• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10 
11 #define pr_fmt(fmt) "LSM: " fmt
12 
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/lsm_hooks.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/msg.h>
30 #include <net/flow.h>
31 
32 #define MAX_LSM_EVM_XATTR	2
33 
34 /* How many LSMs were built into the kernel? */
35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36 #define EARLY_LSM_COUNT (__end_early_lsm_info - __start_early_lsm_info)
37 
38 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
39 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
40 
41 static struct kmem_cache *lsm_file_cache;
42 static struct kmem_cache *lsm_inode_cache;
43 
44 char *lsm_names;
45 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
46 
47 /* Boot-time LSM user choice */
48 static __initdata const char *chosen_lsm_order;
49 static __initdata const char *chosen_major_lsm;
50 
51 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
52 
53 /* Ordered list of LSMs to initialize. */
54 static __initdata struct lsm_info **ordered_lsms;
55 static __initdata struct lsm_info *exclusive;
56 
57 static __initdata bool debug;
58 #define init_debug(...)						\
59 	do {							\
60 		if (debug)					\
61 			pr_info(__VA_ARGS__);			\
62 	} while (0)
63 
is_enabled(struct lsm_info * lsm)64 static bool __init is_enabled(struct lsm_info *lsm)
65 {
66 	if (!lsm->enabled)
67 		return false;
68 
69 	return *lsm->enabled;
70 }
71 
72 /* Mark an LSM's enabled flag. */
73 static int lsm_enabled_true __initdata = 1;
74 static int lsm_enabled_false __initdata = 0;
set_enabled(struct lsm_info * lsm,bool enabled)75 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
76 {
77 	/*
78 	 * When an LSM hasn't configured an enable variable, we can use
79 	 * a hard-coded location for storing the default enabled state.
80 	 */
81 	if (!lsm->enabled) {
82 		if (enabled)
83 			lsm->enabled = &lsm_enabled_true;
84 		else
85 			lsm->enabled = &lsm_enabled_false;
86 	} else if (lsm->enabled == &lsm_enabled_true) {
87 		if (!enabled)
88 			lsm->enabled = &lsm_enabled_false;
89 	} else if (lsm->enabled == &lsm_enabled_false) {
90 		if (enabled)
91 			lsm->enabled = &lsm_enabled_true;
92 	} else {
93 		*lsm->enabled = enabled;
94 	}
95 }
96 
97 /* Is an LSM already listed in the ordered LSMs list? */
exists_ordered_lsm(struct lsm_info * lsm)98 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
99 {
100 	struct lsm_info **check;
101 
102 	for (check = ordered_lsms; *check; check++)
103 		if (*check == lsm)
104 			return true;
105 
106 	return false;
107 }
108 
109 /* Append an LSM to the list of ordered LSMs to initialize. */
110 static int last_lsm __initdata;
append_ordered_lsm(struct lsm_info * lsm,const char * from)111 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
112 {
113 	/* Ignore duplicate selections. */
114 	if (exists_ordered_lsm(lsm))
115 		return;
116 
117 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
118 		return;
119 
120 	/* Enable this LSM, if it is not already set. */
121 	if (!lsm->enabled)
122 		lsm->enabled = &lsm_enabled_true;
123 	ordered_lsms[last_lsm++] = lsm;
124 
125 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
126 		   is_enabled(lsm) ? "en" : "dis");
127 }
128 
129 /* Is an LSM allowed to be initialized? */
lsm_allowed(struct lsm_info * lsm)130 static bool __init lsm_allowed(struct lsm_info *lsm)
131 {
132 	/* Skip if the LSM is disabled. */
133 	if (!is_enabled(lsm))
134 		return false;
135 
136 	/* Not allowed if another exclusive LSM already initialized. */
137 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
138 		init_debug("exclusive disabled: %s\n", lsm->name);
139 		return false;
140 	}
141 
142 	return true;
143 }
144 
lsm_set_blob_size(int * need,int * lbs)145 static void __init lsm_set_blob_size(int *need, int *lbs)
146 {
147 	int offset;
148 
149 	if (*need > 0) {
150 		offset = *lbs;
151 		*lbs += *need;
152 		*need = offset;
153 	}
154 }
155 
lsm_set_blob_sizes(struct lsm_blob_sizes * needed)156 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
157 {
158 	if (!needed)
159 		return;
160 
161 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
162 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
163 	/*
164 	 * The inode blob gets an rcu_head in addition to
165 	 * what the modules might need.
166 	 */
167 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
168 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
169 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
170 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
171 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
172 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
173 }
174 
175 /* Prepare LSM for initialization. */
prepare_lsm(struct lsm_info * lsm)176 static void __init prepare_lsm(struct lsm_info *lsm)
177 {
178 	int enabled = lsm_allowed(lsm);
179 
180 	/* Record enablement (to handle any following exclusive LSMs). */
181 	set_enabled(lsm, enabled);
182 
183 	/* If enabled, do pre-initialization work. */
184 	if (enabled) {
185 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
186 			exclusive = lsm;
187 			init_debug("exclusive chosen: %s\n", lsm->name);
188 		}
189 
190 		lsm_set_blob_sizes(lsm->blobs);
191 	}
192 }
193 
194 /* Initialize a given LSM, if it is enabled. */
initialize_lsm(struct lsm_info * lsm)195 static void __init initialize_lsm(struct lsm_info *lsm)
196 {
197 	if (is_enabled(lsm)) {
198 		int ret;
199 
200 		init_debug("initializing %s\n", lsm->name);
201 		ret = lsm->init();
202 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
203 	}
204 }
205 
206 /* Populate ordered LSMs list from comma-separated LSM name list. */
ordered_lsm_parse(const char * order,const char * origin)207 static void __init ordered_lsm_parse(const char *order, const char *origin)
208 {
209 	struct lsm_info *lsm;
210 	char *sep, *name, *next;
211 
212 	/* LSM_ORDER_FIRST is always first. */
213 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
214 		if (lsm->order == LSM_ORDER_FIRST)
215 			append_ordered_lsm(lsm, "first");
216 	}
217 
218 	/* Process "security=", if given. */
219 	if (chosen_major_lsm) {
220 		struct lsm_info *major;
221 
222 		/*
223 		 * To match the original "security=" behavior, this
224 		 * explicitly does NOT fallback to another Legacy Major
225 		 * if the selected one was separately disabled: disable
226 		 * all non-matching Legacy Major LSMs.
227 		 */
228 		for (major = __start_lsm_info; major < __end_lsm_info;
229 		     major++) {
230 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
231 			    strcmp(major->name, chosen_major_lsm) != 0) {
232 				set_enabled(major, false);
233 				init_debug("security=%s disabled: %s\n",
234 					   chosen_major_lsm, major->name);
235 			}
236 		}
237 	}
238 
239 	sep = kstrdup(order, GFP_KERNEL);
240 	next = sep;
241 	/* Walk the list, looking for matching LSMs. */
242 	while ((name = strsep(&next, ",")) != NULL) {
243 		bool found = false;
244 
245 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
246 			if (lsm->order == LSM_ORDER_MUTABLE &&
247 			    strcmp(lsm->name, name) == 0) {
248 				append_ordered_lsm(lsm, origin);
249 				found = true;
250 			}
251 		}
252 
253 		if (!found)
254 			init_debug("%s ignored: %s\n", origin, name);
255 	}
256 
257 	/* Process "security=", if given. */
258 	if (chosen_major_lsm) {
259 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
260 			if (exists_ordered_lsm(lsm))
261 				continue;
262 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
263 				append_ordered_lsm(lsm, "security=");
264 		}
265 	}
266 
267 	/* Disable all LSMs not in the ordered list. */
268 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
269 		if (exists_ordered_lsm(lsm))
270 			continue;
271 		set_enabled(lsm, false);
272 		init_debug("%s disabled: %s\n", origin, lsm->name);
273 	}
274 
275 	kfree(sep);
276 }
277 
278 static void __init lsm_early_cred(struct cred *cred);
279 static void __init lsm_early_task(struct task_struct *task);
280 
281 static int lsm_append(const char *new, char **result);
282 
ordered_lsm_init(void)283 static void __init ordered_lsm_init(void)
284 {
285 	struct lsm_info **lsm;
286 
287 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
288 				GFP_KERNEL);
289 
290 	if (chosen_lsm_order) {
291 		if (chosen_major_lsm) {
292 			pr_info("security= is ignored because it is superseded by lsm=\n");
293 			chosen_major_lsm = NULL;
294 		}
295 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
296 	} else
297 		ordered_lsm_parse(builtin_lsm_order, "builtin");
298 
299 	for (lsm = ordered_lsms; *lsm; lsm++)
300 		prepare_lsm(*lsm);
301 
302 	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
303 	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
304 	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
305 	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
306 	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
307 	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
308 
309 	/*
310 	 * Create any kmem_caches needed for blobs
311 	 */
312 	if (blob_sizes.lbs_file)
313 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
314 						   blob_sizes.lbs_file, 0,
315 						   SLAB_PANIC, NULL);
316 	if (blob_sizes.lbs_inode)
317 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
318 						    blob_sizes.lbs_inode, 0,
319 						    SLAB_PANIC, NULL);
320 
321 	lsm_early_cred((struct cred *) current->cred);
322 	lsm_early_task(current);
323 	for (lsm = ordered_lsms; *lsm; lsm++)
324 		initialize_lsm(*lsm);
325 
326 	kfree(ordered_lsms);
327 }
328 
early_security_init(void)329 int __init early_security_init(void)
330 {
331 	int i;
332 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
333 	struct lsm_info *lsm;
334 
335 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
336 	     i++)
337 		INIT_HLIST_HEAD(&list[i]);
338 
339 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
340 		if (!lsm->enabled)
341 			lsm->enabled = &lsm_enabled_true;
342 		prepare_lsm(lsm);
343 		initialize_lsm(lsm);
344 	}
345 
346 	return 0;
347 }
348 
349 /**
350  * security_init - initializes the security framework
351  *
352  * This should be called early in the kernel initialization sequence.
