• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/hugetlb.h>
5 #include <asm/pgalloc.h>
6 #include <asm/pgtable.h>
7 #include <asm/tlb.h>
8 #include <asm/fixmap.h>
9 #include <asm/mtrr.h>
10 
11 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
12 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
13 EXPORT_SYMBOL(physical_mask);
14 #endif
15 
16 #ifdef CONFIG_HIGHPTE
17 #define PGTABLE_HIGHMEM __GFP_HIGHMEM
18 #else
19 #define PGTABLE_HIGHMEM 0
20 #endif
21 
22 gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;
23 
pte_alloc_one(struct mm_struct * mm)24 pgtable_t pte_alloc_one(struct mm_struct *mm)
25 {
26 	return __pte_alloc_one(mm, __userpte_alloc_gfp);
27 }
28 
setup_userpte(char * arg)29 static int __init setup_userpte(char *arg)
30 {
31 	if (!arg)
32 		return -EINVAL;
33 
34 	/*
35 	 * "userpte=nohigh" disables allocation of user pagetables in
36 	 * high memory.
37 	 */
38 	if (strcmp(arg, "nohigh") == 0)
39 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
40 	else
41 		return -EINVAL;
42 	return 0;
43 }
44 early_param("userpte", setup_userpte);
45 
___pte_free_tlb(struct mmu_gather * tlb,struct page * pte)46 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
47 {
48 	pgtable_pte_page_dtor(pte);
49 	paravirt_release_pte(page_to_pfn(pte));
50 	paravirt_tlb_remove_table(tlb, pte);
51 }
52 
53 #if CONFIG_PGTABLE_LEVELS > 2
___pmd_free_tlb(struct mmu_gather * tlb,pmd_t * pmd)54 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
55 {
56 	struct page *page = virt_to_page(pmd);
57 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
58 	/*
59 	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
60 	 * entries need a full cr3 reload to flush.
61 	 */
62 #ifdef CONFIG_X86_PAE
63 	tlb->need_flush_all = 1;
64 #endif
65 	pgtable_pmd_page_dtor(page);
66 	paravirt_tlb_remove_table(tlb, page);
67 }
68 
69 #if CONFIG_PGTABLE_LEVELS > 3
___pud_free_tlb(struct mmu_gather * tlb,pud_t * pud)70 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
71 {
72 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
73 	paravirt_tlb_remove_table(tlb, virt_to_page(pud));
74 }
75 
76 #if CONFIG_PGTABLE_LEVELS > 4
___p4d_free_tlb(struct mmu_gather * tlb,p4d_t * p4d)77 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
78 {
79 	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
80 	paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
81 }
82 #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
83 #endif	/* CONFIG_PGTABLE_LEVELS > 3 */
84 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
85 
pgd_list_add(pgd_t * pgd)86 static inline void pgd_list_add(pgd_t *pgd)
87 {
88 	struct page *page = virt_to_page(pgd);
89 
90 	list_add(&page->lru, &pgd_list);
91 }
92 
pgd_list_del(pgd_t * pgd)93 static inline void pgd_list_del(pgd_t *pgd)
94 {
95 	struct page *page = virt_to_page(pgd);
96 
97 	list_del(&page->lru);
98 }
99 
100 #define UNSHARED_PTRS_PER_PGD				\
101 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
102 #define MAX_UNSHARED_PTRS_PER_PGD			\
103 	max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
104 
105 
pgd_set_mm(pgd_t * pgd,struct mm_struct * mm)106 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
107 {
108 	virt_to_page(pgd)->pt_mm = mm;
109 }
110 
pgd_page_get_mm(struct page * page)111 struct mm_struct *pgd_page_get_mm(struct page *page)
112 {
113 	return page->pt_mm;
114 }
115 
pgd_ctor(struct mm_struct * mm,pgd_t * pgd)116 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
117 {
118 	/* If the pgd points to a shared pagetable level (either the
119 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
120 	   references from swapper_pg_dir. */
121 	if (CONFIG_PGTABLE_LEVELS == 2 ||
122 	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
123 	    CONFIG_PGTABLE_LEVELS >= 4) {
124 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
125 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
126 				KERNEL_PGD_PTRS);
127 	}
128 
129 	/* list required to sync kernel mapping updates */
130 	if (!SHARED_KERNEL_PMD) {
131 		pgd_set_mm(pgd, mm);
132 		pgd_list_add(pgd);
133 	}
134 }
135 
pgd_dtor(pgd_t * pgd)136 static void pgd_dtor(pgd_t *pgd)
137 {
138 	if (SHARED_KERNEL_PMD)
139 		return;
140 
141 	spin_lock(&pgd_lock);
142 	pgd_list_del(pgd);
143 	spin_unlock(&pgd_lock);
144 }
145 
146 /*
147  * List of all pgd's needed for non-PAE so it can invalidate entries
148  * in both cached and uncached pgd's; not needed for PAE since the
149  * kernel pmd is shared. If PAE were not to share the pmd a similar
150  * tactic would be needed. This is essentially codepath-based locking
151  * against pageattr.c; it is the unique case in which a valid change
152  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
153  * vmalloc faults work because attached pagetables are never freed.
