• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Common boot and setup code.
5  *
6  * Copyright (C) 2001 PPC64 Team, IBM Corp
7  */
8 
9 #include <linux/export.h>
10 #include <linux/string.h>
11 #include <linux/sched.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
15 #include <linux/delay.h>
16 #include <linux/initrd.h>
17 #include <linux/seq_file.h>
18 #include <linux/ioport.h>
19 #include <linux/console.h>
20 #include <linux/utsname.h>
21 #include <linux/tty.h>
22 #include <linux/root_dev.h>
23 #include <linux/notifier.h>
24 #include <linux/cpu.h>
25 #include <linux/unistd.h>
26 #include <linux/serial.h>
27 #include <linux/serial_8250.h>
28 #include <linux/memblock.h>
29 #include <linux/pci.h>
30 #include <linux/lockdep.h>
31 #include <linux/memory.h>
32 #include <linux/nmi.h>
33 
34 #include <asm/debugfs.h>
35 #include <asm/io.h>
36 #include <asm/kdump.h>
37 #include <asm/prom.h>
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
40 #include <asm/smp.h>
41 #include <asm/elf.h>
42 #include <asm/machdep.h>
43 #include <asm/paca.h>
44 #include <asm/time.h>
45 #include <asm/cputable.h>
46 #include <asm/dt_cpu_ftrs.h>
47 #include <asm/sections.h>
48 #include <asm/btext.h>
49 #include <asm/nvram.h>
50 #include <asm/setup.h>
51 #include <asm/rtas.h>
52 #include <asm/iommu.h>
53 #include <asm/serial.h>
54 #include <asm/cache.h>
55 #include <asm/page.h>
56 #include <asm/mmu.h>
57 #include <asm/firmware.h>
58 #include <asm/xmon.h>
59 #include <asm/udbg.h>
60 #include <asm/kexec.h>
61 #include <asm/code-patching.h>
62 #include <asm/livepatch.h>
63 #include <asm/opal.h>
64 #include <asm/cputhreads.h>
65 #include <asm/hw_irq.h>
66 #include <asm/feature-fixups.h>
67 #include <asm/kup.h>
68 
69 #include "setup.h"
70 
71 #ifdef DEBUG
72 #define DBG(fmt...) udbg_printf(fmt)
73 #else
74 #define DBG(fmt...)
75 #endif
76 
77 int spinning_secondaries;
78 u64 ppc64_pft_size;
79 
80 struct ppc64_caches ppc64_caches = {
81 	.l1d = {
82 		.block_size = 0x40,
83 		.log_block_size = 6,
84 	},
85 	.l1i = {
86 		.block_size = 0x40,
87 		.log_block_size = 6
88 	},
89 };
90 EXPORT_SYMBOL_GPL(ppc64_caches);
91 
92 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
setup_tlb_core_data(void)93 void __init setup_tlb_core_data(void)
94 {
95 	int cpu;
96 
97 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
98 
99 	for_each_possible_cpu(cpu) {
100 		int first = cpu_first_thread_sibling(cpu);
101 
102 		/*
103 		 * If we boot via kdump on a non-primary thread,
104 		 * make sure we point at the thread that actually
105 		 * set up this TLB.
106 		 */
107 		if (cpu_first_thread_sibling(boot_cpuid) == first)
108 			first = boot_cpuid;
109 
110 		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
111 
112 		/*
113 		 * If we have threads, we need either tlbsrx.
114 		 * or e6500 tablewalk mode, or else TLB handlers
115 		 * will be racy and could produce duplicate entries.
116 		 * Should we panic instead?