353  */
security_init(void)354 int __init security_init(void)
355 {
356 	struct lsm_info *lsm;
357 
358 	pr_info("Security Framework initializing\n");
359 
360 	/*
361 	 * Append the names of the early LSM modules now that kmalloc() is
362 	 * available
363 	 */
364 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
365 		if (lsm->enabled)
366 			lsm_append(lsm->name, &lsm_names);
367 	}
368 
369 	/* Load LSMs in specified order. */
370 	ordered_lsm_init();
371 
372 	return 0;
373 }
374 
375 /* Save user chosen LSM */
choose_major_lsm(char * str)376 static int __init choose_major_lsm(char *str)
377 {
378 	chosen_major_lsm = str;
379 	return 1;
380 }
381 __setup("security=", choose_major_lsm);
382 
383 /* Explicitly choose LSM initialization order. */
choose_lsm_order(char * str)384 static int __init choose_lsm_order(char *str)
385 {
386 	chosen_lsm_order = str;
387 	return 1;
388 }
389 __setup("lsm=", choose_lsm_order);
390 
391 /* Enable LSM order debugging. */
enable_debug(char * str)392 static int __init enable_debug(char *str)
393 {
394 	debug = true;
395 	return 1;
396 }
397 __setup("lsm.debug", enable_debug);
398 
match_last_lsm(const char * list,const char * lsm)399 static bool match_last_lsm(const char *list, const char *lsm)
400 {
401 	const char *last;
402 
403 	if (WARN_ON(!list || !lsm))
404 		return false;
405 	last = strrchr(list, ',');
406 	if (last)
407 		/* Pass the comma, strcmp() will check for '\0' */
408 		last++;
409 	else
410 		last = list;
411 	return !strcmp(last, lsm);
412 }
413 
lsm_append(const char * new,char ** result)414 static int lsm_append(const char *new, char **result)
415 {
416 	char *cp;
417 
418 	if (*result == NULL) {
419 		*result = kstrdup(new, GFP_KERNEL);
420 		if (*result == NULL)
421 			return -ENOMEM;
422 	} else {
423 		/* Check if it is the last registered name */
424 		if (match_last_lsm(*result, new))
425 			return 0;
426 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
427 		if (cp == NULL)
428 			return -ENOMEM;
429 		kfree(*result);
430 		*result = cp;
431 	}
432 	return 0;
433 }
434 
435 /**
436  * security_add_hooks - Add a modules hooks to the hook lists.
437  * @hooks: the hooks to add
438  * @count: the number of hooks to add
439  * @lsm: the name of the security module
440  *
441  * Each LSM has to register its hooks with the infrastructure.
442  */
security_add_hooks(struct security_hook_list * hooks,int count,char * lsm)443 void __init security_add_hooks(struct security_hook_list *hooks, int count,
444 				char *lsm)
445 {
446 	int i;
447 
448 	for (i = 0; i < count; i++) {
449 		hooks[i].lsm = lsm;
450 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
451 	}
452 
453 	/*
454 	 * Don't try to append during early_security_init(), we'll come back
455 	 * and fix this up afterwards.
456 	 */
457 	if (slab_is_available()) {
458 		if (lsm_append(lsm, &lsm_names) < 0)
459 			panic("%s - Cannot get early memory.\n", __func__);
460 	}
461 }
462 
call_blocking_lsm_notifier(enum lsm_event event,void * data)463 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
464 {
465 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
466 					    event, data);
467 }
468 EXPORT_SYMBOL(call_blocking_lsm_notifier);
469 
register_blocking_lsm_notifier(struct notifier_block * nb)470 int register_blocking_lsm_notifier(struct notifier_block *nb)
471 {
472 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
473 						nb);
474 }
475 EXPORT_SYMBOL(register_blocking_lsm_notifier);
476 
unregister_blocking_lsm_notifier(struct notifier_block * nb)477 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
478 {
479 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
480 						  nb);
481 }
482 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
483 
484 /**
485  * lsm_cred_alloc - allocate a composite cred blob
486  * @cred: the cred that needs a blob
487  * @gfp: allocation type
488  *
489  * Allocate the cred blob for all the modules
490  *
491  * Returns 0, or -ENOMEM if memory can't be allocated.
492  */
lsm_cred_alloc(struct cred * cred,gfp_t gfp)493 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
494 {
495 	if (blob_sizes.lbs_cred == 0) {
496 		cred->security = NULL;
497 		return 0;
498 	}
499 
500 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
501 	if (cred->security == NULL)
502 		return -ENOMEM;
503 	return 0;
504 }
505 
506 /**
507  * lsm_early_cred - during initialization allocate a composite cred blob
508  * @cred: the cred that needs a blob
509  *
510  * Allocate the cred blob for all the modules
511  */
lsm_early_cred(struct cred * cred)512 static void __init lsm_early_cred(struct cred *cred)
513 {
514 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
515 
516 	if (rc)
517 		panic("%s: Early cred alloc failed.\n", __func__);
518 }
519 
520 /**
521  * lsm_file_alloc - allocate a composite file blob
522  * @file: the file that needs a blob
523  *
524  * Allocate the file blob for all the modules
525  *
526  * Returns 0, or -ENOMEM if memory can't be allocated.
527  */
lsm_file_alloc(struct file * file)528 static int lsm_file_alloc(struct file *file)
529 {
530 	if (!lsm_file_cache) {
531 		file->f_security = NULL;
532 		return 0;
533 	}
534 
535 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
536 	if (file->f_security == NULL)
537 		return -ENOMEM;
538 	return 0;
539 }
540 
541 /**
542  * lsm_inode_alloc - allocate a composite inode blob
543  * @inode: the inode that needs a blob
544  *
545  * Allocate the inode blob for all the modules
546  *
547  * Returns 0, or -ENOMEM if memory can't be allocated.
548  */
lsm_inode_alloc(struct inode * inode)549 int lsm_inode_alloc(struct inode *inode)
550 {
551 	if (!lsm_inode_cache) {
552 		inode->i_security = NULL;
553 		return 0;
554 	}
555 
556 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
557 	if (inode->i_security == NULL)
558 		return -ENOMEM;
559 	return 0;
560 }
561 
562 /**
563  * lsm_task_alloc - allocate a composite task blob
564  * @task: the task that needs a blob
565  *
566  * Allocate the task blob for all the modules
567  *
568  * Returns 0, or -ENOMEM if memory can't be allocated.
569  */
lsm_task_alloc(struct task_struct * task)570 static int lsm_task_alloc(struct task_struct *task)
571 {
572 	if (blob_sizes.lbs_task == 0) {
573 		task->security = NULL;
574 		return 0;
575 	}
576 
577 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
578 	if (task->security == NULL)
579 		return -ENOMEM;
580 	return 0;
581 }
582 
583 /**
584  * lsm_ipc_alloc - allocate a composite ipc blob
585  * @kip: the ipc that needs a blob
586  *
587  * Allocate the ipc blob for all the modules
588  *
589  * Returns 0, or -ENOMEM if memory can't be allocated.
590  */
lsm_ipc_alloc(struct kern_ipc_perm * kip)591 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
592 {
593 	if (blob_sizes.lbs_ipc == 0) {
594 		kip->security = NULL;
595 		return 0;
596 	}
597 
598 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
599 	if (kip->security == NULL)
600 		return -ENOMEM;
601 	return 0;
602 }
603 
604 /**
605  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
606  * @mp: the msg_msg that needs a blob
607  *
608  * Allocate the ipc blob for all the modules
609  *
610  * Returns 0, or -ENOMEM if memory can't be allocated.
611  */
lsm_msg_msg_alloc(struct msg_msg * mp)612 static int lsm_msg_msg_alloc(struct msg_msg *mp)
613 {
614 	if (blob_sizes.lbs_msg_msg == 0) {
615 		mp->security = NULL;
616 		return 0;
617 	}
618 
619 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
620 	if (mp->security == NULL)
621 		return -ENOMEM;
622 	return 0;
623 }
624 
625 /**
626  * lsm_early_task - during initialization allocate a composite task blob
627  * @task: the task that needs a blob
628  *
629  * Allocate the task blob for all the modules
630  */
lsm_early_task(struct task_struct * task)631 static void __init lsm_early_task(struct task_struct *task)
632 {
633 	int rc = lsm_task_alloc(task);
634 
635 	if (rc)
636 		panic("%s: Early task alloc failed.\n", __func__);
637 }
638 
639 /*
640  * Hook list operation macros.
641  *
642  * call_void_hook:
643  *	This is a hook that does not return a value.
644  *
645  * call_int_hook:
646  *	This is a hook that returns a value.