154  * -- nyc
155  */
156 
157 #ifdef CONFIG_X86_PAE
158 /*
159  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
160  * updating the top-level pagetable entries to guarantee the
161  * processor notices the update.  Since this is expensive, and
162  * all 4 top-level entries are used almost immediately in a
163  * new process's life, we just pre-populate them here.
164  *
165  * Also, if we're in a paravirt environment where the kernel pmd is
166  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
167  * and initialize the kernel pmds here.
168  */
169 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
170 #define MAX_PREALLOCATED_PMDS	MAX_UNSHARED_PTRS_PER_PGD
171 
172 /*
173  * We allocate separate PMDs for the kernel part of the user page-table
174  * when PTI is enabled. We need them to map the per-process LDT into the
175  * user-space page-table.
176  */
177 #define PREALLOCATED_USER_PMDS	 (boot_cpu_has(X86_FEATURE_PTI) ? \
178 					KERNEL_PGD_PTRS : 0)
179 #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
180 
pud_populate(struct mm_struct * mm,pud_t * pudp,pmd_t * pmd)181 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
182 {
183 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
184 
185 	/* Note: almost everything apart from _PAGE_PRESENT is
186 	   reserved at the pmd (PDPT) level. */
187 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
188 
189 	/*
190 	 * According to Intel App note "TLBs, Paging-Structure Caches,
191 	 * and Their Invalidation", April 2007, document 317080-001,
192 	 * section 8.1: in PAE mode we explicitly have to flush the
193 	 * TLB via cr3 if the top-level pgd is changed...
194 	 */
195 	flush_tlb_mm(mm);
196 }
197 #else  /* !CONFIG_X86_PAE */
198 
199 /* No need to prepopulate any pagetable entries in non-PAE modes. */
200 #define PREALLOCATED_PMDS	0
201 #define MAX_PREALLOCATED_PMDS	0
202 #define PREALLOCATED_USER_PMDS	 0
203 #define MAX_PREALLOCATED_USER_PMDS 0
204 #endif	/* CONFIG_X86_PAE */
205 
free_pmds(struct mm_struct * mm,pmd_t * pmds[],int count)206 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
207 {
208 	int i;
209 
210 	for (i = 0; i < count; i++)
211 		if (pmds[i]) {
212 			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
213 			free_page((unsigned long)pmds[i]);
214 			mm_dec_nr_pmds(mm);
215 		}
216 }
217 
preallocate_pmds(struct mm_struct * mm,pmd_t * pmds[],int count)218 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
219 {
220 	int i;
221 	bool failed = false;
222 	gfp_t gfp = GFP_PGTABLE_USER;
223 
224 	if (mm == &init_mm)
225 		gfp &= ~__GFP_ACCOUNT;
226 
227 	for (i = 0; i < count; i++) {
228 		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
229 		if (!pmd)
230 			failed = true;
231 		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
232 			free_page((unsigned long)pmd);
233 			pmd = NULL;
234 			failed = true;
235 		}
236 		if (pmd)
237 			mm_inc_nr_pmds(mm);
238 		pmds[i] = pmd;
239 	}
240 
241 	if (failed) {
242 		free_pmds(mm, pmds, count);
243 		return -ENOMEM;
244 	}
245 
246 	return 0;
247 }
248 
249 /*
250  * Mop up any pmd pages which may still be attached to the pgd.
