->flags & SLAB_RED_ZONE)
471 		p -= s->red_left_pad;
472 
473 	return p;
474 }
475 
476 /*
477  * Debug settings:
478  */
479 #if defined(CONFIG_SLUB_DEBUG_ON)
480 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
481 #else
482 static slab_flags_t slub_debug;
483 #endif
484 
485 static char *slub_debug_slabs;
486 static int disable_higher_order_debug;
487 
488 /*
489  * slub is about to manipulate internal object metadata.  This memory lies
490  * outside the range of the allocated object, so accessing it would normally
491  * be reported by kasan as a bounds error.  metadata_access_enable() is used
492  * to tell kasan that these accesses are OK.
493  */
metadata_access_enable(void)494 static inline void metadata_access_enable(void)
495 {
496 	kasan_disable_current();
497 }
498 
metadata_access_disable(void)499 static inline void metadata_access_disable(void)
500 {
501 	kasan_enable_current();
502 }
503 
504 /*
505  * Object debugging
506  */
507 
508 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct page * page,void * object)509 static inline int check_valid_pointer(struct kmem_cache *s,
510 				struct page *page, void *object)
511 {
512 	void *base;
513 
514 	if (!object)
515 		return 1;
516 
517 	base = page_address(page);
518 	object = kasan_reset_tag(object);
519 	object = restore_red_left(s, object);
520 	if (object < base || object >= base + page->objects * s->size ||
521 		(object - base) % s->size) {
522 		return 0;
523 	}
524 
525 	return 1;
526 }
527 
print_section(char * level,char * text,u8 * addr,unsigned int length)528 static void print_section(char *level, char *text, u8 *addr,
529 			  unsigned int length)
530 {
531 	metadata_access_enable();
532 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
533 			length, 1);
534 	metadata_access_disable();
535 }
536 
537 /*
538  * See comment in calculate_sizes().
539  */
freeptr_outside_object(struct kmem_cache * s)540 static inline bool freeptr_outside_object(struct kmem_cache *s)
541 {
542 	return s->offset >= s->inuse;
543 }
544 
545 /*
546  * Return offset of the end of info block which is inuse + free pointer if
547  * not overlapping with object.
548  */
get_info_end(struct kmem_cache * s)549 static inline unsigned int get_info_end(struct kmem_cache *s)
550 {
551 	if (freeptr_outside_object(s))
552 		return s->inuse + sizeof(void *);
553 	else
554 		return s->inuse;
555 }
556 
get_track(struct kmem_cache * s,void * object,enum track_item alloc)557 static struct track *get_track(struct kmem_cache *s, void *object,
558 	enum track_item alloc)
559 {
560 	struct track *p;
561 
562 	p = object + get_info_end(s);
563 
564 	return p + alloc;
565 }
566 
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)567 static void set_track(struct kmem_cache *s, void *object,
568 			enum track_item alloc, unsigned long addr)
569 {
570 	struct track *p = get_track(s, object, alloc);
571 
572 	if (addr) {
573 #ifdef CONFIG_STACKTRACE
574 		unsigned int nr_entries;
575 
576 		metadata_access_enable();
577 		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
578 		metadata_access_disable();
579 
580 		if (nr_entries < TRACK_ADDRS_COUNT)
581 			p->addrs[nr_entries] = 0;
582 #endif
583 		p->addr = addr;
584 		p->cpu = smp_processor_id();
585 		p->pid = current->pid;
586 		p->when = jiffies;
587 	} else {
588 		memset(p, 0, sizeof(struct track));
589 	}
590 }
591 
init_tracking(struct kmem_cache * s,void * object)592 static void init_tracking(struct kmem_cache *s, void *object)
593 {
594 	if (!(s->flags & SLAB_STORE_USER))
595 		return;
596 
597 	set_track(s, object, TRACK_FREE, 0UL);
598 	set_track(s, object, TRACK_ALLOC, 0UL);
599 }
600 
print_track(const char * s,struct track * t,unsigned long pr_time)601 static void print_track(const char *s, struct track *t, unsigned long pr_time)
602 {
603 	if (!t->addr)
604 		return;
605 
606 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
607 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
608 #ifdef CONFIG_STACKTRACE
609 	{
610 		int i;
611 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
612 			if (t->addrs[i])
613 				pr_err("\t%pS\n", (void *)t->addrs[i]);
614 			else
615 				break;
616 	}
617 #endif
618 }
619 
print_tracking(struct kmem_cache * s,void * object)620 static void print_tracking(struct kmem_cache *s, void *object)
621 {
622 	unsigned long pr_time = jiffies;
623 	if (!(s->flags & SLAB_STORE_USER))
624 		return;
625 
626 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
627 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
628 }
629 
print_page_info(struct page * page)630 static void print_page_info(struct page *page)
631 {
632 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
633 	       page, page->objects, page->inuse, page->freelist, page->flags);
634 
635 }
636 
slab_bug(struct kmem_cache * s,char * fmt,...)637 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
638 {
639 	struct va_format vaf;
640 	va_list args;
641 
642 	va_start(args, fmt);
643 	vaf.fmt = fmt;
644 	vaf.va = &args;
645 	pr_err("=============================================================================\n");
646 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
647 	pr_err("-----------------------------------------------------------------------------\n\n");
648 
649 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
650 	va_end(args);
651 }
652 
slab_fix(struct kmem_cache * s,char * fmt,...)653 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
654 {
655 	struct va_format vaf;
656 	va_list args;
657 
658 	va_start(args, fmt);
659 	vaf.fmt = fmt;
660 	vaf.va = &args;
661 	pr_err("FIX %s: %pV\n", s->name, &vaf);
662 	va_end(args);
663 }
664 
freelist_corrupted(struct kmem_cache * s,struct page * page,void ** freelist,void * nextfree)665 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
666 			       void **freelist, void *nextfree)
667 {
668 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
669 	    !check_valid_pointer(s, page, nextfree) && freelist) {
670 		object_err(s, page, *freelist, "Freechain corrupt");
671 		*freelist = NULL;
672 		slab_fix(s, "Isolate corrupted freechain");
673 		return true;
674 	}
675 
676 	return false;
677 }
678 
print_trailer(struct kmem_cache * s,struct page * page,u8 * p)679 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
680 {
681 	unsigned int off;	/* Offset of last byte */
682 	u8 *addr = page_address(page);
683 
684 	print_tracking(s, p);
685 
686 	print_page_info(page);
687 
688 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
689 	       p, p - addr, get_freepointer(s, p));
690 
691 	if (s->flags & SLAB_RED_ZONE)
692 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
693 			      s->red_left_pad);
694 	else if (p > addr + 16)
695 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
696 
697 	print_section(KERN_ERR,         "Object   ", p,
698 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
699 	if (s->flags & SLAB_RED_ZONE)
700 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
701 			s->inuse - s->object_size);
702 
703 	off = get_info_end(s);
704 
705 	if (s->flags & SLAB_STORE_USER)
706 		off += 2 * sizeof(struct track);
707 
708 	off += kasan_metadata_size(s);
709 
710 	if (off != size_from_object(s))
711 		/* Beginning of the filler is the free pointer */
712 		print_section(KERN_ERR, "Padding  ", p + off,
713 			      size_from_object(s) - off);
714 
715 	dump_stack();
716 }
717 
object_err(struct kmem_cache * s,struct page * page,u8 * object,char * reason)718 void object_err(struct kmem_cache *s, struct page *page,
719 			u8 *object, char *reason)
720 {
721 	slab_bug(s, "%s", reason);
722 	print_trailer(s, page, object);
723 }
724 
slab_err(struct kmem_cache * s,struct page * page,const char * fmt,...)725 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
726 			const char *fmt, ...)
727 {
728 	va_list args;
729 	char buf[100];
730 
731 	va_start(args, fmt);
732 	vsnprintf(buf, sizeof(buf), fmt, args);
733 	va_end(args);
734 	slab_bug(s, "%s", buf);
735 	print_page_info(page);
736 	dump_stack();
737 }
738 
init_object(struct kmem_cache * s,void * object,u8 val)739 static void init_object(struct kmem_cache *s, void *object, u8 val)
740 {
741 	u8 *p = object;
742 
743 	if (s->flags & SLAB_RED_ZONE)
744 		memset(p - s->red_left_pad, val, s->red_left_pad);
745 
746 	if (s->flags & __OBJECT_POISON) {
747 		memset(p, POISON_FREE, s->object_size - 1);
748 		p[s->object_size - 1] = POISON_END;
749 	}
750 
751 	if (s->flags & SLAB_RED_ZONE)
752 		memset(p + s->object_size, val, s->inuse - s->object_size);
753 }
754 
restore_bytes(struct kmem_cache * s,char * message,u8 data,void * from,void * to)755 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
756 						void *from, void *to)
757 {
758 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
759 	memset(from, data, to - from);
760 }
761 
check_bytes_and_report(struct kmem_cache * s,struct page * page,u8 * object,char * what,u8 * start,unsigned int value,unsigned int bytes)762 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
763 			u8 *object, char *what,
764 			u8 *start, unsigned int value, unsigned int bytes)
765 {
766 	u8 *fault;
767 	u8 *end;
768 
769 	metadata_access_enable();
770 	fault = memchr_inv(start, value, bytes);
771 	metadata_access_disable();
772 	if (!fault)
773 		return 1;
774 
775 	end = start + bytes;
776 	while (end > fault && end[-1] == value)
777 		end--;
778 
779 	slab_bug(s, "%s overwritten", what);
780 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
781 					fault, end - 1, fault[0], value);
782 	print_trailer(s, page, object);
783 
784 	restore_bytes(s, what, value, fault, end);
785 	return 0;
786 }
787 
788 /*
789  * Object layout:
790  *
791  * object address
792  * 	Bytes of the object to be managed.
793  * 	If the freepointer may overlay the object then the free
794  *	pointer is at the middle of the object.
795  *
796  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
797  * 	0xa5 (POISON_END)
798  *
799  * object + s->object_size
800  * 	Padding to reach word boundary. This is also used for Redzoning.
801  * 	Padding is extended by another word if Redzoning is enabled and
802  * 	object_size == inuse.
803  *
804  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
805  * 	0xcc (RED_ACTIVE) for objects in use.
806  *
807  * object + s->inuse
808  * 	Meta data starts here.
809  *
810  * 	A. Free pointer (if we cannot overwrite object on free)
811  * 	B. Tracking data for SLAB_STORE_USER
812  * 	C. Padding to reach required alignment boundary or at mininum
813  * 		one word if debugging is on to be able to detect writes
814  * 		before the word boundary.
815  *
816  *	Padding is done using 0x5a (POISON_INUSE)
817  *
818  * object + s->size
819  * 	Nothing is used beyond s->size.
820  *
821  * If slabcaches are merged then the object_size and inuse boundaries are mostly
822  * ignored. And therefore no slab options that rely on these boundaries
823  * may be used with merged slabcaches.
824  */
825 
check_pad_bytes(struct kmem_cache * s,struct page * page,u8 * p)826 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
827 {
828 	unsigned long off = get_info_end(s);	/* The end of info */
829 
830 	if (s->flags & SLAB_STORE_USER)
831 		/* We also have user information there */
832 		off += 2 * sizeof(struct track);
833 
834 	off += kasan_metadata_size(s);
835 
836 	if (size_from_object(s) == off)
837 		return 1;
838 
839 	return check_bytes_and_report(s, page, p, "Object padding",
840 			p + off, POISON_INUSE, size_from_object(s) - off);
841 }
842 
843 /* Check the pad bytes at the end of a slab page */
slab_pad_check(struct kmem_cache * s,struct page * page)844 static int slab_pad_check(struct kmem_cache *s, struct page *page)
845 {
846 	u8 *start;
847 	u8 *fault;
848 	u8 *end;
849 	u8 *pad;
850 	int length;
851 	int remainder;
852 
853 	if (!(s->flags & SLAB_POISON))
854 		return 1;
855 
856 	start = page_address(page);
857 	length = page_size(page);
858 	end = start + length;
859 	remainder = length % s->size;
860 	if (!remainder)
861 		return 1;
862 
863 	pad = end - remainder;
864 	metadata_access_enable();
865 	fault = memchr_inv(pad, POISON_INUSE, remainder);
866 	metadata_access_disable();
867 	if (!fault)
868 		return 1;
869 	while (end > fault && end[-1] == POISON_INUSE)
870 		end--;
871 
872 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
873 	print_section(KERN_ERR, "Padding ", pad, remainder);
874 
875 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
876 	return 0;
877 }
878 
check_object(struct kmem_cache * s,struct page * page,void * object,u8 val)879 static int check_object(struct kmem_cache *s, struct page *page,
880 					void *object, u8 val)
881 {
882 	u8 *p = object;
883 	u8 *endobject = object + s->object_size;
884 
885 	if (s->flags & SLAB_RED_ZONE) {
886 		if (!check_bytes_and_report(s, page, object, "Left Redzone",
887 			object - s->red_left_pad, val, s->red_left_pad))
888 			return 0;
889 
890 		if (!check_bytes_and_report(s, page, object, "Right Redzone",
891 			endobject, val, s->inuse - s->object_size))
892 			return 0;
893 	} else {
894 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
895 			check_bytes_and_report(s, page, p, "Alignment padding",
896 				endobject, POISON_INUSE,
897 				s->inuse - s->object_size);
898 		}
899 	}
900 
901 	if (s->flags & SLAB_POISON) {
902 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
903 			(!check_bytes_and_report(s, page, p, "Poison", p,
904 					POISON_FREE, s->object_size - 1) ||
905 			 !check_bytes_and_report(s, page, p, "End Poison",
906 				p + s->object_size - 1, POISON_END, 1)))
907 			return 0;
908 		/*
909 		 * check_pad_bytes cleans up on its own.
910 		 */
911 		check_pad_bytes(s, page, p);
912 	}
913 
914 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
915 		/*
916 		 * Object and freepointer overlap. Cannot check
917 		 * freepointer while object is allocated.
918 		 */
919 		return 1;
920 
921 	/* Check free pointer validity */
922 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
923 		object_err(s, page, p, "Freepointer corrupt");
924 		/*
925 		 * No choice but to zap it and thus lose the remainder
926 		 * of the free objects in this slab. May cause
927 		 * another error because the object count is now wrong.
928 		 */
929 		set_freepointer(s, p, NULL);
930 		return 0;
931 	}
932 	return 1;
933 }
934 
check_slab(struct kmem_cache * s,struct page * page)935 static int check_slab(struct kmem_cache *s, struct page *page)
936 {
937 	int maxobj;
938 
939 	VM_BUG_ON(!irqs_disabled());
940 
941 	if (!PageSlab(page)) {
942 		slab_err(s, page, "Not a valid slab page");
943 		return 0;
944 	}
945 
946 	maxobj = order_objects(compound_order(page), s->size);
947 	if (page->objects > maxobj) {
948 		slab_err(s, page, "objects %u > max %u",
949 			page->objects, maxobj);
950 		return 0;
951 	}
952 	if (page->inuse > page->objects) {
953 		slab_err(s, page, "inuse %u > max %u",
954 			page->inuse, page->objects);
955 		return 0;
956 	}
957 	/* Slab_pad_check fixes things up after itself */
958 	slab_pad_check(s, page);
959 	return 1;
960 }
961 
962 /*
963  * Determine if a certain object on a page is on the freelist. Must hold the
964  * slab lock to guarantee that the chains are in a consistent state.
965  */
on_freelist(struct kmem_cache * s,struct page * page,void * search)966 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
967 {
968 	int nr = 0;
969 	void *fp;
970 	void *object = NULL;
971 	int max_objects;
972 
973 	fp = page->freelist;
974 	while (fp && nr <= page->objects) {
975 		if (fp == search)
976 			return 1;
977 		if (!check_valid_pointer(s, page, fp)) {
978 			if (object) {
979 				object_err(s, page, object,
980 					"Freechain corrupt");
981 				set_freepointer(s, object, NULL);
982 			} else {
983 				slab_err(s, page, "Freepointer corrupt");
984 				page->freelist = NULL;
985 				page->inuse = page->objects;
986 				slab_fix(s, "Freelist cleared");
987 				return 0;
988 			}
989 			break;
990 		}
991 		object = fp;
992 		fp = get_freepointer(s, object);
993 		nr++;
994 	}
995 
996 	max_objects = order_objects(compound_order(page), s->size);
997 	if (max_objects > MAX_OBJS_PER_PAGE)
998 		max_objects = MAX_OBJS_PER_PAGE;
999 
1000 	if (page->objects != max_objects) {
1001 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1002 			 page->objects, max_objects);
1003 		page->objects = max_objects;
1004 		slab_fix(s, "Number of objects adjusted.");
1005 	}
1006 	if (page->inuse != page->objects - nr) {
1007 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1008 			 page->inuse, page->objects - nr);
1009 		page->inuse = page->objects - nr;
1010 		slab_fix(s, "Object count adjusted.");
1011 	}
1012 	return search == NULL;
1013 }
1014 
trace(struct kmem_cache * s,struct page * page,void * object,int alloc)1015 static void trace(struct kmem_cache *s, struct page *page, void *object,
1016 								int alloc)
1017 {
1018 	if (s->flags & SLAB_TRACE) {
1019 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1020 			s->name,
1021 			alloc ? "alloc" : "free",
1022 			object, page->inuse,
1023 			page->freelist);
1024 
1025 		if (!alloc)
1026 			print_section(KERN_INFO, "Object ", (void *)object,
1027 					s->object_size);
1028 
1029 		dump_stack();
1030 	}
1031 }
1032 
1033 /*
1034  * Tracking of fully allocated slabs for debugging purposes.
1035  */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1036 static void add_full(struct kmem_cache *s,
1037 	struct kmem_cache_node *n, struct page *page)
1038 {
1039 	if (!(s->flags & SLAB_STORE_USER))
1040 		return;
1041 
1042 	lockdep_assert_held(&n->list_lock);
1043 	list_add(&page->slab_list, &n->full);
1044 }
1045 
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1046 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1047 {
1048 	if (!(s->flags & SLAB_STORE_USER))
1049 		return;
1050 
1051 	lockdep_assert_held(&n->list_lock);
1052 	list_del(&page->slab_list);
1053 }
1054 
1055 /* Tracking of the number of slabs for debugging purposes */
slabs_node(struct kmem_cache * s,int node)1056 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1057 {
1058 	struct kmem_cache_node *n = get_node(s, node);
1059 
1060 	return atomic_long_read(&n->nr_slabs);
1061 }
1062 
node_nr_slabs(struct kmem_cache_node * n)1063 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1064 {
1065 	return atomic_long_read(&n->nr_slabs);
1066 }
1067 
inc_slabs_node(struct kmem_cache * s,int node,int objects)1068 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1069 {
1070 	struct kmem_cache_node *n = get_node(s, node);
1071 
1072 	/*
1073 	 * May be called early in order to allocate a slab for the
1074 	 * kmem_cache_node structure. Solve the chicken-egg
1075 	 * dilemma by deferring the increment of the count during
1076 	 * bootstrap (see early_kmem_cache_node_alloc).
1077 	 */
1078 	if (likely(n)) {
1079 		atomic_long_inc(&n->nr_slabs);
1080 		atomic_long_add(objects, &n->total_objects);
1081 	}
1082 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1083 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1084 {
1085 	struct kmem_cache_node *n = get_node(s, node);
1086 
1087 	atomic_long_dec(&n->nr_slabs);
1088 	atomic_long_sub(objects, &n->total_objects);
1089 }
1090 
1091 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,struct page * page,void * object)1092 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1093 								void *object)
1094 {
1095 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1096 		return;
1097 
1098 	init_object(s, object, SLUB_RED_INACTIVE);
1099 	init_tracking(s, object);
1100 }
1101 
1102 static
setup_page_debug(struct kmem_cache * s,struct page * page,void * addr)1103 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1104 {
1105 	if (!(s->flags & SLAB_POISON))
1106 		return;
1107 
1108 	metadata_access_enable();
1109 	memset(addr, POISON_INUSE, page_size(page));
1110 	metadata_access_disable();
1111 }
1112 
alloc_consistency_checks(struct kmem_cache * s,struct page * page,void * object)1113 static inline int alloc_consistency_checks(struct kmem_cache *s,
1114 					struct page *page, void *object)
1115 {
1116 	if (!check_slab(s, page))
1117 		return 0;
1118 
1119 	if (!check_valid_pointer(s, page, object)) {
1120 		object_err(s, page, object, "Freelist Pointer check fails");
1121 		return 0;
1122 	}
1123 
1124 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1125 		return 0;
1126 
1127 	return 1;
1128 }
1129 
alloc_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1130 static noinline int alloc_debug_processing(struct kmem_cache *s,
1131 					struct page *page,
1132 					void *object, unsigned long addr)
1133 {
1134 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1135 		if (!alloc_consistency_checks(s, page, object))
1136 			goto bad;
1137 	}
1138 
1139 	/* Success perform special debug activities for allocs */
1140 	if (s->flags & SLAB_STORE_USER)
1141 		set_track(s, object, TRACK_ALLOC, addr);
1142 	trace(s, page, object, 1);
1143 	init_object(s, object, SLUB_RED_ACTIVE);
1144 	return 1;
1145 
1146 bad:
1147 	if (PageSlab(page)) {
1148 		/*
1149 		 * If this is a slab page then lets do the best we can
1150 		 * to avoid issues in the future. Marking all objects
1151 		 * as used avoids touching the remaining objects.