647  */
648 
649 #define call_void_hook(FUNC, ...)				\
650 	do {							\
651 		struct security_hook_list *P;			\
652 								\
653 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
654 			P->hook.FUNC(__VA_ARGS__);		\
655 	} while (0)
656 
657 #define call_int_hook(FUNC, IRC, ...) ({			\
658 	int RC = IRC;						\
659 	do {							\
660 		struct security_hook_list *P;			\
661 								\
662 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
663 			RC = P->hook.FUNC(__VA_ARGS__);		\
664 			if (RC != 0)				\
665 				break;				\
666 		}						\
667 	} while (0);						\
668 	RC;							\
669 })
670 
671 /* Security operations */
672 
security_binder_set_context_mgr(const struct cred * mgr)673 int security_binder_set_context_mgr(const struct cred *mgr)
674 {
675 	return call_int_hook(binder_set_context_mgr, 0, mgr);
676 }
677 
security_binder_transaction(const struct cred * from,const struct cred * to)678 int security_binder_transaction(const struct cred *from,
679 				const struct cred *to)
680 {
681 	return call_int_hook(binder_transaction, 0, from, to);
682 }
683 
security_binder_transfer_binder(const struct cred * from,const struct cred * to)684 int security_binder_transfer_binder(const struct cred *from,
685 				    const struct cred *to)
686 {
687 	return call_int_hook(binder_transfer_binder, 0, from, to);
688 }
689 
security_binder_transfer_file(const struct cred * from,const struct cred * to,struct file * file)690 int security_binder_transfer_file(const struct cred *from,
691 				  const struct cred *to, struct file *file)
692 {
693 	return call_int_hook(binder_transfer_file, 0, from, to, file);
694 }
695 
security_ptrace_access_check(struct task_struct * child,unsigned int mode)696 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
697 {
698 	return call_int_hook(ptrace_access_check, 0, child, mode);
699 }
700 
security_ptrace_traceme(struct task_struct * parent)701 int security_ptrace_traceme(struct task_struct *parent)
702 {
703 	return call_int_hook(ptrace_traceme, 0, parent);
704 }
705 
security_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)706 int security_capget(struct task_struct *target,
707 		     kernel_cap_t *effective,
708 		     kernel_cap_t *inheritable,
709 		     kernel_cap_t *permitted)
710 {
711 	return call_int_hook(capget, 0, target,
712 				effective, inheritable, permitted);
713 }
714 
security_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)715 int security_capset(struct cred *new, const struct cred *old,
716 		    const kernel_cap_t *effective,
717 		    const kernel_cap_t *inheritable,
718 		    const kernel_cap_t *permitted)
719 {
720 	return call_int_hook(capset, 0, new, old,
721 				effective, inheritable, permitted);
722 }
723 
security_capable(const struct cred * cred,struct user_namespace * ns,int cap,unsigned int opts)724 int security_capable(const struct cred *cred,
725 		     struct user_namespace *ns,
726 		     int cap,
727 		     unsigned int opts)
728 {
729 	return call_int_hook(capable, 0, cred, ns, cap, opts);
730 }
731 
security_quotactl(int cmds,int type,int id,struct super_block * sb)732 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
733 {
734 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
735 }
736 
security_quota_on(struct dentry * dentry)737 int security_quota_on(struct dentry *dentry)
738 {
739 	return call_int_hook(quota_on, 0, dentry);
740 }
741 
security_syslog(int type)742 int security_syslog(int type)
743 {
744 	return call_int_hook(syslog, 0, type);
745 }
746 
security_settime64(const struct timespec64 * ts,const struct timezone * tz)747 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
748 {
749 	return call_int_hook(settime, 0, ts, tz);
750 }
751 
security_vm_enough_memory_mm(struct mm_struct * mm,long pages)752 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
753 {
754 	struct security_hook_list *hp;
755 	int cap_sys_admin = 1;
756 	int rc;
757 
758 	/*
759 	 * The module will respond with a positive value if
760 	 * it thinks the __vm_enough_memory() call should be
761 	 * made with the cap_sys_admin set. If all of the modules
762 	 * agree that it should be set it will. If any module
763 	 * thinks it should not be set it won't.
764 	 */
765 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
766 		rc = hp->hook.vm_enough_memory(mm, pages);
767 		if (rc <= 0) {
768 			cap_sys_admin = 0;
769 			break;
770 		}
771 	}
772 	return __vm_enough_memory(mm, pages, cap_sys_admin);
773 }
774 
security_bprm_set_creds(struct linux_binprm * bprm)775 int security_bprm_set_creds(struct linux_binprm *bprm)
776 {
777 	return call_int_hook(bprm_set_creds, 0, bprm);
778 }
779 
security_bprm_check(struct linux_binprm * bprm)780 int security_bprm_check(struct linux_binprm *bprm)
781 {
782 	int ret;
783 
784 	ret = call_int_hook(bprm_check_security, 0, bprm);
785 	if (ret)
786 		return ret;
787 	return ima_bprm_check(bprm);
788 }
789 
security_bprm_committing_creds(struct linux_binprm * bprm)790 void security_bprm_committing_creds(struct linux_binprm *bprm)
791 {
792 	call_void_hook(bprm_committing_creds, bprm);
793 }
794 
security_bprm_committed_creds(struct linux_binprm * bprm)795 void security_bprm_committed_creds(struct linux_binprm *bprm)
796 {
797 	call_void_hook(bprm_committed_creds, bprm);
798 }
799 
security_fs_context_dup(struct fs_context * fc,struct fs_context * src_fc)800 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
801 {
802 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
803 }
804 
security_fs_context_parse_param(struct fs_context * fc,struct fs_parameter * param)805 int security_fs_context_parse_param(struct fs_context *fc,
806 				    struct fs_parameter *param)
807 {
808 	struct security_hook_list *hp;
809 	int trc;
810 	int rc = -ENOPARAM;
811 
812 	hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
813 			     list) {
814 		trc = hp->hook.fs_context_parse_param(fc, param);
815 		if (trc == 0)
816 			rc = 0;
817 		else if (trc != -ENOPARAM)
818 			return trc;
819 	}
820 	return rc;
821 }
822 
security_sb_alloc(struct super_block * sb)823 int security_sb_alloc(struct super_block *sb)
824 {
825 	return call_int_hook(sb_alloc_security, 0, sb);
826 }
827 
security_sb_free(struct super_block * sb)828 void security_sb_free(struct super_block *sb)
829 {
830 	call_void_hook(sb_free_security, sb);
831 }
832 
security_free_mnt_opts(void ** mnt_opts)833 void security_free_mnt_opts(void **mnt_opts)
834 {
835 	if (!*mnt_opts)
836 		return;
837 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
838 	*mnt_opts = NULL;
839 }
840 EXPORT_SYMBOL(security_free_mnt_opts);
841 
security_sb_eat_lsm_opts(char * options,void ** mnt_opts)842 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
843 {
844 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
845 }
846 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
847 
security_sb_remount(struct super_block * sb,void * mnt_opts)848 int security_sb_remount(struct super_block *sb,
849 			void *mnt_opts)
850 {
851 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
852 }
853 EXPORT_SYMBOL(security_sb_remount);
854 
security_sb_kern_mount(struct super_block * sb)855 int security_sb_kern_mount(struct super_block *sb)
856 {
857 	return call_int_hook(sb_kern_mount, 0, sb);
858 }
859 
security_sb_show_options(struct seq_file * m,struct super_block * sb)860 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
861 {
862 	return call_int_hook(sb_show_options, 0, m, sb);
863 }
864 
security_sb_statfs(struct dentry * dentry)865 int security_sb_statfs(struct dentry *dentry)
866 {
867 	return call_int_hook(sb_statfs, 0, dentry);
868 }
869 
security_sb_mount(const char * dev_name,const struct path * path,const char * type,unsigned long flags,void * data)870 int security_sb_mount(const char *dev_name, const struct path *path,
871                        const char *type, unsigned long flags, void *data)
872 {
873 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
874 }
875 
security_sb_umount(struct vfsmount * mnt,int flags)876 int security_sb_umount(struct vfsmount *mnt, int flags)
877 {
878 	return call_int_hook(sb_umount, 0, mnt, flags);
879 }
880 
security_sb_pivotroot(const struct path * old_path,const struct path * new_path)881 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
882 {
883 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
884 }
885 
security_sb_set_mnt_opts(struct super_block * sb,void * mnt_opts,unsigned long kern_flags,unsigned long * set_kern_flags)886 int security_sb_set_mnt_opts(struct super_block *sb,
887 				void *mnt_opts,
888 				unsigned long kern_flags,
889 				unsigned long *set_kern_flags)
890 {
891 	return call_int_hook(sb_set_mnt_opts,
892 				mnt_opts ? -EOPNOTSUPP : 0, sb,
893 				mnt_opts, kern_flags, set_kern_flags);
894 }
895 EXPORT_SYMBOL(security_sb_set_mnt_opts);
896 
security_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb,unsigned long kern_flags,unsigned long * set_kern_flags)897 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
898 				struct super_block *newsb,
899 				unsigned long kern_flags,
900 				unsigned long *set_kern_flags)
901 {
902 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
903 				kern_flags, set_kern_flags);
904 }
905 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
906 
security_add_mnt_opt(const char * option,const char * val,int len,void ** mnt_opts)907 int security_add_mnt_opt(const char *option, const char *val, int len,
908 			 void **mnt_opts)
909 {
910 	return call_int_hook(sb_add_mnt_opt, -EINVAL,
911 					option, val, len, mnt_opts);
912 }
913 EXPORT_SYMBOL(security_add_mnt_opt);
914 
security_move_mount(const struct path * from_path,const struct path * to_path)915 int security_move_mount(const struct path *from_path, const struct path *to_path)
916 {
917 	return call_int_hook(move_mount, 0, from_path, to_path);
918 }
919 
security_path_notify(const struct path * path,u64 mask,unsigned int obj_type)920 int security_path_notify(const struct path *path, u64 mask,
921 				unsigned int obj_type)
922 {
923 	return call_int_hook(path_notify, 0, path, mask, obj_type);
924 }
925 
security_inode_alloc(struct inode * inode)926 int security_inode_alloc(struct inode *inode)
927 {
928 	int rc = lsm_inode_alloc(inode);
929 
930 	if (unlikely(rc))
931 		return rc;
932 	rc = call_int_hook(inode_alloc_security, 0, inode);
933 	if (unlikely(rc))
934 		security_inode_free(inode);
935 	return rc;
936 }
937 
inode_free_by_rcu(struct rcu_head * head)938 static void inode_free_by_rcu(struct rcu_head *head)
939 {
940 	/*
941 	 * The rcu head is at the start of the inode blob
942 	 */
943 	kmem_cache_free(lsm_inode_cache, head);
944 }
945 
security_inode_free(struct inode * inode)946 void security_inode_free(struct inode *inode)
947 {
948 	integrity_inode_free(inode);
949 	call_void_hook(inode_free_security, inode);
950 	/*
951 	 * The inode may still be referenced in a path walk and
952 	 * a call to security_inode_permission() can be made
953 	 * after inode_free_security() is called. Ideally, the VFS
954 	 * wouldn't do this, but fixing that is a much harder
955 	 * job. For now, simply free the i_security via RCU, and
956 	 * leave the current inode->i_security pointer intact.
957 	 * The inode will be freed after the RCU grace period too.
