• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * kvm nested virtualization support for s390x
4  *
5  * Copyright IBM Corp. 2016, 2018
6  *
7  *    Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com>
8  */
9 #include <linux/vmalloc.h>
10 #include <linux/kvm_host.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/bitmap.h>
14 #include <linux/sched/signal.h>
15 
16 #include <asm/gmap.h>
17 #include <asm/mmu_context.h>
18 #include <asm/sclp.h>
19 #include <asm/nmi.h>
20 #include <asm/dis.h>
21 #include "kvm-s390.h"
22 #include "gaccess.h"
23 
24 struct vsie_page {
25 	struct kvm_s390_sie_block scb_s;	/* 0x0000 */
26 	/*
27 	 * the backup info for machine check. ensure it's at
28 	 * the same offset as that in struct sie_page!
29 	 */
30 	struct mcck_volatile_info mcck_info;    /* 0x0200 */
31 	/*
32 	 * The pinned original scb. Be aware that other VCPUs can modify
33 	 * it while we read from it. Values that are used for conditions or
34 	 * are reused conditionally, should be accessed via READ_ONCE.
35 	 */
36 	struct kvm_s390_sie_block *scb_o;	/* 0x0218 */
37 	/* the shadow gmap in use by the vsie_page */
38 	struct gmap *gmap;			/* 0x0220 */
39 	/* address of the last reported fault to guest2 */
40 	unsigned long fault_addr;		/* 0x0228 */
41 	/* calculated guest addresses of satellite control blocks */
42 	gpa_t sca_gpa;				/* 0x0230 */
43 	gpa_t itdba_gpa;			/* 0x0238 */
44 	gpa_t gvrd_gpa;				/* 0x0240 */
45 	gpa_t riccbd_gpa;			/* 0x0248 */
46 	gpa_t sdnx_gpa;				/* 0x0250 */
47 	__u8 reserved[0x0700 - 0x0258];		/* 0x0258 */
48 	struct kvm_s390_crypto_cb crycb;	/* 0x0700 */
49 	__u8 fac[S390_ARCH_FAC_LIST_SIZE_BYTE];	/* 0x0800 */
50 };
51 
52 /* trigger a validity icpt for the given scb */
set_validity_icpt(struct kvm_s390_sie_block * scb,__u16 reason_code)53 static int set_validity_icpt(struct kvm_s390_sie_block *scb,
54 			     __u16 reason_code)
55 {
56 	scb->ipa = 0x1000;
57 	scb->ipb = ((__u32) reason_code) << 16;
58 	scb->icptcode = ICPT_VALIDITY;
59 	return 1;
60 }
61 
62 /* mark the prefix as unmapped, this will block the VSIE */
prefix_unmapped(struct vsie_page * vsie_page)63 static void prefix_unmapped(struct vsie_page *vsie_page)
64 {
65 	atomic_or(PROG_REQUEST, &vsie_page->scb_s.prog20);
66 }
67 
68 /* mark the prefix as unmapped and wait until the VSIE has been left */
prefix_unmapped_sync(struct vsie_page * vsie_page)69 static void prefix_unmapped_sync(struct vsie_page *vsie_page)
70 {
71 	prefix_unmapped(vsie_page);
72 	if (vsie_page->scb_s.prog0c & PROG_IN_SIE)
73 		atomic_or(CPUSTAT_STOP_INT, &vsie_page->scb_s.cpuflags);
74 	while (vsie_page->scb_s.prog0c & PROG_IN_SIE)
75 		cpu_relax();
76 }
77 
78 /* mark the prefix as mapped, this will allow the VSIE to run */
prefix_mapped(struct vsie_page * vsie_page)79 static void prefix_mapped(struct vsie_page *vsie_page)
80 {
81 	atomic_andnot(PROG_REQUEST, &vsie_page->scb_s.prog20);
82 }
83 
84 /* test if the prefix is mapped into the gmap shadow */
prefix_is_mapped(struct vsie_page * vsie_page)85 static int prefix_is_mapped(struct vsie_page *vsie_page)
86 {
87 	return !(atomic_read(&vsie_page->scb_s.prog20) & PROG_REQUEST);
88 }
89 
90 /* copy the updated intervention request bits into the shadow scb */
update_intervention_requests(struct vsie_page * vsie_page)91 static void update_intervention_requests(struct vsie_page *vsie_page)
92 {
93 	const int bits = CPUSTAT_STOP_INT | CPUSTAT_IO_INT | CPUSTAT_EXT_INT;
94 	int cpuflags;
95 
96 	cpuflags = atomic_read(&vsie_page->scb_o->cpuflags);
97 	atomic_andnot(bits, &vsie_page->scb_s.cpuflags);
98 	atomic_or(cpuflags & bits, &vsie_page->scb_s.cpuflags);
99 }
100 
101 /* shadow (filter and validate) the cpuflags  */
prepare_cpuflags(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)102 static int prepare_cpuflags(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
103 {
104 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
105 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
106 	int newflags, cpuflags = atomic_read(&scb_o->cpuflags);
107 
108 	/* we don't allow ESA/390 guests */
109 	if (!(cpuflags & CPUSTAT_ZARCH))
110 		return set_validity_icpt(scb_s, 0x0001U);
111 
112 	if (cpuflags & (CPUSTAT_RRF | CPUSTAT_MCDS))
113 		return set_validity_icpt(scb_s, 0x0001U);
114 	else if (cpuflags & (CPUSTAT_SLSV | CPUSTAT_SLSR))
115 		return set_validity_icpt(scb_s, 0x0007U);
116 
117 	/* intervention requests will be set later */
118 	newflags = CPUSTAT_ZARCH;
119 	if (cpuflags & CPUSTAT_GED && test_kvm_facility(vcpu->kvm, 8))
120 		newflags |= CPUSTAT_GED;
121 	if (cpuflags & CPUSTAT_GED2 && test_kvm_facility(vcpu->kvm, 78)) {
122 		if (cpuflags & CPUSTAT_GED)
123 			return set_validity_icpt(scb_s, 0x0001U);
124 		newflags |= CPUSTAT_GED2;
125 	}
126 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GPERE))
127 		newflags |= cpuflags & CPUSTAT_P;
128 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GSLS))
129 		newflags |= cpuflags & CPUSTAT_SM;
130 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IBS))
131 		newflags |= cpuflags & CPUSTAT_IBS;
132 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_KSS))
133 		newflags |= cpuflags & CPUSTAT_KSS;
134 
135 	atomic_set(&scb_s->cpuflags, newflags);
136 	return 0;
137 }
138 /* Copy to APCB FORMAT1 from APCB FORMAT0 */
setup_apcb10(struct kvm_vcpu * vcpu,struct kvm_s390_apcb1 * apcb_s,unsigned long apcb_o,struct kvm_s390_apcb1 * apcb_h)139 static int setup_apcb10(struct kvm_vcpu *vcpu, struct kvm_s390_apcb1 *apcb_s,
140 			unsigned long apcb_o, struct kvm_s390_apcb1 *apcb_h)
141 {
142 	struct kvm_s390_apcb0 tmp;
143 
144 	if (read_guest_real(vcpu, apcb_o, &tmp, sizeof(struct kvm_s390_apcb0)))
145 		return -EFAULT;
146 
147 	apcb_s->apm[0] = apcb_h->apm[0] & tmp.apm[0];
148 	apcb_s->aqm[0] = apcb_h->aqm[0] & tmp.aqm[0] & 0xffff000000000000UL;
149 	apcb_s->adm[0] = apcb_h->adm[0] & tmp.adm[0] & 0xffff000000000000UL;
150 
151 	return 0;
152 
153 }
154 
155 /**
156  * setup_apcb00 - Copy to APCB FORMAT0 from APCB FORMAT0
157  * @vcpu: pointer to the virtual CPU
158  * @apcb_s: pointer to start of apcb in the shadow crycb
159  * @apcb_o: pointer to start of original apcb in the guest2
160  * @apcb_h: pointer to start of apcb in the guest1
161  *
162  * Returns 0 and -EFAULT on error reading guest apcb
163  */
setup_apcb00(struct kvm_vcpu * vcpu,unsigned long * apcb_s,unsigned long apcb_o,unsigned long * apcb_h)164 static int setup_apcb00(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
165 			unsigned long apcb_o, unsigned long *apcb_h)
166 {
167 	if (read_guest_real(vcpu, apcb_o, apcb_s,
168 			    sizeof(struct kvm_s390_apcb0)))
169 		return -EFAULT;
170 
171 	bitmap_and(apcb_s, apcb_s, apcb_h,
172 		   BITS_PER_BYTE * sizeof(struct kvm_s390_apcb0));
173 
174 	return 0;
175 }
176 
177 /**
178  * setup_apcb11 - Copy the FORMAT1 APCB from the guest to the shadow CRYCB
179  * @vcpu: pointer to the virtual CPU
180  * @apcb_s: pointer to start of apcb in the shadow crycb
181  * @apcb_o: pointer to start of original guest apcb
182  * @apcb_h: pointer to start of apcb in the host
183  *
184  * Returns 0 and -EFAULT on error reading guest apcb
185  */
setup_apcb11(struct kvm_vcpu * vcpu,unsigned long * apcb_s,unsigned long apcb_o,unsigned long * apcb_h)186 static int setup_apcb11(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
187 			unsigned long apcb_o,
188 			unsigned long *apcb_h)
189 {
190 	if (read_guest_real(vcpu, apcb_o, apcb_s,
191 			    sizeof(struct kvm_s390_apcb1)))
192 		return -EFAULT;
193 
194 	bitmap_and(apcb_s, apcb_s, apcb_h,
195 		   BITS_PER_BYTE * sizeof(struct kvm_s390_apcb1));
196 
197 	return 0;
198 }
199 
200 /**
201  * setup_apcb - Create a shadow copy of the apcb.