251  * Normally they will be freed by munmap/exit_mmap, but any pmd we
252  * preallocate which never got a corresponding vma will need to be
253  * freed manually.
254  */
mop_up_one_pmd(struct mm_struct * mm,pgd_t * pgdp)255 static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
256 {
257 	pgd_t pgd = *pgdp;
258 
259 	if (pgd_val(pgd) != 0) {
260 		pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
261 
262 		pgd_clear(pgdp);
263 
264 		paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
265 		pmd_free(mm, pmd);
266 		mm_dec_nr_pmds(mm);
267 	}
268 }
269 
pgd_mop_up_pmds(struct mm_struct * mm,pgd_t * pgdp)270 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
271 {
272 	int i;
273 
274 	for (i = 0; i < PREALLOCATED_PMDS; i++)
275 		mop_up_one_pmd(mm, &pgdp[i]);
276 
277 #ifdef CONFIG_PAGE_TABLE_ISOLATION
278 
279 	if (!boot_cpu_has(X86_FEATURE_PTI))
280 		return;
281 
282 	pgdp = kernel_to_user_pgdp(pgdp);
283 
284 	for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
285 		mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
286 #endif
287 }
288 
pgd_prepopulate_pmd(struct mm_struct * mm,pgd_t * pgd,pmd_t * pmds[])289 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
290 {
291 	p4d_t *p4d;
292 	pud_t *pud;
293 	int i;
294 
295 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
296 		return;
297 
298 	p4d = p4d_offset(pgd, 0);
299 	pud = pud_offset(p4d, 0);
300 
301 	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
302 		pmd_t *pmd = pmds[i];
303 
304 		if (i >= KERNEL_PGD_BOUNDARY)
305 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
306 			       sizeof(pmd_t) * PTRS_PER_PMD);
307 
308 		pud_populate(mm, pud, pmd);
309 	}
310 }
311 
312 #ifdef CONFIG_PAGE_TABLE_ISOLATION
pgd_prepopulate_user_pmd(struct mm_struct * mm,pgd_t * k_pgd,pmd_t * pmds[])313 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
314 				     pgd_t *k_pgd, pmd_t *pmds[])
315 {
316 	pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
317 	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
318 	p4d_t *u_p4d;
319 	pud_t *u_pud;
320 	int i;
321 
322 	u_p4d = p4d_offset(u_pgd, 0);
323 	u_pud = pud_offset(u_p4d, 0);
324 
325 	s_pgd += KERNEL_PGD_BOUNDARY;
326 	u_pud += KERNEL_PGD_BOUNDARY;
327 
328 	for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
329 		pmd_t *pmd = pmds[i];
330 
331 		memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
332 		       sizeof(pmd_t) * PTRS_PER_PMD);
333 
334 		pud_populate(mm, u_pud, pmd);
335 	}
336 
337 }
338 #else
pgd_prepopulate_user_pmd(struct mm_struct * mm,pgd_t * k_pgd,pmd_t * pmds[])339 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
340 				     pgd_t *k_pgd, pmd_t *pmds[])
341 {
342 }
343 #endif
344 /*
345  * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
346  * assumes that pgd should be in one page.
347  *
348  * But kernel with PAE paging that is not running as a Xen domain
349  * only needs to allocate 32 bytes for pgd instead of one page.