958 	 */
959 	if (inode->i_security)
960 		call_rcu((struct rcu_head *)inode->i_security,
961 				inode_free_by_rcu);
962 }
963 
security_dentry_init_security(struct dentry * dentry,int mode,const struct qstr * name,void ** ctx,u32 * ctxlen)964 int security_dentry_init_security(struct dentry *dentry, int mode,
965 					const struct qstr *name, void **ctx,
966 					u32 *ctxlen)
967 {
968 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
969 				name, ctx, ctxlen);
970 }
971 EXPORT_SYMBOL(security_dentry_init_security);
972 
security_dentry_create_files_as(struct dentry * dentry,int mode,struct qstr * name,const struct cred * old,struct cred * new)973 int security_dentry_create_files_as(struct dentry *dentry, int mode,
974 				    struct qstr *name,
975 				    const struct cred *old, struct cred *new)
976 {
977 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
978 				name, old, new);
979 }
980 EXPORT_SYMBOL(security_dentry_create_files_as);
981 
security_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const initxattrs initxattrs,void * fs_data)982 int security_inode_init_security(struct inode *inode, struct inode *dir,
983 				 const struct qstr *qstr,
984 				 const initxattrs initxattrs, void *fs_data)
985 {
986 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
987 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
988 	int ret;
989 
990 	if (unlikely(IS_PRIVATE(inode)))
991 		return 0;
992 
993 	if (!initxattrs)
994 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
995 				     dir, qstr, NULL, NULL, NULL);
996 	memset(new_xattrs, 0, sizeof(new_xattrs));
997 	lsm_xattr = new_xattrs;
998 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
999 						&lsm_xattr->name,
1000 						&lsm_xattr->value,
1001 						&lsm_xattr->value_len);
1002 	if (ret)
1003 		goto out;
1004 
1005 	evm_xattr = lsm_xattr + 1;
1006 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1007 	if (ret)
1008 		goto out;
1009 	ret = initxattrs(inode, new_xattrs, fs_data);
1010 out:
1011 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1012 		kfree(xattr->value);
1013 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1014 }
1015 EXPORT_SYMBOL(security_inode_init_security);
1016 
security_old_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const char ** name,void ** value,size_t * len)1017 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1018 				     const struct qstr *qstr, const char **name,
1019 				     void **value, size_t *len)
1020 {
1021 	if (unlikely(IS_PRIVATE(inode)))
1022 		return -EOPNOTSUPP;
1023 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1024 			     qstr, name, value, len);
1025 }
1026 EXPORT_SYMBOL(security_old_inode_init_security);
1027 
1028 #ifdef CONFIG_SECURITY_PATH
security_path_mknod(const struct path * dir,struct dentry * dentry,umode_t mode,unsigned int dev)1029 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1030 			unsigned int dev)
1031 {
1032 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1033 		return 0;
1034 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1035 }
1036 EXPORT_SYMBOL(security_path_mknod);
1037 
security_path_mkdir(const struct path * dir,struct dentry * dentry,umode_t mode)1038 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1039 {
1040 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1041 		return 0;
1042 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1043 }
1044 EXPORT_SYMBOL(security_path_mkdir);
1045 
security_path_rmdir(const struct path * dir,struct dentry * dentry)1046 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1047 {
1048 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1049 		return 0;
1050 	return call_int_hook(path_rmdir, 0, dir, dentry);
1051 }
1052 
security_path_unlink(const struct path * dir,struct dentry * dentry)1053 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1054 {
1055 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1056 		return 0;
1057 	return call_int_hook(path_unlink, 0, dir, dentry);
1058 }
1059 EXPORT_SYMBOL(security_path_unlink);
1060 
security_path_symlink(const struct path * dir,struct dentry * dentry,const char * old_name)1061 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1062 			  const char *old_name)
1063 {
1064 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1065 		return 0;
1066 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1067 }
1068 
security_path_link(struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry)1069 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1070 		       struct dentry *new_dentry)
1071 {
1072 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1073 		return 0;
1074 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1075 }
1076 
security_path_rename(const struct path * old_dir,struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry,unsigned int flags)1077 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1078 			 const struct path *new_dir, struct dentry *new_dentry,
1079 			 unsigned int flags)
1080 {
1081 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1082 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1083 		return 0;
1084 
1085 	if (flags & RENAME_EXCHANGE) {
1086 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1087 					old_dir, old_dentry);
1088 		if (err)
1089 			return err;
1090 	}
1091 
1092 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1093 				new_dentry);
1094 }
1095 EXPORT_SYMBOL(security_path_rename);
1096 
security_path_truncate(const struct path * path)1097 int security_path_truncate(const struct path *path)
1098 {
1099 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1100 		return 0;
1101 	return call_int_hook(path_truncate, 0, path);
1102 }
1103 
security_path_chmod(const struct path * path,umode_t mode)1104 int security_path_chmod(const struct path *path, umode_t mode)
1105 {
1106 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1107 		return 0;
1108 	return call_int_hook(path_chmod, 0, path, mode);
1109 }
1110 
security_path_chown(const struct path * path,kuid_t uid,kgid_t gid)1111 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1112 {
1113 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1114 		return 0;
1115 	return call_int_hook(path_chown, 0, path, uid, gid);
1116 }
1117 
security_path_chroot(const struct path * path)1118 int security_path_chroot(const struct path *path)
1119 {
1120 	return call_int_hook(path_chroot, 0, path);
1121 }
1122 #endif
1123 
security_inode_create(struct inode * dir,struct dentry * dentry,umode_t mode)1124 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1125 {
1126 	if (unlikely(IS_PRIVATE(dir)))
1127 		return 0;
1128 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1129 }
1130 EXPORT_SYMBOL_GPL(security_inode_create);
1131 
security_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)1132 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1133 			 struct dentry *new_dentry)
1134 {
1135 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1136 		return 0;
1137 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1138 }
1139 
security_inode_unlink(struct inode * dir,struct dentry * dentry)1140 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1141 {
1142 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1143 		return 0;
1144 	return call_int_hook(inode_unlink, 0, dir, dentry);
1145 }
1146 
security_inode_symlink(struct inode * dir,struct dentry * dentry,const char * old_name)1147 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1148 			    const char *old_name)
1149 {
1150 	if (unlikely(IS_PRIVATE(dir)))
1151 		return 0;
1152 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1153 }
1154 
security_inode_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1155 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1156 {
1157 	if (unlikely(IS_PRIVATE(dir)))
1158 		return 0;
1159 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1160 }
1161 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1162 
security_inode_rmdir(struct inode * dir,struct dentry * dentry)1163 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1164 {
1165 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1166 		return 0;
1167 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1168 }
1169 
security_inode_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)1170 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1171 {
1172 	if (unlikely(IS_PRIVATE(dir)))
1173 		return 0;
1174 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1175 }
1176 
security_inode_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1177 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1178 			   struct inode *new_dir, struct dentry *new_dentry,
1179 			   unsigned int flags)
1180 {
1181         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1182             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1183 		return 0;
1184 
1185 	if (flags & RENAME_EXCHANGE) {
1186 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1187 						     old_dir, old_dentry);
1188 		if (err)
1189 			return err;
1190 	}
1191 
1192 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1193 					   new_dir, new_dentry);
1194 }
1195 
security_inode_readlink(struct dentry * dentry)1196 int security_inode_readlink(struct dentry *dentry)
1197 {
1198 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1199 		return 0;
1200 	return call_int_hook(inode_readlink, 0, dentry);
1201 }
1202 
security_inode_follow_link(struct dentry * dentry,struct inode * inode,bool rcu)1203 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1204 			       bool rcu)
1205 {
1206 	if (unlikely(IS_PRIVATE(inode)))
1207 		return 0;
1208 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1209 }
1210 
security_inode_permission(struct inode * inode,int mask)1211 int security_inode_permission(struct inode *inode, int mask)
1212 {
1213 	if (unlikely(IS_PRIVATE(inode)))
1214 		return 0;
1215 	return call_int_hook(inode_permission, 0, inode, mask);
1216 }
1217 
security_inode_setattr(struct dentry * dentry,struct iattr * attr)1218 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1219 {
1220 	int ret;
1221 
1222 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1223 		return 0;
1224 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1225 	if (ret)
1226 		return ret;
1227 	return evm_inode_setattr(dentry, attr);
1228 }
1229 EXPORT_SYMBOL_GPL(security_inode_setattr);
1230 
security_inode_getattr(const struct path * path)1231 int security_inode_getattr(const struct path *path)
1232 {
1233 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1234 		return 0;
1235 	return call_int_hook(inode_getattr, 0, path);
1236 }
1237 
security_inode_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1238 int security_inode_setxattr(struct dentry *dentry, const char *name,
1239 			    const void *value, size_t size, int flags)
1240 {
1241 	int ret;
1242 
1243 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1244 		return 0;
1245 	/*
1246 	 * SELinux and Smack integrate the cap call,
1247 	 * so assume that all LSMs supplying this call do so.
1248 	 */
1249 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1250 				flags);
1251 
1252 	if (ret == 1)
1253 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1254 	if (ret)
1255 		return ret;
1256 	ret = ima_inode_setxattr(dentry, name, value, size);
1257 	if (ret)
1258 		return ret;
1259 	return evm_inode_setxattr(dentry, name, value, size);
1260 }
1261 
security_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1262 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1263 				  const void *value, size_t size, int flags)
1264 {
1265 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1266 		return;
1267 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1268 	evm_inode_post_setxattr(dentry, name, value, size);
1269 }
1270 
security_inode_getxattr(struct dentry * dentry,const char * name)1271 int security_inode_getxattr(struct dentry *dentry, const char *name)
1272 {
1273 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1274 		return 0;
1275 	return call_int_hook(inode_getxattr, 0, dentry, name);
1276 }
1277 
security_inode_listxattr(struct dentry * dentry)1278 int security_inode_listxattr(struct dentry *dentry)
1279 {
1280 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1281 		return 0;
1282 	return call_int_hook(inode_listxattr, 0, dentry);
1283 }
1284 
security_inode_removexattr(struct dentry * dentry,const char * name)1285 int security_inode_removexattr(struct dentry *dentry, const char *name)
1286 {
1287 	int ret;
1288 
1289 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1290 		return 0;
1291 	/*
1292 	 * SELinux and Smack integrate the cap call,
1293 	 * so assume that all LSMs supplying this call do so.