202  * @vcpu: pointer to the virtual CPU
203  * @crycb_s: pointer to shadow crycb
204  * @crycb_o: pointer to original guest crycb
205  * @crycb_h: pointer to the host crycb
206  * @fmt_o: format of the original guest crycb.
207  * @fmt_h: format of the host crycb.
208  *
209  * Checks the compatibility between the guest and host crycb and calls the
210  * appropriate copy function.
211  *
212  * Return 0 or an error number if the guest and host crycb are incompatible.
213  */
setup_apcb(struct kvm_vcpu * vcpu,struct kvm_s390_crypto_cb * crycb_s,const u32 crycb_o,struct kvm_s390_crypto_cb * crycb_h,int fmt_o,int fmt_h)214 static int setup_apcb(struct kvm_vcpu *vcpu, struct kvm_s390_crypto_cb *crycb_s,
215 	       const u32 crycb_o,
216 	       struct kvm_s390_crypto_cb *crycb_h,
217 	       int fmt_o, int fmt_h)
218 {
219 	struct kvm_s390_crypto_cb *crycb;
220 
221 	crycb = (struct kvm_s390_crypto_cb *) (unsigned long)crycb_o;
222 
223 	switch (fmt_o) {
224 	case CRYCB_FORMAT2:
225 		if ((crycb_o & PAGE_MASK) != ((crycb_o + 256) & PAGE_MASK))
226 			return -EACCES;
227 		if (fmt_h != CRYCB_FORMAT2)
228 			return -EINVAL;
229 		return setup_apcb11(vcpu, (unsigned long *)&crycb_s->apcb1,
230 				    (unsigned long) &crycb->apcb1,
231 				    (unsigned long *)&crycb_h->apcb1);
232 	case CRYCB_FORMAT1:
233 		switch (fmt_h) {
234 		case CRYCB_FORMAT2:
235 			return setup_apcb10(vcpu, &crycb_s->apcb1,
236 					    (unsigned long) &crycb->apcb0,
237 					    &crycb_h->apcb1);
238 		case CRYCB_FORMAT1:
239 			return setup_apcb00(vcpu,
240 					    (unsigned long *) &crycb_s->apcb0,
241 					    (unsigned long) &crycb->apcb0,
242 					    (unsigned long *) &crycb_h->apcb0);
243 		}
244 		break;
245 	case CRYCB_FORMAT0:
246 		if ((crycb_o & PAGE_MASK) != ((crycb_o + 32) & PAGE_MASK))
247 			return -EACCES;
248 
249 		switch (fmt_h) {
250 		case CRYCB_FORMAT2:
251 			return setup_apcb10(vcpu, &crycb_s->apcb1,
252 					    (unsigned long) &crycb->apcb0,
253 					    &crycb_h->apcb1);
254 		case CRYCB_FORMAT1:
255 		case CRYCB_FORMAT0:
256 			return setup_apcb00(vcpu,
257 					    (unsigned long *) &crycb_s->apcb0,
258 					    (unsigned long) &crycb->apcb0,
259 					    (unsigned long *) &crycb_h->apcb0);
260 		}
261 	}
262 	return -EINVAL;
263 }
264 
265 /**
266  * shadow_crycb - Create a shadow copy of the crycb block
267  * @vcpu: a pointer to the virtual CPU
268  * @vsie_page: a pointer to internal date used for the vSIE
269  *
270  * Create a shadow copy of the crycb block and setup key wrapping, if
271  * requested for guest 3 and enabled for guest 2.
272  *
273  * We accept format-1 or format-2, but we convert format-1 into format-2
274  * in the shadow CRYCB.
275  * Using format-2 enables the firmware to choose the right format when
276  * scheduling the SIE.
277  * There is nothing to do for format-0.
278  *
279  * This function centralize the issuing of set_validity_icpt() for all
280  * the subfunctions working on the crycb.