350  */
351 #ifdef CONFIG_X86_PAE
352 
353 #include <linux/slab.h>
354 
355 #define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
356 #define PGD_ALIGN	32
357 
358 static struct kmem_cache *pgd_cache;
359 
pgtable_cache_init(void)360 void __init pgtable_cache_init(void)
361 {
362 	/*
363 	 * When PAE kernel is running as a Xen domain, it does not use
364 	 * shared kernel pmd. And this requires a whole page for pgd.
365 	 */
366 	if (!SHARED_KERNEL_PMD)
367 		return;
368 
369 	/*
370 	 * when PAE kernel is not running as a Xen domain, it uses
371 	 * shared kernel pmd. Shared kernel pmd does not require a whole
372 	 * page for pgd. We are able to just allocate a 32-byte for pgd.
373 	 * During boot time, we create a 32-byte slab for pgd table allocation.
374 	 */
375 	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
376 				      SLAB_PANIC, NULL);
377 }
378 
_pgd_alloc(void)379 static inline pgd_t *_pgd_alloc(void)
380 {
381 	/*
382 	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
383 	 * We allocate one page for pgd.
384 	 */
385 	if (!SHARED_KERNEL_PMD)
386 		return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
387 						 PGD_ALLOCATION_ORDER);
388 
389 	/*
390 	 * Now PAE kernel is not running as a Xen domain. We can allocate
391 	 * a 32-byte slab for pgd to save memory space.
392 	 */
393 	return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
394 }
395 
_pgd_free(pgd_t * pgd)396 static inline void _pgd_free(pgd_t *pgd)
397 {
398 	if (!SHARED_KERNEL_PMD)
399 		free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
400 	else
401 		kmem_cache_free(pgd_cache, pgd);
402 }
403 #else
404 
_pgd_alloc(void)405 static inline pgd_t *_pgd_alloc(void)
406 {
407 	return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
408 					 PGD_ALLOCATION_ORDER);
409 }
410 
_pgd_free(pgd_t * pgd)411 static inline void _pgd_free(pgd_t *pgd)
412 {
413 	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
414 }
415 #endif /* CONFIG_X86_PAE */
416 
pgd_alloc(struct mm_struct * mm)417 pgd_t *pgd_alloc(struct mm_struct *mm)
418 {
419 	pgd_t *pgd;
420 	pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
421 	pmd_t *pmds[MAX_PREALLOCATED_PMDS];
422 
423 	pgd = _pgd_alloc();
424 
425 	if (pgd == NULL)
426 		goto out;
427 
428 	mm->pgd = pgd;
429 
430 	if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
431 		goto out_free_pgd;
432 
433 	if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
434 		goto out_free_pmds;
435 
436 	if (paravirt_pgd_alloc(mm) != 0)
437 		goto out_free_user_pmds;
438 
439 	/*
440 	 * Make sure that pre-populating the pmds is atomic with
441 	 * respect to anything walking the pgd_list, so that they
442 	 * never see a partially populated pgd.
443 	 */
444 	spin_lock(&pgd_lock);
445 
446 	pgd_ctor(mm, pgd);
447 	pgd_prepopulate_pmd(mm, pgd, pmds);
448 	pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
449 
450 	spin_unlock(&pgd_lock);
451 
452 	return pgd;
453 
454 out_free_user_pmds:
455 	free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
456 out_free_pmds:
457 	free_pmds(mm, pmds, PREALLOCATED_PMDS);
458 out_free_pgd:
459 	_pgd_free(pgd);
460 out:
461 	return NULL;
462 }
463 
pgd_free(struct mm_struct * mm,pgd_t * pgd)464 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
465 {
466 	pgd_mop_up_pmds(mm, pgd);
467 	pgd_dtor(pgd);
468 	paravirt_pgd_free(mm, pgd);
469 	_pgd_free(pgd);
470 }
471 
472 /*
473  * Used to set accessed or dirty bits in the page table entries
474  * on other architectures. On x86, the accessed and dirty bits
475  * are tracked by hardware. However, do_wp_page calls this function
476  * to also make the pte writeable at the same time the dirty bit is
477  * set. In that case we do actually need to write the PTE.