1294 	 */
1295 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1296 	if (ret == 1)
1297 		ret = cap_inode_removexattr(dentry, name);
1298 	if (ret)
1299 		return ret;
1300 	ret = ima_inode_removexattr(dentry, name);
1301 	if (ret)
1302 		return ret;
1303 	return evm_inode_removexattr(dentry, name);
1304 }
1305 
security_inode_need_killpriv(struct dentry * dentry)1306 int security_inode_need_killpriv(struct dentry *dentry)
1307 {
1308 	return call_int_hook(inode_need_killpriv, 0, dentry);
1309 }
1310 
security_inode_killpriv(struct dentry * dentry)1311 int security_inode_killpriv(struct dentry *dentry)
1312 {
1313 	return call_int_hook(inode_killpriv, 0, dentry);
1314 }
1315 
security_inode_getsecurity(struct inode * inode,const char * name,void ** buffer,bool alloc)1316 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1317 {
1318 	struct security_hook_list *hp;
1319 	int rc;
1320 
1321 	if (unlikely(IS_PRIVATE(inode)))
1322 		return -EOPNOTSUPP;
1323 	/*
1324 	 * Only one module will provide an attribute with a given name.
1325 	 */
1326 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1327 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1328 		if (rc != -EOPNOTSUPP)
1329 			return rc;
1330 	}
1331 	return -EOPNOTSUPP;
1332 }
1333 
security_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)1334 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1335 {
1336 	struct security_hook_list *hp;
1337 	int rc;
1338 
1339 	if (unlikely(IS_PRIVATE(inode)))
1340 		return -EOPNOTSUPP;
1341 	/*
1342 	 * Only one module will provide an attribute with a given name.
1343 	 */
1344 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1345 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1346 								flags);
1347 		if (rc != -EOPNOTSUPP)
1348 			return rc;
1349 	}
1350 	return -EOPNOTSUPP;
1351 }
1352 
security_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)1353 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1354 {
1355 	if (unlikely(IS_PRIVATE(inode)))
1356 		return 0;
1357 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1358 }
1359 EXPORT_SYMBOL(security_inode_listsecurity);
1360 
security_inode_getsecid(struct inode * inode,u32 * secid)1361 void security_inode_getsecid(struct inode *inode, u32 *secid)
1362 {
1363 	call_void_hook(inode_getsecid, inode, secid);
1364 }
1365 
security_inode_copy_up(struct dentry * src,struct cred ** new)1366 int security_inode_copy_up(struct dentry *src, struct cred **new)
1367 {
1368 	return call_int_hook(inode_copy_up, 0, src, new);
1369 }
1370 EXPORT_SYMBOL(security_inode_copy_up);
1371 
security_inode_copy_up_xattr(const char * name)1372 int security_inode_copy_up_xattr(const char *name)
1373 {
1374 	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1375 }
1376 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1377 
security_kernfs_init_security(struct kernfs_node * kn_dir,struct kernfs_node * kn)1378 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1379 				  struct kernfs_node *kn)
1380 {
1381 	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1382 }
1383 
security_file_permission(struct file * file,int mask)1384 int security_file_permission(struct file *file, int mask)
1385 {
1386 	int ret;
1387 
1388 	ret = call_int_hook(file_permission, 0, file, mask);
1389 	if (ret)
1390 		return ret;
1391 
1392 	return fsnotify_perm(file, mask);
1393 }
1394 
security_file_alloc(struct file * file)1395 int security_file_alloc(struct file *file)
1396 {
1397 	int rc = lsm_file_alloc(file);
1398 
1399 	if (rc)
1400 		return rc;
1401 	rc = call_int_hook(file_alloc_security, 0, file);
1402 	if (unlikely(rc))
1403 		security_file_free(file);
1404 	return rc;
1405 }
1406 
security_file_free(struct file * file)1407 void security_file_free(struct file *file)
1408 {
1409 	void *blob;
1410 
1411 	call_void_hook(file_free_security, file);
1412 
1413 	blob = file->f_security;
1414 	if (blob) {
1415 		file->f_security = NULL;
1416 		kmem_cache_free(lsm_file_cache, blob);
1417 	}
1418 }
1419 
security_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1420 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1421 {
1422 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1423 }
1424 
1425 /**
1426  * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
1427  * @file: associated file
1428  * @cmd: ioctl cmd
1429  * @arg: ioctl arguments
1430  *
1431  * Compat version of security_file_ioctl() that correctly handles 32-bit
1432  * processes running on 64-bit kernels.
1433  *
1434  * Return: Returns 0 if permission is granted.
1435  */
security_file_ioctl_compat(struct file * file,unsigned int cmd,unsigned long arg)1436 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
1437 			       unsigned long arg)
1438 {
1439 	return call_int_hook(file_ioctl_compat, 0, file, cmd, arg);
1440 }
1441 
mmap_prot(struct file * file,unsigned long prot)1442 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1443 {
1444 	/*
1445 	 * Does we have PROT_READ and does the application expect
1446 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1447 	 */
1448 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1449 		return prot;
1450 	if (!(current->personality & READ_IMPLIES_EXEC))
1451 		return prot;
1452 	/*
1453 	 * if that's an anonymous mapping, let it.
1454 	 */
1455 	if (!file)
1456 		return prot | PROT_EXEC;
1457 	/*
1458 	 * ditto if it's not on noexec mount, except that on !MMU we need
1459 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1460 	 */
1461 	if (!path_noexec(&file->f_path)) {
1462 #ifndef CONFIG_MMU
1463 		if (file->f_op->mmap_capabilities) {
1464 			unsigned caps = file->f_op->mmap_capabilities(file);
1465 			if (!(caps & NOMMU_MAP_EXEC))
1466 				return prot;
1467 		}
1468 #endif
1469 		return prot | PROT_EXEC;
1470 	}
1471 	/* anything on noexec mount won't get PROT_EXEC */
1472 	return prot;
1473 }
1474 
security_mmap_file(struct file * file,unsigned long prot,unsigned long flags)1475 int security_mmap_file(struct file *file, unsigned long prot,
1476 			unsigned long flags)
1477 {
1478 	unsigned long prot_adj = mmap_prot(file, prot);
1479 	int ret;
1480 
1481 	ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags);
1482 	if (ret)
1483 		return ret;
1484 	return ima_file_mmap(file, prot, prot_adj, flags);
1485 }
1486 
security_mmap_addr(unsigned long addr)1487 int security_mmap_addr(unsigned long addr)
1488 {
1489 	return call_int_hook(mmap_addr, 0, addr);
1490 }
1491 
security_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot,unsigned long prot)1492 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1493 			    unsigned long prot)
1494 {
1495 	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1496 }
1497 
security_file_lock(struct file * file,unsigned int cmd)1498 int security_file_lock(struct file *file, unsigned int cmd)
1499 {
1500 	return call_int_hook(file_lock, 0, file, cmd);
1501 }
1502 
security_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1503 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1504 {
1505 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1506 }
1507 
security_file_set_fowner(struct file * file)1508 void security_file_set_fowner(struct file *file)
1509 {
1510 	call_void_hook(file_set_fowner, file);
1511 }
1512 
security_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int sig)1513 int security_file_send_sigiotask(struct task_struct *tsk,
1514 				  struct fown_struct *fown, int sig)
1515 {
1516 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1517 }
1518 
security_file_receive(struct file * file)1519 int security_file_receive(struct file *file)
1520 {
1521 	return call_int_hook(file_receive, 0, file);
1522 }
1523 
security_file_open(struct file * file)1524 int security_file_open(struct file *file)
1525 {
1526 	int ret;
1527 
1528 	ret = call_int_hook(file_open, 0, file);
1529 	if (ret)
1530 		return ret;
1531 
1532 	return fsnotify_perm(file, MAY_OPEN);
1533 }
1534 
security_task_alloc(struct task_struct * task,unsigned long clone_flags)1535 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1536 {
1537 	int rc = lsm_task_alloc(task);
1538 
1539 	if (rc)
1540 		return rc;
1541 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1542 	if (unlikely(rc))
1543 		security_task_free(task);
1544 	return rc;
1545 }
1546 
security_task_free(struct task_struct * task)1547 void security_task_free(struct task_struct *task)
1548 {
1549 	call_void_hook(task_free, task);
1550 
1551 	kfree(task->security);
1552 	task->security = NULL;
1553 }
1554 
security_cred_alloc_blank(struct cred * cred,gfp_t gfp)1555 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1556 {
1557 	int rc = lsm_cred_alloc(cred, gfp);
1558 
1559 	if (rc)
1560 		return rc;
1561 
1562 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1563 	if (unlikely(rc))
1564 		security_cred_free(cred);
1565 	return rc;
1566 }
1567 
security_cred_free(struct cred * cred)1568 void security_cred_free(struct cred *cred)
1569 {
1570 	/*
1571 	 * There is a failure case in prepare_creds() that
1572 	 * may result in a call here with ->security being NULL.