117 		 */
118 		WARN_ONCE(smt_enabled_at_boot >= 2 &&
119 			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
120 			  book3e_htw_mode != PPC_HTW_E6500,
121 			  "%s: unsupported MMU configuration\n", __func__);
122 	}
123 }
124 #endif
125 
126 #ifdef CONFIG_SMP
127 
128 static char *smt_enabled_cmdline;
129 
130 /* Look for ibm,smt-enabled OF option */
check_smt_enabled(void)131 void __init check_smt_enabled(void)
132 {
133 	struct device_node *dn;
134 	const char *smt_option;
135 
136 	/* Default to enabling all threads */
137 	smt_enabled_at_boot = threads_per_core;
138 
139 	/* Allow the command line to overrule the OF option */
140 	if (smt_enabled_cmdline) {
141 		if (!strcmp(smt_enabled_cmdline, "on"))
142 			smt_enabled_at_boot = threads_per_core;
143 		else if (!strcmp(smt_enabled_cmdline, "off"))
144 			smt_enabled_at_boot = 0;
145 		else {
146 			int smt;
147 			int rc;
148 
149 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
150 			if (!rc)
151 				smt_enabled_at_boot =
152 					min(threads_per_core, smt);
153 		}
154 	} else {
155 		dn = of_find_node_by_path("/options");
156 		if (dn) {
157 			smt_option = of_get_property(dn, "ibm,smt-enabled",
158 						     NULL);
159 
160 			if (smt_option) {
161 				if (!strcmp(smt_option, "on"))
162 					smt_enabled_at_boot = threads_per_core;
163 				else if (!strcmp(smt_option, "off"))
164 					smt_enabled_at_boot = 0;
165 			}
166 
167 			of_node_put(dn);
168 		}
169 	}
170 }
171 
172 /* Look for smt-enabled= cmdline option */
early_smt_enabled(char * p)173 static int __init early_smt_enabled(char *p)
174 {
175 	smt_enabled_cmdline = p;
176 	return 0;
177 }
178 early_param("smt-enabled", early_smt_enabled);
179 
180 #endif /* CONFIG_SMP */
181 
182 /** Fix up paca fields required for the boot cpu */
fixup_boot_paca(void)183 static void __init fixup_boot_paca(void)
184 {
185 	/* The boot cpu is started */
186 	get_paca()->cpu_start = 1;
187 	/* Allow percpu accesses to work until we setup percpu data */
188 	get_paca()->data_offset = 0;
189 	/* Mark interrupts disabled in PACA */
190 	irq_soft_mask_set(IRQS_DISABLED);
191 }
192 
configure_exceptions(void)193 static void __init configure_exceptions(void)
194 {
195 	/*
196 	 * Setup the trampolines from the lowmem exception vectors
197 	 * to the kdump kernel when not using a relocatable kernel.
198 	 */
199 	setup_kdump_trampoline();
200 
201 	/* Under a PAPR hypervisor, we need hypercalls */
202 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
203 		/* Enable AIL if possible */
204 		pseries_enable_reloc_on_exc();
205 
206 		/*
207 		 * Tell the hypervisor that we want our exceptions to
208 		 * be taken in little endian mode.
209 		 *
210 		 * We don't call this for big endian as our calling convention
211 		 * makes us always enter in BE, and the call may fail under
212 		 * some circumstances with kdump.
213 		 */
214 #ifdef __LITTLE_ENDIAN__
215 		pseries_little_endian_exceptions();
216 #endif
217 	} else {
218 		/* Set endian mode using OPAL */
219 		if (firmware_has_feature(FW_FEATURE_OPAL))
220 			opal_configure_cores();
221 
222 		/* AIL on native is done in cpu_ready_for_interrupts() */
223 	}
224 }
225 
cpu_ready_for_interrupts(void)226 static void cpu_ready_for_interrupts(void)
227 {
228 	/*
229 	 * Enable AIL if supported, and we are in hypervisor mode. This
230 	 * is called once for every processor.
231 	 *
232 	 * If we are not in hypervisor mode the job is done once for
233 	 * the whole partition in configure_exceptions().
234 	 */
235 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
236 	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
237 		unsigned long lpcr = mfspr(SPRN_LPCR);
238 		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
239 	}
240 
241 	/*
242 	 * Set HFSCR:TM based on CPU features:
243 	 * In the special case of TM no suspend (P9N DD2.1), Linux is
244 	 * told TM is off via the dt-ftrs but told to (partially) use
245 	 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
246 	 * will be off from dt-ftrs but we need to turn it on for the
247 	 * no suspend case.
248 	 */
249 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
250 		if (cpu_has_feature(CPU_FTR_TM_COMP))
251 			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
252 		else
253 			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
254 	}
255 
256 	/* Set IR and DR in PACA MSR */
257 	get_paca()->kernel_msr = MSR_KERNEL;
258 }
259 
260 unsigned long spr_default_dscr = 0;
261 
record_spr_defaults(void)262 void __init record_spr_defaults(void)
263 {
264 	if (early_cpu_has_feature(CPU_FTR_DSCR))
265 		spr_default_dscr = mfspr(SPRN_DSCR);
266 }
267 
268 /*
269  * Early initialization entry point. This is called by head.S
270  * with MMU translation disabled. We rely on the "feature" of
271  * the CPU that ignores the top 2 bits of the address in real
272  * mode so we can access kernel globals normally provided we
273  * only toy with things in the RMO region. From here, we do
274  * some early parsing of the device-tree to setup out MEMBLOCK
275  * data structures, and allocate & initialize the hash table
276  * and segment tables so we can start running with translation
277  * enabled.
278  *
279  * It is this function which will call the probe() callback of
280  * the various platform types and copy the matching one to the
281  * global ppc_md structure. Your platform can eventually do
282  * some very early initializations from the probe() routine, but
283  * this is not recommended, be very careful as, for example, the
284  * device-tree is not accessible via normal means at this point.