281  *
282  * Returns: - 0 if shadowed or nothing to do
283  *          - > 0 if control has to be given to guest 2
284  */
shadow_crycb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)285 static int shadow_crycb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
286 {
287 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
288 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
289 	const uint32_t crycbd_o = READ_ONCE(scb_o->crycbd);
290 	const u32 crycb_addr = crycbd_o & 0x7ffffff8U;
291 	unsigned long *b1, *b2;
292 	u8 ecb3_flags;
293 	u32 ecd_flags;
294 	int apie_h;
295 	int apie_s;
296 	int key_msk = test_kvm_facility(vcpu->kvm, 76);
297 	int fmt_o = crycbd_o & CRYCB_FORMAT_MASK;
298 	int fmt_h = vcpu->arch.sie_block->crycbd & CRYCB_FORMAT_MASK;
299 	int ret = 0;
300 
301 	scb_s->crycbd = 0;
302 
303 	apie_h = vcpu->arch.sie_block->eca & ECA_APIE;
304 	apie_s = apie_h & scb_o->eca;
305 	if (!apie_s && (!key_msk || (fmt_o == CRYCB_FORMAT0)))
306 		return 0;
307 
308 	if (!crycb_addr)
309 		return set_validity_icpt(scb_s, 0x0039U);
310 
311 	if (fmt_o == CRYCB_FORMAT1)
312 		if ((crycb_addr & PAGE_MASK) !=
313 		    ((crycb_addr + 128) & PAGE_MASK))
314 			return set_validity_icpt(scb_s, 0x003CU);
315 
316 	if (apie_s) {
317 		ret = setup_apcb(vcpu, &vsie_page->crycb, crycb_addr,
318 				 vcpu->kvm->arch.crypto.crycb,
319 				 fmt_o, fmt_h);
320 		if (ret)
321 			goto end;
322 		scb_s->eca |= scb_o->eca & ECA_APIE;
323 	}
324 
325 	/* we may only allow it if enabled for guest 2 */
326 	ecb3_flags = scb_o->ecb3 & vcpu->arch.sie_block->ecb3 &
327 		     (ECB3_AES | ECB3_DEA);
328 	ecd_flags = scb_o->ecd & vcpu->arch.sie_block->ecd & ECD_ECC;
329 	if (!ecb3_flags && !ecd_flags)
330 		goto end;
331 
332 	/* copy only the wrapping keys */
333 	if (read_guest_real(vcpu, crycb_addr + 72,
334 			    vsie_page->crycb.dea_wrapping_key_mask, 56))
335 		return set_validity_icpt(scb_s, 0x0035U);
336 
337 	scb_s->ecb3 |= ecb3_flags;
338 	scb_s->ecd |= ecd_flags;
339 
340 	/* xor both blocks in one run */
341 	b1 = (unsigned long *) vsie_page->crycb.dea_wrapping_key_mask;
342 	b2 = (unsigned long *)
343 			    vcpu->kvm->arch.crypto.crycb->dea_wrapping_key_mask;
344 	/* as 56%8 == 0, bitmap_xor won't overwrite any data */
345 	bitmap_xor(b1, b1, b2, BITS_PER_BYTE * 56);
346 end:
347 	switch (ret) {
348 	case -EINVAL:
349 		return set_validity_icpt(scb_s, 0x0022U);
350 	case -EFAULT:
351 		return set_validity_icpt(scb_s, 0x0035U);
352 	case -EACCES:
353 		return set_validity_icpt(scb_s, 0x003CU);
354 	}
355 	scb_s->crycbd = ((__u32)(__u64) &vsie_page->crycb) | CRYCB_FORMAT2;
356 	return 0;
357 }
358 
359 /* shadow (round up/down) the ibc to avoid validity icpt */
prepare_ibc(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)360 static void prepare_ibc(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
361 {
362 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
363 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
364 	/* READ_ONCE does not work on bitfields - use a temporary variable */
365 	const uint32_t __new_ibc = scb_o->ibc;
366 	const uint32_t new_ibc = READ_ONCE(__new_ibc) & 0x0fffU;
367 	__u64 min_ibc = (sclp.ibc >> 16) & 0x0fffU;
368 
369 	scb_s->ibc = 0;
370 	/* ibc installed in g2 and requested for g3 */
371 	if (vcpu->kvm->arch.model.ibc && new_ibc) {
372 		scb_s->ibc = new_ibc;
373 		/* takte care of the minimum ibc level of the machine */
374 		if (scb_s->ibc < min_ibc)
375 			scb_s->ibc = min_ibc;
376 		/* take care of the maximum ibc level set for the guest */
377 		if (scb_s->ibc > vcpu->kvm->arch.model.ibc)
378 			scb_s->ibc = vcpu->kvm->arch.model.ibc;
379 	}
380 }
381 
382 /* unshadow the scb, copying parameters back to the real scb */
unshadow_scb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)383 static void unshadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
384 {
385 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
386 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
387 
388 	/* interception */
389 	scb_o->icptcode = scb_s->icptcode;
390 	scb_o->icptstatus = scb_s->icptstatus;
391 	scb_o->ipa = scb_s->ipa;
392 	scb_o->ipb = scb_s->ipb;
393 	scb_o->gbea = scb_s->gbea;
394 
395 	/* timer */
396 	scb_o->cputm = scb_s->cputm;
397 	scb_o->ckc = scb_s->ckc;
398 	scb_o->todpr = scb_s->todpr;
399 
400 	/* guest state */
401 	scb_o->gpsw = scb_s->gpsw;
402 	scb_o->gg14 = scb_s->gg14;
403 	scb_o->gg15 = scb_s->gg15;
404 	memcpy(scb_o->gcr, scb_s->gcr, 128);
405 	scb_o->pp = scb_s->pp;
406 
407 	/* branch prediction */
408 	if (test_kvm_facility(vcpu->kvm, 82)) {
409 		scb_o->fpf &= ~FPF_BPBC;
410 		scb_o->fpf |= scb_s->fpf & FPF_BPBC;
411 	}
412 
413 	/* interrupt intercept */
414 	switch (scb_s->icptcode) {
415 	case ICPT_PROGI:
416 	case ICPT_INSTPROGI:
417 	case ICPT_EXTINT:
418 		memcpy((void *)((u64)scb_o + 0xc0),
419 		       (void *)((u64)scb_s + 0xc0), 0xf0 - 0xc0);
420 		break;
421 	case ICPT_PARTEXEC:
422 		/* MVPG only */
423 		memcpy((void *)((u64)scb_o + 0xc0),
424 		       (void *)((u64)scb_s + 0xc0), 0xd0 - 0xc0);
425 		break;
426 	}
427 
428 	if (scb_s->ihcpu != 0xffffU)
429 		scb_o->ihcpu = scb_s->ihcpu;
430 }
431 
432 /*
433  * Setup the shadow scb by copying and checking the relevant parts of the g2
434  * provided scb.
435  *
436  * Returns: - 0 if the scb has been shadowed
437  *          - > 0 if control has to be given to guest 2
438  */
shadow_scb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)439 static int shadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
440 {
441 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
442 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
443 	/* READ_ONCE does not work on bitfields - use a temporary variable */
444 	const uint32_t __new_prefix = scb_o->prefix;
445 	const uint32_t new_prefix = READ_ONCE(__new_prefix);
446 	const bool wants_tx = READ_ONCE(scb_o->ecb) & ECB_TE;
447 	bool had_tx = scb_s->ecb & ECB_TE;
448 	unsigned long new_mso = 0;
449 	int rc;
450 
451 	/* make sure we don't have any leftovers when reusing the scb */
452 	scb_s->icptcode = 0;
453 	scb_s->eca = 0;
454 	scb_s->ecb = 0;
455 	scb_s->ecb2 = 0;
456 	scb_s->ecb3 = 0;
457 	scb_s->ecd = 0;
458 	scb_s->fac = 0;
459 	scb_s->fpf = 0;
460 
461 	rc = prepare_cpuflags(vcpu, vsie_page);
462 	if (rc)
463 		goto out;
464 
465 	/* timer */
466 	scb_s->cputm = scb_o->cputm;
467 	scb_s->ckc = scb_o->ckc;
468 	scb_s->todpr = scb_o->todpr;
469 	scb_s->epoch = scb_o->epoch;
470 
471 	/* guest state */
472 	scb_s->gpsw = scb_o->gpsw;
473 	scb_s->gg14 = scb_o->gg14;
474 	scb_s->gg15 = scb_o->gg15;
475 	memcpy(scb_s->gcr, scb_o->gcr, 128);
476 	scb_s->pp = scb_o->pp;
477 
478 	/* interception / execution handling */
479 	scb_s->gbea = scb_o->gbea;
480 	scb_s->lctl = scb_o->lctl;
481 	scb_s->svcc = scb_o->svcc;
482 	scb_s->ictl = scb_o->ictl;
483 	/*
484 	 * SKEY handling functions can't deal with false setting of PTE invalid
485 	 * bits. Therefore we cannot provide interpretation and would later
486 	 * have to provide own emulation handlers.