1573 	 */
1574 	if (unlikely(cred->security == NULL))
1575 		return;
1576 
1577 	call_void_hook(cred_free, cred);
1578 
1579 	kfree(cred->security);
1580 	cred->security = NULL;
1581 }
1582 
security_prepare_creds(struct cred * new,const struct cred * old,gfp_t gfp)1583 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1584 {
1585 	int rc = lsm_cred_alloc(new, gfp);
1586 
1587 	if (rc)
1588 		return rc;
1589 
1590 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1591 	if (unlikely(rc))
1592 		security_cred_free(new);
1593 	return rc;
1594 }
1595 
security_transfer_creds(struct cred * new,const struct cred * old)1596 void security_transfer_creds(struct cred *new, const struct cred *old)
1597 {
1598 	call_void_hook(cred_transfer, new, old);
1599 }
1600 
security_cred_getsecid(const struct cred * c,u32 * secid)1601 void security_cred_getsecid(const struct cred *c, u32 *secid)
1602 {
1603 	*secid = 0;
1604 	call_void_hook(cred_getsecid, c, secid);
1605 }
1606 EXPORT_SYMBOL(security_cred_getsecid);
1607 
security_kernel_act_as(struct cred * new,u32 secid)1608 int security_kernel_act_as(struct cred *new, u32 secid)
1609 {
1610 	return call_int_hook(kernel_act_as, 0, new, secid);
1611 }
1612 
security_kernel_create_files_as(struct cred * new,struct inode * inode)1613 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1614 {
1615 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1616 }
1617 
security_kernel_module_request(char * kmod_name)1618 int security_kernel_module_request(char *kmod_name)
1619 {
1620 	int ret;
1621 
1622 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1623 	if (ret)
1624 		return ret;
1625 	return integrity_kernel_module_request(kmod_name);
1626 }
1627 
security_kernel_read_file(struct file * file,enum kernel_read_file_id id)1628 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1629 {
1630 	int ret;
1631 
1632 	ret = call_int_hook(kernel_read_file, 0, file, id);
1633 	if (ret)
1634 		return ret;
1635 	return ima_read_file(file, id);
1636 }
1637 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1638 
security_kernel_post_read_file(struct file * file,char * buf,loff_t size,enum kernel_read_file_id id)1639 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1640 				   enum kernel_read_file_id id)
1641 {
1642 	int ret;
1643 
1644 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1645 	if (ret)
1646 		return ret;
1647 	return ima_post_read_file(file, buf, size, id);
1648 }
1649 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1650 
security_kernel_load_data(enum kernel_load_data_id id)1651 int security_kernel_load_data(enum kernel_load_data_id id)
1652 {
1653 	int ret;
1654 
1655 	ret = call_int_hook(kernel_load_data, 0, id);
1656 	if (ret)
1657 		return ret;
1658 	return ima_load_data(id);
1659 }
1660 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1661 
security_task_fix_setuid(struct cred * new,const struct cred * old,int flags)1662 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1663 			     int flags)
1664 {
1665 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1666 }
1667 
security_task_setpgid(struct task_struct * p,pid_t pgid)1668 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1669 {
1670 	return call_int_hook(task_setpgid, 0, p, pgid);
1671 }
1672 
security_task_getpgid(struct task_struct * p)1673 int security_task_getpgid(struct task_struct *p)
1674 {
1675 	return call_int_hook(task_getpgid, 0, p);
1676 }
1677 
security_task_getsid(struct task_struct * p)1678 int security_task_getsid(struct task_struct *p)
1679 {
1680 	return call_int_hook(task_getsid, 0, p);
1681 }
1682 
security_task_getsecid(struct task_struct * p,u32 * secid)1683 void security_task_getsecid(struct task_struct *p, u32 *secid)
1684 {
1685 	*secid = 0;
1686 	call_void_hook(task_getsecid, p, secid);
1687 }
1688 EXPORT_SYMBOL(security_task_getsecid);
1689 
security_task_setnice(struct task_struct * p,int nice)1690 int security_task_setnice(struct task_struct *p, int nice)
1691 {
1692 	return call_int_hook(task_setnice, 0, p, nice);
1693 }
1694 
security_task_setioprio(struct task_struct * p,int ioprio)1695 int security_task_setioprio(struct task_struct *p, int ioprio)
1696 {
1697 	return call_int_hook(task_setioprio, 0, p, ioprio);
1698 }
1699 
security_task_getioprio(struct task_struct * p)1700 int security_task_getioprio(struct task_struct *p)
1701 {
1702 	return call_int_hook(task_getioprio, 0, p);
1703 }
1704 
security_task_prlimit(const struct cred * cred,const struct cred * tcred,unsigned int flags)1705 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1706 			  unsigned int flags)
1707 {
1708 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1709 }
1710 
security_task_setrlimit(struct task_struct * p,unsigned int resource,struct rlimit * new_rlim)1711 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1712 		struct rlimit *new_rlim)
1713 {
1714 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1715 }
1716 
security_task_setscheduler(struct task_struct * p)1717 int security_task_setscheduler(struct task_struct *p)
1718 {
1719 	return call_int_hook(task_setscheduler, 0, p);
1720 }
1721 
security_task_getscheduler(struct task_struct * p)1722 int security_task_getscheduler(struct task_struct *p)
1723 {
1724 	return call_int_hook(task_getscheduler, 0, p);
1725 }
1726 
security_task_movememory(struct task_struct * p)1727 int security_task_movememory(struct task_struct *p)
1728 {
1729 	return call_int_hook(task_movememory, 0, p);
1730 }
1731 
security_task_kill(struct task_struct * p,struct kernel_siginfo * info,int sig,const struct cred * cred)1732 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1733 			int sig, const struct cred *cred)
1734 {
1735 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1736 }
1737 
security_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)1738 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1739 			 unsigned long arg4, unsigned long arg5)
1740 {
1741 	int thisrc;
1742 	int rc = -ENOSYS;
1743 	struct security_hook_list *hp;
1744 
1745 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1746 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1747 		if (thisrc != -ENOSYS) {
1748 			rc = thisrc;
1749 			if (thisrc != 0)
1750 				break;
1751 		}
1752 	}
1753 	return rc;
1754 }
1755 
security_task_to_inode(struct task_struct * p,struct inode * inode)1756 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1757 {
1758 	call_void_hook(task_to_inode, p, inode);
1759 }
1760 
security_ipc_permission(struct kern_ipc_perm * ipcp,short flag)1761 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1762 {
1763 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1764 }
1765 
security_ipc_getsecid(struct kern_ipc_perm * ipcp,u32 * secid)1766 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1767 {
1768 	*secid = 0;
1769 	call_void_hook(ipc_getsecid, ipcp, secid);
1770 }
1771 
security_msg_msg_alloc(struct msg_msg * msg)1772 int security_msg_msg_alloc(struct msg_msg *msg)
1773 {
1774 	int rc = lsm_msg_msg_alloc(msg);
1775 
1776 	if (unlikely(rc))
1777 		return rc;
1778 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1779 	if (unlikely(rc))
1780 		security_msg_msg_free(msg);
1781 	return rc;
1782 }
1783 
security_msg_msg_free(struct msg_msg * msg)1784 void security_msg_msg_free(struct msg_msg *msg)
1785 {
1786 	call_void_hook(msg_msg_free_security, msg);
1787 	kfree(msg->security);
1788 	msg->security = NULL;
1789 }
1790 
security_msg_queue_alloc(struct kern_ipc_perm * msq)1791 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1792 {
1793 	int rc = lsm_ipc_alloc(msq);
1794 
1795 	if (unlikely(rc))
1796 		return rc;
1797 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1798 	if (unlikely(rc))
1799 		security_msg_queue_free(msq);
1800 	return rc;
1801 }
1802 
security_msg_queue_free(struct kern_ipc_perm * msq)1803 void security_msg_queue_free(struct kern_ipc_perm *msq)
1804 {
1805 	call_void_hook(msg_queue_free_security, msq);
1806 	kfree(msq->security);
1807 	msq->security = NULL;
1808 }
1809 
security_msg_queue_associate(struct kern_ipc_perm * msq,int msqflg)1810 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1811 {
1812 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1813 }
1814 
security_msg_queue_msgctl(struct kern_ipc_perm * msq,int cmd)1815 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1816 {
1817 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1818 }
1819 
security_msg_queue_msgsnd(struct kern_ipc_perm * msq,struct msg_msg * msg,int msqflg)1820 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1821 			       struct msg_msg *msg, int msqflg)
1822 {
1823 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1824 }
1825 
security_msg_queue_msgrcv(struct kern_ipc_perm * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)1826 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1827 			       struct task_struct *target, long type, int mode)
1828 {
1829 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1830 }
1831 
security_shm_alloc(struct kern_ipc_perm * shp)1832 int security_shm_alloc(struct kern_ipc_perm *shp)
1833 {
1834 	int rc = lsm_ipc_alloc(shp);
1835 
1836 	if (unlikely(rc))
1837 		return rc;
1838 	rc = call_int_hook(shm_alloc_security, 0, shp);
1839 	if (unlikely(rc))
1840 		security_shm_free(shp);
1841 	return rc;
1842 }
1843 
security_shm_free(struct kern_ipc_perm * shp)1844 void security_shm_free(struct kern_ipc_perm *shp)
1845 {
1846 	call_void_hook(shm_free_security, shp);
1847 	kfree(shp->security);
1848 	shp->security = NULL;
1849 }
1850 
security_shm_associate(struct kern_ipc_perm * shp,int shmflg)1851 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1852 {
1853 	return call_int_hook(shm_associate, 0, shp, shmflg);
1854 }
1855 
security_shm_shmctl(struct kern_ipc_perm * shp,int cmd)1856 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1857 {
1858 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1859 }
1860 
security_shm_shmat(struct kern_ipc_perm * shp,char __user * shmaddr,int shmflg)1861 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1862 {
1863 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1864 }
1865 
security_sem_alloc(struct kern_ipc_perm * sma)1866 int security_sem_alloc(struct kern_ipc_perm *sma)
1867 {
1868 	int rc = lsm_ipc_alloc(sma);
1869 
1870 	if (unlikely(rc))
1871 		return rc;
1872 	rc = call_int_hook(sem_alloc_security, 0, sma);
1873 	if (unlikely(rc))
1874 		security_sem_free(sma);
1875 	return rc;
1876 }
1877 
security_sem_free(struct kern_ipc_perm * sma)1878 void security_sem_free(struct kern_ipc_perm *sma)
1879 {
1880 	call_void_hook(sem_free_security, sma);
1881 	kfree(sma->security);
1882 	sma->security = NULL;
1883 }
1884 
security_sem_associate(struct kern_ipc_perm * sma,int semflg)1885 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1886 {
1887 	return call_int_hook(sem_associate, 0, sma, semflg);
1888 }
1889 
security_sem_semctl(struct kern_ipc_perm * sma,int cmd)1890 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1891 {
1892 	return call_int_hook(sem_semctl, 0, sma, cmd);