1152 		 */
1153 		slab_fix(s, "Marking all objects used");
1154 		page->inuse = page->objects;
1155 		page->freelist = NULL;
1156 	}
1157 	return 0;
1158 }
1159 
free_consistency_checks(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1160 static inline int free_consistency_checks(struct kmem_cache *s,
1161 		struct page *page, void *object, unsigned long addr)
1162 {
1163 	if (!check_valid_pointer(s, page, object)) {
1164 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1165 		return 0;
1166 	}
1167 
1168 	if (on_freelist(s, page, object)) {
1169 		object_err(s, page, object, "Object already free");
1170 		return 0;
1171 	}
1172 
1173 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1174 		return 0;
1175 
1176 	if (unlikely(s != page->slab_cache)) {
1177 		if (!PageSlab(page)) {
1178 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1179 				 object);
1180 		} else if (!page->slab_cache) {
1181 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1182 			       object);
1183 			dump_stack();
1184 		} else
1185 			object_err(s, page, object,
1186 					"page slab pointer corrupt.");
1187 		return 0;
1188 	}
1189 	return 1;
1190 }
1191 
1192 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct page * page,void * head,void * tail,int bulk_cnt,unsigned long addr)1193 static noinline int free_debug_processing(
1194 	struct kmem_cache *s, struct page *page,
1195 	void *head, void *tail, int bulk_cnt,
1196 	unsigned long addr)
1197 {
1198 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1199 	void *object = head;
1200 	int cnt = 0;
1201 	unsigned long flags;
1202 	int ret = 0;
1203 
1204 	spin_lock_irqsave(&n->list_lock, flags);
1205 	slab_lock(page);
1206 
1207 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1208 		if (!check_slab(s, page))
1209 			goto out;
1210 	}
1211 
1212 next_object:
1213 	cnt++;
1214 
1215 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1216 		if (!free_consistency_checks(s, page, object, addr))
1217 			goto out;
1218 	}
1219 
1220 	if (s->flags & SLAB_STORE_USER)
1221 		set_track(s, object, TRACK_FREE, addr);
1222 	trace(s, page, object, 0);
1223 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1224 	init_object(s, object, SLUB_RED_INACTIVE);
1225 
1226 	/* Reached end of constructed freelist yet? */
1227 	if (object != tail) {
1228 		object = get_freepointer(s, object);
1229 		goto next_object;
1230 	}
1231 	ret = 1;
1232 
1233 out:
1234 	if (cnt != bulk_cnt)
1235 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1236 			 bulk_cnt, cnt);
1237 
1238 	slab_unlock(page);
1239 	spin_unlock_irqrestore(&n->list_lock, flags);
1240 	if (!ret)
1241 		slab_fix(s, "Object at 0x%p not freed", object);
1242 	return ret;
1243 }
1244 
setup_slub_debug(char * str)1245 static int __init setup_slub_debug(char *str)
1246 {
1247 	slub_debug = DEBUG_DEFAULT_FLAGS;
1248 	if (*str++ != '=' || !*str)
1249 		/*
1250 		 * No options specified. Switch on full debugging.
1251 		 */
1252 		goto out;
1253 
1254 	if (*str == ',')
1255 		/*
1256 		 * No options but restriction on slabs. This means full
1257 		 * debugging for slabs matching a pattern.
1258 		 */
1259 		goto check_slabs;
1260 
1261 	slub_debug = 0;
1262 	if (*str == '-')
1263 		/*
1264 		 * Switch off all debugging measures.
1265 		 */
1266 		goto out;
1267 
1268 	/*
1269 	 * Determine which debug features should be switched on
1270 	 */
1271 	for (; *str && *str != ','; str++) {
1272 		switch (tolower(*str)) {
1273 		case 'f':
1274 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1275 			break;
1276 		case 'z':
1277 			slub_debug |= SLAB_RED_ZONE;
1278 			break;
1279 		case 'p':
1280 			slub_debug |= SLAB_POISON;
1281 			break;
1282 		case 'u':
1283 			slub_debug |= SLAB_STORE_USER;
1284 			break;
1285 		case 't':
1286 			slub_debug |= SLAB_TRACE;
1287 			break;
1288 		case 'a':
1289 			slub_debug |= SLAB_FAILSLAB;
1290 			break;
1291 		case 'o':
1292 			/*
1293 			 * Avoid enabling debugging on caches if its minimum
1294 			 * order would increase as a result.
1295 			 */
1296 			disable_higher_order_debug = 1;
1297 			break;
1298 		default:
1299 			pr_err("slub_debug option '%c' unknown. skipped\n",
1300 			       *str);
1301 		}
1302 	}
1303 
1304 check_slabs:
1305 	if (*str == ',')
1306 		slub_debug_slabs = str + 1;
1307 out:
1308 	if ((static_branch_unlikely(&init_on_alloc) ||
1309 	     static_branch_unlikely(&init_on_free)) &&
1310 	    (slub_debug & SLAB_POISON))
1311 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1312 	return 1;
1313 }
1314 
1315 __setup("slub_debug", setup_slub_debug);
1316 
1317 /*
1318  * kmem_cache_flags - apply debugging options to the cache
1319  * @object_size:	the size of an object without meta data
1320  * @flags:		flags to set
1321  * @name:		name of the cache
1322  * @ctor:		constructor function
1323  *
1324  * Debug option(s) are applied to @flags. In addition to the debug
1325  * option(s), if a slab name (or multiple) is specified i.e.
1326  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1327  * then only the select slabs will receive the debug option(s).
1328  */
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name,void (* ctor)(void *))1329 slab_flags_t kmem_cache_flags(unsigned int object_size,
1330 	slab_flags_t flags, const char *name,
1331 	void (*ctor)(void *))
1332 {
1333 	char *iter;
1334 	size_t len;
1335 
1336 	/* If slub_debug = 0, it folds into the if conditional. */
1337 	if (!slub_debug_slabs)
1338 		return flags | slub_debug;
1339 
1340 	len = strlen(name);
1341 	iter = slub_debug_slabs;
1342 	while (*iter) {
1343 		char *end, *glob;
1344 		size_t cmplen;
1345 
1346 		end = strchrnul(iter, ',');
1347 
1348 		glob = strnchr(iter, end - iter, '*');
1349 		if (glob)
1350 			cmplen = glob - iter;
1351 		else
1352 			cmplen = max_t(size_t, len, (end - iter));
1353 
1354 		if (!strncmp(name, iter, cmplen)) {
1355 			flags |= slub_debug;
1356 			break;
1357 		}
1358 
1359 		if (!*end)
1360 			break;
1361 		iter = end + 1;
1362 	}
1363 
1364 	return flags;
1365 }
1366 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,struct page * page,void * object)1367 static inline void setup_object_debug(struct kmem_cache *s,
1368 			struct page *page, void *object) {}
1369 static inline
setup_page_debug(struct kmem_cache * s,struct page * page,void * addr)1370 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1371 
alloc_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1372 static inline int alloc_debug_processing(struct kmem_cache *s,
1373 	struct page *page, void *object, unsigned long addr) { return 0; }
1374 
free_debug_processing(struct kmem_cache * s,struct page * page,void * head,void * tail,int bulk_cnt,unsigned long addr)1375 static inline int free_debug_processing(
1376 	struct kmem_cache *s, struct page *page,
1377 	void *head, void *tail, int bulk_cnt,
1378 	unsigned long addr) { return 0; }
1379 
slab_pad_check(struct kmem_cache * s,struct page * page)1380 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1381 			{ return 1; }
check_object(struct kmem_cache * s,struct page * page,void * object,u8 val)1382 static inline int check_object(struct kmem_cache *s, struct page *page,
1383 			void *object, u8 val) { return 1; }
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1384 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1385 					struct page *page) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1386 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1387 					struct page *page) {}
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name,void (* ctor)(void *))1388 slab_flags_t kmem_cache_flags(unsigned int object_size,
1389 	slab_flags_t flags, const char *name,
1390 	void (*ctor)(void *))
1391 {
1392 	return flags;
1393 }
1394 #define slub_debug 0
1395 
1396 #define disable_higher_order_debug 0
1397 
slabs_node(struct kmem_cache * s,int node)1398 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1399 							{ return 0; }
node_nr_slabs(struct kmem_cache_node * n)1400 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1401 							{ return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1402 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1403 							int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1404 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1405 							int objects) {}
1406 
freelist_corrupted(struct kmem_cache * s,struct page * page,void ** freelist,void * nextfree)1407 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1408 			       void **freelist, void *nextfree)
1409 {
1410 	return false;
1411 }
1412 #endif /* CONFIG_SLUB_DEBUG */
1413 
1414 /*
1415  * Hooks for other subsystems that check memory allocations. In a typical
1416  * production configuration these hooks all should produce no code at all.
1417  */
kmalloc_large_node_hook(void * ptr,size_t size,gfp_t flags)1418 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1419 {
1420 	ptr = kasan_kmalloc_large(ptr, size, flags);
1421 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1422 	kmemleak_alloc(ptr, size, 1, flags);
1423 	return ptr;
1424 }
1425 
kfree_hook(void * x)1426 static __always_inline void kfree_hook(void *x)
1427 {
1428 	kmemleak_free(x);
1429 	kasan_kfree_large(x, _RET_IP_);
1430 }
1431 
slab_free_hook(struct kmem_cache * s,void * x)1432 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1433 {
1434 	kmemleak_free_recursive(x, s->flags);
1435 
1436 	/*
1437 	 * Trouble is that we may no longer disable interrupts in the fast path
1438 	 * So in order to make the debug calls that expect irqs to be
1439 	 * disabled we need to disable interrupts temporarily.
1440 	 */
1441 #ifdef CONFIG_LOCKDEP
1442 	{
1443 		unsigned long flags;
1444 
1445 		local_irq_save(flags);
1446 		debug_check_no_locks_freed(x, s->object_size);
1447 		local_irq_restore(flags);
1448 	}
1449 #endif
1450 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1451 		debug_check_no_obj_freed(x, s->object_size);
1452 
1453 	/* KASAN might put x into memory quarantine, delaying its reuse */
1454 	return kasan_slab_free(s, x, _RET_IP_);
1455 }
1456 
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)1457 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1458 					   void **head, void **tail,
1459 					   int *cnt)
1460 {
1461 
1462 	void *object;
1463 	void *next = *head;
1464 	void *old_tail = *tail ? *tail : *head;
1465 	int rsize;
1466 
1467 	/* Head and tail of the reconstructed freelist */
1468 	*head = NULL;
1469 	*tail = NULL;
1470 
1471 	do {
1472 		object = next;
1473 		next = get_freepointer(s, object);
1474 
1475 		if (slab_want_init_on_free(s)) {
1476 			/*
1477 			 * Clear the object and the metadata, but don't touch
1478 			 * the redzone.
1479 			 */
1480 			memset(object, 0, s->object_size);
1481 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1482 							   : 0;
1483 			memset((char *)object + s->inuse, 0,
1484 			       s->size - s->inuse - rsize);
1485 
1486 		}
1487 		/* If object's reuse doesn't have to be delayed */
1488 		if (!slab_free_hook(s, object)) {
1489 			/* Move object to the new freelist */
1490 			set_freepointer(s, object, *head);
1491 			*head = object;
1492 			if (!*tail)
1493 				*tail = object;
1494 		} else {
1495 			/*
1496 			 * Adjust the reconstructed freelist depth
1497 			 * accordingly if object's reuse is delayed.
1498 			 */
1499 			--(*cnt);
1500 		}
1501 	} while (object != old_tail);
1502 
1503 	if (*head == *tail)
1504 		*tail = NULL;
1505 
1506 	return *head != NULL;
1507 }
1508 
setup_object(struct kmem_cache * s,struct page * page,void * object)1509 static void *setup_object(struct kmem_cache *s, struct page *page,
1510 				void *object)
1511 {
1512 	setup_object_debug(s, page, object);
1513 	object = kasan_init_slab_obj(s, object);
1514 	if (unlikely(s->ctor)) {
1515 		kasan_unpoison_object_data(s, object);
1516 		s->ctor(object);
1517 		kasan_poison_object_data(s, object);
1518 	}
1519 	return object;
1520 }
1521 
1522 /*
1523  * Slab allocation and freeing
1524  */
alloc_slab_page(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_order_objects oo)1525 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1526 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1527 {
1528 	struct page *page;
1529 	unsigned int order = oo_order(oo);
1530 
1531 	if (node == NUMA_NO_NODE)
1532 		page = alloc_pages(flags, order);
1533 	else
1534 		page = __alloc_pages_node(node, flags, order);
1535 
1536 	if (page && charge_slab_page(page, flags, order, s)) {
1537 		__free_pages(page, order);
1538 		page = NULL;
1539 	}
1540 
1541 	return page;
1542 }
1543 
1544 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1545 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)1546 static int init_cache_random_seq(struct kmem_cache *s)
1547 {
1548 	unsigned int count = oo_objects(s->oo);
1549 	int err;
1550 
1551 	/* Bailout if already initialised */
1552 	if (s->random_seq)
1553 		return 0;
1554 
1555 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1556 	if (err) {
1557 		pr_err("SLUB: Unable to initialize free list for %s\n",
1558 			s->name);
1559 		return err;
1560 	}
1561 
1562 	/* Transform to an offset on the set of pages */
1563 	if (s->random_seq) {
1564 		unsigned int i;
1565 
1566 		for (i = 0; i < count; i++)
1567 			s->random_seq[i] *= s->size;
1568 	}
1569 	return 0;
1570 }
1571 
1572 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)1573 static void __init init_freelist_randomization(void)
1574 {
1575 	struct kmem_cache *s;
1576 
1577 	mutex_lock(&slab_mutex);
1578 
1579 	list_for_each_entry(s, &slab_caches, list)
1580 		init_cache_random_seq(s);
1581 
1582 	mutex_unlock(&slab_mutex);
1583 }
1584 
1585 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,struct page * page,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)1586 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1587 				unsigned long *pos, void *start,
1588 				unsigned long page_limit,
1589 				unsigned long freelist_count)
1590 {
1591 	unsigned int idx;
1592 
1593 	/*
1594 	 * If the target page allocation failed, the number of objects on the
1595 	 * page might be smaller than the usual size defined by the cache.
1596 	 */
1597 	do {
1598 		idx = s->random_seq[*pos];
1599 		*pos += 1;
1600 		if (*pos >= freelist_count)
1601 			*pos = 0;
1602 	} while (unlikely(idx >= page_limit));
1603 
1604 	return (char *)start + idx;
1605 }
1606 
1607 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct page * page)1608 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1609 {
1610 	void *start;
1611 	void *cur;
1612 	void *next;
1613 	unsigned long idx, pos, page_limit, freelist_count;
1614 
1615 	if (page->objects < 2 || !s->random_seq)
1616 		return false;
1617 
1618 	freelist_count = oo_objects(s->oo);
1619 	pos = get_random_int() % freelist_count;
1620 
1621 	page_limit = page->objects * s->size;
1622 	start = fixup_red_left(s, page_address(page));
1623 
1624 	/* First entry is used as the base of the freelist */
1625 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1626 				freelist_count);
1627 	cur = setup_object(s, page, cur);
1628 	page->freelist = cur;
1629 
1630 	for (idx = 1; idx < page->objects; idx++) {
1631 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1632 			freelist_count);
1633 		next = setup_object(s, page, next);
1634 		set_freepointer(s, cur, next);
1635 		cur = next;
1636 	}
1637 	set_freepointer(s, cur, NULL);
1638 
1639 	return true;
1640 }
1641 #else
init_cache_random_seq(struct kmem_cache * s)1642 static inline int init_cache_random_seq(struct kmem_cache *s)
1643 {
1644 	return 0;
1645 }
init_freelist_randomization(void)1646 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct page * page)1647 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1648 {
1649 	return false;
1650 }
1651 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1652 
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)1653 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1654 {
1655 	struct page *page;
1656 	struct kmem_cache_order_objects oo = s->oo;
1657 	gfp_t alloc_gfp;
1658 	void *start, *p, *next;
1659 	int idx;
1660 	bool shuffle;
1661 
1662 	flags &= gfp_allowed_mask;
1663 
1664 	if (gfpflags_allow_blocking(flags))
1665 		local_irq_enable();
1666 
1667 	flags |= s->allocflags;
1668 
1669 	/*
1670 	 * Let the initial higher-order allocation fail under memory pressure
1671 	 * so we fall-back to the minimum order allocation.
1672 	 */
1673 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1674 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1675 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1676 
1677 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1678 	if (unlikely(!page)) {
1679 		oo = s->min;
1680 		alloc_gfp = flags;
1681 		/*
1682 		 * Allocation may have failed due to fragmentation.
1683 		 * Try a lower order alloc if possible
1684 		 */
1685 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1686 		if (unlikely(!page))
1687 			goto out;
1688 		stat(s, ORDER_FALLBACK);
1689 	}
1690 
1691 	page->objects = oo_objects(oo);
1692 
1693 	page->slab_cache = s;
1694 	__SetPageSlab(page);
1695 	if (page_is_pfmemalloc(page))
1696 		SetPageSlabPfmemalloc(page);
1697 
1698 	kasan_poison_slab(page);
1699 
1700 	start = page_address(page);
1701 
1702 	setup_page_debug(s, page, start);
1703 
1704 	shuffle = shuffle_freelist(s, page);
1705 
1706 	if (!shuffle) {
1707 		start = fixup_red_left(s, start);
1708 		start = setup_object(s, page, start);
1709 		page->freelist = start;
1710 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1711 			next = p + s->size;
1712 			next = setup_object(s, page, next);
1713 			set_freepointer(s, p, next);
1714 			p = next;
1715 		}
1716 		set_freepointer(s, p, NULL);
1717 	}
1718 
1719 	page->inuse = page->objects;
1720 	page->frozen = 1;
1721 
1722 out:
1723 	if (gfpflags_allow_blocking(flags))
1724 		local_irq_disable();
1725 	if (!page)
1726 		return NULL;
1727 
1728 	inc_slabs_node(s, page_to_nid(page), page->objects);
1729 
1730 	return page;
1731 }
1732 
new_slab(struct kmem_cache * s,gfp_t flags,int node)1733 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1734 {
1735 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1736 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1737 		flags &= ~GFP_SLAB_BUG_MASK;
1738 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1739 				invalid_mask, &invalid_mask, flags, &flags);
1740 		dump_stack();
1741 	}
1742 
1743 	return allocate_slab(s,
1744 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1745 }
1746 
__free_slab(struct kmem_cache * s,struct page * page)1747 static void __free_slab(struct kmem_cache *s, struct page *page)
1748 {
1749 	int order = compound_order(page);
1750 	int pages = 1 << order;
1751 
1752 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1753 		void *p;
1754 
1755 		slab_pad_check(s, page);
1756 		for_each_object(p, s, page_address(page),
1757 						page->objects)
1758 			check_object(s, page, p, SLUB_RED_INACTIVE);
1759 	}
1760 
1761 	__ClearPageSlabPfmemalloc(page);
1762 	__ClearPageSlab(page);
1763 
1764 	page->mapping = NULL;
1765 	if (current->reclaim_state)
1766 		current->reclaim_state->reclaimed_slab += pages;
1767 	uncharge_slab_page(page, order, s);
1768 	__free_pages(page, order);
1769 }
1770 
rcu_free_slab(struct rcu_head * h)1771 static void rcu_free_slab(struct rcu_head *h)
1772 {
1773 	struct page *page = container_of(h, struct page, rcu_head);
1774 
1775 	__free_slab(page->slab_cache, page);
1776 }
1777 
free_slab(struct kmem_cache * s,struct page * page)1778 static void free_slab(struct kmem_cache *s, struct page *page)
1779 {
1780 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1781 		call_rcu(&page->rcu_head, rcu_free_slab);
1782 	} else
1783 		__free_slab(s, page);
1784 }
1785 
discard_slab(struct kmem_cache * s,struct page * page)1786 static void discard_slab(struct kmem_cache *s, struct page *page)
1787 {
1788 	dec_slabs_node(s, page_to_nid(page), page->objects);
1789 	free_slab(s, page);
1790 }
1791 
1792 /*
1793  * Management of partially allocated slabs.
1794  */
1795 static inline void
__add_partial(struct kmem_cache_node * n,struct page * page,int tail)1796 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1797 {
1798 	n->nr_partial++;
1799 	if (tail == DEACTIVATE_TO_TAIL)
1800 		list_add_tail(&page->slab_list, &n->partial);
1801 	else
1802 		list_add(&page->slab_list, &n->partial);
1803 }
1804 
add_partial(struct kmem_cache_node * n,struct page * page,int tail)1805 static inline void add_partial(struct kmem_cache_node *n,
1806 				struct page *page, int tail)
1807 {
1808 	lockdep_assert_held(&n->list_lock);
1809 	__add_partial(n, page, tail);
1810 }
1811 
remove_partial(struct kmem_cache_node * n,struct page * page)1812 static inline void remove_partial(struct kmem_cache_node *n,
1813 					struct page *page)
1814 {
1815 	lockdep_assert_held(&n->list_lock);
1816 	list_del(&page->slab_list);
1817 	n->nr_partial--;
1818 }
1819 
1820 /*
1821  * Remove slab from the partial list, freeze it and
1822  * return the pointer to the freelist.
1823  *
1824  * Returns a list of objects or NULL if it fails.
1825  */
acquire_slab(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page,int mode,int * objects)1826 static inline void *acquire_slab(struct kmem_cache *s,
1827 		struct kmem_cache_node *n, struct page *page,
1828 		int mode, int *objects)
1829 {
1830 	void *freelist;
1831 	unsigned long counters;
1832 	struct page new;
1833 
1834 	lockdep_assert_held(&n->list_lock);
1835 
1836 	/*
1837 	 * Zap the freelist and set the frozen bit.
1838 	 * The old freelist is the list of objects for the
1839 	 * per cpu allocation list.
1840 	 */
1841 	freelist = page->freelist;
1842 	counters = page->counters;
1843 	new.counters = counters;
1844 	*objects = new.objects - new.inuse;
1845 	if (mode) {
1846 		new.inuse = page->objects;
1847 		new.freelist = NULL;
1848 	} else {
1849 		new.freelist = freelist;
1850 	}
1851 
1852 	VM_BUG_ON(new.frozen);
1853 	new.frozen = 1;
1854 
1855 	if (!__cmpxchg_double_slab(s, page,
1856 			freelist, counters,
1857 			new.freelist, new.counters,
1858 			"acquire_slab"))
1859 		return NULL;
1860 
1861 	remove_partial(n, page);
1862 	WARN_ON(!freelist);
1863 	return freelist;
1864 }
1865 
1866 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1867 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1868 
1869 /*
1870  * Try to allocate a partial slab from a specific node.