285  */
286 
early_setup(unsigned long dt_ptr)287 void __init early_setup(unsigned long dt_ptr)
288 {
289 	static __initdata struct paca_struct boot_paca;
290 
291 	/* -------- printk is _NOT_ safe to use here ! ------- */
292 
293 	/*
294 	 * Assume we're on cpu 0 for now.
295 	 *
296 	 * We need to load a PACA very early for a few reasons.
297 	 *
298 	 * The stack protector canary is stored in the paca, so as soon as we
299 	 * call any stack protected code we need r13 pointing somewhere valid.
300 	 *
301 	 * If we are using kcov it will call in_task() in its instrumentation,
302 	 * which relies on the current task from the PACA.
303 	 *
304 	 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
305 	 * printk(), which can trigger both stack protector and kcov.
306 	 *
307 	 * percpu variables and spin locks also use the paca.
308 	 *
309 	 * So set up a temporary paca. It will be replaced below once we know
310 	 * what CPU we are on.
311 	 */
312 	initialise_paca(&boot_paca, 0);
313 	setup_paca(&boot_paca);
314 	fixup_boot_paca();
315 
316 	/* -------- printk is now safe to use ------- */
317 
318 	/* Try new device tree based feature discovery ... */
319 	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
320 		/* Otherwise use the old style CPU table */
321 		identify_cpu(0, mfspr(SPRN_PVR));
322 
323 	/* Enable early debugging if any specified (see udbg.h) */
324 	udbg_early_init();
325 
326  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
327 
328 	/*
329 	 * Do early initialization using the flattened device
330 	 * tree, such as retrieving the physical memory map or
331 	 * calculating/retrieving the hash table size.
332 	 */
333 	early_init_devtree(__va(dt_ptr));
334 
335 	/* Now we know the logical id of our boot cpu, setup the paca. */
336 	if (boot_cpuid != 0) {
337 		/* Poison paca_ptrs[0] again if it's not the boot cpu */
338 		memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
339 	}
340 	setup_paca(paca_ptrs[boot_cpuid]);
341 	fixup_boot_paca();
342 
343 	/*
344 	 * Configure exception handlers. This include setting up trampolines
345 	 * if needed, setting exception endian mode, etc...
346 	 */
347 	configure_exceptions();
348 
349 	/*
350 	 * Configure Kernel Userspace Protection. This needs to happen before
351 	 * feature fixups for platforms that implement this using features.
352 	 */
353 	setup_kup();
354 
355 	/* Apply all the dynamic patching */
356 	apply_feature_fixups();
357 	setup_feature_keys();
358 
359 	/* Initialize the hash table or TLB handling */
360 	early_init_mmu();
361 
362 	/*
363 	 * After firmware and early platform setup code has set things up,
364 	 * we note the SPR values for configurable control/performance
365 	 * registers, and use those as initial defaults.
366 	 */
367 	record_spr_defaults();
368 
369 	/*
370 	 * At this point, we can let interrupts switch to virtual mode
371 	 * (the MMU has been setup), so adjust the MSR in the PACA to
372 	 * have IR and DR set and enable AIL if it exists
373 	 */
374 	cpu_ready_for_interrupts();
375 
376 	/*
377 	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
378 	 * will only actually get enabled on the boot cpu much later once
379 	 * ftrace itself has been initialized.
380 	 */
381 	this_cpu_enable_ftrace();
382 
383 	DBG(" <- early_setup()\n");
384 
385 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
386 	/*
387 	 * This needs to be done *last* (after the above DBG() even)
388 	 *
389 	 * Right after we return from this function, we turn on the MMU
390 	 * which means the real-mode access trick that btext does will
391 	 * no longer work, it needs to switch to using a real MMU
392 	 * mapping. This call will ensure that it does
393 	 */
394 	btext_map();
395 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
396 }
397 
398 #ifdef CONFIG_SMP
early_setup_secondary(void)399 void early_setup_secondary(void)
400 {
401 	/* Mark interrupts disabled in PACA */
402 	irq_soft_mask_set(IRQS_DISABLED);
403 
404 	/* Initialize the hash table or TLB handling */
405 	early_init_mmu_secondary();
406 
407 	/* Perform any KUP setup that is per-cpu */
408 	setup_kup();
409 
410 	/*
411 	 * At this point, we can let interrupts switch to virtual mode
412 	 * (the MMU has been setup), so adjust the MSR in the PACA to
413 	 * have IR and DR set.
414 	 */
415 	cpu_ready_for_interrupts();
416 }
417 
418 #endif /* CONFIG_SMP */
419 
panic_smp_self_stop(void)420 void panic_smp_self_stop(void)
421 {
422 	hard_irq_disable();
423 	spin_begin();
424 	while (1)
425 		spin_cpu_relax();
426 }
427 
428 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
use_spinloop(void)429 static bool use_spinloop(void)
430 {
431 	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
432 		/*
433 		 * See comments in head_64.S -- not all platforms insert
434 		 * secondaries at __secondary_hold and wait at the spin
435 		 * loop.