1893 }
1894 
security_sem_semop(struct kern_ipc_perm * sma,struct sembuf * sops,unsigned nsops,int alter)1895 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1896 			unsigned nsops, int alter)
1897 {
1898 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1899 }
1900 
security_d_instantiate(struct dentry * dentry,struct inode * inode)1901 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1902 {
1903 	if (unlikely(inode && IS_PRIVATE(inode)))
1904 		return;
1905 	call_void_hook(d_instantiate, dentry, inode);
1906 }
1907 EXPORT_SYMBOL(security_d_instantiate);
1908 
security_getprocattr(struct task_struct * p,const char * lsm,char * name,char ** value)1909 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1910 				char **value)
1911 {
1912 	struct security_hook_list *hp;
1913 
1914 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1915 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1916 			continue;
1917 		return hp->hook.getprocattr(p, name, value);
1918 	}
1919 	return -EINVAL;
1920 }
1921 
security_setprocattr(const char * lsm,const char * name,void * value,size_t size)1922 int security_setprocattr(const char *lsm, const char *name, void *value,
1923 			 size_t size)
1924 {
1925 	struct security_hook_list *hp;
1926 
1927 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1928 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1929 			continue;
1930 		return hp->hook.setprocattr(name, value, size);
1931 	}
1932 	return -EINVAL;
1933 }
1934 
security_netlink_send(struct sock * sk,struct sk_buff * skb)1935 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1936 {
1937 	return call_int_hook(netlink_send, 0, sk, skb);
1938 }
1939 
security_ismaclabel(const char * name)1940 int security_ismaclabel(const char *name)
1941 {
1942 	return call_int_hook(ismaclabel, 0, name);
1943 }
1944 EXPORT_SYMBOL(security_ismaclabel);
1945 
security_secid_to_secctx(u32 secid,char ** secdata,u32 * seclen)1946 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1947 {
1948 	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1949 				seclen);
1950 }
1951 EXPORT_SYMBOL(security_secid_to_secctx);
1952 
security_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)1953 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1954 {
1955 	*secid = 0;
1956 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1957 }
1958 EXPORT_SYMBOL(security_secctx_to_secid);
1959 
security_release_secctx(char * secdata,u32 seclen)1960 void security_release_secctx(char *secdata, u32 seclen)
1961 {
1962 	call_void_hook(release_secctx, secdata, seclen);
1963 }
1964 EXPORT_SYMBOL(security_release_secctx);
1965 
security_inode_invalidate_secctx(struct inode * inode)1966 void security_inode_invalidate_secctx(struct inode *inode)
1967 {
1968 	call_void_hook(inode_invalidate_secctx, inode);
1969 }
1970 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1971 
security_inode_notifysecctx(struct inode * inode,void * ctx,u32 ctxlen)1972 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1973 {
1974 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1975 }
1976 EXPORT_SYMBOL(security_inode_notifysecctx);
1977 
security_inode_setsecctx(struct dentry * dentry,void * ctx,u32 ctxlen)1978 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1979 {
1980 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1981 }
1982 EXPORT_SYMBOL(security_inode_setsecctx);
1983 
security_inode_getsecctx(struct inode * inode,void ** ctx,u32 * ctxlen)1984 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1985 {
1986 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1987 }
1988 EXPORT_SYMBOL(security_inode_getsecctx);
1989 
1990 #ifdef CONFIG_SECURITY_NETWORK
1991 
security_unix_stream_connect(struct sock * sock,struct sock * other,struct sock * newsk)1992 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1993 {
1994 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1995 }
1996 EXPORT_SYMBOL(security_unix_stream_connect);
1997 
security_unix_may_send(struct socket * sock,struct socket * other)1998 int security_unix_may_send(struct socket *sock,  struct socket *other)
1999 {
2000 	return call_int_hook(unix_may_send, 0, sock, other);
2001 }
2002 EXPORT_SYMBOL(security_unix_may_send);
2003 
security_socket_create(int family,int type,int protocol,int kern)2004 int security_socket_create(int family, int type, int protocol, int kern)
2005 {
2006 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2007 }
2008 
security_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)2009 int security_socket_post_create(struct socket *sock, int family,
2010 				int type, int protocol, int kern)
2011 {
2012 	return call_int_hook(socket_post_create, 0, sock, family, type,
2013 						protocol, kern);
2014 }
2015 
security_socket_socketpair(struct socket * socka,struct socket * sockb)2016 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2017 {
2018 	return call_int_hook(socket_socketpair, 0, socka, sockb);
2019 }
2020 EXPORT_SYMBOL(security_socket_socketpair);
2021 
security_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)2022 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2023 {
2024 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2025 }
2026 
security_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)2027 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2028 {
2029 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2030 }
2031 
security_socket_listen(struct socket * sock,int backlog)2032 int security_socket_listen(struct socket *sock, int backlog)
2033 {
2034 	return call_int_hook(socket_listen, 0, sock, backlog);
2035 }
2036 
security_socket_accept(struct socket * sock,struct socket * newsock)2037 int security_socket_accept(struct socket *sock, struct socket *newsock)
2038 {
2039 	return call_int_hook(socket_accept, 0, sock, newsock);
2040 }
2041 
security_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)2042 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2043 {
2044 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2045 }
2046 
security_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)2047 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2048 			    int size, int flags)
2049 {
2050 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2051 }
2052 
security_socket_getsockname(struct socket * sock)2053 int security_socket_getsockname(struct socket *sock)
2054 {
2055 	return call_int_hook(socket_getsockname, 0, sock);
2056 }
2057 
security_socket_getpeername(struct socket * sock)2058 int security_socket_getpeername(struct socket *sock)
2059 {
2060 	return call_int_hook(socket_getpeername, 0, sock);
2061 }
2062 
security_socket_getsockopt(struct socket * sock,int level,int optname)2063 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2064 {
2065 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2066 }
2067 
security_socket_setsockopt(struct socket * sock,int level,int optname)2068 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2069 {
2070 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2071 }
2072 
security_socket_shutdown(struct socket * sock,int how)2073 int security_socket_shutdown(struct socket *sock, int how)
2074 {
2075 	return call_int_hook(socket_shutdown, 0, sock, how);
2076 }
2077 
security_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)2078 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2079 {
2080 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2081 }
2082 EXPORT_SYMBOL(security_sock_rcv_skb);
2083 
security_socket_getpeersec_stream(struct socket * sock,char __user * optval,int __user * optlen,unsigned len)2084 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2085 				      int __user *optlen, unsigned len)
2086 {
2087 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2088 				optval, optlen, len);
2089 }
2090 
security_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)2091 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2092 {
2093 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2094 			     skb, secid);
2095 }
2096 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2097 
security_sk_alloc(struct sock * sk,int family,gfp_t priority)2098 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2099 {
2100 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2101 }
2102 
security_sk_free(struct sock * sk)2103 void security_sk_free(struct sock *sk)
2104 {
2105 	call_void_hook(sk_free_security, sk);
2106 }
2107 
security_sk_clone(const struct sock * sk,struct sock * newsk)2108 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2109 {
2110 	call_void_hook(sk_clone_security, sk, newsk);
2111 }
2112 EXPORT_SYMBOL(security_sk_clone);
2113 
security_sk_classify_flow(struct sock * sk,struct flowi * fl)2114 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2115 {
2116 	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2117 }
2118 EXPORT_SYMBOL(security_sk_classify_flow);
2119 
security_req_classify_flow(const struct request_sock * req,struct flowi * fl)2120 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2121 {
2122 	call_void_hook(req_classify_flow, req, fl);
2123 }
2124 EXPORT_SYMBOL(security_req_classify_flow);
2125 
security_sock_graft(struct sock * sk,struct socket * parent)2126 void security_sock_graft(struct sock *sk, struct socket *parent)
2127 {
2128 	call_void_hook(sock_graft, sk, parent);
2129 }
2130 EXPORT_SYMBOL(security_sock_graft);
2131 
security_inet_conn_request(struct sock * sk,struct sk_buff * skb,struct request_sock * req)2132 int security_inet_conn_request(struct sock *sk,
2133 			struct sk_buff *skb, struct request_sock *req)
2134 {
2135 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2136 }
2137 EXPORT_SYMBOL(security_inet_conn_request);
2138 
security_inet_csk_clone(struct sock * newsk,const struct request_sock * req)2139 void security_inet_csk_clone(struct sock *newsk,
2140 			const struct request_sock *req)
2141 {
2142 	call_void_hook(inet_csk_clone, newsk, req);
2143 }
2144 
security_inet_conn_established(struct sock * sk,struct sk_buff * skb)2145 void security_inet_conn_established(struct sock *sk,
2146 			struct sk_buff *skb)
2147 {
2148 	call_void_hook(inet_conn_established, sk, skb);
2149 }
2150 EXPORT_SYMBOL(security_inet_conn_established);
2151 
security_secmark_relabel_packet(u32 secid)2152 int security_secmark_relabel_packet(u32 secid)
2153 {
2154 	return call_int_hook(secmark_relabel_packet, 0, secid);
2155 }
2156 EXPORT_SYMBOL(security_secmark_relabel_packet);
2157 
security_secmark_refcount_inc(void)2158 void security_secmark_refcount_inc(void)
2159 {
2160 	call_void_hook(secmark_refcount_inc);
2161 }
2162 EXPORT_SYMBOL(security_secmark_refcount_inc);
2163 
security_secmark_refcount_dec(void)2164 void security_secmark_refcount_dec(void)
2165 {
2166 	call_void_hook(secmark_refcount_dec);
2167 }
2168 EXPORT_SYMBOL(security_secmark_refcount_dec);
2169 
security_tun_dev_alloc_security(void ** security)2170 int security_tun_dev_alloc_security(void **security)
2171 {
2172 	return call_int_hook(tun_dev_alloc_security, 0, security);
2173 }