1871  */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct kmem_cache_cpu * c,gfp_t flags)1872 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1873 				struct kmem_cache_cpu *c, gfp_t flags)
1874 {
1875 	struct page *page, *page2;
1876 	void *object = NULL;
1877 	unsigned int available = 0;
1878 	int objects;
1879 
1880 	/*
1881 	 * Racy check. If we mistakenly see no partial slabs then we
1882 	 * just allocate an empty slab. If we mistakenly try to get a
1883 	 * partial slab and there is none available then get_partials()
1884 	 * will return NULL.
1885 	 */
1886 	if (!n || !n->nr_partial)
1887 		return NULL;
1888 
1889 	spin_lock(&n->list_lock);
1890 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1891 		void *t;
1892 
1893 		if (!pfmemalloc_match(page, flags))
1894 			continue;
1895 
1896 		t = acquire_slab(s, n, page, object == NULL, &objects);
1897 		if (!t)
1898 			break;
1899 
1900 		available += objects;
1901 		if (!object) {
1902 			c->page = page;
1903 			stat(s, ALLOC_FROM_PARTIAL);
1904 			object = t;
1905 		} else {
1906 			put_cpu_partial(s, page, 0);
1907 			stat(s, CPU_PARTIAL_NODE);
1908 		}
1909 		if (!kmem_cache_has_cpu_partial(s)
1910 			|| available > slub_cpu_partial(s) / 2)
1911 			break;
1912 
1913 	}
1914 	spin_unlock(&n->list_lock);
1915 	return object;
1916 }
1917 
1918 /*
1919  * Get a page from somewhere. Search in increasing NUMA distances.
1920  */
get_any_partial(struct kmem_cache * s,gfp_t flags,struct kmem_cache_cpu * c)1921 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1922 		struct kmem_cache_cpu *c)
1923 {
1924 #ifdef CONFIG_NUMA
1925 	struct zonelist *zonelist;
1926 	struct zoneref *z;
1927 	struct zone *zone;
1928 	enum zone_type high_zoneidx = gfp_zone(flags);
1929 	void *object;
1930 	unsigned int cpuset_mems_cookie;
1931 
1932 	/*
1933 	 * The defrag ratio allows a configuration of the tradeoffs between
1934 	 * inter node defragmentation and node local allocations. A lower
1935 	 * defrag_ratio increases the tendency to do local allocations
1936 	 * instead of attempting to obtain partial slabs from other nodes.
1937 	 *
1938 	 * If the defrag_ratio is set to 0 then kmalloc() always
1939 	 * returns node local objects. If the ratio is higher then kmalloc()
1940 	 * may return off node objects because partial slabs are obtained
1941 	 * from other nodes and filled up.
1942 	 *
1943 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1944 	 * (which makes defrag_ratio = 1000) then every (well almost)
1945 	 * allocation will first attempt to defrag slab caches on other nodes.
1946 	 * This means scanning over all nodes to look for partial slabs which
1947 	 * may be expensive if we do it every time we are trying to find a slab
1948 	 * with available objects.
1949 	 */
1950 	if (!s->remote_node_defrag_ratio ||
1951 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1952 		return NULL;
1953 
1954 	do {
1955 		cpuset_mems_cookie = read_mems_allowed_begin();
1956 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1957 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1958 			struct kmem_cache_node *n;
1959 
1960 			n = get_node(s, zone_to_nid(zone));
1961 
1962 			if (n && cpuset_zone_allowed(zone, flags) &&
1963 					n->nr_partial > s->min_partial) {
1964 				object = get_partial_node(s, n, c, flags);
1965 				if (object) {
1966 					/*
1967 					 * Don't check read_mems_allowed_retry()
1968 					 * here - if mems_allowed was updated in
1969 					 * parallel, that was a harmless race
1970 					 * between allocation and the cpuset
1971 					 * update
1972 					 */
1973 					return object;
1974 				}
1975 			}
1976 		}
1977 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1978 #endif	/* CONFIG_NUMA */
1979 	return NULL;
1980 }
1981 
1982 /*
1983  * Get a partial page, lock it and return it.
1984  */
get_partial(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_cpu * c)1985 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1986 		struct kmem_cache_cpu *c)
1987 {
1988 	void *object;
1989 	int searchnode = node;
1990 
1991 	if (node == NUMA_NO_NODE)
1992 		searchnode = numa_mem_id();
1993 
1994 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1995 	if (object || node != NUMA_NO_NODE)
1996 		return object;
1997 
1998 	return get_any_partial(s, flags, c);
1999 }
2000 
2001 #ifdef CONFIG_PREEMPT
2002 /*
2003  * Calculate the next globally unique transaction for disambiguiation
2004  * during cmpxchg. The transactions start with the cpu number and are then
2005  * incremented by CONFIG_NR_CPUS.
2006  */
2007 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2008 #else
2009 /*
2010  * No preemption supported therefore also no need to check for
2011  * different cpus.
2012  */
2013 #define TID_STEP 1
2014 #endif
2015 
next_tid(unsigned long tid)2016 static inline unsigned long next_tid(unsigned long tid)
2017 {
2018 	return tid + TID_STEP;
2019 }
2020 
2021 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)2022 static inline unsigned int tid_to_cpu(unsigned long tid)
2023 {
2024 	return tid % TID_STEP;
2025 }
2026 
tid_to_event(unsigned long tid)2027 static inline unsigned long tid_to_event(unsigned long tid)
2028 {
2029 	return tid / TID_STEP;
2030 }
2031 #endif
2032 
init_tid(int cpu)2033 static inline unsigned int init_tid(int cpu)
2034 {
2035 	return cpu;
2036 }
2037 
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)2038 static inline void note_cmpxchg_failure(const char *n,
2039 		const struct kmem_cache *s, unsigned long tid)
2040 {
2041 #ifdef SLUB_DEBUG_CMPXCHG
2042 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2043 
2044 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2045 
2046 #ifdef CONFIG_PREEMPT
2047 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2048 		pr_warn("due to cpu change %d -> %d\n",
2049 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2050 	else
2051 #endif
2052 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2053 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2054 			tid_to_event(tid), tid_to_event(actual_tid));
2055 	else
2056 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2057 			actual_tid, tid, next_tid(tid));
2058 #endif
2059 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2060 }
2061 
init_kmem_cache_cpus(struct kmem_cache * s)2062 static void init_kmem_cache_cpus(struct kmem_cache *s)
2063 {
2064 	int cpu;
2065 
2066 	for_each_possible_cpu(cpu)
2067 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2068 }
2069 
2070 /*
2071  * Remove the cpu slab
2072  */
deactivate_slab(struct kmem_cache * s,struct page * page,void * freelist,struct kmem_cache_cpu * c)2073 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2074 				void *freelist, struct kmem_cache_cpu *c)
2075 {
2076 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2077 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2078 	int lock = 0;
2079 	enum slab_modes l = M_NONE, m = M_NONE;
2080 	void *nextfree;
2081 	int tail = DEACTIVATE_TO_HEAD;
2082 	struct page new;
2083 	struct page old;
2084 
2085 	if (page->freelist) {
2086 		stat(s, DEACTIVATE_REMOTE_FREES);
2087 		tail = DEACTIVATE_TO_TAIL;
2088 	}
2089 
2090 	/*
2091 	 * Stage one: Free all available per cpu objects back
2092 	 * to the page freelist while it is still frozen. Leave the
2093 	 * last one.
2094 	 *
2095 	 * There is no need to take the list->lock because the page
2096 	 * is still frozen.
2097 	 */
2098 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2099 		void *prior;
2100 		unsigned long counters;
2101 
2102 		/*
2103 		 * If 'nextfree' is invalid, it is possible that the object at
2104 		 * 'freelist' is already corrupted.  So isolate all objects
2105 		 * starting at 'freelist'.
2106 		 */
2107 		if (freelist_corrupted(s, page, &freelist, nextfree))
2108 			break;
2109 
2110 		do {
2111 			prior = page->freelist;
2112 			counters = page->counters;
2113 			set_freepointer(s, freelist, prior);
2114 			new.counters = counters;
2115 			new.inuse--;
2116 			VM_BUG_ON(!new.frozen);
2117 
2118 		} while (!__cmpxchg_double_slab(s, page,
2119 			prior, counters,
2120 			freelist, new.counters,
2121 			"drain percpu freelist"));
2122 
2123 		freelist = nextfree;
2124 	}
2125 
2126 	/*
2127 	 * Stage two: Ensure that the page is unfrozen while the
2128 	 * list presence reflects the actual number of objects
2129 	 * during unfreeze.
2130 	 *
2131 	 * We setup the list membership and then perform a cmpxchg
2132 	 * with the count. If there is a mismatch then the page
2133 	 * is not unfrozen but the page is on the wrong list.
2134 	 *
2135 	 * Then we restart the process which may have to remove
2136 	 * the page from the list that we just put it on again
2137 	 * because the number of objects in the slab may have
2138 	 * changed.
2139 	 */
2140 redo:
2141 
2142 	old.freelist = page->freelist;
2143 	old.counters = page->counters;
2144 	VM_BUG_ON(!old.frozen);
2145 
2146 	/* Determine target state of the slab */
2147 	new.counters = old.counters;
2148 	if (freelist) {
2149 		new.inuse--;
2150 		set_freepointer(s, freelist, old.freelist);
2151 		new.freelist = freelist;
2152 	} else
2153 		new.freelist = old.freelist;
2154 
2155 	new.frozen = 0;
2156 
2157 	if (!new.inuse && n->nr_partial >= s->min_partial)
2158 		m = M_FREE;
2159 	else if (new.freelist) {
2160 		m = M_PARTIAL;
2161 		if (!lock) {
2162 			lock = 1;
2163 			/*
2164 			 * Taking the spinlock removes the possibility
2165 			 * that acquire_slab() will see a slab page that
2166 			 * is frozen
2167 			 */
2168 			spin_lock(&n->list_lock);
2169 		}
2170 	} else {
2171 		m = M_FULL;
2172 		if (kmem_cache_debug(s) && !lock) {
2173 			lock = 1;
2174 			/*
2175 			 * This also ensures that the scanning of full
2176 			 * slabs from diagnostic functions will not see
2177 			 * any frozen slabs.
2178 			 */
2179 			spin_lock(&n->list_lock);
2180 		}
2181 	}
2182 
2183 	if (l != m) {
2184 		if (l == M_PARTIAL)
2185 			remove_partial(n, page);
2186 		else if (l == M_FULL)
2187 			remove_full(s, n, page);
2188 
2189 		if (m == M_PARTIAL)
2190 			add_partial(n, page, tail);
2191 		else if (m == M_FULL)
2192 			add_full(s, n, page);
2193 	}
2194 
2195 	l = m;
2196 	if (!__cmpxchg_double_slab(s, page,
2197 				old.freelist, old.counters,
2198 				new.freelist, new.counters,
2199 				"unfreezing slab"))
2200 		goto redo;
2201 
2202 	if (lock)
2203 		spin_unlock(&n->list_lock);
2204 
2205 	if (m == M_PARTIAL)
2206 		stat(s, tail);
2207 	else if (m == M_FULL)
2208 		stat(s, DEACTIVATE_FULL);
2209 	else if (m == M_FREE) {
2210 		stat(s, DEACTIVATE_EMPTY);
2211 		discard_slab(s, page);
2212 		stat(s, FREE_SLAB);
2213 	}
2214 
2215 	c->page = NULL;
2216 	c->freelist = NULL;
2217 	c->tid = next_tid(c->tid);
2218 }
2219 
2220 /*
2221  * Unfreeze all the cpu partial slabs.
2222  *
2223  * This function must be called with interrupts disabled
2224  * for the cpu using c (or some other guarantee must be there
2225  * to guarantee no concurrent accesses).
2226  */
unfreeze_partials(struct kmem_cache * s,struct kmem_cache_cpu * c)2227 static void unfreeze_partials(struct kmem_cache *s,
2228 		struct kmem_cache_cpu *c)
2229 {
2230 #ifdef CONFIG_SLUB_CPU_PARTIAL
2231 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2232 	struct page *page, *discard_page = NULL;
2233 
2234 	while ((page = c->partial)) {
2235 		struct page new;
2236 		struct page old;
2237 
2238 		c->partial = page->next;
2239 
2240 		n2 = get_node(s, page_to_nid(page));
2241 		if (n != n2) {
2242 			if (n)
2243 				spin_unlock(&n->list_lock);
2244 
2245 			n = n2;
2246 			spin_lock(&n->list_lock);
2247 		}
2248 
2249 		do {
2250 
2251 			old.freelist = page->freelist;
2252 			old.counters = page->counters;
2253 			VM_BUG_ON(!old.frozen);
2254 
2255 			new.counters = old.counters;
2256 			new.freelist = old.freelist;
2257 
2258 			new.frozen = 0;
2259 
2260 		} while (!__cmpxchg_double_slab(s, page,
2261 				old.freelist, old.counters,
2262 				new.freelist, new.counters,
2263 				"unfreezing slab"));
2264 
2265 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2266 			page->next = discard_page;
2267 			discard_page = page;
2268 		} else {
2269 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2270 			stat(s, FREE_ADD_PARTIAL);
2271 		}
2272 	}
2273 
2274 	if (n)
2275 		spin_unlock(&n->list_lock);
2276 
2277 	while (discard_page) {
2278 		page = discard_page;
2279 		discard_page = discard_page->next;
2280 
2281 		stat(s, DEACTIVATE_EMPTY);
2282 		discard_slab(s, page);
2283 		stat(s, FREE_SLAB);
2284 	}
2285 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2286 }
2287 
2288 /*
2289  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2290  * partial page slot if available.
2291  *
2292  * If we did not find a slot then simply move all the partials to the
2293  * per node partial list.
2294  */
put_cpu_partial(struct kmem_cache * s,struct page * page,int drain)2295 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2296 {
2297 #ifdef CONFIG_SLUB_CPU_PARTIAL
2298 	struct page *oldpage;
2299 	int pages;
2300 	int pobjects;
2301 
2302 	preempt_disable();
2303 	do {
2304 		pages = 0;
2305 		pobjects = 0;
2306 		oldpage = this_cpu_read(s->cpu_slab->partial);
2307 
2308 		if (oldpage) {
2309 			pobjects = oldpage->pobjects;
2310 			pages = oldpage->pages;
2311 			if (drain && pobjects > s->cpu_partial) {
2312 				unsigned long flags;
2313 				/*
2314 				 * partial array is full. Move the existing
2315 				 * set to the per node partial list.
2316 				 */
2317 				local_irq_save(flags);
2318 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2319 				local_irq_restore(flags);
2320 				oldpage = NULL;
2321 				pobjects = 0;
2322 				pages = 0;
2323 				stat(s, CPU_PARTIAL_DRAIN);
2324 			}
2325 		}
2326 
2327 		pages++;
2328 		pobjects += page->objects - page->inuse;
2329 
2330 		page->pages = pages;
2331 		page->pobjects = pobjects;
2332 		page->next = oldpage;
2333 
2334 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2335 								!= oldpage);
2336 	if (unlikely(!s->cpu_partial)) {
2337 		unsigned long flags;
2338 
2339 		local_irq_save(flags);
2340 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2341 		local_irq_restore(flags);
2342 	}
2343 	preempt_enable();
2344 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2345 }
2346 
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)2347 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2348 {
2349 	stat(s, CPUSLAB_FLUSH);
2350 	deactivate_slab(s, c->page, c->freelist, c);
2351 }
2352 
2353 /*
2354  * Flush cpu slab.
2355  *
2356  * Called from IPI handler with interrupts disabled.
2357  */
__flush_cpu_slab(struct kmem_cache * s,int cpu)2358 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2359 {
2360 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2361 
2362 	if (c->page)
2363 		flush_slab(s, c);
2364 
2365 	unfreeze_partials(s, c);
2366 }
2367 
flush_cpu_slab(void * d)2368 static void flush_cpu_slab(void *d)
2369 {
2370 	struct kmem_cache *s = d;
2371 
2372 	__flush_cpu_slab(s, smp_processor_id());
2373 }
2374 
has_cpu_slab(int cpu,void * info)2375 static bool has_cpu_slab(int cpu, void *info)
2376 {
2377 	struct kmem_cache *s = info;
2378 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2379 
2380 	return c->page || slub_percpu_partial(c);
2381 }
2382 
flush_all(struct kmem_cache * s)2383 static void flush_all(struct kmem_cache *s)
2384 {
2385 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2386 }
2387 
2388 /*
2389  * Use the cpu notifier to insure that the cpu slabs are flushed when
2390  * necessary.
2391  */
slub_cpu_dead(unsigned int cpu)2392 static int slub_cpu_dead(unsigned int cpu)
2393 {
2394 	struct kmem_cache *s;
2395 	unsigned long flags;
2396 
2397 	mutex_lock(&slab_mutex);
2398 	list_for_each_entry(s, &slab_caches, list) {
2399 		local_irq_save(flags);
2400 		__flush_cpu_slab(s, cpu);
2401 		local_irq_restore(flags);
2402 	}
2403 	mutex_unlock(&slab_mutex);
2404 	return 0;
2405 }
2406 
2407 /*
2408  * Check if the objects in a per cpu structure fit numa
2409  * locality expectations.
2410  */
node_match(struct page * page,int node)2411 static inline int node_match(struct page *page, int node)
2412 {
2413 #ifdef CONFIG_NUMA
2414 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2415 		return 0;
2416 #endif
2417 	return 1;
2418 }
2419 
2420 #ifdef CONFIG_SLUB_DEBUG
count_free(struct page * page)2421 static int count_free(struct page *page)
2422 {
2423 	return page->objects - page->inuse;
2424 }
2425 
node_nr_objs(struct kmem_cache_node * n)2426 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2427 {
2428 	return atomic_long_read(&n->total_objects);
2429 }
2430 #endif /* CONFIG_SLUB_DEBUG */
2431 
2432 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct page *))2433 static unsigned long count_partial(struct kmem_cache_node *n,
2434 					int (*get_count)(struct page *))
2435 {
2436 	unsigned long flags;
2437 	unsigned long x = 0;
2438 	struct page *page;
2439 
2440 	spin_lock_irqsave(&n->list_lock, flags);
2441 	list_for_each_entry(page, &n->partial, slab_list)
2442 		x += get_count(page);
2443 	spin_unlock_irqrestore(&n->list_lock, flags);
2444 	return x;
2445 }
2446 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2447 
2448 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)2449 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2450 {
2451 #ifdef CONFIG_SLUB_DEBUG
2452 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2453 				      DEFAULT_RATELIMIT_BURST);
2454 	int node;
2455 	struct kmem_cache_node *n;
2456 
2457 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2458 		return;
2459 
2460 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2461 		nid, gfpflags, &gfpflags);
2462 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2463 		s->name, s->object_size, s->size, oo_order(s->oo),
2464 		oo_order(s->min));
2465 
2466 	if (oo_order(s->min) > get_order(s->object_size))
2467 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2468 			s->name);
2469 
2470 	for_each_kmem_cache_node(s, node, n) {
2471 		unsigned long nr_slabs;
2472 		unsigned long nr_objs;
2473 		unsigned long nr_free;
2474 
2475 		nr_free  = count_partial(n, count_free);
2476 		nr_slabs = node_nr_slabs(n);
2477 		nr_objs  = node_nr_objs(n);
2478 
2479 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2480 			node, nr_slabs, nr_objs, nr_free);
2481 	}
2482 #endif
2483 }
2484 
new_slab_objects(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_cpu ** pc)2485 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2486 			int node, struct kmem_cache_cpu **pc)
2487 {
2488 	void *freelist;
2489 	struct kmem_cache_cpu *c = *pc;
2490 	struct page *page;
2491 
2492 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2493 
2494 	freelist = get_partial(s, flags, node, c);
2495 
2496 	if (freelist)
2497 		return freelist;
2498 
2499 	page = new_slab(s, flags, node);
2500 	if (page) {
2501 		c = raw_cpu_ptr(s->cpu_slab);
2502 		if (c->page)
2503 			flush_slab(s, c);
2504 
2505 		/*
2506 		 * No other reference to the page yet so we can
2507 		 * muck around with it freely without cmpxchg
2508 		 */
2509 		freelist = page->freelist;
2510 		page->freelist = NULL;
2511 
2512 		stat(s, ALLOC_SLAB);
2513 		c->page = page;
2514 		*pc = c;
2515 	}
2516 
2517 	return freelist;
2518 }
2519 
pfmemalloc_match(struct page * page,gfp_t gfpflags)2520 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2521 {
2522 	if (unlikely(PageSlabPfmemalloc(page)))
2523 		return gfp_pfmemalloc_allowed(gfpflags);
2524 
2525 	return true;
2526 }
2527 
2528 /*
2529  * Check the page->freelist of a page and either transfer the freelist to the
2530  * per cpu freelist or deactivate the page.
2531  *
2532  * The page is still frozen if the return value is not NULL.
2533  *
2534  * If this function returns NULL then the page has been unfrozen.
2535  *
2536  * This function must be called with interrupt disabled.
2537  */
get_freelist(struct kmem_cache * s,struct page * page)2538 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2539 {
2540 	struct page new;
2541 	unsigned long counters;
2542 	void *freelist;
2543 
2544 	do {
2545 		freelist = page->freelist;
2546 		counters = page->counters;
2547 
2548 		new.counters = counters;
2549 		VM_BUG_ON(!new.frozen);
2550 
2551 		new.inuse = page->objects;
2552 		new.frozen = freelist != NULL;
2553 
2554 	} while (!__cmpxchg_double_slab(s, page,
2555 		freelist, counters,
2556 		NULL, new.counters,
2557 		"get_freelist"));
2558 
2559 	return freelist;
2560 }
2561 
2562 /*
2563  * Slow path. The lockless freelist is empty or we need to perform
2564  * debugging duties.
2565  *
2566  * Processing is still very fast if new objects have been freed to the
2567  * regular freelist. In that case we simply take over the regular freelist
2568  * as the lockless freelist and zap the regular freelist.
2569  *
2570  * If that is not working then we fall back to the partial lists. We take the
2571  * first element of the freelist as the object to allocate now and move the
2572  * rest of the freelist to the lockless freelist.
2573  *
2574  * And if we were unable to get a new slab from the partial slab lists then
2575  * we need to allocate a new slab. This is the slowest path since it involves
2576  * a call to the page allocator and the setup of a new slab.
2577  *
2578  * Version of __slab_alloc to use when we know that interrupts are
2579  * already disabled (which is the case for bulk allocation).