478  */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)479 int ptep_set_access_flags(struct vm_area_struct *vma,
480 			  unsigned long address, pte_t *ptep,
481 			  pte_t entry, int dirty)
482 {
483 	int changed = !pte_same(*ptep, entry);
484 
485 	if (changed && dirty)
486 		set_pte(ptep, entry);
487 
488 	return changed;
489 }
490 
491 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)492 int pmdp_set_access_flags(struct vm_area_struct *vma,
493 			  unsigned long address, pmd_t *pmdp,
494 			  pmd_t entry, int dirty)
495 {
496 	int changed = !pmd_same(*pmdp, entry);
497 
498 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
499 
500 	if (changed && dirty) {
501 		set_pmd(pmdp, entry);
502 		/*
503 		 * We had a write-protection fault here and changed the pmd
504 		 * to to more permissive. No need to flush the TLB for that,
505 		 * #PF is architecturally guaranteed to do that and in the
506 		 * worst-case we'll generate a spurious fault.
507 		 */
508 	}
509 
510 	return changed;
511 }
512 
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)513 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
514 			  pud_t *pudp, pud_t entry, int dirty)
515 {
516 	int changed = !pud_same(*pudp, entry);
517 
518 	VM_BUG_ON(address & ~HPAGE_PUD_MASK);
519 
520 	if (changed && dirty) {
521 		set_pud(pudp, entry);
522 		/*
523 		 * We had a write-protection fault here and changed the pud
524 		 * to to more permissive. No need to flush the TLB for that,
525 		 * #PF is architecturally guaranteed to do that and in the
526 		 * worst-case we'll generate a spurious fault.
527 		 */
528 	}
529 
530 	return changed;
531 }
532 #endif
533 
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)534 int ptep_test_and_clear_young(struct vm_area_struct *vma,
535 			      unsigned long addr, pte_t *ptep)
536 {
537 	int ret = 0;
538 
539 	if (pte_young(*ptep))
540 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
541 					 (unsigned long *) &ptep->pte);
542 
543 	return ret;
544 }
545 
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)547 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
548 			      unsigned long addr, pmd_t *pmdp)
549 {
550 	int ret = 0;
551 
552 	if (pmd_young(*pmdp))
553 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
554 					 (unsigned long *)pmdp);
555 
556 	return ret;
557 }
pudp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp)558 int pudp_test_and_clear_young(struct vm_area_struct *vma,
559 			      unsigned long addr, pud_t *pudp)
560 {
561 	int ret = 0;
562 
563 	if (pud_young(*pudp))
564 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
565 					 (unsigned long *)pudp);
566 
567 	return ret;
568 }
569 #endif
570 
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)571 int ptep_clear_flush_young(struct vm_area_struct *vma,
572 			   unsigned long address, pte_t *ptep)
573 {
574 	/*
575 	 * On x86 CPUs, clearing the accessed bit without a TLB flush
576 	 * doesn't cause data corruption. [ It could cause incorrect
577 	 * page aging and the (mistaken) reclaim of hot pages, but the
578 	 * chance of that should be relatively low. ]
579 	 *
580 	 * So as a performance optimization don't flush the TLB when
581 	 * clearing the accessed bit, it will eventually be flushed by
582 	 * a context switch or a VM operation anyway. [ In the rare
583 	 * event of it not getting flushed for a long time the delay
584 	 * shouldn't really matter because there's no real memory
585 	 * pressure for swapout to react to. ]
586 	 */
587 	return ptep_test_and_clear_young(vma, address, ptep);
588 }
589 
590 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)591 int pmdp_clear_flush_young(struct vm_area_struct *vma,
592 			   unsigned long address, pmd_t *pmdp)
593 {
594 	int young;
595 
596 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
597 
598 	young = pmdp_test_and_clear_young(vma, address, pmdp);
599 	if (young)
600 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
601 
602 	return young;
603 }
604 #endif
605 
606 /**
607  * reserve_top_address - reserves a hole in the top of kernel address space
608  * @reserve - size of hole to reserve
609  *
610  * Can be used to relocate the fixmap area and poke a hole in the top
611  * of kernel address space to make room for a hypervisor.