436 		 */
437 		if (firmware_has_feature(FW_FEATURE_OPAL))
438 			return false;
439 		return true;
440 	}
441 
442 	/*
443 	 * When book3e boots from kexec, the ePAPR spin table does
444 	 * not get used.
445 	 */
446 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
447 }
448 
smp_release_cpus(void)449 void smp_release_cpus(void)
450 {
451 	unsigned long *ptr;
452 	int i;
453 
454 	if (!use_spinloop())
455 		return;
456 
457 	DBG(" -> smp_release_cpus()\n");
458 
459 	/* All secondary cpus are spinning on a common spinloop, release them
460 	 * all now so they can start to spin on their individual paca
461 	 * spinloops. For non SMP kernels, the secondary cpus never get out
462 	 * of the common spinloop.
463 	 */
464 
465 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
466 			- PHYSICAL_START);
467 	*ptr = ppc_function_entry(generic_secondary_smp_init);
468 
469 	/* And wait a bit for them to catch up */
470 	for (i = 0; i < 100000; i++) {
471 		mb();
472 		HMT_low();
473 		if (spinning_secondaries == 0)
474 			break;
475 		udelay(1);
476 	}
477 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
478 
479 	DBG(" <- smp_release_cpus()\n");
480 }
481 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
482 
483 /*
484  * Initialize some remaining members of the ppc64_caches and systemcfg
485  * structures
486  * (at least until we get rid of them completely). This is mostly some
487  * cache informations about the CPU that will be used by cache flush
488  * routines and/or provided to userland
489  */
490 
init_cache_info(struct ppc_cache_info * info,u32 size,u32 lsize,u32 bsize,u32 sets)491 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
492 			    u32 bsize, u32 sets)
493 {
494 	info->size = size;
495 	info->sets = sets;
496 	info->line_size = lsize;
497 	info->block_size = bsize;
498 	info->log_block_size = __ilog2(bsize);
499 	if (bsize)
500 		info->blocks_per_page = PAGE_SIZE / bsize;
501 	else
502 		info->blocks_per_page = 0;
503 
504 	if (sets == 0)
505 		info->assoc = 0xffff;
506 	else
507 		info->assoc = size / (sets * lsize);
508 }
509 
parse_cache_info(struct device_node * np,bool icache,struct ppc_cache_info * info)510 static bool __init parse_cache_info(struct device_node *np,
511 				    bool icache,
512 				    struct ppc_cache_info *info)
513 {
514 	static const char *ipropnames[] __initdata = {
515 		"i-cache-size",
516 		"i-cache-sets",
517 		"i-cache-block-size",
518 		"i-cache-line-size",
519 	};
520 	static const char *dpropnames[] __initdata = {
521 		"d-cache-size",
522 		"d-cache-sets",
523 		"d-cache-block-size",
524 		"d-cache-line-size",
525 	};
526 	const char **propnames = icache ? ipropnames : dpropnames;
527 	const __be32 *sizep, *lsizep, *bsizep, *setsp;
528 	u32 size, lsize, bsize, sets;
529 	bool success = true;
530 
531 	size = 0;
532 	sets = -1u;
533 	lsize = bsize = cur_cpu_spec->dcache_bsize;
534 	sizep = of_get_property(np, propnames[0], NULL);
535 	if (sizep != NULL)
536 		size = be32_to_cpu(*sizep);
537 	setsp = of_get_property(np, propnames[1], NULL);
538 	if (setsp != NULL)
539 		sets = be32_to_cpu(*setsp);
540 	bsizep = of_get_property(np, propnames[2], NULL);
541 	lsizep = of_get_property(np, propnames[3], NULL);
542 	if (bsizep == NULL)
543 		bsizep = lsizep;
544 	if (lsizep == NULL)
545 		lsizep = bsizep;
546 	if (lsizep != NULL)
547 		lsize = be32_to_cpu(*lsizep);
548 	if (bsizep != NULL)
549 		bsize = be32_to_cpu(*bsizep);
550 	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
551 		success = false;
552 
553 	/*
554 	 * OF is weird .. it represents fully associative caches
555 	 * as "1 way" which doesn't make much sense and doesn't
556 	 * leave room for direct mapped. We'll assume that 0
557 	 * in OF means direct mapped for that reason.