2580  */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c)2581 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2582 			  unsigned long addr, struct kmem_cache_cpu *c)
2583 {
2584 	void *freelist;
2585 	struct page *page;
2586 
2587 	page = c->page;
2588 	if (!page) {
2589 		/*
2590 		 * if the node is not online or has no normal memory, just
2591 		 * ignore the node constraint
2592 		 */
2593 		if (unlikely(node != NUMA_NO_NODE &&
2594 			     !node_state(node, N_NORMAL_MEMORY)))
2595 			node = NUMA_NO_NODE;
2596 		goto new_slab;
2597 	}
2598 redo:
2599 
2600 	if (unlikely(!node_match(page, node))) {
2601 		/*
2602 		 * same as above but node_match() being false already
2603 		 * implies node != NUMA_NO_NODE
2604 		 */
2605 		if (!node_state(node, N_NORMAL_MEMORY)) {
2606 			node = NUMA_NO_NODE;
2607 			goto redo;
2608 		} else {
2609 			stat(s, ALLOC_NODE_MISMATCH);
2610 			deactivate_slab(s, page, c->freelist, c);
2611 			goto new_slab;
2612 		}
2613 	}
2614 
2615 	/*
2616 	 * By rights, we should be searching for a slab page that was
2617 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2618 	 * information when the page leaves the per-cpu allocator
2619 	 */
2620 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2621 		deactivate_slab(s, page, c->freelist, c);
2622 		goto new_slab;
2623 	}
2624 
2625 	/* must check again c->freelist in case of cpu migration or IRQ */
2626 	freelist = c->freelist;
2627 	if (freelist)
2628 		goto load_freelist;
2629 
2630 	freelist = get_freelist(s, page);
2631 
2632 	if (!freelist) {
2633 		c->page = NULL;
2634 		c->tid = next_tid(c->tid);
2635 		stat(s, DEACTIVATE_BYPASS);
2636 		goto new_slab;
2637 	}
2638 
2639 	stat(s, ALLOC_REFILL);
2640 
2641 load_freelist:
2642 	/*
2643 	 * freelist is pointing to the list of objects to be used.
2644 	 * page is pointing to the page from which the objects are obtained.
2645 	 * That page must be frozen for per cpu allocations to work.
2646 	 */
2647 	VM_BUG_ON(!c->page->frozen);
2648 	c->freelist = get_freepointer(s, freelist);
2649 	c->tid = next_tid(c->tid);
2650 	return freelist;
2651 
2652 new_slab:
2653 
2654 	if (slub_percpu_partial(c)) {
2655 		page = c->page = slub_percpu_partial(c);
2656 		slub_set_percpu_partial(c, page);
2657 		stat(s, CPU_PARTIAL_ALLOC);
2658 		goto redo;
2659 	}
2660 
2661 	freelist = new_slab_objects(s, gfpflags, node, &c);
2662 
2663 	if (unlikely(!freelist)) {
2664 		slab_out_of_memory(s, gfpflags, node);
2665 		return NULL;
2666 	}
2667 
2668 	page = c->page;
2669 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2670 		goto load_freelist;
2671 
2672 	/* Only entered in the debug case */
2673 	if (kmem_cache_debug(s) &&
2674 			!alloc_debug_processing(s, page, freelist, addr))
2675 		goto new_slab;	/* Slab failed checks. Next slab needed */
2676 
2677 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2678 	return freelist;
2679 }
2680 
2681 /*
2682  * Another one that disabled interrupt and compensates for possible
2683  * cpu changes by refetching the per cpu area pointer.
2684  */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c)2685 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2686 			  unsigned long addr, struct kmem_cache_cpu *c)
2687 {
2688 	void *p;
2689 	unsigned long flags;
2690 
2691 	local_irq_save(flags);
2692 #ifdef CONFIG_PREEMPT
2693 	/*
2694 	 * We may have been preempted and rescheduled on a different
2695 	 * cpu before disabling interrupts. Need to reload cpu area
2696 	 * pointer.
2697 	 */
2698 	c = this_cpu_ptr(s->cpu_slab);
2699 #endif
2700 
2701 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2702 	local_irq_restore(flags);
2703 	return p;
2704 }
2705 
2706 /*
2707  * If the object has been wiped upon free, make sure it's fully initialized by
2708  * zeroing out freelist pointer.
2709  */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)2710 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2711 						   void *obj)
2712 {
2713 	if (unlikely(slab_want_init_on_free(s)) && obj)
2714 		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2715 }
2716 
2717 /*
2718  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2719  * have the fastpath folded into their functions. So no function call
2720  * overhead for requests that can be satisfied on the fastpath.
2721  *
2722  * The fastpath works by first checking if the lockless freelist can be used.
2723  * If not then __slab_alloc is called for slow processing.
2724  *
2725  * Otherwise we can simply pick the next object from the lockless free list.
2726  */
slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr)2727 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2728 		gfp_t gfpflags, int node, unsigned long addr)
2729 {
2730 	void *object;
2731 	struct kmem_cache_cpu *c;
2732 	struct page *page;
2733 	unsigned long tid;
2734 
2735 	s = slab_pre_alloc_hook(s, gfpflags);
2736 	if (!s)
2737 		return NULL;
2738 redo:
2739 	/*
2740 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2741 	 * enabled. We may switch back and forth between cpus while
2742 	 * reading from one cpu area. That does not matter as long
2743 	 * as we end up on the original cpu again when doing the cmpxchg.
2744 	 *
2745 	 * We should guarantee that tid and kmem_cache are retrieved on
2746 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2747 	 * to check if it is matched or not.
2748 	 */
2749 	do {
2750 		tid = this_cpu_read(s->cpu_slab->tid);
2751 		c = raw_cpu_ptr(s->cpu_slab);
2752 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2753 		 unlikely(tid != READ_ONCE(c->tid)));
2754 
2755 	/*
2756 	 * Irqless object alloc/free algorithm used here depends on sequence
2757 	 * of fetching cpu_slab's data. tid should be fetched before anything
2758 	 * on c to guarantee that object and page associated with previous tid
2759 	 * won't be used with current tid. If we fetch tid first, object and
2760 	 * page could be one associated with next tid and our alloc/free
2761 	 * request will be failed. In this case, we will retry. So, no problem.
2762 	 */
2763 	barrier();
2764 
2765 	/*
2766 	 * The transaction ids are globally unique per cpu and per operation on
2767 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2768 	 * occurs on the right processor and that there was no operation on the
2769 	 * linked list in between.
2770 	 */
2771 
2772 	object = c->freelist;
2773 	page = c->page;
2774 	if (unlikely(!object || !page || !node_match(page, node))) {
2775 		object = __slab_alloc(s, gfpflags, node, addr, c);
2776 		stat(s, ALLOC_SLOWPATH);
2777 	} else {
2778 		void *next_object = get_freepointer_safe(s, object);
2779 
2780 		/*
2781 		 * The cmpxchg will only match if there was no additional
2782 		 * operation and if we are on the right processor.
2783 		 *
2784 		 * The cmpxchg does the following atomically (without lock
2785 		 * semantics!)
2786 		 * 1. Relocate first pointer to the current per cpu area.
2787 		 * 2. Verify that tid and freelist have not been changed
2788 		 * 3. If they were not changed replace tid and freelist
2789 		 *
2790 		 * Since this is without lock semantics the protection is only
2791 		 * against code executing on this cpu *not* from access by
2792 		 * other cpus.
2793 		 */
2794 		if (unlikely(!this_cpu_cmpxchg_double(
2795 				s->cpu_slab->freelist, s->cpu_slab->tid,
2796 				object, tid,
2797 				next_object, next_tid(tid)))) {
2798 
2799 			note_cmpxchg_failure("slab_alloc", s, tid);
2800 			goto redo;
2801 		}
2802 		prefetch_freepointer(s, next_object);
2803 		stat(s, ALLOC_FASTPATH);
2804 	}
2805 
2806 	maybe_wipe_obj_freeptr(s, object);
2807 
2808 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2809 		memset(object, 0, s->object_size);
2810 
2811 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2812 
2813 	return object;
2814 }
2815 
slab_alloc(struct kmem_cache * s,gfp_t gfpflags,unsigned long addr)2816 static __always_inline void *slab_alloc(struct kmem_cache *s,
2817 		gfp_t gfpflags, unsigned long addr)
2818 {
2819 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2820 }
2821 
kmem_cache_alloc(struct kmem_cache * s,gfp_t gfpflags)2822 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2823 {
2824 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2825 
2826 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2827 				s->size, gfpflags);
2828 
2829 	return ret;
2830 }
2831 EXPORT_SYMBOL(kmem_cache_alloc);
2832 
2833 #ifdef CONFIG_TRACING
kmem_cache_alloc_trace(struct kmem_cache * s,gfp_t gfpflags,size_t size)2834 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2835 {
2836 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2837 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2838 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2839 	return ret;
2840 }
2841 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2842 #endif
2843 
2844 #ifdef CONFIG_NUMA
kmem_cache_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node)2845 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2846 {
2847 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2848 
2849 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2850 				    s->object_size, s->size, gfpflags, node);
2851 
2852 	return ret;
2853 }
2854 EXPORT_SYMBOL(kmem_cache_alloc_node);
2855 
2856 #ifdef CONFIG_TRACING
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)2857 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2858 				    gfp_t gfpflags,
2859 				    int node, size_t size)
2860 {
2861 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2862 
2863 	trace_kmalloc_node(_RET_IP_, ret,
2864 			   size, s->size, gfpflags, node);
2865 
2866 	ret = kasan_kmalloc(s, ret, size, gfpflags);
2867 	return ret;
2868 }
2869 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2870 #endif
2871 #endif	/* CONFIG_NUMA */
2872 
2873 /*
2874  * Slow path handling. This may still be called frequently since objects
2875  * have a longer lifetime than the cpu slabs in most processing loads.
2876  *
2877  * So we still attempt to reduce cache line usage. Just take the slab
2878  * lock and free the item. If there is no additional partial page
2879  * handling required then we can return immediately.
2880  */
__slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)2881 static void __slab_free(struct kmem_cache *s, struct page *page,
2882 			void *head, void *tail, int cnt,
2883 			unsigned long addr)
2884 
2885 {
2886 	void *prior;
2887 	int was_frozen;
2888 	struct page new;
2889 	unsigned long counters;
2890 	struct kmem_cache_node *n = NULL;
2891 	unsigned long flags;
2892 
2893 	stat(s, FREE_SLOWPATH);
2894 
2895 	if (kmem_cache_debug(s) &&
2896 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2897 		return;
2898 
2899 	do {
2900 		if (unlikely(n)) {
2901 			spin_unlock_irqrestore(&n->list_lock, flags);
2902 			n = NULL;
2903 		}
2904 		prior = page->freelist;
2905 		counters = page->counters;
2906 		set_freepointer(s, tail, prior);
2907 		new.counters = counters;
2908 		was_frozen = new.frozen;
2909 		new.inuse -= cnt;
2910 		if ((!new.inuse || !prior) && !was_frozen) {
2911 
2912 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2913 
2914 				/*
2915 				 * Slab was on no list before and will be
2916 				 * partially empty
2917 				 * We can defer the list move and instead
2918 				 * freeze it.
2919 				 */
2920 				new.frozen = 1;
2921 
2922 			} else { /* Needs to be taken off a list */
2923 
2924 				n = get_node(s, page_to_nid(page));
2925 				/*
2926 				 * Speculatively acquire the list_lock.
2927 				 * If the cmpxchg does not succeed then we may
2928 				 * drop the list_lock without any processing.
2929 				 *
2930 				 * Otherwise the list_lock will synchronize with
2931 				 * other processors updating the list of slabs.
2932 				 */
2933 				spin_lock_irqsave(&n->list_lock, flags);
2934 
2935 			}
2936 		}
2937 
2938 	} while (!cmpxchg_double_slab(s, page,
2939 		prior, counters,
2940 		head, new.counters,
2941 		"__slab_free"));
2942 
2943 	if (likely(!n)) {
2944 
2945 		/*
2946 		 * If we just froze the page then put it onto the
2947 		 * per cpu partial list.
2948 		 */
2949 		if (new.frozen && !was_frozen) {
2950 			put_cpu_partial(s, page, 1);
2951 			stat(s, CPU_PARTIAL_FREE);
2952 		}
2953 		/*
2954 		 * The list lock was not taken therefore no list
2955 		 * activity can be necessary.
2956 		 */
2957 		if (was_frozen)
2958 			stat(s, FREE_FROZEN);
2959 		return;
2960 	}
2961 
2962 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2963 		goto slab_empty;
2964 
2965 	/*
2966 	 * Objects left in the slab. If it was not on the partial list before
2967 	 * then add it.
2968 	 */
2969 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2970 		remove_full(s, n, page);
2971 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2972 		stat(s, FREE_ADD_PARTIAL);
2973 	}
2974 	spin_unlock_irqrestore(&n->list_lock, flags);
2975 	return;
2976 
2977 slab_empty:
2978 	if (prior) {
2979 		/*
2980 		 * Slab on the partial list.
2981 		 */
2982 		remove_partial(n, page);
2983 		stat(s, FREE_REMOVE_PARTIAL);
2984 	} else {
2985 		/* Slab must be on the full list */
2986 		remove_full(s, n, page);
2987 	}
2988 
2989 	spin_unlock_irqrestore(&n->list_lock, flags);
2990 	stat(s, FREE_SLAB);
2991 	discard_slab(s, page);
2992 }
2993 
2994 /*
2995  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2996  * can perform fastpath freeing without additional function calls.
2997  *
2998  * The fastpath is only possible if we are freeing to the current cpu slab
2999  * of this processor. This typically the case if we have just allocated
3000  * the item before.
3001  *
3002  * If fastpath is not possible then fall back to __slab_free where we deal
3003  * with all sorts of special processing.
3004  *
3005  * Bulk free of a freelist with several objects (all pointing to the
3006  * same page) possible by specifying head and tail ptr, plus objects
3007  * count (cnt). Bulk free indicated by tail pointer being set.
3008  */
do_slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)3009 static __always_inline void do_slab_free(struct kmem_cache *s,
3010 				struct page *page, void *head, void *tail,
3011 				int cnt, unsigned long addr)
3012 {
3013 	void *tail_obj = tail ? : head;
3014 	struct kmem_cache_cpu *c;
3015 	unsigned long tid;
3016 redo:
3017 	/*
3018 	 * Determine the currently cpus per cpu slab.
3019 	 * The cpu may change afterward. However that does not matter since
3020 	 * data is retrieved via this pointer. If we are on the same cpu
3021 	 * during the cmpxchg then the free will succeed.
3022 	 */
3023 	do {
3024 		tid = this_cpu_read(s->cpu_slab->tid);
3025 		c = raw_cpu_ptr(s->cpu_slab);
3026 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
3027 		 unlikely(tid != READ_ONCE(c->tid)));
3028 
3029 	/* Same with comment on barrier() in slab_alloc_node() */
3030 	barrier();
3031 
3032 	if (likely(page == c->page)) {
3033 		void **freelist = READ_ONCE(c->freelist);
3034 
3035 		set_freepointer(s, tail_obj, freelist);
3036 
3037 		if (unlikely(!this_cpu_cmpxchg_double(
3038 				s->cpu_slab->freelist, s->cpu_slab->tid,
3039 				freelist, tid,
3040 				head, next_tid(tid)))) {
3041 
3042 			note_cmpxchg_failure("slab_free", s, tid);
3043 			goto redo;
3044 		}
3045 		stat(s, FREE_FASTPATH);
3046 	} else
3047 		__slab_free(s, page, head, tail_obj, cnt, addr);
3048 
3049 }
3050 
slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)3051 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3052 				      void *head, void *tail, int cnt,
3053 				      unsigned long addr)
3054 {
3055 	/*
3056 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3057 	 * to remove objects, whose reuse must be delayed.
3058 	 */
3059 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3060 		do_slab_free(s, page, head, tail, cnt, addr);
3061 }
3062 
3063 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)3064 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3065 {
3066 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3067 }
3068 #endif
3069 
kmem_cache_free(struct kmem_cache * s,void * x)3070 void kmem_cache_free(struct kmem_cache *s, void *x)
3071 {
3072 	s = cache_from_obj(s, x);
3073 	if (!s)
3074 		return;
3075 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3076 	trace_kmem_cache_free(_RET_IP_, x);
3077 }
3078 EXPORT_SYMBOL(kmem_cache_free);
3079 
3080 struct detached_freelist {
3081 	struct page *page;
3082 	void *tail;
3083 	void *freelist;
3084 	int cnt;
3085 	struct kmem_cache *s;
3086 };
3087 
3088 /*
3089  * This function progressively scans the array with free objects (with
3090  * a limited look ahead) and extract objects belonging to the same
3091  * page.  It builds a detached freelist directly within the given
3092  * page/objects.  This can happen without any need for
3093  * synchronization, because the objects are owned by running process.
3094  * The freelist is build up as a single linked list in the objects.
3095  * The idea is, that this detached freelist can then be bulk
3096  * transferred to the real freelist(s), but only requiring a single
3097  * synchronization primitive.  Look ahead in the array is limited due
3098  * to performance reasons.
3099  */
3100 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)3101 int build_detached_freelist(struct kmem_cache *s, size_t size,
3102 			    void **p, struct detached_freelist *df)
3103 {
3104 	size_t first_skipped_index = 0;
3105 	int lookahead = 3;
3106 	void *object;
3107 	struct page *page;
3108 
3109 	/* Always re-init detached_freelist */
3110 	df->page = NULL;
3111 
3112 	do {
3113 		object = p[--size];
3114 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3115 	} while (!object && size);
3116 
3117 	if (!object)
3118 		return 0;
3119 
3120 	page = virt_to_head_page(object);
3121 	if (!s) {
3122 		/* Handle kalloc'ed objects */
3123 		if (unlikely(!PageSlab(page))) {
3124 			BUG_ON(!PageCompound(page));
3125 			kfree_hook(object);
3126 			__free_pages(page, compound_order(page));
3127 			p[size] = NULL; /* mark object processed */
3128 			return size;
3129 		}
3130 		/* Derive kmem_cache from object */
3131 		df->s = page->slab_cache;
3132 	} else {
3133 		df->s = cache_from_obj(s, object); /* Support for memcg */
3134 	}
3135 
3136 	/* Start new detached freelist */
3137 	df->page = page;
3138 	set_freepointer(df->s, object, NULL);
3139 	df->tail = object;
3140 	df->freelist = object;
3141 	p[size] = NULL; /* mark object processed */
3142 	df->cnt = 1;
3143 
3144 	while (size) {
3145 		object = p[--size];
3146 		if (!object)
3147 			continue; /* Skip processed objects */
3148 
3149 		/* df->page is always set at this point */
3150 		if (df->page == virt_to_head_page(object)) {
3151 			/* Opportunity build freelist */
3152 			set_freepointer(df->s, object, df->freelist);
3153 			df->freelist = object;
3154 			df->cnt++;
3155 			p[size] = NULL; /* mark object processed */
3156 
3157 			continue;
3158 		}
3159 
3160 		/* Limit look ahead search */
3161 		if (!--lookahead)
3162 			break;
3163 
3164 		if (!first_skipped_index)
3165 			first_skipped_index = size + 1;
3166 	}
3167 
3168 	return first_skipped_index;
3169 }
3170 
3171 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)3172 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3173 {
3174 	if (WARN_ON(!size))
3175 		return;
3176 
3177 	do {
3178 		struct detached_freelist df;
3179 
3180 		size = build_detached_freelist(s, size, p, &df);
3181 		if (!df.page)
3182 			continue;
3183 
3184 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3185 	} while (likely(size));
3186 }
3187 EXPORT_SYMBOL(kmem_cache_free_bulk);
3188 
3189 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)3190 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3191 			  void **p)
3192 {
3193 	struct kmem_cache_cpu *c;
3194 	int i;
3195 
3196 	/* memcg and kmem_cache debug support */
3197 	s = slab_pre_alloc_hook(s, flags);
3198 	if (unlikely(!s))
3199 		return false;
3200 	/*
3201 	 * Drain objects in the per cpu slab, while disabling local
3202 	 * IRQs, which protects against PREEMPT and interrupts
3203 	 * handlers invoking normal fastpath.
3204 	 */
3205 	local_irq_disable();
3206 	c = this_cpu_ptr(s->cpu_slab);
3207 
3208 	for (i = 0; i < size; i++) {
3209 		void *object = c->freelist;
3210 
3211 		if (unlikely(!object)) {
3212 			/*
3213 			 * We may have removed an object from c->freelist using
3214 			 * the fastpath in the previous iteration; in that case,
3215 			 * c->tid has not been bumped yet.
3216 			 * Since ___slab_alloc() may reenable interrupts while
3217 			 * allocating memory, we should bump c->tid now.
3218 			 */
3219 			c->tid = next_tid(c->tid);
3220 
3221 			/*
3222 			 * Invoking slow path likely have side-effect
3223 			 * of re-populating per CPU c->freelist
3224 			 */
3225 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3226 					    _RET_IP_, c);
3227 			if (unlikely(!p[i]))
3228 				goto error;
3229 
3230 			c = this_cpu_ptr(s->cpu_slab);
3231 			maybe_wipe_obj_freeptr(s, p[i]);
3232 
3233 			continue; /* goto for-loop */
3234 		}
3235 		c->freelist = get_freepointer(s, object);
3236 		p[i] = object;
3237 		maybe_wipe_obj_freeptr(s, p[i]);
3238 	}
3239 	c->tid = next_tid(c->tid);
3240 	local_irq_enable();
3241 
3242 	/* Clear memory outside IRQ disabled fastpath loop */
3243 	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3244 		int j;
3245 
3246 		for (j = 0; j < i; j++)
3247 			memset(p[j], 0, s->object_size);
3248 	}
3249 
3250 	/* memcg and kmem_cache debug support */
3251 	slab_post_alloc_hook(s, flags, size, p);
3252 	return i;
3253 error:
3254 	local_irq_enable();
3255 	slab_post_alloc_hook(s, flags, i, p);
3256 	__kmem_cache_free_bulk(s, i, p);
3257 	return 0;
3258 }
3259 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3260 
3261 
3262 /*
3263  * Object placement in a slab is made very easy because we always start at
3264  * offset 0. If we tune the size of the object to the alignment then we can
3265  * get the required alignment by putting one properly sized object after
3266  * another.