487 	 */
488 	if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_KSS))
489 		scb_s->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
490 
491 	scb_s->icpua = scb_o->icpua;
492 
493 	if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_SM))
494 		new_mso = READ_ONCE(scb_o->mso) & 0xfffffffffff00000UL;
495 	/* if the hva of the prefix changes, we have to remap the prefix */
496 	if (scb_s->mso != new_mso || scb_s->prefix != new_prefix)
497 		prefix_unmapped(vsie_page);
498 	 /* SIE will do mso/msl validity and exception checks for us */
499 	scb_s->msl = scb_o->msl & 0xfffffffffff00000UL;
500 	scb_s->mso = new_mso;
501 	scb_s->prefix = new_prefix;
502 
503 	/* We have to definetly flush the tlb if this scb never ran */
504 	if (scb_s->ihcpu != 0xffffU)
505 		scb_s->ihcpu = scb_o->ihcpu;
506 
507 	/* MVPG and Protection Exception Interpretation are always available */
508 	scb_s->eca |= scb_o->eca & (ECA_MVPGI | ECA_PROTEXCI);
509 	/* Host-protection-interruption introduced with ESOP */
510 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_ESOP))
511 		scb_s->ecb |= scb_o->ecb & ECB_HOSTPROTINT;
512 	/* transactional execution */
513 	if (test_kvm_facility(vcpu->kvm, 73) && wants_tx) {
514 		/* remap the prefix is tx is toggled on */
515 		if (!had_tx)
516 			prefix_unmapped(vsie_page);
517 		scb_s->ecb |= ECB_TE;
518 	}
519 	/* branch prediction */
520 	if (test_kvm_facility(vcpu->kvm, 82))
521 		scb_s->fpf |= scb_o->fpf & FPF_BPBC;
522 	/* SIMD */
523 	if (test_kvm_facility(vcpu->kvm, 129)) {
524 		scb_s->eca |= scb_o->eca & ECA_VX;
525 		scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT;
526 	}
527 	/* Run-time-Instrumentation */
528 	if (test_kvm_facility(vcpu->kvm, 64))
529 		scb_s->ecb3 |= scb_o->ecb3 & ECB3_RI;
530 	/* Instruction Execution Prevention */
531 	if (test_kvm_facility(vcpu->kvm, 130))
532 		scb_s->ecb2 |= scb_o->ecb2 & ECB2_IEP;
533 	/* Guarded Storage */
534 	if (test_kvm_facility(vcpu->kvm, 133)) {
535 		scb_s->ecb |= scb_o->ecb & ECB_GS;
536 		scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT;
537 	}
538 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIIF))
539 		scb_s->eca |= scb_o->eca & ECA_SII;
540 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IB))
541 		scb_s->eca |= scb_o->eca & ECA_IB;
542 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_CEI))
543 		scb_s->eca |= scb_o->eca & ECA_CEI;
544 	/* Epoch Extension */
545 	if (test_kvm_facility(vcpu->kvm, 139)) {
546 		scb_s->ecd |= scb_o->ecd & ECD_MEF;
547 		scb_s->epdx = scb_o->epdx;
548 	}
549 
550 	/* etoken */
551 	if (test_kvm_facility(vcpu->kvm, 156))
552 		scb_s->ecd |= scb_o->ecd & ECD_ETOKENF;
553 
554 	scb_s->hpid = HPID_VSIE;
555 
556 	prepare_ibc(vcpu, vsie_page);
557 	rc = shadow_crycb(vcpu, vsie_page);
558 out:
559 	if (rc)
560 		unshadow_scb(vcpu, vsie_page);
561 	return rc;
562 }
563 
kvm_s390_vsie_gmap_notifier(struct gmap * gmap,unsigned long start,unsigned long end)564 void kvm_s390_vsie_gmap_notifier(struct gmap *gmap, unsigned long start,
565 				 unsigned long end)
566 {
567 	struct kvm *kvm = gmap->private;
568 	struct vsie_page *cur;
569 	unsigned long prefix;
570 	struct page *page;
571 	int i;
572 
573 	if (!gmap_is_shadow(gmap))
574 		return;
575 	if (start >= 1UL << 31)
576 		/* We are only interested in prefix pages */
577 		return;
578 
579 	/*
580 	 * Only new shadow blocks are added to the list during runtime,
581 	 * therefore we can safely reference them all the time.
582 	 */
583 	for (i = 0; i < kvm->arch.vsie.page_count; i++) {
584 		page = READ_ONCE(kvm->arch.vsie.pages[i]);
585 		if (!page)
586 			continue;
587 		cur = page_to_virt(page);
588 		if (READ_ONCE(cur->gmap) != gmap)
589 			continue;
590 		prefix = cur->scb_s.prefix << GUEST_PREFIX_SHIFT;
591 		/* with mso/msl, the prefix lies at an offset */
592 		prefix += cur->scb_s.mso;
593 		if (prefix <= end && start <= prefix + 2 * PAGE_SIZE - 1)
594 			prefix_unmapped_sync(cur);
595 	}
596 }
597 
598 /*
599  * Map the first prefix page and if tx is enabled also the second prefix page.
600  *
601  * The prefix will be protected, a gmap notifier will inform about unmaps.
602  * The shadow scb must not be executed until the prefix is remapped, this is
603  * guaranteed by properly handling PROG_REQUEST.
604  *
605  * Returns: - 0 on if successfully mapped or already mapped
606  *          - > 0 if control has to be given to guest 2
607  *          - -EAGAIN if the caller can retry immediately
608  *          - -ENOMEM if out of memory
609  */
map_prefix(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)610 static int map_prefix(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
611 {
612 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
613 	u64 prefix = scb_s->prefix << GUEST_PREFIX_SHIFT;
614 	int rc;
615 
616 	if (prefix_is_mapped(vsie_page))
617 		return 0;
618 
619 	/* mark it as mapped so we can catch any concurrent unmappers */
620 	prefix_mapped(vsie_page);
621 
622 	/* with mso/msl, the prefix lies at offset *mso* */
623 	prefix += scb_s->mso;
624 
625 	rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, prefix);
626 	if (!rc && (scb_s->ecb & ECB_TE))
627 		rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
628 					   prefix + PAGE_SIZE);
629 	/*
630 	 * We don't have to mprotect, we will be called for all unshadows.
631 	 * SIE will detect if protection applies and trigger a validity.
632 	 */
633 	if (rc)
634 		prefix_unmapped(vsie_page);
635 	if (rc > 0 || rc == -EFAULT)
636 		rc = set_validity_icpt(scb_s, 0x0037U);
637 	return rc;
638 }
639 
640 /*
641  * Pin the guest page given by gpa and set hpa to the pinned host address.
642  * Will always be pinned writable.