558 	 */
559 	if (sets == 1)
560 		sets = 0;
561 	else if (sets == 0)
562 		sets = 1;
563 
564 	init_cache_info(info, size, lsize, bsize, sets);
565 
566 	return success;
567 }
568 
initialize_cache_info(void)569 void __init initialize_cache_info(void)
570 {
571 	struct device_node *cpu = NULL, *l2, *l3 = NULL;
572 	u32 pvr;
573 
574 	DBG(" -> initialize_cache_info()\n");
575 
576 	/*
577 	 * All shipping POWER8 machines have a firmware bug that
578 	 * puts incorrect information in the device-tree. This will
579 	 * be (hopefully) fixed for future chips but for now hard
580 	 * code the values if we are running on one of these
581 	 */
582 	pvr = PVR_VER(mfspr(SPRN_PVR));
583 	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
584 	    pvr == PVR_POWER8NVL) {
585 						/* size    lsize   blk  sets */
586 		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
587 		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
588 		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
589 		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
590 	} else
591 		cpu = of_find_node_by_type(NULL, "cpu");
592 
593 	/*
594 	 * We're assuming *all* of the CPUs have the same
595 	 * d-cache and i-cache sizes... -Peter
596 	 */
597 	if (cpu) {
598 		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
599 			DBG("Argh, can't find dcache properties !\n");
600 
601 		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
602 			DBG("Argh, can't find icache properties !\n");
603 
604 		/*
605 		 * Try to find the L2 and L3 if any. Assume they are
606 		 * unified and use the D-side properties.
607 		 */
608 		l2 = of_find_next_cache_node(cpu);
609 		of_node_put(cpu);
610 		if (l2) {
611 			parse_cache_info(l2, false, &ppc64_caches.l2);
612 			l3 = of_find_next_cache_node(l2);
613 			of_node_put(l2);
614 		}
615 		if (l3) {
616 			parse_cache_info(l3, false, &ppc64_caches.l3);
617 			of_node_put(l3);
618 		}
619 	}
620 
621 	/* For use by binfmt_elf */
622 	dcache_bsize = ppc64_caches.l1d.block_size;
623 	icache_bsize = ppc64_caches.l1i.block_size;
624 
625 	cur_cpu_spec->dcache_bsize = dcache_bsize;
626 	cur_cpu_spec->icache_bsize = icache_bsize;
627 
628 	DBG(" <- initialize_cache_info()\n");
629 }
630 
631 /*
632  * This returns the limit below which memory accesses to the linear
633  * mapping are guarnateed not to cause an architectural exception (e.g.,
634  * TLB or SLB miss fault).
635  *
636  * This is used to allocate PACAs and various interrupt stacks that
637  * that are accessed early in interrupt handlers that must not cause
638  * re-entrant interrupts.
639  */
ppc64_bolted_size(void)640 __init u64 ppc64_bolted_size(void)
641 {
642 #ifdef CONFIG_PPC_BOOK3E
643 	/* Freescale BookE bolts the entire linear mapping */
644 	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
645 	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
646 		return linear_map_top;
647 	/* Other BookE, we assume the first GB is bolted */
648 	return 1ul << 30;
649 #else
650 	/* BookS radix, does not take faults on linear mapping */
651 	if (early_radix_enabled())
652 		return ULONG_MAX;
653 
654 	/* BookS hash, the first segment is bolted */
655 	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
656 		return 1UL << SID_SHIFT_1T;
657 	return 1UL << SID_SHIFT;
658 #endif
659 }
660 
alloc_stack(unsigned long limit,int cpu)661 static void *__init alloc_stack(unsigned long limit, int cpu)
662 {
663 	void *ptr;
664 
665 	BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
666 
667 	ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_SIZE,
668 				     MEMBLOCK_LOW_LIMIT, limit,
669 				     early_cpu_to_node(cpu));
670 	if (!ptr)
671 		panic("cannot allocate stacks");
672 
673 	return ptr;
674 }
675 
irqstack_early_init(void)676 void __init irqstack_early_init(void)
677 {
678 	u64 limit = ppc64_bolted_size();
679 	unsigned int i;
680 
681 	/*
682 	 * Interrupt stacks must be in the first segment since we
683 	 * cannot afford to take SLB misses on them. They are not
684 	 * accessed in realmode.
685 	 */
686 	for_each_possible_cpu(i) {
687 		softirq_ctx[i] = alloc_stack(limit, i);
688 		hardirq_ctx[i] = alloc_stack(limit, i);
689 	}
690 }
691 
692 #ifdef CONFIG_PPC_BOOK3E
exc_lvl_early_init(void)693 void __init exc_lvl_early_init(void)
694 {
695 	unsigned int i;
696 
697 	for_each_possible_cpu(i) {
698 		void *sp;
699 
700 		sp = alloc_stack(ULONG_MAX, i);
701 		critirq_ctx[i] = sp;
702 		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
703 
704 		sp = alloc_stack(ULONG_MAX, i);
705 		dbgirq_ctx[i] = sp;
706 		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
707 
708 		sp = alloc_stack(ULONG_MAX, i);
709 		mcheckirq_ctx[i] = sp;
710 		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
711 	}
712 
713 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
714 		patch_exception(0x040, exc_debug_debug_book3e);
715 }
716 #endif
717 
718 /*
719  * Stack space used when we detect a bad kernel stack pointer, and
720  * early in SMP boots before relocation is enabled. Exclusive emergency
721  * stack for machine checks.