3267  *
3268  * Notice that the allocation order determines the sizes of the per cpu
3269  * caches. Each processor has always one slab available for allocations.
3270  * Increasing the allocation order reduces the number of times that slabs
3271  * must be moved on and off the partial lists and is therefore a factor in
3272  * locking overhead.
3273  */
3274 
3275 /*
3276  * Mininum / Maximum order of slab pages. This influences locking overhead
3277  * and slab fragmentation. A higher order reduces the number of partial slabs
3278  * and increases the number of allocations possible without having to
3279  * take the list_lock.
3280  */
3281 static unsigned int slub_min_order;
3282 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3283 static unsigned int slub_min_objects;
3284 
3285 /*
3286  * Calculate the order of allocation given an slab object size.
3287  *
3288  * The order of allocation has significant impact on performance and other
3289  * system components. Generally order 0 allocations should be preferred since
3290  * order 0 does not cause fragmentation in the page allocator. Larger objects
3291  * be problematic to put into order 0 slabs because there may be too much
3292  * unused space left. We go to a higher order if more than 1/16th of the slab
3293  * would be wasted.
3294  *
3295  * In order to reach satisfactory performance we must ensure that a minimum
3296  * number of objects is in one slab. Otherwise we may generate too much
3297  * activity on the partial lists which requires taking the list_lock. This is
3298  * less a concern for large slabs though which are rarely used.
3299  *
3300  * slub_max_order specifies the order where we begin to stop considering the
3301  * number of objects in a slab as critical. If we reach slub_max_order then
3302  * we try to keep the page order as low as possible. So we accept more waste
3303  * of space in favor of a small page order.
3304  *
3305  * Higher order allocations also allow the placement of more objects in a
3306  * slab and thereby reduce object handling overhead. If the user has
3307  * requested a higher mininum order then we start with that one instead of
3308  * the smallest order which will fit the object.
3309  */
slab_order(unsigned int size,unsigned int min_objects,unsigned int max_order,unsigned int fract_leftover)3310 static inline unsigned int slab_order(unsigned int size,
3311 		unsigned int min_objects, unsigned int max_order,
3312 		unsigned int fract_leftover)
3313 {
3314 	unsigned int min_order = slub_min_order;
3315 	unsigned int order;
3316 
3317 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3318 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3319 
3320 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3321 			order <= max_order; order++) {
3322 
3323 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3324 		unsigned int rem;
3325 
3326 		rem = slab_size % size;
3327 
3328 		if (rem <= slab_size / fract_leftover)
3329 			break;
3330 	}
3331 
3332 	return order;
3333 }
3334 
calculate_order(unsigned int size)3335 static inline int calculate_order(unsigned int size)
3336 {
3337 	unsigned int order;
3338 	unsigned int min_objects;
3339 	unsigned int max_objects;
3340 
3341 	/*
3342 	 * Attempt to find best configuration for a slab. This
3343 	 * works by first attempting to generate a layout with
3344 	 * the best configuration and backing off gradually.
3345 	 *
3346 	 * First we increase the acceptable waste in a slab. Then
3347 	 * we reduce the minimum objects required in a slab.
3348 	 */
3349 	min_objects = slub_min_objects;
3350 	if (!min_objects)
3351 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3352 	max_objects = order_objects(slub_max_order, size);
3353 	min_objects = min(min_objects, max_objects);
3354 
3355 	while (min_objects > 1) {
3356 		unsigned int fraction;
3357 
3358 		fraction = 16;
3359 		while (fraction >= 4) {
3360 			order = slab_order(size, min_objects,
3361 					slub_max_order, fraction);
3362 			if (order <= slub_max_order)
3363 				return order;
3364 			fraction /= 2;
3365 		}
3366 		min_objects--;
3367 	}
3368 
3369 	/*
3370 	 * We were unable to place multiple objects in a slab. Now
3371 	 * lets see if we can place a single object there.
3372 	 */
3373 	order = slab_order(size, 1, slub_max_order, 1);
3374 	if (order <= slub_max_order)
3375 		return order;
3376 
3377 	/*
3378 	 * Doh this slab cannot be placed using slub_max_order.
3379 	 */
3380 	order = slab_order(size, 1, MAX_ORDER, 1);
3381 	if (order < MAX_ORDER)
3382 		return order;
3383 	return -ENOSYS;
3384 }
3385 
3386 static void
init_kmem_cache_node(struct kmem_cache_node * n)3387 init_kmem_cache_node(struct kmem_cache_node *n)
3388 {
3389 	n->nr_partial = 0;
3390 	spin_lock_init(&n->list_lock);
3391 	INIT_LIST_HEAD(&n->partial);
3392 #ifdef CONFIG_SLUB_DEBUG
3393 	atomic_long_set(&n->nr_slabs, 0);
3394 	atomic_long_set(&n->total_objects, 0);
3395 	INIT_LIST_HEAD(&n->full);
3396 #endif
3397 }
3398 
alloc_kmem_cache_cpus(struct kmem_cache * s)3399 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3400 {
3401 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3402 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3403 
3404 	/*
3405 	 * Must align to double word boundary for the double cmpxchg
3406 	 * instructions to work; see __pcpu_double_call_return_bool().
3407 	 */
3408 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3409 				     2 * sizeof(void *));
3410 
3411 	if (!s->cpu_slab)
3412 		return 0;
3413 
3414 	init_kmem_cache_cpus(s);
3415 
3416 	return 1;
3417 }
3418 
3419 static struct kmem_cache *kmem_cache_node;
3420 
3421 /*
3422  * No kmalloc_node yet so do it by hand. We know that this is the first
3423  * slab on the node for this slabcache. There are no concurrent accesses
3424  * possible.
3425  *
3426  * Note that this function only works on the kmem_cache_node
3427  * when allocating for the kmem_cache_node. This is used for bootstrapping
3428  * memory on a fresh node that has no slab structures yet.
3429  */
early_kmem_cache_node_alloc(int node)3430 static void early_kmem_cache_node_alloc(int node)
3431 {
3432 	struct page *page;
3433 	struct kmem_cache_node *n;
3434 
3435 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3436 
3437 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3438 
3439 	BUG_ON(!page);
3440 	if (page_to_nid(page) != node) {
3441 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3442 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3443 	}
3444 
3445 	n = page->freelist;
3446 	BUG_ON(!n);
3447 #ifdef CONFIG_SLUB_DEBUG
3448 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3449 	init_tracking(kmem_cache_node, n);
3450 #endif
3451 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3452 		      GFP_KERNEL);
3453 	page->freelist = get_freepointer(kmem_cache_node, n);
3454 	page->inuse = 1;
3455 	page->frozen = 0;
3456 	kmem_cache_node->node[node] = n;
3457 	init_kmem_cache_node(n);
3458 	inc_slabs_node(kmem_cache_node, node, page->objects);
3459 
3460 	/*
3461 	 * No locks need to be taken here as it has just been
3462 	 * initialized and there is no concurrent access.
3463 	 */
3464 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3465 }
3466 
free_kmem_cache_nodes(struct kmem_cache * s)3467 static void free_kmem_cache_nodes(struct kmem_cache *s)
3468 {
3469 	int node;
3470 	struct kmem_cache_node *n;
3471 
3472 	for_each_kmem_cache_node(s, node, n) {
3473 		s->node[node] = NULL;
3474 		kmem_cache_free(kmem_cache_node, n);
3475 	}
3476 }
3477 
__kmem_cache_release(struct kmem_cache * s)3478 void __kmem_cache_release(struct kmem_cache *s)
3479 {
3480 	cache_random_seq_destroy(s);
3481 	free_percpu(s->cpu_slab);
3482 	free_kmem_cache_nodes(s);
3483 }
3484 
init_kmem_cache_nodes(struct kmem_cache * s)3485 static int init_kmem_cache_nodes(struct kmem_cache *s)
3486 {
3487 	int node;
3488 
3489 	for_each_node_state(node, N_NORMAL_MEMORY) {
3490 		struct kmem_cache_node *n;
3491 
3492 		if (slab_state == DOWN) {
3493 			early_kmem_cache_node_alloc(node);
3494 			continue;
3495 		}
3496 		n = kmem_cache_alloc_node(kmem_cache_node,
3497 						GFP_KERNEL, node);
3498 
3499 		if (!n) {
3500 			free_kmem_cache_nodes(s);
3501 			return 0;
3502 		}
3503 
3504 		init_kmem_cache_node(n);
3505 		s->node[node] = n;
3506 	}
3507 	return 1;
3508 }
3509 
set_min_partial(struct kmem_cache * s,unsigned long min)3510 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3511 {
3512 	if (min < MIN_PARTIAL)
3513 		min = MIN_PARTIAL;
3514 	else if (min > MAX_PARTIAL)
3515 		min = MAX_PARTIAL;
3516 	s->min_partial = min;
3517 }
3518 
set_cpu_partial(struct kmem_cache * s)3519 static void set_cpu_partial(struct kmem_cache *s)
3520 {
3521 #ifdef CONFIG_SLUB_CPU_PARTIAL
3522 	/*
3523 	 * cpu_partial determined the maximum number of objects kept in the
3524 	 * per cpu partial lists of a processor.
3525 	 *
3526 	 * Per cpu partial lists mainly contain slabs that just have one
3527 	 * object freed. If they are used for allocation then they can be
3528 	 * filled up again with minimal effort. The slab will never hit the
3529 	 * per node partial lists and therefore no locking will be required.
3530 	 *
3531 	 * This setting also determines
3532 	 *
3533 	 * A) The number of objects from per cpu partial slabs dumped to the
3534 	 *    per node list when we reach the limit.
3535 	 * B) The number of objects in cpu partial slabs to extract from the
3536 	 *    per node list when we run out of per cpu objects. We only fetch
3537 	 *    50% to keep some capacity around for frees.
3538 	 */
3539 	if (!kmem_cache_has_cpu_partial(s))
3540 		s->cpu_partial = 0;
3541 	else if (s->size >= PAGE_SIZE)
3542 		s->cpu_partial = 2;
3543 	else if (s->size >= 1024)
3544 		s->cpu_partial = 6;
3545 	else if (s->size >= 256)
3546 		s->cpu_partial = 13;
3547 	else
3548 		s->cpu_partial = 30;
3549 #endif
3550 }
3551 
3552 /*
3553  * calculate_sizes() determines the order and the distribution of data within
3554  * a slab object.
3555  */
calculate_sizes(struct kmem_cache * s,int forced_order)3556 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3557 {
3558 	slab_flags_t flags = s->flags;
3559 	unsigned int size = s->object_size;
3560 	unsigned int order;
3561 
3562 	/*
3563 	 * Round up object size to the next word boundary. We can only
3564 	 * place the free pointer at word boundaries and this determines
3565 	 * the possible location of the free pointer.
3566 	 */
3567 	size = ALIGN(size, sizeof(void *));
3568 
3569 #ifdef CONFIG_SLUB_DEBUG
3570 	/*
3571 	 * Determine if we can poison the object itself. If the user of
3572 	 * the slab may touch the object after free or before allocation
3573 	 * then we should never poison the object itself.
3574 	 */
3575 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3576 			!s->ctor)
3577 		s->flags |= __OBJECT_POISON;
3578 	else
3579 		s->flags &= ~__OBJECT_POISON;
3580 
3581 
3582 	/*
3583 	 * If we are Redzoning then check if there is some space between the
3584 	 * end of the object and the free pointer. If not then add an
3585 	 * additional word to have some bytes to store Redzone information.
3586 	 */
3587 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3588 		size += sizeof(void *);
3589 #endif
3590 
3591 	/*
3592 	 * With that we have determined the number of bytes in actual use
3593 	 * by the object. This is the potential offset to the free pointer.
3594 	 */
3595 	s->inuse = size;
3596 
3597 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3598 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3599 	    s->ctor) {
3600 		/*
3601 		 * Relocate free pointer after the object if it is not
3602 		 * permitted to overwrite the first word of the object on
3603 		 * kmem_cache_free.
3604 		 *
3605 		 * This is the case if we do RCU, have a constructor or
3606 		 * destructor, are poisoning the objects, or are
3607 		 * redzoning an object smaller than sizeof(void *).
3608 		 *
3609 		 * The assumption that s->offset >= s->inuse means free
3610 		 * pointer is outside of the object is used in the
3611 		 * freeptr_outside_object() function. If that is no
3612 		 * longer true, the function needs to be modified.
3613 		 */
3614 		s->offset = size;
3615 		size += sizeof(void *);
3616 	}
3617 
3618 #ifdef CONFIG_SLUB_DEBUG
3619 	if (flags & SLAB_STORE_USER)
3620 		/*
3621 		 * Need to store information about allocs and frees after
3622 		 * the object.
3623 		 */
3624 		size += 2 * sizeof(struct track);
3625 #endif
3626 
3627 	kasan_cache_create(s, &size, &s->flags);
3628 #ifdef CONFIG_SLUB_DEBUG
3629 	if (flags & SLAB_RED_ZONE) {
3630 		/*
3631 		 * Add some empty padding so that we can catch
3632 		 * overwrites from earlier objects rather than let
3633 		 * tracking information or the free pointer be
3634 		 * corrupted if a user writes before the start
3635 		 * of the object.
3636 		 */
3637 		size += sizeof(void *);
3638 
3639 		s->red_left_pad = sizeof(void *);
3640 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3641 		size += s->red_left_pad;
3642 	}
3643 #endif
3644 
3645 	/*
3646 	 * SLUB stores one object immediately after another beginning from
3647 	 * offset 0. In order to align the objects we have to simply size
3648 	 * each object to conform to the alignment.
3649 	 */
3650 	size = ALIGN(size, s->align);
3651 	s->size = size;
3652 	if (forced_order >= 0)
3653 		order = forced_order;
3654 	else
3655 		order = calculate_order(size);
3656 
3657 	if ((int)order < 0)
3658 		return 0;
3659 
3660 	s->allocflags = 0;
3661 	if (order)
3662 		s->allocflags |= __GFP_COMP;
3663 
3664 	if (s->flags & SLAB_CACHE_DMA)
3665 		s->allocflags |= GFP_DMA;
3666 
3667 	if (s->flags & SLAB_CACHE_DMA32)
3668 		s->allocflags |= GFP_DMA32;
3669 
3670 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3671 		s->allocflags |= __GFP_RECLAIMABLE;
3672 
3673 	/*
3674 	 * Determine the number of objects per slab
3675 	 */
3676 	s->oo = oo_make(order, size);
3677 	s->min = oo_make(get_order(size), size);
3678 	if (oo_objects(s->oo) > oo_objects(s->max))
3679 		s->max = s->oo;
3680 
3681 	return !!oo_objects(s->oo);
3682 }
3683 
kmem_cache_open(struct kmem_cache * s,slab_flags_t flags)3684 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3685 {
3686 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3687 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3688 	s->random = get_random_long();
3689 #endif
3690 
3691 	if (!calculate_sizes(s, -1))
3692 		goto error;
3693 	if (disable_higher_order_debug) {
3694 		/*
3695 		 * Disable debugging flags that store metadata if the min slab
3696 		 * order increased.
3697 		 */
3698 		if (get_order(s->size) > get_order(s->object_size)) {
3699 			s->flags &= ~DEBUG_METADATA_FLAGS;
3700 			s->offset = 0;
3701 			if (!calculate_sizes(s, -1))
3702 				goto error;
3703 		}
3704 	}
3705 
3706 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3707     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3708 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3709 		/* Enable fast mode */
3710 		s->flags |= __CMPXCHG_DOUBLE;
3711 #endif
3712 
3713 	/*
3714 	 * The larger the object size is, the more pages we want on the partial
3715 	 * list to avoid pounding the page allocator excessively.
3716 	 */
3717 	set_min_partial(s, ilog2(s->size) / 2);
3718 
3719 	set_cpu_partial(s);
3720 
3721 #ifdef CONFIG_NUMA
3722 	s->remote_node_defrag_ratio = 1000;
3723 #endif
3724 
3725 	/* Initialize the pre-computed randomized freelist if slab is up */
3726 	if (slab_state >= UP) {
3727 		if (init_cache_random_seq(s))
3728 			goto error;
3729 	}
3730 
3731 	if (!init_kmem_cache_nodes(s))
3732 		goto error;
3733 
3734 	if (alloc_kmem_cache_cpus(s))
3735 		return 0;
3736 
3737 error:
3738 	__kmem_cache_release(s);
3739 	return -EINVAL;
3740 }
3741 
list_slab_objects(struct kmem_cache * s,struct page * page,const char * text)3742 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3743 							const char *text)
3744 {
3745 #ifdef CONFIG_SLUB_DEBUG
3746 	void *addr = page_address(page);
3747 	void *p;
3748 	unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3749 	if (!map)
3750 		return;
3751 	slab_err(s, page, text, s->name);
3752 	slab_lock(page);
3753 
3754 	get_map(s, page, map);
3755 	for_each_object(p, s, addr, page->objects) {
3756 
3757 		if (!test_bit(slab_index(p, s, addr), map)) {
3758 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3759 			print_tracking(s, p);
3760 		}
3761 	}
3762 	slab_unlock(page);
3763 	bitmap_free(map);
3764 #endif
3765 }
3766 
3767 /*
3768  * Attempt to free all partial slabs on a node.
3769  * This is called from __kmem_cache_shutdown(). We must take list_lock
3770  * because sysfs file might still access partial list after the shutdowning.
3771  */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)3772 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3773 {
3774 	LIST_HEAD(discard);
3775 	struct page *page, *h;
3776 
3777 	BUG_ON(irqs_disabled());
3778 	spin_lock_irq(&n->list_lock);
3779 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3780 		if (!page->inuse) {
3781 			remove_partial(n, page);
3782 			list_add(&page->slab_list, &discard);
3783 		} else {
3784 			list_slab_objects(s, page,
3785 			"Objects remaining in %s on __kmem_cache_shutdown()");
3786 		}
3787 	}
3788 	spin_unlock_irq(&n->list_lock);
3789 
3790 	list_for_each_entry_safe(page, h, &discard, slab_list)
3791 		discard_slab(s, page);
3792 }
3793 
__kmem_cache_empty(struct kmem_cache * s)3794 bool __kmem_cache_empty(struct kmem_cache *s)
3795 {
3796 	int node;
3797 	struct kmem_cache_node *n;
3798 
3799 	for_each_kmem_cache_node(s, node, n)
3800 		if (n->nr_partial || slabs_node(s, node))
3801 			return false;
3802 	return true;
3803 }
3804 
3805 /*
3806  * Release all resources used by a slab cache.
3807  */
__kmem_cache_shutdown(struct kmem_cache * s)3808 int __kmem_cache_shutdown(struct kmem_cache *s)
3809 {
3810 	int node;
3811 	struct kmem_cache_node *n;
3812 
3813 	flush_all(s);
3814 	/* Attempt to free all objects */
3815 	for_each_kmem_cache_node(s, node, n) {
3816 		free_partial(s, n);
3817 		if (n->nr_partial || slabs_node(s, node))
3818 			return 1;
3819 	}
3820 	sysfs_slab_remove(s);
3821 	return 0;
3822 }
3823 
3824 /********************************************************************
3825  *		Kmalloc subsystem
3826  *******************************************************************/
3827 
setup_slub_min_order(char * str)3828 static int __init setup_slub_min_order(char *str)
3829 {
3830 	get_option(&str, (int *)&slub_min_order);
3831 
3832 	return 1;
3833 }
3834 
3835 __setup("slub_min_order=", setup_slub_min_order);
3836 
setup_slub_max_order(char * str)3837 static int __init setup_slub_max_order(char *str)
3838 {
3839 	get_option(&str, (int *)&slub_max_order);
3840 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3841 
3842 	return 1;
3843 }
3844 
3845 __setup("slub_max_order=", setup_slub_max_order);
3846 
setup_slub_min_objects(char * str)3847 static int __init setup_slub_min_objects(char *str)
3848 {
3849 	get_option(&str, (int *)&slub_min_objects);
3850 
3851 	return 1;
3852 }
3853 
3854 __setup("slub_min_objects=", setup_slub_min_objects);
3855 
__kmalloc(size_t size,gfp_t flags)3856 void *__kmalloc(size_t size, gfp_t flags)
3857 {
3858 	struct kmem_cache *s;
3859 	void *ret;
3860 
3861 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3862 		return kmalloc_large(size, flags);
3863 
3864 	s = kmalloc_slab(size, flags);
3865 
3866 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3867 		return s;
3868 
3869 	ret = slab_alloc(s, flags, _RET_IP_);
3870 
3871 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3872 
3873 	ret = kasan_kmalloc(s, ret, size, flags);
3874 
3875 	return ret;
3876 }
3877 EXPORT_SYMBOL(__kmalloc);
3878 
3879 #ifdef CONFIG_NUMA
kmalloc_large_node(size_t size,gfp_t flags,int node)3880 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3881 {
3882 	struct page *page;
3883 	void *ptr = NULL;
3884 	unsigned int order = get_order(size);
3885 
3886 	flags |= __GFP_COMP;
3887 	page = alloc_pages_node(node, flags, order);
3888 	if (page) {
3889 		ptr = page_address(page);
3890 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3891 				    1 << order);
3892 	}
3893 
3894 	return kmalloc_large_node_hook(ptr, size, flags);
3895 }
3896 
__kmalloc_node(size_t size,gfp_t flags,int node)3897 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3898 {
3899 	struct kmem_cache *s;
3900 	void *ret;
3901 
3902 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3903 		ret = kmalloc_large_node(size, flags, node);
3904 
3905 		trace_kmalloc_node(_RET_IP_, ret,
3906 				   size, PAGE_SIZE << get_order(size),
3907 				   flags, node);
3908 
3909 		return ret;
3910 	}
3911 
3912 	s = kmalloc_slab(size, flags);
3913 
3914 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3915 		return s;
3916 
3917 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3918 
3919 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3920 
3921 	ret = kasan_kmalloc(s, ret, size, flags);
3922 
3923 	return ret;
3924 }
3925 EXPORT_SYMBOL(__kmalloc_node);
3926 #endif	/* CONFIG_NUMA */
3927 
3928 #ifdef CONFIG_HARDENED_USERCOPY
3929 /*
3930  * Rejects incorrectly sized objects and objects that are to be copied
3931  * to/from userspace but do not fall entirely within the containing slab
3932  * cache's usercopy region.