643  *
644  * Returns: - 0 on success
645  *          - -EINVAL if the gpa is not valid guest storage
646  */
pin_guest_page(struct kvm * kvm,gpa_t gpa,hpa_t * hpa)647 static int pin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t *hpa)
648 {
649 	struct page *page;
650 
651 	page = gfn_to_page(kvm, gpa_to_gfn(gpa));
652 	if (is_error_page(page))
653 		return -EINVAL;
654 	*hpa = (hpa_t) page_to_virt(page) + (gpa & ~PAGE_MASK);
655 	return 0;
656 }
657 
658 /* Unpins a page previously pinned via pin_guest_page, marking it as dirty. */
unpin_guest_page(struct kvm * kvm,gpa_t gpa,hpa_t hpa)659 static void unpin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t hpa)
660 {
661 	kvm_release_pfn_dirty(hpa >> PAGE_SHIFT);
662 	/* mark the page always as dirty for migration */
663 	mark_page_dirty(kvm, gpa_to_gfn(gpa));
664 }
665 
666 /* unpin all blocks previously pinned by pin_blocks(), marking them dirty */
unpin_blocks(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)667 static void unpin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
668 {
669 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
670 	hpa_t hpa;
671 
672 	hpa = (u64) scb_s->scaoh << 32 | scb_s->scaol;
673 	if (hpa) {
674 		unpin_guest_page(vcpu->kvm, vsie_page->sca_gpa, hpa);
675 		vsie_page->sca_gpa = 0;
676 		scb_s->scaol = 0;
677 		scb_s->scaoh = 0;
678 	}
679 
680 	hpa = scb_s->itdba;
681 	if (hpa) {
682 		unpin_guest_page(vcpu->kvm, vsie_page->itdba_gpa, hpa);
683 		vsie_page->itdba_gpa = 0;
684 		scb_s->itdba = 0;
685 	}
686 
687 	hpa = scb_s->gvrd;
688 	if (hpa) {
689 		unpin_guest_page(vcpu->kvm, vsie_page->gvrd_gpa, hpa);
690 		vsie_page->gvrd_gpa = 0;
691 		scb_s->gvrd = 0;
692 	}
693 
694 	hpa = scb_s->riccbd;
695 	if (hpa) {
696 		unpin_guest_page(vcpu->kvm, vsie_page->riccbd_gpa, hpa);
697 		vsie_page->riccbd_gpa = 0;
698 		scb_s->riccbd = 0;
699 	}
700 
701 	hpa = scb_s->sdnxo;
702 	if (hpa) {
703 		unpin_guest_page(vcpu->kvm, vsie_page->sdnx_gpa, hpa);
704 		vsie_page->sdnx_gpa = 0;
705 		scb_s->sdnxo = 0;
706 	}
707 }
708 
709 /*
710  * Instead of shadowing some blocks, we can simply forward them because the
711  * addresses in the scb are 64 bit long.
712  *
713  * This works as long as the data lies in one page. If blocks ever exceed one
714  * page, we have to fall back to shadowing.
715  *
716  * As we reuse the sca, the vcpu pointers contained in it are invalid. We must
717  * therefore not enable any facilities that access these pointers (e.g. SIGPIF).
718  *
719  * Returns: - 0 if all blocks were pinned.
720  *          - > 0 if control has to be given to guest 2
721  *          - -ENOMEM if out of memory
722  */
pin_blocks(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)723 static int pin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
724 {
725 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
726 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
727 	hpa_t hpa;
728 	gpa_t gpa;
729 	int rc = 0;
730 
731 	gpa = READ_ONCE(scb_o->scaol) & ~0xfUL;
732 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_64BSCAO))
733 		gpa |= (u64) READ_ONCE(scb_o->scaoh) << 32;
734 	if (gpa) {
735 		if (gpa < 2 * PAGE_SIZE)
736 			rc = set_validity_icpt(scb_s, 0x0038U);
737 		else if ((gpa & ~0x1fffUL) == kvm_s390_get_prefix(vcpu))
738 			rc = set_validity_icpt(scb_s, 0x0011U);
739 		else if ((gpa & PAGE_MASK) !=
740 			 ((gpa + sizeof(struct bsca_block) - 1) & PAGE_MASK))
741 			rc = set_validity_icpt(scb_s, 0x003bU);
742 		if (!rc) {
743 			rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
744 			if (rc)
745 				rc = set_validity_icpt(scb_s, 0x0034U);
746 		}
747 		if (rc)
748 			goto unpin;
749 		vsie_page->sca_gpa = gpa;
750 		scb_s->scaoh = (u32)((u64)hpa >> 32);
751 		scb_s->scaol = (u32)(u64)hpa;
752 	}
753 
754 	gpa = READ_ONCE(scb_o->itdba) & ~0xffUL;
755 	if (gpa && (scb_s->ecb & ECB_TE)) {
756 		if (gpa < 2 * PAGE_SIZE) {
757 			rc = set_validity_icpt(scb_s, 0x0080U);
758 			goto unpin;
759 		}
760 		/* 256 bytes cannot cross page boundaries */
761 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
762 		if (rc) {
763 			rc = set_validity_icpt(scb_s, 0x0080U);
764 			goto unpin;
765 		}
766 		vsie_page->itdba_gpa = gpa;
767 		scb_s->itdba = hpa;
768 	}
769 
770 	gpa = READ_ONCE(scb_o->gvrd) & ~0x1ffUL;
771 	if (gpa && (scb_s->eca & ECA_VX) && !(scb_s->ecd & ECD_HOSTREGMGMT)) {
772 		if (gpa < 2 * PAGE_SIZE) {
773 			rc = set_validity_icpt(scb_s, 0x1310U);
774 			goto unpin;
775 		}
776 		/*
777 		 * 512 bytes vector registers cannot cross page boundaries
778 		 * if this block gets bigger, we have to shadow it.
779 		 */
780 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
781 		if (rc) {
782 			rc = set_validity_icpt(scb_s, 0x1310U);
783 			goto unpin;
784 		}
785 		vsie_page->gvrd_gpa = gpa;
786 		scb_s->gvrd = hpa;
787 	}
788 
789 	gpa = READ_ONCE(scb_o->riccbd) & ~0x3fUL;
790 	if (gpa && (scb_s->ecb3 & ECB3_RI)) {
791 		if (gpa < 2 * PAGE_SIZE) {
792 			rc = set_validity_icpt(scb_s, 0x0043U);
793 			goto unpin;
794 		}
795 		/* 64 bytes cannot cross page boundaries */
796 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
797 		if (rc) {
798 			rc = set_validity_icpt(scb_s, 0x0043U);
799 			goto unpin;
800 		}
801 		/* Validity 0x0044 will be checked by SIE */
802 		vsie_page->riccbd_gpa = gpa;
803 		scb_s->riccbd = hpa;
804 	}
805 	if (((scb_s->ecb & ECB_GS) && !(scb_s->ecd & ECD_HOSTREGMGMT)) ||
806 	    (scb_s->ecd & ECD_ETOKENF)) {
807 		unsigned long sdnxc;
808 
809 		gpa = READ_ONCE(scb_o->sdnxo) & ~0xfUL;
810 		sdnxc = READ_ONCE(scb_o->sdnxo) & 0xfUL;
811 		if (!gpa || gpa < 2 * PAGE_SIZE) {
812 			rc = set_validity_icpt(scb_s, 0x10b0U);
813 			goto unpin;
814 		}
815 		if (sdnxc < 6 || sdnxc > 12) {
816 			rc = set_validity_icpt(scb_s, 0x10b1U);
817 			goto unpin;
818 		}
819 		if (gpa & ((1 << sdnxc) - 1)) {
820 			rc = set_validity_icpt(scb_s, 0x10b2U);
821 			goto unpin;
822 		}
823 		/* Due to alignment rules (checked above) this cannot
824 		 * cross page boundaries
825 		 */
826 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
827 		if (rc) {
828 			rc = set_validity_icpt(scb_s, 0x10b0U);
829 			goto unpin;
830 		}
831 		vsie_page->sdnx_gpa = gpa;
832 		scb_s->sdnxo = hpa | sdnxc;
833 	}
834 	return 0;
835 unpin:
836 	unpin_blocks(vcpu, vsie_page);
837 	return rc;
838 }
839 
840 /* unpin the scb provided by guest 2, marking it as dirty */
unpin_scb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page,gpa_t gpa)841 static void unpin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
842 		      gpa_t gpa)
843 {
844 	hpa_t hpa = (hpa_t) vsie_page->scb_o;
845 
846 	if (hpa)
847 		unpin_guest_page(vcpu->kvm, gpa, hpa);
848 	vsie_page->scb_o = NULL;
849 }
850 
851 /*
852  * Pin the scb at gpa provided by guest 2 at vsie_page->scb_o.