722  */
emergency_stack_init(void)723 void __init emergency_stack_init(void)
724 {
725 	u64 limit;
726 	unsigned int i;
727 
728 	/*
729 	 * Emergency stacks must be under 256MB, we cannot afford to take
730 	 * SLB misses on them. The ABI also requires them to be 128-byte
731 	 * aligned.
732 	 *
733 	 * Since we use these as temporary stacks during secondary CPU
734 	 * bringup, machine check, system reset, and HMI, we need to get
735 	 * at them in real mode. This means they must also be within the RMO
736 	 * region.
737 	 *
738 	 * The IRQ stacks allocated elsewhere in this file are zeroed and
739 	 * initialized in kernel/irq.c. These are initialized here in order
740 	 * to have emergency stacks available as early as possible.
741 	 */
742 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
743 
744 	for_each_possible_cpu(i) {
745 		paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
746 
747 #ifdef CONFIG_PPC_BOOK3S_64
748 		/* emergency stack for NMI exception handling. */
749 		paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
750 
751 		/* emergency stack for machine check exception handling. */
752 		paca_ptrs[i]->mc_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
753 #endif
754 	}
755 }
756 
757 #ifdef CONFIG_SMP
758 #define PCPU_DYN_SIZE		()
759 
pcpu_fc_alloc(unsigned int cpu,size_t size,size_t align)760 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
761 {
762 	return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS),
763 				      MEMBLOCK_ALLOC_ACCESSIBLE,
764 				      early_cpu_to_node(cpu));
765 
766 }
767 
pcpu_fc_free(void * ptr,size_t size)768 static void __init pcpu_fc_free(void *ptr, size_t size)
769 {
770 	memblock_free(__pa(ptr), size);
771 }
772 
pcpu_cpu_distance(unsigned int from,unsigned int to)773 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
774 {
775 	if (early_cpu_to_node(from) == early_cpu_to_node(to))
776 		return LOCAL_DISTANCE;
777 	else
778 		return REMOTE_DISTANCE;
779 }
780 
781 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
782 EXPORT_SYMBOL(__per_cpu_offset);
783 
setup_per_cpu_areas(void)784 void __init setup_per_cpu_areas(void)
785 {
786 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
787 	size_t atom_size;
788 	unsigned long delta;
789 	unsigned int cpu;
790 	int rc;
791 
792 	/*
793 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
794 	 * to group units.  For larger mappings, use 1M atom which
795 	 * should be large enough to contain a number of units.
796 	 */
797 	if (mmu_linear_psize == MMU_PAGE_4K)
798 		atom_size = PAGE_SIZE;
799 	else
800 		atom_size = 1 << 20;
801 
802 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
803 				    pcpu_fc_alloc, pcpu_fc_free);
804 	if (rc < 0)
805 		panic("cannot initialize percpu area (err=%d)", rc);
806 
807 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
808 	for_each_possible_cpu(cpu) {
809                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
810 		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
811 	}
812 }
813 #endif
814 
815 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
memory_block_size_bytes(void)816 unsigned long memory_block_size_bytes(void)
817 {
818 	if (ppc_md.memory_block_size)
819 		return ppc_md.memory_block_size();
820 
821 	return MIN_MEMORY_BLOCK_SIZE;
822 }
823 #endif
824 
825 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
826 struct ppc_pci_io ppc_pci_io;
827 EXPORT_SYMBOL(ppc_pci_io);
828 #endif
829 
830 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
hw_nmi_get_sample_period(int watchdog_thresh)831 u64 hw_nmi_get_sample_period(int watchdog_thresh)
832 {
833 	return ppc_proc_freq * watchdog_thresh;
834 }
835 #endif
836 
837 /*
838  * The perf based hardlockup detector breaks PMU event based branches, so
839  * disable it by default. Book3S has a soft-nmi hardlockup detector based
840  * on the decrementer interrupt, so it does not suffer from this problem.
841  *
842  * It is likely to get false positives in VM guests, so disable it there
843  * by default too.