3933  *
3934  * Returns NULL if check passes, otherwise const char * to name of cache
3935  * to indicate an error.
3936  */
__check_heap_object(const void * ptr,unsigned long n,struct page * page,bool to_user)3937 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3938 			 bool to_user)
3939 {
3940 	struct kmem_cache *s;
3941 	unsigned int offset;
3942 	size_t object_size;
3943 
3944 	ptr = kasan_reset_tag(ptr);
3945 
3946 	/* Find object and usable object size. */
3947 	s = page->slab_cache;
3948 
3949 	/* Reject impossible pointers. */
3950 	if (ptr < page_address(page))
3951 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3952 			       to_user, 0, n);
3953 
3954 	/* Find offset within object. */
3955 	offset = (ptr - page_address(page)) % s->size;
3956 
3957 	/* Adjust for redzone and reject if within the redzone. */
3958 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3959 		if (offset < s->red_left_pad)
3960 			usercopy_abort("SLUB object in left red zone",
3961 				       s->name, to_user, offset, n);
3962 		offset -= s->red_left_pad;
3963 	}
3964 
3965 	/* Allow address range falling entirely within usercopy region. */
3966 	if (offset >= s->useroffset &&
3967 	    offset - s->useroffset <= s->usersize &&
3968 	    n <= s->useroffset - offset + s->usersize)
3969 		return;
3970 
3971 	/*
3972 	 * If the copy is still within the allocated object, produce
3973 	 * a warning instead of rejecting the copy. This is intended
3974 	 * to be a temporary method to find any missing usercopy
3975 	 * whitelists.
3976 	 */
3977 	object_size = slab_ksize(s);
3978 	if (usercopy_fallback &&
3979 	    offset <= object_size && n <= object_size - offset) {
3980 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3981 		return;
3982 	}
3983 
3984 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3985 }
3986 #endif /* CONFIG_HARDENED_USERCOPY */
3987 
__ksize(const void * object)3988 size_t __ksize(const void *object)
3989 {
3990 	struct page *page;
3991 
3992 	if (unlikely(object == ZERO_SIZE_PTR))
3993 		return 0;
3994 
3995 	page = virt_to_head_page(object);
3996 
3997 	if (unlikely(!PageSlab(page))) {
3998 		WARN_ON(!PageCompound(page));
3999 		return page_size(page);
4000 	}
4001 
4002 	return slab_ksize(page->slab_cache);
4003 }
4004 EXPORT_SYMBOL(__ksize);
4005 
kfree(const void * x)4006 void kfree(const void *x)
4007 {
4008 	struct page *page;
4009 	void *object = (void *)x;
4010 
4011 	trace_kfree(_RET_IP_, x);
4012 
4013 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4014 		return;
4015 
4016 	page = virt_to_head_page(x);
4017 	if (unlikely(!PageSlab(page))) {
4018 		unsigned int order = compound_order(page);
4019 
4020 		BUG_ON(!PageCompound(page));
4021 		kfree_hook(object);
4022 		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
4023 				    -(1 << order));
4024 		__free_pages(page, order);
4025 		return;
4026 	}
4027 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4028 }
4029 EXPORT_SYMBOL(kfree);
4030 
4031 #define SHRINK_PROMOTE_MAX 32
4032 
4033 /*
4034  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4035  * up most to the head of the partial lists. New allocations will then
4036  * fill those up and thus they can be removed from the partial lists.
4037  *
4038  * The slabs with the least items are placed last. This results in them
4039  * being allocated from last increasing the chance that the last objects
4040  * are freed in them.
4041  */
__kmem_cache_shrink(struct kmem_cache * s)4042 int __kmem_cache_shrink(struct kmem_cache *s)
4043 {
4044 	int node;
4045 	int i;
4046 	struct kmem_cache_node *n;
4047 	struct page *page;
4048 	struct page *t;
4049 	struct list_head discard;
4050 	struct list_head promote[SHRINK_PROMOTE_MAX];
4051 	unsigned long flags;
4052 	int ret = 0;
4053 
4054 	flush_all(s);
4055 	for_each_kmem_cache_node(s, node, n) {
4056 		INIT_LIST_HEAD(&discard);
4057 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4058 			INIT_LIST_HEAD(promote + i);
4059 
4060 		spin_lock_irqsave(&n->list_lock, flags);
4061 
4062 		/*
4063 		 * Build lists of slabs to discard or promote.
4064 		 *
4065 		 * Note that concurrent frees may occur while we hold the
4066 		 * list_lock. page->inuse here is the upper limit.
4067 		 */
4068 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4069 			int free = page->objects - page->inuse;
4070 
4071 			/* Do not reread page->inuse */
4072 			barrier();
4073 
4074 			/* We do not keep full slabs on the list */
4075 			BUG_ON(free <= 0);
4076 
4077 			if (free == page->objects) {
4078 				list_move(&page->slab_list, &discard);
4079 				n->nr_partial--;
4080 			} else if (free <= SHRINK_PROMOTE_MAX)
4081 				list_move(&page->slab_list, promote + free - 1);
4082 		}
4083 
4084 		/*
4085 		 * Promote the slabs filled up most to the head of the
4086 		 * partial list.
4087 		 */
4088 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4089 			list_splice(promote + i, &n->partial);
4090 
4091 		spin_unlock_irqrestore(&n->list_lock, flags);
4092 
4093 		/* Release empty slabs */
4094 		list_for_each_entry_safe(page, t, &discard, slab_list)
4095 			discard_slab(s, page);
4096 
4097 		if (slabs_node(s, node))
4098 			ret = 1;
4099 	}
4100 
4101 	return ret;
4102 }
4103 
4104 #ifdef CONFIG_MEMCG
__kmemcg_cache_deactivate_after_rcu(struct kmem_cache * s)4105 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4106 {
4107 	/*
4108 	 * Called with all the locks held after a sched RCU grace period.
4109 	 * Even if @s becomes empty after shrinking, we can't know that @s
4110 	 * doesn't have allocations already in-flight and thus can't
4111 	 * destroy @s until the associated memcg is released.
4112 	 *
4113 	 * However, let's remove the sysfs files for empty caches here.
4114 	 * Each cache has a lot of interface files which aren't
4115 	 * particularly useful for empty draining caches; otherwise, we can
4116 	 * easily end up with millions of unnecessary sysfs files on
4117 	 * systems which have a lot of memory and transient cgroups.
4118 	 */
4119 	if (!__kmem_cache_shrink(s))
4120 		sysfs_slab_remove(s);
4121 }
4122 
__kmemcg_cache_deactivate(struct kmem_cache * s)4123 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4124 {
4125 	/*
4126 	 * Disable empty slabs caching. Used to avoid pinning offline
4127 	 * memory cgroups by kmem pages that can be freed.
4128 	 */
4129 	slub_set_cpu_partial(s, 0);
4130 	s->min_partial = 0;
4131 }
4132 #endif	/* CONFIG_MEMCG */
4133 
slab_mem_going_offline_callback(void * arg)4134 static int slab_mem_going_offline_callback(void *arg)
4135 {
4136 	struct kmem_cache *s;
4137 
4138 	mutex_lock(&slab_mutex);
4139 	list_for_each_entry(s, &slab_caches, list)
4140 		__kmem_cache_shrink(s);
4141 	mutex_unlock(&slab_mutex);
4142 
4143 	return 0;
4144 }
4145 
slab_mem_offline_callback(void * arg)4146 static void slab_mem_offline_callback(void *arg)
4147 {
4148 	struct kmem_cache_node *n;
4149 	struct kmem_cache *s;
4150 	struct memory_notify *marg = arg;
4151 	int offline_node;
4152 
4153 	offline_node = marg->status_change_nid_normal;
4154 
4155 	/*
4156 	 * If the node still has available memory. we need kmem_cache_node
4157 	 * for it yet.
4158 	 */
4159 	if (offline_node < 0)
4160 		return;
4161 
4162 	mutex_lock(&slab_mutex);
4163 	list_for_each_entry(s, &slab_caches, list) {
4164 		n = get_node(s, offline_node);
4165 		if (n) {
4166 			/*
4167 			 * if n->nr_slabs > 0, slabs still exist on the node
4168 			 * that is going down. We were unable to free them,
4169 			 * and offline_pages() function shouldn't call this
4170 			 * callback. So, we must fail.
4171 			 */
4172 			BUG_ON(slabs_node(s, offline_node));
4173 
4174 			s->node[offline_node] = NULL;
4175 			kmem_cache_free(kmem_cache_node, n);
4176 		}
4177 	}
4178 	mutex_unlock(&slab_mutex);
4179 }
4180 
slab_mem_going_online_callback(void * arg)4181 static int slab_mem_going_online_callback(void *arg)
4182 {
4183 	struct kmem_cache_node *n;
4184 	struct kmem_cache *s;
4185 	struct memory_notify *marg = arg;
4186 	int nid = marg->status_change_nid_normal;
4187 	int ret = 0;
4188 
4189 	/*
4190 	 * If the node's memory is already available, then kmem_cache_node is
4191 	 * already created. Nothing to do.
4192 	 */
4193 	if (nid < 0)
4194 		return 0;
4195 
4196 	/*
4197 	 * We are bringing a node online. No memory is available yet. We must
4198 	 * allocate a kmem_cache_node structure in order to bring the node
4199 	 * online.
4200 	 */
4201 	mutex_lock(&slab_mutex);
4202 	list_for_each_entry(s, &slab_caches, list) {
4203 		/*
4204 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4205 		 *      since memory is not yet available from the node that
4206 		 *      is brought up.
4207 		 */
4208 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4209 		if (!n) {
4210 			ret = -ENOMEM;
4211 			goto out;
4212 		}
4213 		init_kmem_cache_node(n);
4214 		s->node[nid] = n;
4215 	}
4216 out:
4217 	mutex_unlock(&slab_mutex);
4218 	return ret;
4219 }
4220 
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)4221 static int slab_memory_callback(struct notifier_block *self,
4222 				unsigned long action, void *arg)
4223 {
4224 	int ret = 0;
4225 
4226 	switch (action) {
4227 	case MEM_GOING_ONLINE:
4228 		ret = slab_mem_going_online_callback(arg);
4229 		break;
4230 	case MEM_GOING_OFFLINE:
4231 		ret = slab_mem_going_offline_callback(arg);
4232 		break;
4233 	case MEM_OFFLINE:
4234 	case MEM_CANCEL_ONLINE:
4235 		slab_mem_offline_callback(arg);
4236 		break;
4237 	case MEM_ONLINE:
4238 	case MEM_CANCEL_OFFLINE:
4239 		break;
4240 	}
4241 	if (ret)
4242 		ret = notifier_from_errno(ret);
4243 	else
4244 		ret = NOTIFY_OK;
4245 	return ret;
4246 }
4247 
4248 static struct notifier_block slab_memory_callback_nb = {
4249 	.notifier_call = slab_memory_callback,
4250 	.priority = SLAB_CALLBACK_PRI,
4251 };
4252 
4253 /********************************************************************
4254  *			Basic setup of slabs
4255  *******************************************************************/
4256 
4257 /*
4258  * Used for early kmem_cache structures that were allocated using
4259  * the page allocator. Allocate them properly then fix up the pointers
4260  * that may be pointing to the wrong kmem_cache structure.
4261  */
4262 
bootstrap(struct kmem_cache * static_cache)4263 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4264 {
4265 	int node;
4266 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4267 	struct kmem_cache_node *n;
4268 
4269 	memcpy(s, static_cache, kmem_cache->object_size);
4270 
4271 	/*
4272 	 * This runs very early, and only the boot processor is supposed to be
4273 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4274 	 * IPIs around.
4275 	 */
4276 	__flush_cpu_slab(s, smp_processor_id());
4277 	for_each_kmem_cache_node(s, node, n) {
4278 		struct page *p;
4279 
4280 		list_for_each_entry(p, &n->partial, slab_list)
4281 			p->slab_cache = s;
4282 
4283 #ifdef CONFIG_SLUB_DEBUG
4284 		list_for_each_entry(p, &n->full, slab_list)
4285 			p->slab_cache = s;
4286 #endif
4287 	}
4288 	slab_init_memcg_params(s);
4289 	list_add(&s->list, &slab_caches);
4290 	memcg_link_cache(s, NULL);
4291 	return s;
4292 }
4293 
kmem_cache_init(void)4294 void __init kmem_cache_init(void)
4295 {
4296 	static __initdata struct kmem_cache boot_kmem_cache,
4297 		boot_kmem_cache_node;
4298 
4299 	if (debug_guardpage_minorder())
4300 		slub_max_order = 0;
4301 
4302 	kmem_cache_node = &boot_kmem_cache_node;
4303 	kmem_cache = &boot_kmem_cache;
4304 
4305 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4306 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4307 
4308 	register_hotmemory_notifier(&slab_memory_callback_nb);
4309 
4310 	/* Able to allocate the per node structures */
4311 	slab_state = PARTIAL;
4312 
4313 	create_boot_cache(kmem_cache, "kmem_cache",
4314 			offsetof(struct kmem_cache, node) +
4315 				nr_node_ids * sizeof(struct kmem_cache_node *),
4316 		       SLAB_HWCACHE_ALIGN, 0, 0);
4317 
4318 	kmem_cache = bootstrap(&boot_kmem_cache);
4319 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4320 
4321 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4322 	setup_kmalloc_cache_index_table();
4323 	create_kmalloc_caches(0);
4324 
4325 	/* Setup random freelists for each cache */
4326 	init_freelist_randomization();
4327 
4328 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4329 				  slub_cpu_dead);
4330 
4331 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4332 		cache_line_size(),
4333 		slub_min_order, slub_max_order, slub_min_objects,
4334 		nr_cpu_ids, nr_node_ids);
4335 }
4336 
kmem_cache_init_late(void)4337 void __init kmem_cache_init_late(void)
4338 {
4339 }
4340 
4341 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))4342 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4343 		   slab_flags_t flags, void (*ctor)(void *))
4344 {
4345 	struct kmem_cache *s, *c;
4346 
4347 	s = find_mergeable(size, align, flags, name, ctor);
4348 	if (s) {
4349 		s->refcount++;
4350 
4351 		/*
4352 		 * Adjust the object sizes so that we clear
4353 		 * the complete object on kzalloc.
4354 		 */
4355 		s->object_size = max(s->object_size, size);
4356 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4357 
4358 		for_each_memcg_cache(c, s) {
4359 			c->object_size = s->object_size;
4360 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4361 		}
4362 
4363 		if (sysfs_slab_alias(s, name)) {
4364 			s->refcount--;
4365 			s = NULL;
4366 		}
4367 	}
4368 
4369 	return s;
4370 }
4371 
__kmem_cache_create(struct kmem_cache * s,slab_flags_t flags)4372 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4373 {
4374 	int err;
4375 
4376 	err = kmem_cache_open(s, flags);
4377 	if (err)
4378 		return err;
4379 
4380 	/* Mutex is not taken during early boot */
4381 	if (slab_state <= UP)
4382 		return 0;
4383 
4384 	memcg_propagate_slab_attrs(s);
4385 	err = sysfs_slab_add(s);
4386 	if (err)
4387 		__kmem_cache_release(s);
4388 
4389 	return err;
4390 }
4391 
__kmalloc_track_caller(size_t size,gfp_t gfpflags,unsigned long caller)4392 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4393 {
4394 	struct kmem_cache *s;
4395 	void *ret;
4396 
4397 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4398 		return kmalloc_large(size, gfpflags);
4399 
4400 	s = kmalloc_slab(size, gfpflags);
4401 
4402 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4403 		return s;
4404 
4405 	ret = slab_alloc(s, gfpflags, caller);
4406 
4407 	/* Honor the call site pointer we received. */
4408 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4409 
4410 	return ret;
4411 }
4412 EXPORT_SYMBOL(__kmalloc_track_caller);
4413 
4414 #ifdef CONFIG_NUMA
__kmalloc_node_track_caller(size_t size,gfp_t gfpflags,int node,unsigned long caller)4415 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4416 					int node, unsigned long caller)
4417 {
4418 	struct kmem_cache *s;
4419 	void *ret;
4420 
4421 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4422 		ret = kmalloc_large_node(size, gfpflags, node);
4423 
4424 		trace_kmalloc_node(caller, ret,
4425 				   size, PAGE_SIZE << get_order(size),
4426 				   gfpflags, node);
4427 
4428 		return ret;
4429 	}
4430 
4431 	s = kmalloc_slab(size, gfpflags);
4432 
4433 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4434 		return s;
4435 
4436 	ret = slab_alloc_node(s, gfpflags, node, caller);
4437 
4438 	/* Honor the call site pointer we received. */
4439 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4440 
4441 	return ret;
4442 }
4443 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4444 #endif
4445 
4446 #ifdef CONFIG_SYSFS
count_inuse(struct page * page)4447 static int count_inuse(struct page *page)
4448 {
4449 	return page->inuse;
4450 }
4451 
count_total(struct page * page)4452 static int count_total(struct page *page)
4453 {
4454 	return page->objects;
4455 }
4456 #endif
4457 
4458 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct page * page,unsigned long * map)4459 static int validate_slab(struct kmem_cache *s, struct page *page,
4460 						unsigned long *map)
4461 {
4462 	void *p;
4463 	void *addr = page_address(page);
4464 
4465 	if (!check_slab(s, page) ||
4466 			!on_freelist(s, page, NULL))
4467 		return 0;
4468 
4469 	/* Now we know that a valid freelist exists */
4470 	bitmap_zero(map, page->objects);
4471 
4472 	get_map(s, page, map);
4473 	for_each_object(p, s, addr, page->objects) {
4474 		if (test_bit(slab_index(p, s, addr), map))
4475 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4476 				return 0;
4477 	}
4478 
4479 	for_each_object(p, s, addr, page->objects)
4480 		if (!test_bit(slab_index(p, s, addr), map))
4481 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4482 				return 0;
4483 	return 1;
4484 }
4485 
validate_slab_slab(struct kmem_cache * s,struct page * page,unsigned long * map)4486 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4487 						unsigned long *map)
4488 {
4489 	slab_lock(page);
4490 	validate_slab(s, page, map);
4491 	slab_unlock(page);
4492 }
4493 
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * map)4494 static int validate_slab_node(struct kmem_cache *s,
4495 		struct kmem_cache_node *n, unsigned long *map)
4496 {
4497 	unsigned long count = 0;
4498 	struct page *page;
4499 	unsigned long flags;
4500 
4501 	spin_lock_irqsave(&n->list_lock, flags);
4502 
4503 	list_for_each_entry(page, &n->partial, slab_list) {
4504 		validate_slab_slab(s, page, map);
4505 		count++;
4506 	}
4507 	if (count != n->nr_partial)
4508 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4509 		       s->name, count, n->nr_partial);
4510 
4511 	if (!(s->flags & SLAB_STORE_USER))
4512 		goto out;
4513 
4514 	list_for_each_entry(page, &n->full, slab_list) {
4515 		validate_slab_slab(s, page, map);
4516 		count++;
4517 	}
4518 	if (count != atomic_long_read(&n->nr_slabs))
4519 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4520 		       s->name, count, atomic_long_read(&n->nr_slabs));
4521 
4522 out:
4523 	spin_unlock_irqrestore(&n->list_lock, flags);
4524 	return count;
4525 }
4526 
validate_slab_cache(struct kmem_cache * s)4527 static long validate_slab_cache(struct kmem_cache *s)
4528 {
4529 	int node;
4530 	unsigned long count = 0;
4531 	struct kmem_cache_node *n;
4532 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4533 
4534 	if (!map)
4535 		return -ENOMEM;
4536 
4537 	flush_all(s);
4538 	for_each_kmem_cache_node(s, node, n)
4539 		count += validate_slab_node(s, n, map);
4540 	bitmap_free(map);
4541 	return count;
4542 }
4543 /*
4544  * Generate lists of code addresses where slabcache objects are allocated
4545  * and freed.
4546  */
4547 
4548 struct location {
4549 	unsigned long count;
4550 	unsigned long addr;
4551 	long long sum_time;
4552 	long min_time;
4553 	long max_time;
4554 	long min_pid;
4555 	long max_pid;
4556 	DECLARE_BITMAP(cpus, NR_CPUS);
4557 	nodemask_t nodes;
4558 };
4559 
4560 struct loc_track {
4561 	unsigned long max;
4562 	unsigned long count;
4563 	struct location *loc;
4564 };
4565 
free_loc_track(struct loc_track * t)4566 static void free_loc_track(struct loc_track *t)
4567 {
4568 	if (t->max)
4569 		free_pages((unsigned long)t->loc,
4570 			get_order(sizeof(struct location) * t->max));
4571 }
4572 
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)4573 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4574 {
4575 	struct location *l;
4576 	int order;
4577 
4578 	order = get_order(sizeof(struct location) * max);
4579 
4580 	l = (void *)__get_free_pages(flags, order);
4581 	if (!l)
4582 		return 0;
4583 
4584 	if (t->count) {
4585 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4586 		free_loc_track(t);
4587 	}
4588 	t->max = max;
4589 	t->loc = l;
4590 	return 1;
4591 }
4592 
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track)4593 static int add_location(struct loc_track *t, struct kmem_cache *s,
4594 				const struct track *track)
4595 {
4596 	long start, end, pos;
4597 	struct location *l;
4598 	unsigned long caddr;
4599 	unsigned long age = jiffies - track->when;
4600 
4601 	start = -1;
4602 	end = t->count;
4603 
4604 	for ( ; ; ) {
4605 		pos = start + (end - start + 1) / 2;
4606 
4607 		/*
4608 		 * There is nothing at "end". If we end up there
4609 		 * we need to add something to before end.