853  *
854  * Returns: - 0 if the scb was pinned.
855  *          - > 0 if control has to be given to guest 2
856  */
pin_scb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page,gpa_t gpa)857 static int pin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
858 		   gpa_t gpa)
859 {
860 	hpa_t hpa;
861 	int rc;
862 
863 	rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
864 	if (rc) {
865 		rc = kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
866 		WARN_ON_ONCE(rc);
867 		return 1;
868 	}
869 	vsie_page->scb_o = (struct kvm_s390_sie_block *) hpa;
870 	return 0;
871 }
872 
873 /*
874  * Inject a fault into guest 2.
875  *
876  * Returns: - > 0 if control has to be given to guest 2
877  *            < 0 if an error occurred during injection.
878  */
inject_fault(struct kvm_vcpu * vcpu,__u16 code,__u64 vaddr,bool write_flag)879 static int inject_fault(struct kvm_vcpu *vcpu, __u16 code, __u64 vaddr,
880 			bool write_flag)
881 {
882 	struct kvm_s390_pgm_info pgm = {
883 		.code = code,
884 		.trans_exc_code =
885 			/* 0-51: virtual address */
886 			(vaddr & 0xfffffffffffff000UL) |
887 			/* 52-53: store / fetch */
888 			(((unsigned int) !write_flag) + 1) << 10,
889 			/* 62-63: asce id (alway primary == 0) */
890 		.exc_access_id = 0, /* always primary */
891 		.op_access_id = 0, /* not MVPG */
892 	};
893 	int rc;
894 
895 	if (code == PGM_PROTECTION)
896 		pgm.trans_exc_code |= 0x4UL;
897 
898 	rc = kvm_s390_inject_prog_irq(vcpu, &pgm);
899 	return rc ? rc : 1;
900 }
901 
902 /*
903  * Handle a fault during vsie execution on a gmap shadow.
904  *
905  * Returns: - 0 if the fault was resolved
906  *          - > 0 if control has to be given to guest 2
907  *          - < 0 if an error occurred
908  */
handle_fault(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)909 static int handle_fault(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
910 {
911 	int rc;
912 
913 	if (current->thread.gmap_int_code == PGM_PROTECTION)
914 		/* we can directly forward all protection exceptions */
915 		return inject_fault(vcpu, PGM_PROTECTION,
916 				    current->thread.gmap_addr, 1);
917 
918 	rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
919 				   current->thread.gmap_addr);
920 	if (rc > 0) {
921 		rc = inject_fault(vcpu, rc,
922 				  current->thread.gmap_addr,
923 				  current->thread.gmap_write_flag);
924 		if (rc >= 0)
925 			vsie_page->fault_addr = current->thread.gmap_addr;
926 	}
927 	return rc;
928 }
929 
930 /*
931  * Retry the previous fault that required guest 2 intervention. This avoids
932  * one superfluous SIE re-entry and direct exit.
933  *
934  * Will ignore any errors. The next SIE fault will do proper fault handling.
935  */
handle_last_fault(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)936 static void handle_last_fault(struct kvm_vcpu *vcpu,
937 			      struct vsie_page *vsie_page)
938 {
939 	if (vsie_page->fault_addr)
940 		kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
941 				      vsie_page->fault_addr);
942 	vsie_page->fault_addr = 0;
943 }
944 
clear_vsie_icpt(struct vsie_page * vsie_page)945 static inline void clear_vsie_icpt(struct vsie_page *vsie_page)
946 {
947 	vsie_page->scb_s.icptcode = 0;
948 }
949 
950 /* rewind the psw and clear the vsie icpt, so we can retry execution */
retry_vsie_icpt(struct vsie_page * vsie_page)951 static void retry_vsie_icpt(struct vsie_page *vsie_page)
952 {
953 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
954 	int ilen = insn_length(scb_s->ipa >> 8);
955 
956 	/* take care of EXECUTE instructions */
957 	if (scb_s->icptstatus & 1) {
958 		ilen = (scb_s->icptstatus >> 4) & 0x6;
959 		if (!ilen)
960 			ilen = 4;
961 	}
962 	scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, ilen);
963 	clear_vsie_icpt(vsie_page);
964 }
965 
966 /*
967  * Try to shadow + enable the guest 2 provided facility list.
968  * Retry instruction execution if enabled for and provided by guest 2.
969  *
970  * Returns: - 0 if handled (retry or guest 2 icpt)
971  *          - > 0 if control has to be given to guest 2
972  */
handle_stfle(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)973 static int handle_stfle(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
974 {
975 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
976 	__u32 fac = READ_ONCE(vsie_page->scb_o->fac) & 0x7ffffff8U;
977 
978 	if (fac && test_kvm_facility(vcpu->kvm, 7)) {
979 		retry_vsie_icpt(vsie_page);
980 		if (read_guest_real(vcpu, fac, &vsie_page->fac,
981 				    sizeof(vsie_page->fac)))
982 			return set_validity_icpt(scb_s, 0x1090U);
983 		scb_s->fac = (__u32)(__u64) &vsie_page->fac;
984 	}
985 	return 0;
986 }
987 
988 /*
989  * Run the vsie on a shadow scb and a shadow gmap, without any further
990  * sanity checks, handling SIE faults.
991  *
992  * Returns: - 0 everything went fine
993  *          - > 0 if control has to be given to guest 2
994  *          - < 0 if an error occurred
995  */
do_vsie_run(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)996 static int do_vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
997 	__releases(vcpu->kvm->srcu)
998 	__acquires(vcpu->kvm->srcu)
999 {
1000 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1001 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
1002 	int guest_bp_isolation;
1003 	int rc = 0;
1004 
1005 	handle_last_fault(vcpu, vsie_page);
1006 
1007 	if (need_resched())
1008 		schedule();
1009 	if (test_cpu_flag(CIF_MCCK_PENDING))
1010 		s390_handle_mcck();
1011 
1012 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1013 
1014 	/* save current guest state of bp isolation override */
1015 	guest_bp_isolation = test_thread_flag(TIF_ISOLATE_BP_GUEST);
1016 
1017 	/*
1018 	 * The guest is running with BPBC, so we have to force it on for our
1019 	 * nested guest. This is done by enabling BPBC globally, so the BPBC
1020 	 * control in the SCB (which the nested guest can modify) is simply
1021 	 * ignored.
1022 	 */
1023 	if (test_kvm_facility(vcpu->kvm, 82) &&
1024 	    vcpu->arch.sie_block->fpf & FPF_BPBC)
1025 		set_thread_flag(TIF_ISOLATE_BP_GUEST);
1026 
1027 	local_irq_disable();
1028 	guest_enter_irqoff();
1029 	local_irq_enable();
1030 
1031 	/*
1032 	 * Simulate a SIE entry of the VCPU (see sie64a), so VCPU blocking
1033 	 * and VCPU requests also hinder the vSIE from running and lead
1034 	 * to an immediate exit. kvm_s390_vsie_kick() has to be used to
1035 	 * also kick the vSIE.