844  */
disable_hardlockup_detector(void)845 static int __init disable_hardlockup_detector(void)
846 {
847 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
848 	hardlockup_detector_disable();
849 #else
850 	if (firmware_has_feature(FW_FEATURE_LPAR))
851 		hardlockup_detector_disable();
852 #endif
853 
854 	return 0;
855 }
856 early_initcall(disable_hardlockup_detector);
857 
858 #ifdef CONFIG_PPC_BOOK3S_64
859 static enum l1d_flush_type enabled_flush_types;
860 static void *l1d_flush_fallback_area;
861 static bool no_rfi_flush;
862 static bool no_entry_flush;
863 static bool no_uaccess_flush;
864 bool rfi_flush;
865 bool entry_flush;
866 bool uaccess_flush;
867 DEFINE_STATIC_KEY_FALSE(uaccess_flush_key);
868 EXPORT_SYMBOL(uaccess_flush_key);
869 
handle_no_rfi_flush(char * p)870 static int __init handle_no_rfi_flush(char *p)
871 {
872 	pr_info("rfi-flush: disabled on command line.");
873 	no_rfi_flush = true;
874 	return 0;
875 }
876 early_param("no_rfi_flush", handle_no_rfi_flush);
877 
handle_no_entry_flush(char * p)878 static int __init handle_no_entry_flush(char *p)
879 {
880 	pr_info("entry-flush: disabled on command line.");
881 	no_entry_flush = true;
882 	return 0;
883 }
884 early_param("no_entry_flush", handle_no_entry_flush);
885 
handle_no_uaccess_flush(char * p)886 static int __init handle_no_uaccess_flush(char *p)
887 {
888 	pr_info("uaccess-flush: disabled on command line.");
889 	no_uaccess_flush = true;
890 	return 0;
891 }
892 early_param("no_uaccess_flush", handle_no_uaccess_flush);
893 
894 /*
895  * The RFI flush is not KPTI, but because users will see doco that says to use
896  * nopti we hijack that option here to also disable the RFI flush.
897  */
handle_no_pti(char * p)898 static int __init handle_no_pti(char *p)
899 {
900 	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
901 	handle_no_rfi_flush(NULL);
902 	return 0;
903 }
904 early_param("nopti", handle_no_pti);
905 
do_nothing(void * unused)906 static void do_nothing(void *unused)
907 {
908 	/*
909 	 * We don't need to do the flush explicitly, just enter+exit kernel is
910 	 * sufficient, the RFI exit handlers will do the right thing.
911 	 */
912 }
913 
rfi_flush_enable(bool enable)914 void rfi_flush_enable(bool enable)
915 {
916 	if (enable) {
917 		do_rfi_flush_fixups(enabled_flush_types);
918 		on_each_cpu(do_nothing, NULL, 1);
919 	} else
920 		do_rfi_flush_fixups(L1D_FLUSH_NONE);
921 
922 	rfi_flush = enable;
923 }
924 
entry_flush_enable(bool enable)925 void entry_flush_enable(bool enable)
926 {
927 	if (enable) {
928 		do_entry_flush_fixups(enabled_flush_types);
929 		on_each_cpu(do_nothing, NULL, 1);
930 	} else {
931 		do_entry_flush_fixups(L1D_FLUSH_NONE);
932 	}
933 
934 	entry_flush = enable;
935 }
936 
uaccess_flush_enable(bool enable)937 void uaccess_flush_enable(bool enable)
938 {
939 	if (enable) {
940 		do_uaccess_flush_fixups(enabled_flush_types);
941 		static_branch_enable(&uaccess_flush_key);
942 		on_each_cpu(do_nothing, NULL, 1);
943 	} else {
944 		static_branch_disable(&uaccess_flush_key);
945 		do_uaccess_flush_fixups(L1D_FLUSH_NONE);
946 	}
947 
948 	uaccess_flush = enable;
949 }
950 
init_fallback_flush(void)951 static void __ref init_fallback_flush(void)
952 {
953 	u64 l1d_size, limit;
954 	int cpu;
955 
956 	/* Only allocate the fallback flush area once (at boot time). */
957 	if (l1d_flush_fallback_area)
958 		return;
959 
960 	l1d_size = ppc64_caches.l1d.size;
961 
962 	/*
963 	 * If there is no d-cache-size property in the device tree, l1d_size
964 	 * could be zero. That leads to the loop in the asm wrapping around to
965 	 * 2^64-1, and then walking off the end of the fallback area and
966 	 * eventually causing a page fault which is fatal. Just default to
967 	 * something vaguely sane.
968 	 */
969 	if (!l1d_size)
970 		l1d_size = (64 * 1024);
971 
972 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
973 
974 	/*
975 	 * Align to L1d size, and size it at 2x L1d size, to catch possible
976 	 * hardware prefetch runoff. We don't have a recipe for load patterns to
977 	 * reliably avoid the prefetcher.