4610 		 */
4611 		if (pos == end)
4612 			break;
4613 
4614 		caddr = t->loc[pos].addr;
4615 		if (track->addr == caddr) {
4616 
4617 			l = &t->loc[pos];
4618 			l->count++;
4619 			if (track->when) {
4620 				l->sum_time += age;
4621 				if (age < l->min_time)
4622 					l->min_time = age;
4623 				if (age > l->max_time)
4624 					l->max_time = age;
4625 
4626 				if (track->pid < l->min_pid)
4627 					l->min_pid = track->pid;
4628 				if (track->pid > l->max_pid)
4629 					l->max_pid = track->pid;
4630 
4631 				cpumask_set_cpu(track->cpu,
4632 						to_cpumask(l->cpus));
4633 			}
4634 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4635 			return 1;
4636 		}
4637 
4638 		if (track->addr < caddr)
4639 			end = pos;
4640 		else
4641 			start = pos;
4642 	}
4643 
4644 	/*
4645 	 * Not found. Insert new tracking element.
4646 	 */
4647 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4648 		return 0;
4649 
4650 	l = t->loc + pos;
4651 	if (pos < t->count)
4652 		memmove(l + 1, l,
4653 			(t->count - pos) * sizeof(struct location));
4654 	t->count++;
4655 	l->count = 1;
4656 	l->addr = track->addr;
4657 	l->sum_time = age;
4658 	l->min_time = age;
4659 	l->max_time = age;
4660 	l->min_pid = track->pid;
4661 	l->max_pid = track->pid;
4662 	cpumask_clear(to_cpumask(l->cpus));
4663 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4664 	nodes_clear(l->nodes);
4665 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4666 	return 1;
4667 }
4668 
process_slab(struct loc_track * t,struct kmem_cache * s,struct page * page,enum track_item alloc,unsigned long * map)4669 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4670 		struct page *page, enum track_item alloc,
4671 		unsigned long *map)
4672 {
4673 	void *addr = page_address(page);
4674 	void *p;
4675 
4676 	bitmap_zero(map, page->objects);
4677 	get_map(s, page, map);
4678 
4679 	for_each_object(p, s, addr, page->objects)
4680 		if (!test_bit(slab_index(p, s, addr), map))
4681 			add_location(t, s, get_track(s, p, alloc));
4682 }
4683 
list_locations(struct kmem_cache * s,char * buf,enum track_item alloc)4684 static int list_locations(struct kmem_cache *s, char *buf,
4685 					enum track_item alloc)
4686 {
4687 	int len = 0;
4688 	unsigned long i;
4689 	struct loc_track t = { 0, 0, NULL };
4690 	int node;
4691 	struct kmem_cache_node *n;
4692 	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4693 
4694 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4695 				     GFP_KERNEL)) {
4696 		bitmap_free(map);
4697 		return sprintf(buf, "Out of memory\n");
4698 	}
4699 	/* Push back cpu slabs */
4700 	flush_all(s);
4701 
4702 	for_each_kmem_cache_node(s, node, n) {
4703 		unsigned long flags;
4704 		struct page *page;
4705 
4706 		if (!atomic_long_read(&n->nr_slabs))
4707 			continue;
4708 
4709 		spin_lock_irqsave(&n->list_lock, flags);
4710 		list_for_each_entry(page, &n->partial, slab_list)
4711 			process_slab(&t, s, page, alloc, map);
4712 		list_for_each_entry(page, &n->full, slab_list)
4713 			process_slab(&t, s, page, alloc, map);
4714 		spin_unlock_irqrestore(&n->list_lock, flags);
4715 	}
4716 
4717 	for (i = 0; i < t.count; i++) {
4718 		struct location *l = &t.loc[i];
4719 
4720 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4721 			break;
4722 		len += sprintf(buf + len, "%7ld ", l->count);
4723 
4724 		if (l->addr)
4725 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4726 		else
4727 			len += sprintf(buf + len, "<not-available>");
4728 
4729 		if (l->sum_time != l->min_time) {
4730 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4731 				l->min_time,
4732 				(long)div_u64(l->sum_time, l->count),
4733 				l->max_time);
4734 		} else
4735 			len += sprintf(buf + len, " age=%ld",
4736 				l->min_time);
4737 
4738 		if (l->min_pid != l->max_pid)
4739 			len += sprintf(buf + len, " pid=%ld-%ld",
4740 				l->min_pid, l->max_pid);
4741 		else
4742 			len += sprintf(buf + len, " pid=%ld",
4743 				l->min_pid);
4744 
4745 		if (num_online_cpus() > 1 &&
4746 				!cpumask_empty(to_cpumask(l->cpus)) &&
4747 				len < PAGE_SIZE - 60)
4748 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4749 					 " cpus=%*pbl",
4750 					 cpumask_pr_args(to_cpumask(l->cpus)));
4751 
4752 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4753 				len < PAGE_SIZE - 60)
4754 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4755 					 " nodes=%*pbl",
4756 					 nodemask_pr_args(&l->nodes));
4757 
4758 		len += sprintf(buf + len, "\n");
4759 	}
4760 
4761 	free_loc_track(&t);
4762 	bitmap_free(map);
4763 	if (!t.count)
4764 		len += sprintf(buf, "No data\n");
4765 	return len;
4766 }
4767 #endif	/* CONFIG_SLUB_DEBUG */
4768 
4769 #ifdef SLUB_RESILIENCY_TEST
resiliency_test(void)4770 static void __init resiliency_test(void)
4771 {
4772 	u8 *p;
4773 	int type = KMALLOC_NORMAL;
4774 
4775 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4776 
4777 	pr_err("SLUB resiliency testing\n");
4778 	pr_err("-----------------------\n");
4779 	pr_err("A. Corruption after allocation\n");
4780 
4781 	p = kzalloc(16, GFP_KERNEL);
4782 	p[16] = 0x12;
4783 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4784 	       p + 16);
4785 
4786 	validate_slab_cache(kmalloc_caches[type][4]);
4787 
4788 	/* Hmmm... The next two are dangerous */
4789 	p = kzalloc(32, GFP_KERNEL);
4790 	p[32 + sizeof(void *)] = 0x34;
4791 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4792 	       p);
4793 	pr_err("If allocated object is overwritten then not detectable\n\n");
4794 
4795 	validate_slab_cache(kmalloc_caches[type][5]);
4796 	p = kzalloc(64, GFP_KERNEL);
4797 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4798 	*p = 0x56;
4799 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4800 	       p);
4801 	pr_err("If allocated object is overwritten then not detectable\n\n");
4802 	validate_slab_cache(kmalloc_caches[type][6]);
4803 
4804 	pr_err("\nB. Corruption after free\n");
4805 	p = kzalloc(128, GFP_KERNEL);
4806 	kfree(p);
4807 	*p = 0x78;
4808 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4809 	validate_slab_cache(kmalloc_caches[type][7]);
4810 
4811 	p = kzalloc(256, GFP_KERNEL);
4812 	kfree(p);
4813 	p[50] = 0x9a;
4814 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4815 	validate_slab_cache(kmalloc_caches[type][8]);
4816 
4817 	p = kzalloc(512, GFP_KERNEL);
4818 	kfree(p);
4819 	p[512] = 0xab;
4820 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4821 	validate_slab_cache(kmalloc_caches[type][9]);
4822 }
4823 #else
4824 #ifdef CONFIG_SYSFS
resiliency_test(void)4825 static void resiliency_test(void) {};
4826 #endif
4827 #endif	/* SLUB_RESILIENCY_TEST */
4828 
4829 #ifdef CONFIG_SYSFS
4830 enum slab_stat_type {
4831 	SL_ALL,			/* All slabs */
4832 	SL_PARTIAL,		/* Only partially allocated slabs */
4833 	SL_CPU,			/* Only slabs used for cpu caches */
4834 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4835 	SL_TOTAL		/* Determine object capacity not slabs */
4836 };
4837 
4838 #define SO_ALL		(1 << SL_ALL)
4839 #define SO_PARTIAL	(1 << SL_PARTIAL)
4840 #define SO_CPU		(1 << SL_CPU)
4841 #define SO_OBJECTS	(1 << SL_OBJECTS)
4842 #define SO_TOTAL	(1 << SL_TOTAL)
4843 
4844 #ifdef CONFIG_MEMCG
4845 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4846 
setup_slub_memcg_sysfs(char * str)4847 static int __init setup_slub_memcg_sysfs(char *str)
4848 {
4849 	int v;
4850 
4851 	if (get_option(&str, &v) > 0)
4852 		memcg_sysfs_enabled = v;
4853 
4854 	return 1;
4855 }
4856 
4857 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4858 #endif
4859 
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)4860 static ssize_t show_slab_objects(struct kmem_cache *s,
4861 			    char *buf, unsigned long flags)
4862 {
4863 	unsigned long total = 0;
4864 	int node;
4865 	int x;
4866 	unsigned long *nodes;
4867 
4868 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4869 	if (!nodes)
4870 		return -ENOMEM;
4871 
4872 	if (flags & SO_CPU) {
4873 		int cpu;
4874 
4875 		for_each_possible_cpu(cpu) {
4876 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4877 							       cpu);
4878 			int node;
4879 			struct page *page;
4880 
4881 			page = READ_ONCE(c->page);
4882 			if (!page)
4883 				continue;
4884 
4885 			node = page_to_nid(page);
4886 			if (flags & SO_TOTAL)
4887 				x = page->objects;
4888 			else if (flags & SO_OBJECTS)
4889 				x = page->inuse;
4890 			else
4891 				x = 1;
4892 
4893 			total += x;
4894 			nodes[node] += x;
4895 
4896 			page = slub_percpu_partial_read_once(c);
4897 			if (page) {
4898 				node = page_to_nid(page);
4899 				if (flags & SO_TOTAL)
4900 					WARN_ON_ONCE(1);
4901 				else if (flags & SO_OBJECTS)
4902 					WARN_ON_ONCE(1);
4903 				else
4904 					x = page->pages;
4905 				total += x;
4906 				nodes[node] += x;
4907 			}
4908 		}
4909 	}
4910 
4911 	/*
4912 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4913 	 * already held which will conflict with an existing lock order:
4914 	 *
4915 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4916 	 *
4917 	 * We don't really need mem_hotplug_lock (to hold off
4918 	 * slab_mem_going_offline_callback) here because slab's memory hot
4919 	 * unplug code doesn't destroy the kmem_cache->node[] data.
4920 	 */
4921 
4922 #ifdef CONFIG_SLUB_DEBUG
4923 	if (flags & SO_ALL) {
4924 		struct kmem_cache_node *n;
4925 
4926 		for_each_kmem_cache_node(s, node, n) {
4927 
4928 			if (flags & SO_TOTAL)
4929 				x = atomic_long_read(&n->total_objects);
4930 			else if (flags & SO_OBJECTS)
4931 				x = atomic_long_read(&n->total_objects) -
4932 					count_partial(n, count_free);
4933 			else
4934 				x = atomic_long_read(&n->nr_slabs);
4935 			total += x;
4936 			nodes[node] += x;
4937 		}
4938 
4939 	} else
4940 #endif
4941 	if (flags & SO_PARTIAL) {
4942 		struct kmem_cache_node *n;
4943 
4944 		for_each_kmem_cache_node(s, node, n) {
4945 			if (flags & SO_TOTAL)
4946 				x = count_partial(n, count_total);
4947 			else if (flags & SO_OBJECTS)
4948 				x = count_partial(n, count_inuse);
4949 			else
4950 				x = n->nr_partial;
4951 			total += x;
4952 			nodes[node] += x;
4953 		}
4954 	}
4955 	x = sprintf(buf, "%lu", total);
4956 #ifdef CONFIG_NUMA
4957 	for (node = 0; node < nr_node_ids; node++)
4958 		if (nodes[node])
4959 			x += sprintf(buf + x, " N%d=%lu",
4960 					node, nodes[node]);
4961 #endif
4962 	kfree(nodes);
4963 	return x + sprintf(buf + x, "\n");
4964 }
4965 
4966 #ifdef CONFIG_SLUB_DEBUG
any_slab_objects(struct kmem_cache * s)4967 static int any_slab_objects(struct kmem_cache *s)
4968 {
4969 	int node;
4970 	struct kmem_cache_node *n;
4971 
4972 	for_each_kmem_cache_node(s, node, n)
4973 		if (atomic_long_read(&n->total_objects))
4974 			return 1;
4975 
4976 	return 0;
4977 }
4978 #endif
4979 
4980 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4981 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4982 
4983 struct slab_attribute {
4984 	struct attribute attr;
4985 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4986 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4987 };
4988 
4989 #define SLAB_ATTR_RO(_name) \
4990 	static struct slab_attribute _name##_attr = \
4991 	__ATTR(_name, 0400, _name##_show, NULL)
4992 
4993 #define SLAB_ATTR(_name) \
4994 	static struct slab_attribute _name##_attr =  \
4995 	__ATTR(_name, 0600, _name##_show, _name##_store)
4996 
slab_size_show(struct kmem_cache * s,char * buf)4997 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4998 {
4999 	return sprintf(buf, "%u\n", s->size);
5000 }
5001 SLAB_ATTR_RO(slab_size);
5002 
align_show(struct kmem_cache * s,char * buf)5003 static ssize_t align_show(struct kmem_cache *s, char *buf)
5004 {
5005 	return sprintf(buf, "%u\n", s->align);
5006 }
5007 SLAB_ATTR_RO(align);
5008 
object_size_show(struct kmem_cache * s,char * buf)5009 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5010 {
5011 	return sprintf(buf, "%u\n", s->object_size);
5012 }
5013 SLAB_ATTR_RO(object_size);
5014 
objs_per_slab_show(struct kmem_cache * s,char * buf)5015 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5016 {
5017 	return sprintf(buf, "%u\n", oo_objects(s->oo));
5018 }
5019 SLAB_ATTR_RO(objs_per_slab);
5020 
order_store(struct kmem_cache * s,const char * buf,size_t length)5021 static ssize_t order_store(struct kmem_cache *s,
5022 				const char *buf, size_t length)
5023 {
5024 	unsigned int order;
5025 	int err;
5026 
5027 	err = kstrtouint(buf, 10, &order);
5028 	if (err)
5029 		return err;
5030 
5031 	if (order > slub_max_order || order < slub_min_order)
5032 		return -EINVAL;
5033 
5034 	calculate_sizes(s, order);
5035 	return length;
5036 }
5037 
order_show(struct kmem_cache * s,char * buf)5038 static ssize_t order_show(struct kmem_cache *s, char *buf)
5039 {
5040 	return sprintf(buf, "%u\n", oo_order(s->oo));
5041 }
5042 SLAB_ATTR(order);
5043 
min_partial_show(struct kmem_cache * s,char * buf)5044 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5045 {
5046 	return sprintf(buf, "%lu\n", s->min_partial);
5047 }
5048 
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)5049 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5050 				 size_t length)
5051 {
5052 	unsigned long min;
5053 	int err;
5054 
5055 	err = kstrtoul(buf, 10, &min);
5056 	if (err)
5057 		return err;
5058 
5059 	set_min_partial(s, min);
5060 	return length;
5061 }
5062 SLAB_ATTR(min_partial);
5063 
cpu_partial_show(struct kmem_cache * s,char * buf)5064 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5065 {
5066 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
5067 }
5068 
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)5069 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5070 				 size_t length)
5071 {
5072 	unsigned int objects;
5073 	int err;
5074 
5075 	err = kstrtouint(buf, 10, &objects);
5076 	if (err)
5077 		return err;
5078 	if (objects && !kmem_cache_has_cpu_partial(s))
5079 		return -EINVAL;
5080 
5081 	slub_set_cpu_partial(s, objects);
5082 	flush_all(s);
5083 	return length;
5084 }
5085 SLAB_ATTR(cpu_partial);
5086 
ctor_show(struct kmem_cache * s,char * buf)5087 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5088 {
5089 	if (!s->ctor)
5090 		return 0;
5091 	return sprintf(buf, "%pS\n", s->ctor);
5092 }
5093 SLAB_ATTR_RO(ctor);
5094 
aliases_show(struct kmem_cache * s,char * buf)5095 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5096 {
5097 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5098 }
5099 SLAB_ATTR_RO(aliases);
5100 
partial_show(struct kmem_cache * s,char * buf)5101 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5102 {
5103 	return show_slab_objects(s, buf, SO_PARTIAL);
5104 }
5105 SLAB_ATTR_RO(partial);
5106 
cpu_slabs_show(struct kmem_cache * s,char * buf)5107 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5108 {
5109 	return show_slab_objects(s, buf, SO_CPU);
5110 }
5111 SLAB_ATTR_RO(cpu_slabs);
5112 
objects_show(struct kmem_cache * s,char * buf)5113 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5114 {
5115 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5116 }
5117 SLAB_ATTR_RO(objects);
5118 
objects_partial_show(struct kmem_cache * s,char * buf)5119 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5120 {
5121 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5122 }
5123 SLAB_ATTR_RO(objects_partial);
5124 
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)5125 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5126 {
5127 	int objects = 0;
5128 	int pages = 0;
5129 	int cpu;
5130 	int len;
5131 
5132 	for_each_online_cpu(cpu) {
5133 		struct page *page;
5134 
5135 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5136 
5137 		if (page) {
5138 			pages += page->pages;
5139 			objects += page->pobjects;
5140 		}
5141 	}
5142 
5143 	len = sprintf(buf, "%d(%d)", objects, pages);
5144 
5145 #ifdef CONFIG_SMP
5146 	for_each_online_cpu(cpu) {
5147 		struct page *page;
5148 
5149 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5150 
5151 		if (page && len < PAGE_SIZE - 20)
5152 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5153 				page->pobjects, page->pages);
5154 	}
5155 #endif
5156 	return len + sprintf(buf + len, "\n");
5157 }
5158 SLAB_ATTR_RO(slabs_cpu_partial);
5159 
reclaim_account_show(struct kmem_cache * s,char * buf)5160 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5161 {
5162 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5163 }
5164 
reclaim_account_store(struct kmem_cache * s,const char * buf,size_t length)5165 static ssize_t reclaim_account_store(struct kmem_cache *s,
5166 				const char *buf, size_t length)
5167 {
5168 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5169 	if (buf[0] == '1')
5170 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5171 	return length;
5172 }
5173 SLAB_ATTR(reclaim_account);
5174 
hwcache_align_show(struct kmem_cache * s,char * buf)5175 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5176 {
5177 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5178 }
5179 SLAB_ATTR_RO(hwcache_align);
5180 
5181 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)5182 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5183 {
5184 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5185 }
5186 SLAB_ATTR_RO(cache_dma);
5187 #endif
5188 
usersize_show(struct kmem_cache * s,char * buf)5189 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5190 {
5191 	return sprintf(buf, "%u\n", s->usersize);
5192 }
5193 SLAB_ATTR_RO(usersize);
5194 
destroy_by_rcu_show(struct kmem_cache * s,char * buf)5195 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5196 {
5197 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5198 }
5199 SLAB_ATTR_RO(destroy_by_rcu);
5200 
5201 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)5202 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5203 {
5204 	return show_slab_objects(s, buf, SO_ALL);
5205 }
5206 SLAB_ATTR_RO(slabs);
5207 
total_objects_show(struct kmem_cache * s,char * buf)5208 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5209 {
5210 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5211 }
5212 SLAB_ATTR_RO(total_objects);
5213 
sanity_checks_show(struct kmem_cache * s,char * buf)5214 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5215 {
5216 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5217 }
5218 
sanity_checks_store(struct kmem_cache * s,const char * buf,size_t length)5219 static ssize_t sanity_checks_store(struct kmem_cache *s,
5220 				const char *buf, size_t length)
5221 {
5222 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5223 	if (buf[0] == '1') {
5224 		s->flags &= ~__CMPXCHG_DOUBLE;
5225 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5226 	}
5227 	return length;
5228 }
5229 SLAB_ATTR(sanity_checks);
5230 
trace_show(struct kmem_cache * s,char * buf)5231 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5232 {
5233 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5234 }
5235 
trace_store(struct kmem_cache * s,const char * buf,size_t length)5236 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5237 							size_t length)
5238 {
5239 	/*
5240 	 * Tracing a merged cache is going to give confusing results
5241 	 * as well as cause other issues like converting a mergeable
5242 	 * cache into an umergeable one.