1036 	 */
1037 	vcpu->arch.sie_block->prog0c |= PROG_IN_SIE;
1038 	barrier();
1039 	if (!kvm_s390_vcpu_sie_inhibited(vcpu))
1040 		rc = sie64a(scb_s, vcpu->run->s.regs.gprs);
1041 	barrier();
1042 	vcpu->arch.sie_block->prog0c &= ~PROG_IN_SIE;
1043 
1044 	local_irq_disable();
1045 	guest_exit_irqoff();
1046 	local_irq_enable();
1047 
1048 	/* restore guest state for bp isolation override */
1049 	if (!guest_bp_isolation)
1050 		clear_thread_flag(TIF_ISOLATE_BP_GUEST);
1051 
1052 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1053 
1054 	if (rc == -EINTR) {
1055 		VCPU_EVENT(vcpu, 3, "%s", "machine check");
1056 		kvm_s390_reinject_machine_check(vcpu, &vsie_page->mcck_info);
1057 		return 0;
1058 	}
1059 
1060 	if (rc > 0)
1061 		rc = 0; /* we could still have an icpt */
1062 	else if (rc == -EFAULT)
1063 		return handle_fault(vcpu, vsie_page);
1064 
1065 	switch (scb_s->icptcode) {
1066 	case ICPT_INST:
1067 		if (scb_s->ipa == 0xb2b0)
1068 			rc = handle_stfle(vcpu, vsie_page);
1069 		break;
1070 	case ICPT_STOP:
1071 		/* stop not requested by g2 - must have been a kick */
1072 		if (!(atomic_read(&scb_o->cpuflags) & CPUSTAT_STOP_INT))
1073 			clear_vsie_icpt(vsie_page);
1074 		break;
1075 	case ICPT_VALIDITY:
1076 		if ((scb_s->ipa & 0xf000) != 0xf000)
1077 			scb_s->ipa += 0x1000;
1078 		break;
1079 	}
1080 	return rc;
1081 }
1082 
release_gmap_shadow(struct vsie_page * vsie_page)1083 static void release_gmap_shadow(struct vsie_page *vsie_page)
1084 {
1085 	if (vsie_page->gmap)
1086 		gmap_put(vsie_page->gmap);
1087 	WRITE_ONCE(vsie_page->gmap, NULL);
1088 	prefix_unmapped(vsie_page);
1089 }
1090 
acquire_gmap_shadow(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)1091 static int acquire_gmap_shadow(struct kvm_vcpu *vcpu,
1092 			       struct vsie_page *vsie_page)
1093 {
1094 	unsigned long asce;
1095 	union ctlreg0 cr0;
1096 	struct gmap *gmap;
1097 	int edat;
1098 
1099 	asce = vcpu->arch.sie_block->gcr[1];
1100 	cr0.val = vcpu->arch.sie_block->gcr[0];
1101 	edat = cr0.edat && test_kvm_facility(vcpu->kvm, 8);
1102 	edat += edat && test_kvm_facility(vcpu->kvm, 78);
1103 
1104 	/*
1105 	 * ASCE or EDAT could have changed since last icpt, or the gmap
1106 	 * we're holding has been unshadowed. If the gmap is still valid,
1107 	 * we can safely reuse it.
1108 	 */
1109 	if (vsie_page->gmap && gmap_shadow_valid(vsie_page->gmap, asce, edat))
1110 		return 0;
1111 
1112 	/* release the old shadow - if any, and mark the prefix as unmapped */
1113 	release_gmap_shadow(vsie_page);
1114 	gmap = gmap_shadow(vcpu->arch.gmap, asce, edat);
1115 	if (IS_ERR(gmap))
1116 		return PTR_ERR(gmap);
1117 	gmap->private = vcpu->kvm;
1118 	WRITE_ONCE(vsie_page->gmap, gmap);
1119 	return 0;
1120 }
1121 
1122 /*
1123  * Register the shadow scb at the VCPU, e.g. for kicking out of vsie.
1124  */
register_shadow_scb(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)1125 static void register_shadow_scb(struct kvm_vcpu *vcpu,
1126 				struct vsie_page *vsie_page)
1127 {
1128 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1129 
1130 	WRITE_ONCE(vcpu->arch.vsie_block, &vsie_page->scb_s);
1131 	/*
1132 	 * External calls have to lead to a kick of the vcpu and
1133 	 * therefore the vsie -> Simulate Wait state.
1134 	 */
1135 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
1136 	/*
1137 	 * We have to adjust the g3 epoch by the g2 epoch. The epoch will
1138 	 * automatically be adjusted on tod clock changes via kvm_sync_clock.
1139 	 */
1140 	preempt_disable();
1141 	scb_s->epoch += vcpu->kvm->arch.epoch;
1142 
1143 	if (scb_s->ecd & ECD_MEF) {
1144 		scb_s->epdx += vcpu->kvm->arch.epdx;
1145 		if (scb_s->epoch < vcpu->kvm->arch.epoch)
1146 			scb_s->epdx += 1;
1147 	}
1148 
1149 	preempt_enable();
1150 }
1151 
1152 /*
1153  * Unregister a shadow scb from a VCPU.
1154  */
unregister_shadow_scb(struct kvm_vcpu * vcpu)1155 static void unregister_shadow_scb(struct kvm_vcpu *vcpu)
1156 {
1157 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
1158 	WRITE_ONCE(vcpu->arch.vsie_block, NULL);
1159 }
1160 
1161 /*
1162  * Run the vsie on a shadowed scb, managing the gmap shadow, handling
1163  * prefix pages and faults.
1164  *
1165  * Returns: - 0 if no errors occurred
1166  *          - > 0 if control has to be given to guest 2
1167  *          - -ENOMEM if out of memory
1168  */
vsie_run(struct kvm_vcpu * vcpu,struct vsie_page * vsie_page)1169 static int vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
1170 {
1171 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1172 	int rc = 0;
1173 
1174 	while (1) {
1175 		rc = acquire_gmap_shadow(vcpu, vsie_page);
1176 		if (!rc)
1177 			rc = map_prefix(vcpu, vsie_page);
1178 		if (!rc) {
1179 			gmap_enable(vsie_page->gmap);
1180 			update_intervention_requests(vsie_page);
1181 			rc = do_vsie_run(vcpu, vsie_page);
1182 			gmap_enable(vcpu->arch.gmap);
1183 		}
1184 		atomic_andnot(PROG_BLOCK_SIE, &scb_s->prog20);
1185 
1186 		if (rc == -EAGAIN)
1187 			rc = 0;
1188 		if (rc || scb_s->icptcode || signal_pending(current) ||
1189 		    kvm_s390_vcpu_has_irq(vcpu, 0) ||
1190 		    kvm_s390_vcpu_sie_inhibited(vcpu))
1191 			break;
1192 	}
1193 
1194 	if (rc == -EFAULT) {
1195 		/*
1196 		 * Addressing exceptions are always presentes as intercepts.
1197 		 * As addressing exceptions are suppressing and our guest 3 PSW
1198 		 * points at the responsible instruction, we have to
1199 		 * forward the PSW and set the ilc. If we can't read guest 3
1200 		 * instruction, we can use an arbitrary ilc. Let's always use
1201 		 * ilen = 4 for now, so we can avoid reading in guest 3 virtual
1202 		 * memory. (we could also fake the shadow so the hardware
1203 		 * handles it).
1204 		 */
1205 		scb_s->icptcode = ICPT_PROGI;
1206 		scb_s->iprcc = PGM_ADDRESSING;
1207 		scb_s->pgmilc = 4;
1208 		scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, 4);
1209 		rc = 1;
1210 	}
1211 	return rc;
1212 }
1213 
1214 /*
1215  * Get or create a vsie page for a scb address.