978 	 */
979 	l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
980 						l1d_size, MEMBLOCK_LOW_LIMIT,
981 						limit, NUMA_NO_NODE);
982 	if (!l1d_flush_fallback_area)
983 		panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
984 		      __func__, l1d_size * 2, l1d_size, &limit);
985 
986 
987 	for_each_possible_cpu(cpu) {
988 		struct paca_struct *paca = paca_ptrs[cpu];
989 		paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
990 		paca->l1d_flush_size = l1d_size;
991 	}
992 }
993 
setup_rfi_flush(enum l1d_flush_type types,bool enable)994 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
995 {
996 	if (types & L1D_FLUSH_FALLBACK) {
997 		pr_info("rfi-flush: fallback displacement flush available\n");
998 		init_fallback_flush();
999 	}
1000 
1001 	if (types & L1D_FLUSH_ORI)
1002 		pr_info("rfi-flush: ori type flush available\n");
1003 
1004 	if (types & L1D_FLUSH_MTTRIG)
1005 		pr_info("rfi-flush: mttrig type flush available\n");
1006 
1007 	enabled_flush_types = types;
1008 
1009 	if (!cpu_mitigations_off() && !no_rfi_flush)
1010 		rfi_flush_enable(enable);
1011 }
1012 
setup_entry_flush(bool enable)1013 void setup_entry_flush(bool enable)
1014 {
1015 	if (cpu_mitigations_off())
1016 		return;
1017 
1018 	if (!no_entry_flush)
1019 		entry_flush_enable(enable);
1020 }
1021 
setup_uaccess_flush(bool enable)1022 void setup_uaccess_flush(bool enable)
1023 {
1024 	if (cpu_mitigations_off())
1025 		return;
1026 
1027 	if (!no_uaccess_flush)
1028 		uaccess_flush_enable(enable);
1029 }
1030 
1031 #ifdef CONFIG_DEBUG_FS
rfi_flush_set(void * data,u64 val)1032 static int rfi_flush_set(void *data, u64 val)
1033 {
1034 	bool enable;
1035 
1036 	if (val == 1)
1037 		enable = true;
1038 	else if (val == 0)
1039 		enable = false;
1040 	else
1041 		return -EINVAL;
1042 
1043 	/* Only do anything if we're changing state */
1044 	if (enable != rfi_flush)
1045 		rfi_flush_enable(enable);
1046 
1047 	return 0;
1048 }
1049 
rfi_flush_get(void * data,u64 * val)1050 static int rfi_flush_get(void *data, u64 *val)
1051 {
1052 	*val = rfi_flush ? 1 : 0;
1053 	return 0;
1054 }
1055 
1056 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
1057 
entry_flush_set(void * data,u64 val)1058 static int entry_flush_set(void *data, u64 val)
1059 {
1060 	bool enable;
1061 
1062 	if (val == 1)
1063 		enable = true;
1064 	else if (val == 0)
1065 		enable = false;
1066 	else
1067 		return -EINVAL;
1068 
1069 	/* Only do anything if we're changing state */
1070 	if (enable != entry_flush)
1071 		entry_flush_enable(enable);
1072 
1073 	return 0;
1074 }
1075 
entry_flush_get(void * data,u64 * val)1076 static int entry_flush_get(void *data, u64 *val)
1077 {
1078 	*val = entry_flush ? 1 : 0;
1079 	return 0;
1080 }
1081 
1082 DEFINE_SIMPLE_ATTRIBUTE(fops_entry_flush, entry_flush_get, entry_flush_set, "%llu\n");
1083 
uaccess_flush_set(void * data,u64 val)1084 static int uaccess_flush_set(void *data, u64 val)
1085 {
1086 	bool enable;
1087 
1088 	if (val == 1)
1089 		enable = true;
1090 	else if (val == 0)
1091 		enable = false;
1092 	else
1093 		return -EINVAL;
1094 
1095 	/* Only do anything if we're changing state */
1096 	if (enable != uaccess_flush)
1097 		uaccess_flush_enable(enable);
1098 
1099 	return 0;
1100 }
1101 
uaccess_flush_get(void * data,u64 * val)1102 static int uaccess_flush_get(void *data, u64 *val)
1103 {
1104 	*val = uaccess_flush ? 1 : 0;
1105 	return 0;
1106 }
1107 
1108 DEFINE_SIMPLE_ATTRIBUTE(fops_uaccess_flush, uaccess_flush_get, uaccess_flush_set, "%llu\n");
1109 
rfi_flush_debugfs_init(void)1110 static __init int rfi_flush_debugfs_init(void)
1111 {
1112 	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
1113 	debugfs_create_file("entry_flush", 0600, powerpc_debugfs_root, NULL, &fops_entry_flush);
1114 	debugfs_create_file("uaccess_flush", 0600, powerpc_debugfs_root, NULL, &fops_uaccess_flush);
1115 	return 0;
1116 }
1117 device_initcall(rfi_flush_debugfs_init);
1118 #endif
1119 #endif /* CONFIG_PPC_BOOK3S_64 */
1120