5243 	 */
5244 	if (s->refcount > 1)
5245 		return -EINVAL;
5246 
5247 	s->flags &= ~SLAB_TRACE;
5248 	if (buf[0] == '1') {
5249 		s->flags &= ~__CMPXCHG_DOUBLE;
5250 		s->flags |= SLAB_TRACE;
5251 	}
5252 	return length;
5253 }
5254 SLAB_ATTR(trace);
5255 
red_zone_show(struct kmem_cache * s,char * buf)5256 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5257 {
5258 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5259 }
5260 
red_zone_store(struct kmem_cache * s,const char * buf,size_t length)5261 static ssize_t red_zone_store(struct kmem_cache *s,
5262 				const char *buf, size_t length)
5263 {
5264 	if (any_slab_objects(s))
5265 		return -EBUSY;
5266 
5267 	s->flags &= ~SLAB_RED_ZONE;
5268 	if (buf[0] == '1') {
5269 		s->flags |= SLAB_RED_ZONE;
5270 	}
5271 	calculate_sizes(s, -1);
5272 	return length;
5273 }
5274 SLAB_ATTR(red_zone);
5275 
poison_show(struct kmem_cache * s,char * buf)5276 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5277 {
5278 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5279 }
5280 
poison_store(struct kmem_cache * s,const char * buf,size_t length)5281 static ssize_t poison_store(struct kmem_cache *s,
5282 				const char *buf, size_t length)
5283 {
5284 	if (any_slab_objects(s))
5285 		return -EBUSY;
5286 
5287 	s->flags &= ~SLAB_POISON;
5288 	if (buf[0] == '1') {
5289 		s->flags |= SLAB_POISON;
5290 	}
5291 	calculate_sizes(s, -1);
5292 	return length;
5293 }
5294 SLAB_ATTR(poison);
5295 
store_user_show(struct kmem_cache * s,char * buf)5296 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5297 {
5298 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5299 }
5300 
store_user_store(struct kmem_cache * s,const char * buf,size_t length)5301 static ssize_t store_user_store(struct kmem_cache *s,
5302 				const char *buf, size_t length)
5303 {
5304 	if (any_slab_objects(s))
5305 		return -EBUSY;
5306 
5307 	s->flags &= ~SLAB_STORE_USER;
5308 	if (buf[0] == '1') {
5309 		s->flags &= ~__CMPXCHG_DOUBLE;
5310 		s->flags |= SLAB_STORE_USER;
5311 	}
5312 	calculate_sizes(s, -1);
5313 	return length;
5314 }
5315 SLAB_ATTR(store_user);
5316 
validate_show(struct kmem_cache * s,char * buf)5317 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5318 {
5319 	return 0;
5320 }
5321 
validate_store(struct kmem_cache * s,const char * buf,size_t length)5322 static ssize_t validate_store(struct kmem_cache *s,
5323 			const char *buf, size_t length)
5324 {
5325 	int ret = -EINVAL;
5326 
5327 	if (buf[0] == '1') {
5328 		ret = validate_slab_cache(s);
5329 		if (ret >= 0)
5330 			ret = length;
5331 	}
5332 	return ret;
5333 }
5334 SLAB_ATTR(validate);
5335 
alloc_calls_show(struct kmem_cache * s,char * buf)5336 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5337 {
5338 	if (!(s->flags & SLAB_STORE_USER))
5339 		return -ENOSYS;
5340 	return list_locations(s, buf, TRACK_ALLOC);
5341 }
5342 SLAB_ATTR_RO(alloc_calls);
5343 
free_calls_show(struct kmem_cache * s,char * buf)5344 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5345 {
5346 	if (!(s->flags & SLAB_STORE_USER))
5347 		return -ENOSYS;
5348 	return list_locations(s, buf, TRACK_FREE);
5349 }
5350 SLAB_ATTR_RO(free_calls);
5351 #endif /* CONFIG_SLUB_DEBUG */
5352 
5353 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)5354 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5355 {
5356 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5357 }
5358 
failslab_store(struct kmem_cache * s,const char * buf,size_t length)5359 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5360 							size_t length)
5361 {
5362 	if (s->refcount > 1)
5363 		return -EINVAL;
5364 
5365 	s->flags &= ~SLAB_FAILSLAB;
5366 	if (buf[0] == '1')
5367 		s->flags |= SLAB_FAILSLAB;
5368 	return length;
5369 }
5370 SLAB_ATTR(failslab);
5371 #endif
5372 
shrink_show(struct kmem_cache * s,char * buf)5373 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5374 {
5375 	return 0;
5376 }
5377 
shrink_store(struct kmem_cache * s,const char * buf,size_t length)5378 static ssize_t shrink_store(struct kmem_cache *s,
5379 			const char *buf, size_t length)
5380 {
5381 	if (buf[0] == '1')
5382 		kmem_cache_shrink_all(s);
5383 	else
5384 		return -EINVAL;
5385 	return length;
5386 }
5387 SLAB_ATTR(shrink);
5388 
5389 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)5390 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5391 {
5392 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5393 }
5394 
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)5395 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5396 				const char *buf, size_t length)
5397 {
5398 	unsigned int ratio;
5399 	int err;
5400 
5401 	err = kstrtouint(buf, 10, &ratio);
5402 	if (err)
5403 		return err;
5404 	if (ratio > 100)
5405 		return -ERANGE;
5406 
5407 	s->remote_node_defrag_ratio = ratio * 10;
5408 
5409 	return length;
5410 }
5411 SLAB_ATTR(remote_node_defrag_ratio);
5412 #endif
5413 
5414 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)5415 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5416 {
5417 	unsigned long sum  = 0;
5418 	int cpu;
5419 	int len;
5420 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5421 
5422 	if (!data)
5423 		return -ENOMEM;
5424 
5425 	for_each_online_cpu(cpu) {
5426 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5427 
5428 		data[cpu] = x;
5429 		sum += x;
5430 	}
5431 
5432 	len = sprintf(buf, "%lu", sum);
5433 
5434 #ifdef CONFIG_SMP
5435 	for_each_online_cpu(cpu) {
5436 		if (data[cpu] && len < PAGE_SIZE - 20)
5437 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5438 	}
5439 #endif
5440 	kfree(data);
5441 	return len + sprintf(buf + len, "\n");
5442 }
5443 
clear_stat(struct kmem_cache * s,enum stat_item si)5444 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5445 {
5446 	int cpu;
5447 
5448 	for_each_online_cpu(cpu)
5449 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5450 }
5451 
5452 #define STAT_ATTR(si, text) 					\
5453 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5454 {								\
5455 	return show_stat(s, buf, si);				\
5456 }								\
5457 static ssize_t text##_store(struct kmem_cache *s,		\
5458 				const char *buf, size_t length)	\
5459 {								\
5460 	if (buf[0] != '0')					\
5461 		return -EINVAL;					\
5462 	clear_stat(s, si);					\
5463 	return length;						\
5464 }								\
5465 SLAB_ATTR(text);						\
5466 
5467 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5468 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5469 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5470 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5471 STAT_ATTR(FREE_FROZEN, free_frozen);
5472 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5473 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5474 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5475 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5476 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5477 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5478 STAT_ATTR(FREE_SLAB, free_slab);
5479 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5480 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5481 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5482 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5483 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5484 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5485 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5486 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5487 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5488 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5489 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5490 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5491 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5492 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5493 #endif	/* CONFIG_SLUB_STATS */
5494 
5495 static struct attribute *slab_attrs[] = {
5496 	&slab_size_attr.attr,
5497 	&object_size_attr.attr,
5498 	&objs_per_slab_attr.attr,
5499 	&order_attr.attr,
5500 	&min_partial_attr.attr,
5501 	&cpu_partial_attr.attr,
5502 	&objects_attr.attr,
5503 	&objects_partial_attr.attr,
5504 	&partial_attr.attr,
5505 	&cpu_slabs_attr.attr,
5506 	&ctor_attr.attr,
5507 	&aliases_attr.attr,
5508 	&align_attr.attr,
5509 	&hwcache_align_attr.attr,
5510 	&reclaim_account_attr.attr,
5511 	&destroy_by_rcu_attr.attr,
5512 	&shrink_attr.attr,
5513 	&slabs_cpu_partial_attr.attr,
5514 #ifdef CONFIG_SLUB_DEBUG
5515 	&total_objects_attr.attr,
5516 	&slabs_attr.attr,
5517 	&sanity_checks_attr.attr,
5518 	&trace_attr.attr,
5519 	&red_zone_attr.attr,
5520 	&poison_attr.attr,
5521 	&store_user_attr.attr,
5522 	&validate_attr.attr,
5523 	&alloc_calls_attr.attr,
5524 	&free_calls_attr.attr,
5525 #endif
5526 #ifdef CONFIG_ZONE_DMA
5527 	&cache_dma_attr.attr,
5528 #endif
5529 #ifdef CONFIG_NUMA
5530 	&remote_node_defrag_ratio_attr.attr,
5531 #endif
5532 #ifdef CONFIG_SLUB_STATS
5533 	&alloc_fastpath_attr.attr,
5534 	&alloc_slowpath_attr.attr,
5535 	&free_fastpath_attr.attr,
5536 	&free_slowpath_attr.attr,
5537 	&free_frozen_attr.attr,
5538 	&free_add_partial_attr.attr,
5539 	&free_remove_partial_attr.attr,
5540 	&alloc_from_partial_attr.attr,
5541 	&alloc_slab_attr.attr,
5542 	&alloc_refill_attr.attr,
5543 	&alloc_node_mismatch_attr.attr,
5544 	&free_slab_attr.attr,
5545 	&cpuslab_flush_attr.attr,
5546 	&deactivate_full_attr.attr,
5547 	&deactivate_empty_attr.attr,
5548 	&deactivate_to_head_attr.attr,
5549 	&deactivate_to_tail_attr.attr,
5550 	&deactivate_remote_frees_attr.attr,
5551 	&deactivate_bypass_attr.attr,
5552 	&order_fallback_attr.attr,
5553 	&cmpxchg_double_fail_attr.attr,
5554 	&cmpxchg_double_cpu_fail_attr.attr,
5555 	&cpu_partial_alloc_attr.attr,
5556 	&cpu_partial_free_attr.attr,
5557 	&cpu_partial_node_attr.attr,
5558 	&cpu_partial_drain_attr.attr,
5559 #endif
5560 #ifdef CONFIG_FAILSLAB
5561 	&failslab_attr.attr,
5562 #endif
5563 	&usersize_attr.attr,
5564 
5565 	NULL
5566 };
5567 
5568 static const struct attribute_group slab_attr_group = {
5569 	.attrs = slab_attrs,
5570 };
5571 
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)5572 static ssize_t slab_attr_show(struct kobject *kobj,
5573 				struct attribute *attr,
5574 				char *buf)
5575 {
5576 	struct slab_attribute *attribute;
5577 	struct kmem_cache *s;
5578 	int err;
5579 
5580 	attribute = to_slab_attr(attr);
5581 	s = to_slab(kobj);
5582 
5583 	if (!attribute->show)
5584 		return -EIO;
5585 
5586 	err = attribute->show(s, buf);
5587 
5588 	return err;
5589 }
5590 
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)5591 static ssize_t slab_attr_store(struct kobject *kobj,
5592 				struct attribute *attr,
5593 				const char *buf, size_t len)
5594 {
5595 	struct slab_attribute *attribute;
5596 	struct kmem_cache *s;
5597 	int err;
5598 
5599 	attribute = to_slab_attr(attr);
5600 	s = to_slab(kobj);
5601 
5602 	if (!attribute->store)
5603 		return -EIO;
5604 
5605 	err = attribute->store(s, buf, len);
5606 #ifdef CONFIG_MEMCG
5607 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5608 		struct kmem_cache *c;
5609 
5610 		mutex_lock(&slab_mutex);
5611 		if (s->max_attr_size < len)
5612 			s->max_attr_size = len;
5613 
5614 		/*
5615 		 * This is a best effort propagation, so this function's return
5616 		 * value will be determined by the parent cache only. This is
5617 		 * basically because not all attributes will have a well
5618 		 * defined semantics for rollbacks - most of the actions will
5619 		 * have permanent effects.
5620 		 *
5621 		 * Returning the error value of any of the children that fail
5622 		 * is not 100 % defined, in the sense that users seeing the
5623 		 * error code won't be able to know anything about the state of
5624 		 * the cache.
5625 		 *
5626 		 * Only returning the error code for the parent cache at least
5627 		 * has well defined semantics. The cache being written to
5628 		 * directly either failed or succeeded, in which case we loop
5629 		 * through the descendants with best-effort propagation.
5630 		 */
5631 		for_each_memcg_cache(c, s)
5632 			attribute->store(c, buf, len);
5633 		mutex_unlock(&slab_mutex);
5634 	}
5635 #endif
5636 	return err;
5637 }
5638 
memcg_propagate_slab_attrs(struct kmem_cache * s)5639 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5640 {
5641 #ifdef CONFIG_MEMCG
5642 	int i;
5643 	char *buffer = NULL;
5644 	struct kmem_cache *root_cache;
5645 
5646 	if (is_root_cache(s))
5647 		return;
5648 
5649 	root_cache = s->memcg_params.root_cache;
5650 
5651 	/*
5652 	 * This mean this cache had no attribute written. Therefore, no point
5653 	 * in copying default values around
5654 	 */
5655 	if (!root_cache->max_attr_size)
5656 		return;
5657 
5658 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5659 		char mbuf[64];
5660 		char *buf;
5661 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5662 		ssize_t len;
5663 
5664 		if (!attr || !attr->store || !attr->show)
5665 			continue;
5666 
5667 		/*
5668 		 * It is really bad that we have to allocate here, so we will
5669 		 * do it only as a fallback. If we actually allocate, though,
5670 		 * we can just use the allocated buffer until the end.
5671 		 *
5672 		 * Most of the slub attributes will tend to be very small in
5673 		 * size, but sysfs allows buffers up to a page, so they can
5674 		 * theoretically happen.
5675 		 */
5676 		if (buffer)
5677 			buf = buffer;
5678 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf) &&
5679 			 !IS_ENABLED(CONFIG_SLUB_STATS))
5680 			buf = mbuf;
5681 		else {
5682 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5683 			if (WARN_ON(!buffer))
5684 				continue;
5685 			buf = buffer;
5686 		}
5687 
5688 		len = attr->show(root_cache, buf);
5689 		if (len > 0)
5690 			attr->store(s, buf, len);
5691 	}
5692 
5693 	if (buffer)
5694 		free_page((unsigned long)buffer);
5695 #endif	/* CONFIG_MEMCG */
5696 }
5697 
kmem_cache_release(struct kobject * k)5698 static void kmem_cache_release(struct kobject *k)
5699 {
5700 	slab_kmem_cache_release(to_slab(k));
5701 }
5702 
5703 static const struct sysfs_ops slab_sysfs_ops = {
5704 	.show = slab_attr_show,
5705 	.store = slab_attr_store,
5706 };
5707 
5708 static struct kobj_type slab_ktype = {
5709 	.sysfs_ops = &slab_sysfs_ops,
5710 	.release = kmem_cache_release,
5711 };
5712 
uevent_filter(struct kset * kset,struct kobject * kobj)5713 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5714 {
5715 	struct kobj_type *ktype = get_ktype(kobj);
5716 
5717 	if (ktype == &slab_ktype)
5718 		return 1;
5719 	return 0;
5720 }
5721 
5722 static const struct kset_uevent_ops slab_uevent_ops = {
5723 	.filter = uevent_filter,
5724 };
5725 
5726 static struct kset *slab_kset;
5727 
cache_kset(struct kmem_cache * s)5728 static inline struct kset *cache_kset(struct kmem_cache *s)
5729 {
5730 #ifdef CONFIG_MEMCG
5731 	if (!is_root_cache(s))
5732 		return s->memcg_params.root_cache->memcg_kset;
5733 #endif
5734 	return slab_kset;
5735 }
5736 
5737 #define ID_STR_LENGTH 64
5738 
5739 /* Create a unique string id for a slab cache:
5740  *
5741  * Format	:[flags-]size
5742  */
create_unique_id(struct kmem_cache * s)5743 static char *create_unique_id(struct kmem_cache *s)
5744 {
5745 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5746 	char *p = name;
5747 
5748 	if (!name)
5749 		return ERR_PTR(-ENOMEM);
5750 
5751 	*p++ = ':';
5752 	/*
5753 	 * First flags affecting slabcache operations. We will only
5754 	 * get here for aliasable slabs so we do not need to support
5755 	 * too many flags. The flags here must cover all flags that
5756 	 * are matched during merging to guarantee that the id is
5757 	 * unique.
5758 	 */
5759 	if (s->flags & SLAB_CACHE_DMA)
5760 		*p++ = 'd';
5761 	if (s->flags & SLAB_CACHE_DMA32)
5762 		*p++ = 'D';
5763 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5764 		*p++ = 'a';
5765 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5766 		*p++ = 'F';
5767 	if (s->flags & SLAB_ACCOUNT)
5768 		*p++ = 'A';
5769 	if (p != name + 1)
5770 		*p++ = '-';
5771 	p += sprintf(p, "%07u", s->size);
5772 
5773 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5774 	return name;
5775 }
5776 
sysfs_slab_remove_workfn(struct work_struct * work)5777 static void sysfs_slab_remove_workfn(struct work_struct *work)
5778 {
5779 	struct kmem_cache *s =
5780 		container_of(work, struct kmem_cache, kobj_remove_work);
5781 
5782 	if (!s->kobj.state_in_sysfs)
5783 		/*
5784 		 * For a memcg cache, this may be called during
5785 		 * deactivation and again on shutdown.  Remove only once.
5786 		 * A cache is never shut down before deactivation is
5787 		 * complete, so no need to worry about synchronization.
5788 		 */
5789 		goto out;
5790 
5791 #ifdef CONFIG_MEMCG
5792 	kset_unregister(s->memcg_kset);
5793 #endif
5794 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5795 out:
5796 	kobject_put(&s->kobj);
5797 }
5798 
sysfs_slab_add(struct kmem_cache * s)5799 static int sysfs_slab_add(struct kmem_cache *s)
5800 {
5801 	int err;
5802 	const char *name;
5803 	struct kset *kset = cache_kset(s);
5804 	int unmergeable = slab_unmergeable(s);
5805 
5806 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5807 
5808 	if (!kset) {
5809 		kobject_init(&s->kobj, &slab_ktype);
5810 		return 0;
5811 	}
5812 
5813 	if (!unmergeable && disable_higher_order_debug &&
5814 			(slub_debug & DEBUG_METADATA_FLAGS))
5815 		unmergeable = 1;
5816 
5817 	if (unmergeable) {
5818 		/*
5819 		 * Slabcache can never be merged so we can use the name proper.
5820 		 * This is typically the case for debug situations. In that
5821 		 * case we can catch duplicate names easily.
5822 		 */
5823 		sysfs_remove_link(&slab_kset->kobj, s->name);
5824 		name = s->name;
5825 	} else {
5826 		/*
5827 		 * Create a unique name for the slab as a target
5828 		 * for the symlinks.
5829 		 */
5830 		name = create_unique_id(s);
5831 		if (IS_ERR(name))
5832 			return PTR_ERR(name);
5833 	}
5834 
5835 	s->kobj.kset = kset;
5836 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5837 	if (err)
5838 		goto out;
5839 
5840 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5841 	if (err)
5842 		goto out_del_kobj;
5843 
5844 #ifdef CONFIG_MEMCG
5845 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5846 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5847 		if (!s->memcg_kset) {
5848 			err = -ENOMEM;
5849 			goto out_del_kobj;
5850 		}
5851 	}
5852 #endif
5853 
5854 	kobject_uevent(&s->kobj, KOBJ_ADD);
5855 	if (!unmergeable) {
5856 		/* Setup first alias */
5857 		sysfs_slab_alias(s, s->name);
5858 	}
5859 out:
5860 	if (!unmergeable)
5861 		kfree(name);
5862 	return err;
5863 out_del_kobj:
5864 	kobject_del(&s->kobj);
5865 	goto out;
5866 }
5867 
sysfs_slab_remove(struct kmem_cache * s)5868 static void sysfs_slab_remove(struct kmem_cache *s)
5869 {
5870 	if (slab_state < FULL)
5871 		/*
5872 		 * Sysfs has not been setup yet so no need to remove the
5873 		 * cache from sysfs.
5874 		 */
5875 		return;
5876 
5877 	kobject_get(&s->kobj);
5878 	schedule_work(&s->kobj_remove_work);
5879 }
5880 
sysfs_slab_unlink(struct kmem_cache * s)5881 void sysfs_slab_unlink(struct kmem_cache *s)
5882 {
5883 	if (slab_state >= FULL)
5884 		kobject_del(&s->kobj);
5885 }
5886 
sysfs_slab_release(struct kmem_cache * s)5887 void sysfs_slab_release(struct kmem_cache *s)
5888 {
5889 	if (slab_state >= FULL)
5890 		kobject_put(&s->kobj);
5891 }
5892 
5893 /*
5894  * Need to buffer aliases during bootup until sysfs becomes
5895  * available lest we lose that information.
5896  */
5897 struct saved_alias {
5898 	struct kmem_cache *s;
5899 	const char *name;
5900 	struct saved_alias *next;
5901 };
5902 
5903 static struct saved_alias *alias_list;
5904 
sysfs_slab_alias(struct kmem_cache * s,const char * name)5905 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5906 {
5907 	struct saved_alias *al;
5908 
5909 	if (slab_state == FULL) {
5910 		/*
5911 		 * If we have a leftover link then remove it.
5912 		 */
5913 		sysfs_remove_link(&slab_kset->kobj, name);
5914 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5915 	}
5916 
5917 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5918 	if (!al)
5919 		return -ENOMEM;
5920 
5921 	al->s = s;
5922 	al->name = name;
5923 	al->next = alias_list;
5924 	alias_list = al;
5925 	return 0;
5926 }
5927 
slab_sysfs_init(void)5928 static int __init slab_sysfs_init(void)
5929 {
5930 	struct kmem_cache *s;
5931 	int err;
5932 
5933 	mutex_lock(&slab_mutex);
5934 
5935 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5936 	if (!slab_kset) {
5937 		mutex_unlock(&slab_mutex);
5938 		pr_err("Cannot register slab subsystem.\n");
5939 		return -ENOSYS;
5940 	}
5941 
5942 	slab_state = FULL;
5943 
5944 	list_for_each_entry(s, &slab_caches, list) {
5945 		err = sysfs_slab_add(s);
5946 		if (err)
5947 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5948 			       s->name);
5949 	}
5950 
5951 	while (alias_list) {
5952 		struct saved_alias *al = alias_list;
5953 
5954 		alias_list = alias_list->next;
5955 		err = sysfs_slab_alias(al->s, al->name);
5956 		if (err)
5957 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5958 			       al->name);
5959 		kfree(al);
5960 	}
5961 
5962 	mutex_unlock(&slab_mutex);
5963 	resiliency_test();
5964 	return 0;
5965 }
5966 
5967 __initcall(slab_sysfs_init);
5968 #endif /* CONFIG_SYSFS */
5969 
5970 /*
5971  * The /proc/slabinfo ABI
5972  */
5973 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)5974 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5975 {
5976 	unsigned long nr_slabs = 0;
5977 	unsigned long nr_objs = 0;
5978 	unsigned long nr_free = 0;
5979 	int node;
5980 	struct kmem_cache_node *n;
5981 
5982 	for_each_kmem_cache_node(s, node, n) {
5983 		nr_slabs += node_nr_slabs(n);
5984 		nr_objs += node_nr_objs(n);
5985 		nr_free += count_partial(n, count_free);
5986 	}
5987 
5988 	sinfo->active_objs = nr_objs - nr_free;
5989 	sinfo->num_objs = nr_objs;
5990 	sinfo->active_slabs = nr_slabs;
5991 	sinfo->num_slabs = nr_slabs;
5992 	sinfo->objects_per_slab = oo_objects(s->oo);
5993 	sinfo->cache_order = oo_order(s->oo);
5994 }
5995 
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * s)5996 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5997 {
5998 }
5999 
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)6000 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6001 		       size_t count, loff_t *ppos)
6002 {
6003 	return -EIO;
6004 }
6005 #endif /* CONFIG_SLUB_DEBUG */
6006