1216  *
1217  * Returns: - address of a vsie page (cached or new one)
1218  *          - NULL if the same scb address is already used by another VCPU
1219  *          - ERR_PTR(-ENOMEM) if out of memory
1220  */
get_vsie_page(struct kvm * kvm,unsigned long addr)1221 static struct vsie_page *get_vsie_page(struct kvm *kvm, unsigned long addr)
1222 {
1223 	struct vsie_page *vsie_page;
1224 	struct page *page;
1225 	int nr_vcpus;
1226 
1227 	rcu_read_lock();
1228 	page = radix_tree_lookup(&kvm->arch.vsie.addr_to_page, addr >> 9);
1229 	rcu_read_unlock();
1230 	if (page) {
1231 		if (page_ref_inc_return(page) == 2)
1232 			return page_to_virt(page);
1233 		page_ref_dec(page);
1234 	}
1235 
1236 	/*
1237 	 * We want at least #online_vcpus shadows, so every VCPU can execute
1238 	 * the VSIE in parallel.
1239 	 */
1240 	nr_vcpus = atomic_read(&kvm->online_vcpus);
1241 
1242 	mutex_lock(&kvm->arch.vsie.mutex);
1243 	if (kvm->arch.vsie.page_count < nr_vcpus) {
1244 		page = alloc_page(GFP_KERNEL | __GFP_ZERO | GFP_DMA);
1245 		if (!page) {
1246 			mutex_unlock(&kvm->arch.vsie.mutex);
1247 			return ERR_PTR(-ENOMEM);
1248 		}
1249 		page_ref_inc(page);
1250 		kvm->arch.vsie.pages[kvm->arch.vsie.page_count] = page;
1251 		kvm->arch.vsie.page_count++;
1252 	} else {
1253 		/* reuse an existing entry that belongs to nobody */
1254 		while (true) {
1255 			page = kvm->arch.vsie.pages[kvm->arch.vsie.next];
1256 			if (page_ref_inc_return(page) == 2)
1257 				break;
1258 			page_ref_dec(page);
1259 			kvm->arch.vsie.next++;
1260 			kvm->arch.vsie.next %= nr_vcpus;
1261 		}
1262 		radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
1263 	}
1264 	page->index = addr;
1265 	/* double use of the same address */
1266 	if (radix_tree_insert(&kvm->arch.vsie.addr_to_page, addr >> 9, page)) {
1267 		page_ref_dec(page);
1268 		mutex_unlock(&kvm->arch.vsie.mutex);
1269 		return NULL;
1270 	}
1271 	mutex_unlock(&kvm->arch.vsie.mutex);
1272 
1273 	vsie_page = page_to_virt(page);
1274 	memset(&vsie_page->scb_s, 0, sizeof(struct kvm_s390_sie_block));
1275 	release_gmap_shadow(vsie_page);
1276 	vsie_page->fault_addr = 0;
1277 	vsie_page->scb_s.ihcpu = 0xffffU;
1278 	return vsie_page;
1279 }
1280 
1281 /* put a vsie page acquired via get_vsie_page */
put_vsie_page(struct kvm * kvm,struct vsie_page * vsie_page)1282 static void put_vsie_page(struct kvm *kvm, struct vsie_page *vsie_page)
1283 {
1284 	struct page *page = pfn_to_page(__pa(vsie_page) >> PAGE_SHIFT);
1285 
1286 	page_ref_dec(page);
1287 }
1288 
kvm_s390_handle_vsie(struct kvm_vcpu * vcpu)1289 int kvm_s390_handle_vsie(struct kvm_vcpu *vcpu)
1290 {
1291 	struct vsie_page *vsie_page;
1292 	unsigned long scb_addr;
1293 	int rc;
1294 
1295 	vcpu->stat.instruction_sie++;
1296 	if (!test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIEF2))
1297 		return -EOPNOTSUPP;
1298 	if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
1299 		return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
1300 
1301 	BUILD_BUG_ON(sizeof(struct vsie_page) != PAGE_SIZE);
1302 	scb_addr = kvm_s390_get_base_disp_s(vcpu, NULL);
1303 
1304 	/* 512 byte alignment */
1305 	if (unlikely(scb_addr & 0x1ffUL))
1306 		return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
1307 
1308 	if (signal_pending(current) || kvm_s390_vcpu_has_irq(vcpu, 0) ||
1309 	    kvm_s390_vcpu_sie_inhibited(vcpu))
1310 		return 0;
1311 
1312 	vsie_page = get_vsie_page(vcpu->kvm, scb_addr);
1313 	if (IS_ERR(vsie_page))
1314 		return PTR_ERR(vsie_page);
1315 	else if (!vsie_page)
1316 		/* double use of sie control block - simply do nothing */
1317 		return 0;
1318 
1319 	rc = pin_scb(vcpu, vsie_page, scb_addr);
1320 	if (rc)
1321 		goto out_put;
1322 	rc = shadow_scb(vcpu, vsie_page);
1323 	if (rc)
1324 		goto out_unpin_scb;
1325 	rc = pin_blocks(vcpu, vsie_page);
1326 	if (rc)
1327 		goto out_unshadow;
1328 	register_shadow_scb(vcpu, vsie_page);
1329 	rc = vsie_run(vcpu, vsie_page);
1330 	unregister_shadow_scb(vcpu);
1331 	unpin_blocks(vcpu, vsie_page);
1332 out_unshadow:
1333 	unshadow_scb(vcpu, vsie_page);
1334 out_unpin_scb:
1335 	unpin_scb(vcpu, vsie_page, scb_addr);
1336 out_put:
1337 	put_vsie_page(vcpu->kvm, vsie_page);
1338 
1339 	return rc < 0 ? rc : 0;
1340 }
1341 
1342 /* Init the vsie data structures. To be called when a vm is initialized. */
kvm_s390_vsie_init(struct kvm * kvm)1343 void kvm_s390_vsie_init(struct kvm *kvm)
1344 {
1345 	mutex_init(&kvm->arch.vsie.mutex);
1346 	INIT_RADIX_TREE(&kvm->arch.vsie.addr_to_page, GFP_KERNEL);
1347 }
1348 
1349 /* Destroy the vsie data structures. To be called when a vm is destroyed. */
kvm_s390_vsie_destroy(struct kvm * kvm)1350 void kvm_s390_vsie_destroy(struct kvm *kvm)
1351 {
1352 	struct vsie_page *vsie_page;
1353 	struct page *page;
1354 	int i;
1355 
1356 	mutex_lock(&kvm->arch.vsie.mutex);
1357 	for (i = 0; i < kvm->arch.vsie.page_count; i++) {
1358 		page = kvm->arch.vsie.pages[i];
1359 		kvm->arch.vsie.pages[i] = NULL;
1360 		vsie_page = page_to_virt(page);
1361 		release_gmap_shadow(vsie_page);
1362 		/* free the radix tree entry */
1363 		radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
1364 		__free_page(page);
1365 	}
1366 	kvm->arch.vsie.page_count = 0;
1367 	mutex_unlock(&kvm->arch.vsie.mutex);
1368 }
1369 
kvm_s390_vsie_kick(struct kvm_vcpu * vcpu)1370 void kvm_s390_vsie_kick(struct kvm_vcpu *vcpu)
1371 {
1372 	struct kvm_s390_sie_block *scb = READ_ONCE(vcpu->arch.vsie_block);
1373 
1374 	/*
1375 	 * Even if the VCPU lets go of the shadow sie block reference, it is
1376 	 * still valid in the cache. So we can safely kick it.
1377 	 */
1378 	if (scb) {
1379 		atomic_or(PROG_BLOCK_SIE, &scb->prog20);
1380 		if (scb->prog0c & PROG_IN_SIE)
1381 			atomic_or(CPUSTAT_STOP_INT, &scb->cpuflags);
1382 	}
1383 }
1384