612  */
reserve_top_address(unsigned long reserve)613 void __init reserve_top_address(unsigned long reserve)
614 {
615 #ifdef CONFIG_X86_32
616 	BUG_ON(fixmaps_set > 0);
617 	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
618 	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
619 	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
620 #endif
621 }
622 
623 int fixmaps_set;
624 
__native_set_fixmap(enum fixed_addresses idx,pte_t pte)625 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
626 {
627 	unsigned long address = __fix_to_virt(idx);
628 
629 #ifdef CONFIG_X86_64
630        /*
631 	* Ensure that the static initial page tables are covering the
632 	* fixmap completely.
633 	*/
634 	BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
635 		     (FIXMAP_PMD_NUM * PTRS_PER_PTE));
636 #endif
637 
638 	if (idx >= __end_of_fixed_addresses) {
639 		BUG();
640 		return;
641 	}
642 	set_pte_vaddr(address, pte);
643 	fixmaps_set++;
644 }
645 
native_set_fixmap(unsigned idx,phys_addr_t phys,pgprot_t flags)646 void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
647 		       phys_addr_t phys, pgprot_t flags)
648 {
649 	/* Sanitize 'prot' against any unsupported bits: */
650 	pgprot_val(flags) &= __default_kernel_pte_mask;
651 
652 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
653 }
654 
655 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
656 #ifdef CONFIG_X86_5LEVEL
657 /**
658  * p4d_set_huge - setup kernel P4D mapping
659  *
660  * No 512GB pages yet -- always return 0
661  */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)662 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
663 {
664 	return 0;
665 }
666 
667 /**
668  * p4d_clear_huge - clear kernel P4D mapping when it is set
669  *
670  * No 512GB pages yet -- always return 0
671  */
p4d_clear_huge(p4d_t * p4d)672 int p4d_clear_huge(p4d_t *p4d)
673 {
674 	return 0;
675 }
676 #endif
677 
678 /**
679  * pud_set_huge - setup kernel PUD mapping
680  *
681  * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
682  * function sets up a huge page only if any of the following conditions are met:
683  *
684  * - MTRRs are disabled, or
685  *
686  * - MTRRs are enabled and the range is completely covered by a single MTRR, or
687  *
688  * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
689  *   has no effect on the requested PAT memory type.
690  *
691  * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
692  * page mapping attempt fails.
693  *
694  * Returns 1 on success and 0 on failure.
695  */
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)696 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
697 {
698 	u8 mtrr, uniform;
699 
700 	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
701 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
702 	    (mtrr != MTRR_TYPE_WRBACK))
703 		return 0;
704 
705 	/* Bail out if we are we on a populated non-leaf entry: */
706 	if (pud_present(*pud) && !pud_huge(*pud))
707 		return 0;
708 
709 	prot = pgprot_4k_2_large(prot);
710 
711 	set_pte((pte_t *)pud, pfn_pte(
712 		(u64)addr >> PAGE_SHIFT,
713 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
714 
715 	return 1;
716 }
717 
718 /**
719  * pmd_set_huge - setup kernel PMD mapping
720  *
721  * See text over pud_set_huge() above.
722  *
723  * Returns 1 on success and 0 on failure.
724  */
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)725 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
726 {
727 	u8 mtrr, uniform;
728 
729 	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
730 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
731 	    (mtrr != MTRR_TYPE_WRBACK)) {
732 		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
733 			     __func__, addr, addr + PMD_SIZE);
734 		return 0;
735 	}
736 
737 	/* Bail out if we are we on a populated non-leaf entry: */
738 	if (pmd_present(*pmd) && !pmd_huge(*pmd))
739 		return 0;
740 
741 	prot = pgprot_4k_2_large(prot);
742 
743 	set_pte((pte_t *)pmd, pfn_pte(
744 		(u64)addr >> PAGE_SHIFT,
745 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
746 
747 	return 1;
748 }
749 
750 /**
751  * pud_clear_huge - clear kernel PUD mapping when it is set
752  *
753  * Returns 1 on success and 0 on failure (no PUD map is found).