2174 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2175 
security_tun_dev_free_security(void * security)2176 void security_tun_dev_free_security(void *security)
2177 {
2178 	call_void_hook(tun_dev_free_security, security);
2179 }
2180 EXPORT_SYMBOL(security_tun_dev_free_security);
2181 
security_tun_dev_create(void)2182 int security_tun_dev_create(void)
2183 {
2184 	return call_int_hook(tun_dev_create, 0);
2185 }
2186 EXPORT_SYMBOL(security_tun_dev_create);
2187 
security_tun_dev_attach_queue(void * security)2188 int security_tun_dev_attach_queue(void *security)
2189 {
2190 	return call_int_hook(tun_dev_attach_queue, 0, security);
2191 }
2192 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2193 
security_tun_dev_attach(struct sock * sk,void * security)2194 int security_tun_dev_attach(struct sock *sk, void *security)
2195 {
2196 	return call_int_hook(tun_dev_attach, 0, sk, security);
2197 }
2198 EXPORT_SYMBOL(security_tun_dev_attach);
2199 
security_tun_dev_open(void * security)2200 int security_tun_dev_open(void *security)
2201 {
2202 	return call_int_hook(tun_dev_open, 0, security);
2203 }
2204 EXPORT_SYMBOL(security_tun_dev_open);
2205 
security_sctp_assoc_request(struct sctp_endpoint * ep,struct sk_buff * skb)2206 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2207 {
2208 	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2209 }
2210 EXPORT_SYMBOL(security_sctp_assoc_request);
2211 
security_sctp_bind_connect(struct sock * sk,int optname,struct sockaddr * address,int addrlen)2212 int security_sctp_bind_connect(struct sock *sk, int optname,
2213 			       struct sockaddr *address, int addrlen)
2214 {
2215 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2216 			     address, addrlen);
2217 }
2218 EXPORT_SYMBOL(security_sctp_bind_connect);
2219 
security_sctp_sk_clone(struct sctp_endpoint * ep,struct sock * sk,struct sock * newsk)2220 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2221 			    struct sock *newsk)
2222 {
2223 	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2224 }
2225 EXPORT_SYMBOL(security_sctp_sk_clone);
2226 
2227 #endif	/* CONFIG_SECURITY_NETWORK */
2228 
2229 #ifdef CONFIG_SECURITY_INFINIBAND
2230 
security_ib_pkey_access(void * sec,u64 subnet_prefix,u16 pkey)2231 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2232 {
2233 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2234 }
2235 EXPORT_SYMBOL(security_ib_pkey_access);
2236 
security_ib_endport_manage_subnet(void * sec,const char * dev_name,u8 port_num)2237 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2238 {
2239 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2240 }
2241 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2242 
security_ib_alloc_security(void ** sec)2243 int security_ib_alloc_security(void **sec)
2244 {
2245 	return call_int_hook(ib_alloc_security, 0, sec);
2246 }
2247 EXPORT_SYMBOL(security_ib_alloc_security);
2248 
security_ib_free_security(void * sec)2249 void security_ib_free_security(void *sec)
2250 {
2251 	call_void_hook(ib_free_security, sec);
2252 }
2253 EXPORT_SYMBOL(security_ib_free_security);
2254 #endif	/* CONFIG_SECURITY_INFINIBAND */
2255 
2256 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2257 
security_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * sec_ctx,gfp_t gfp)2258 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2259 			       struct xfrm_user_sec_ctx *sec_ctx,
2260 			       gfp_t gfp)
2261 {
2262 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2263 }
2264 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2265 
security_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)2266 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2267 			      struct xfrm_sec_ctx **new_ctxp)
2268 {
2269 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2270 }
2271 
security_xfrm_policy_free(struct xfrm_sec_ctx * ctx)2272 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2273 {
2274 	call_void_hook(xfrm_policy_free_security, ctx);
2275 }
2276 EXPORT_SYMBOL(security_xfrm_policy_free);
2277 
security_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)2278 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2279 {
2280 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2281 }
2282 
security_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * sec_ctx)2283 int security_xfrm_state_alloc(struct xfrm_state *x,
2284 			      struct xfrm_user_sec_ctx *sec_ctx)
2285 {
2286 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2287 }
2288 EXPORT_SYMBOL(security_xfrm_state_alloc);
2289 
security_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)2290 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2291 				      struct xfrm_sec_ctx *polsec, u32 secid)
2292 {
2293 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2294 }
2295 
security_xfrm_state_delete(struct xfrm_state * x)2296 int security_xfrm_state_delete(struct xfrm_state *x)
2297 {
2298 	return call_int_hook(xfrm_state_delete_security, 0, x);
2299 }
2300 EXPORT_SYMBOL(security_xfrm_state_delete);
2301 
security_xfrm_state_free(struct xfrm_state * x)2302 void security_xfrm_state_free(struct xfrm_state *x)
2303 {
2304 	call_void_hook(xfrm_state_free_security, x);
2305 }
2306 
security_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid,u8 dir)2307 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2308 {
2309 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2310 }
2311 
security_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi * fl)2312 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2313 				       struct xfrm_policy *xp,
2314 				       const struct flowi *fl)
2315 {
2316 	struct security_hook_list *hp;
2317 	int rc = 1;
2318 
2319 	/*
2320 	 * Since this function is expected to return 0 or 1, the judgment
2321 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2322 	 * we can use the first LSM's judgment because currently only SELinux
2323 	 * supplies this call.
2324 	 *
2325 	 * For speed optimization, we explicitly break the loop rather than
2326 	 * using the macro
2327 	 */
2328 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2329 				list) {
2330 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2331 		break;
2332 	}
2333 	return rc;
2334 }
2335 
security_xfrm_decode_session(struct sk_buff * skb,u32 * secid)2336 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2337 {
2338 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2339 }
2340 
security_skb_classify_flow(struct sk_buff * skb,struct flowi * fl)2341 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2342 {
2343 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2344 				0);
2345 
2346 	BUG_ON(rc);
2347 }
2348 EXPORT_SYMBOL(security_skb_classify_flow);
2349 
2350 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2351 
2352 #ifdef CONFIG_KEYS
2353 
security_key_alloc(struct key * key,const struct cred * cred,unsigned long flags)2354 int security_key_alloc(struct key *key, const struct cred *cred,
2355 		       unsigned long flags)
2356 {
2357 	return call_int_hook(key_alloc, 0, key, cred, flags);
2358 }
2359 
security_key_free(struct key * key)2360 void security_key_free(struct key *key)
2361 {
2362 	call_void_hook(key_free, key);
2363 }
2364 
security_key_permission(key_ref_t key_ref,const struct cred * cred,unsigned perm)2365 int security_key_permission(key_ref_t key_ref,
2366 			    const struct cred *cred, unsigned perm)
2367 {
2368 	return call_int_hook(key_permission, 0, key_ref, cred, perm);
2369 }
2370 
security_key_getsecurity(struct key * key,char ** _buffer)2371 int security_key_getsecurity(struct key *key, char **_buffer)
2372 {
2373 	*_buffer = NULL;
2374 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2375 }
2376 
2377 #endif	/* CONFIG_KEYS */
2378 
2379 #ifdef CONFIG_AUDIT
2380 
security_audit_rule_init(u32 field,u32 op,char * rulestr,void ** lsmrule)2381 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2382 {
2383 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2384 }
2385 
security_audit_rule_known(struct audit_krule * krule)2386 int security_audit_rule_known(struct audit_krule *krule)
2387 {
2388 	return call_int_hook(audit_rule_known, 0, krule);
2389 }
2390 
security_audit_rule_free(void * lsmrule)2391 void security_audit_rule_free(void *lsmrule)
2392 {
2393 	call_void_hook(audit_rule_free, lsmrule);
2394 }
2395 
security_audit_rule_match(u32 secid,u32 field,u32 op,void * lsmrule)2396 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2397 {
2398 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2399 }
2400 #endif /* CONFIG_AUDIT */
2401 
2402 #ifdef CONFIG_BPF_SYSCALL
security_bpf(int cmd,union bpf_attr * attr,unsigned int size)2403 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2404 {
2405 	return call_int_hook(bpf, 0, cmd, attr, size);
2406 }
security_bpf_map(struct bpf_map * map,fmode_t fmode)2407 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2408 {
2409 	return call_int_hook(bpf_map, 0, map, fmode);
2410 }
security_bpf_prog(struct bpf_prog * prog)2411 int security_bpf_prog(struct bpf_prog *prog)
2412 {
2413 	return call_int_hook(bpf_prog, 0, prog);
2414 }
security_bpf_map_alloc(struct bpf_map * map)2415 int security_bpf_map_alloc(struct bpf_map *map)
2416 {
2417 	return call_int_hook(bpf_map_alloc_security, 0, map);
2418 }
security_bpf_prog_alloc(struct bpf_prog_aux * aux)2419 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2420 {
2421 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2422 }
security_bpf_map_free(struct bpf_map * map)2423 void security_bpf_map_free(struct bpf_map *map)
2424 {
2425 	call_void_hook(bpf_map_free_security, map);
2426 }
security_bpf_prog_free(struct bpf_prog_aux * aux)2427 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2428 {
2429 	call_void_hook(bpf_prog_free_security, aux);
2430 }
2431 #endif /* CONFIG_BPF_SYSCALL */
2432 
security_locked_down(enum lockdown_reason what)2433 int security_locked_down(enum lockdown_reason what)
2434 {
2435 	return call_int_hook(locked_down, 0, what);
2436 }
2437 EXPORT_SYMBOL(security_locked_down);
2438 
2439 #ifdef CONFIG_PERF_EVENTS
security_perf_event_open(struct perf_event_attr * attr,int type)2440 int security_perf_event_open(struct perf_event_attr *attr, int type)
2441 {
2442 	return call_int_hook(perf_event_open, 0, attr, type);
2443 }
2444 
security_perf_event_alloc(struct perf_event * event)2445 int security_perf_event_alloc(struct perf_event *event)
2446 {
2447 	return call_int_hook(perf_event_alloc, 0, event);
2448 }
2449 
security_perf_event_free(struct perf_event * event)2450 void security_perf_event_free(struct perf_event *event)
2451 {
2452 	call_void_hook(perf_event_free, event);
2453 }
2454 
security_perf_event_read(struct perf_event * event)2455 int security_perf_event_read(struct perf_event *event)
2456 {
2457 	return call_int_hook(perf_event_read, 0, event);
2458 }
2459 
security_perf_event_write(struct perf_event * event)2460 int security_perf_event_write(struct perf_event *event)
2461 {
2462 	return call_int_hook(perf_event_write, 0, event);
2463 }
2464 #endif /* CONFIG_PERF_EVENTS */
2465