754  */
pud_clear_huge(pud_t * pud)755 int pud_clear_huge(pud_t *pud)
756 {
757 	if (pud_large(*pud)) {
758 		pud_clear(pud);
759 		return 1;
760 	}
761 
762 	return 0;
763 }
764 
765 /**
766  * pmd_clear_huge - clear kernel PMD mapping when it is set
767  *
768  * Returns 1 on success and 0 on failure (no PMD map is found).
769  */
pmd_clear_huge(pmd_t * pmd)770 int pmd_clear_huge(pmd_t *pmd)
771 {
772 	if (pmd_large(*pmd)) {
773 		pmd_clear(pmd);
774 		return 1;
775 	}
776 
777 	return 0;
778 }
779 
780 /*
781  * Until we support 512GB pages, skip them in the vmap area.
782  */
p4d_free_pud_page(p4d_t * p4d,unsigned long addr)783 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
784 {
785 	return 0;
786 }
787 
788 #ifdef CONFIG_X86_64
789 /**
790  * pud_free_pmd_page - Clear pud entry and free pmd page.
791  * @pud: Pointer to a PUD.
792  * @addr: Virtual address associated with pud.
793  *
794  * Context: The pud range has been unmapped and TLB purged.
795  * Return: 1 if clearing the entry succeeded. 0 otherwise.
796  *
797  * NOTE: Callers must allow a single page allocation.
798  */
pud_free_pmd_page(pud_t * pud,unsigned long addr)799 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
800 {
801 	pmd_t *pmd, *pmd_sv;
802 	pte_t *pte;
803 	int i;
804 
805 	pmd = (pmd_t *)pud_page_vaddr(*pud);
806 	pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
807 	if (!pmd_sv)
808 		return 0;
809 
810 	for (i = 0; i < PTRS_PER_PMD; i++) {
811 		pmd_sv[i] = pmd[i];
812 		if (!pmd_none(pmd[i]))
813 			pmd_clear(&pmd[i]);
814 	}
815 
816 	pud_clear(pud);
817 
818 	/* INVLPG to clear all paging-structure caches */
819 	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
820 
821 	for (i = 0; i < PTRS_PER_PMD; i++) {
822 		if (!pmd_none(pmd_sv[i])) {
823 			pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
824 			free_page((unsigned long)pte);
825 		}
826 	}
827 
828 	free_page((unsigned long)pmd_sv);
829 
830 	pgtable_pmd_page_dtor(virt_to_page(pmd));
831 	free_page((unsigned long)pmd);
832 
833 	return 1;
834 }
835 
836 /**
837  * pmd_free_pte_page - Clear pmd entry and free pte page.
838  * @pmd: Pointer to a PMD.
839  * @addr: Virtual address associated with pmd.
840  *
841  * Context: The pmd range has been unmapped and TLB purged.
842  * Return: 1 if clearing the entry succeeded. 0 otherwise.
843  */
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)844 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
845 {
846 	pte_t *pte;
847 
848 	pte = (pte_t *)pmd_page_vaddr(*pmd);
849 	pmd_clear(pmd);
850 
851 	/* INVLPG to clear all paging-structure caches */
852 	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
853 
854 	free_page((unsigned long)pte);
855 
856 	return 1;
857 }
858 
859 #else /* !CONFIG_X86_64 */
860 
pud_free_pmd_page(pud_t * pud,unsigned long addr)861 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
862 {
863 	return pud_none(*pud);
864 }
865 
866 /*
867  * Disable free page handling on x86-PAE. This assures that ioremap()
868  * does not update sync'd pmd entries. See vmalloc_sync_one().
869  */
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)870 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
871 {
872 	return pmd_none(*pmd);
873 }
874 
875 #endif /* CONFIG_X86_64 */
876 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
877