1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/lockdep.c
4 *
5 * Runtime locking correctness validator
6 *
7 * Started by Ingo Molnar:
8 *
9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11 *
12 * this code maps all the lock dependencies as they occur in a live kernel
13 * and will warn about the following classes of locking bugs:
14 *
15 * - lock inversion scenarios
16 * - circular lock dependencies
17 * - hardirq/softirq safe/unsafe locking bugs
18 *
19 * Bugs are reported even if the current locking scenario does not cause
20 * any deadlock at this point.
21 *
22 * I.e. if anytime in the past two locks were taken in a different order,
23 * even if it happened for another task, even if those were different
24 * locks (but of the same class as this lock), this code will detect it.
25 *
26 * Thanks to Arjan van de Ven for coming up with the initial idea of
27 * mapping lock dependencies runtime.
28 */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57
58 #include <asm/sections.h>
59
60 #include "lockdep_internals.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78
79 /*
80 * lockdep_lock: protects the lockdep graph, the hashes and the
81 * class/list/hash allocators.
82 *
83 * This is one of the rare exceptions where it's justified
84 * to use a raw spinlock - we really dont want the spinlock
85 * code to recurse back into the lockdep code...
86 */
87 static arch_spinlock_t lockdep_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
88 static struct task_struct *lockdep_selftest_task_struct;
89
graph_lock(void)90 static int graph_lock(void)
91 {
92 arch_spin_lock(&lockdep_lock);
93 /*
94 * Make sure that if another CPU detected a bug while
95 * walking the graph we dont change it (while the other
96 * CPU is busy printing out stuff with the graph lock
97 * dropped already)
98 */
99 if (!debug_locks) {
100 arch_spin_unlock(&lockdep_lock);
101 return 0;
102 }
103 /* prevent any recursions within lockdep from causing deadlocks */
104 current->lockdep_recursion++;
105 return 1;
106 }
107
graph_unlock(void)108 static inline int graph_unlock(void)
109 {
110 if (debug_locks && !arch_spin_is_locked(&lockdep_lock)) {
111 /*
112 * The lockdep graph lock isn't locked while we expect it to
113 * be, we're confused now, bye!
114 */
115 return DEBUG_LOCKS_WARN_ON(1);
116 }
117
118 current->lockdep_recursion--;
119 arch_spin_unlock(&lockdep_lock);
120 return 0;
121 }
122
123 /*
124 * Turn lock debugging off and return with 0 if it was off already,
125 * and also release the graph lock:
126 */
debug_locks_off_graph_unlock(void)127 static inline int debug_locks_off_graph_unlock(void)
128 {
129 int ret = debug_locks_off();
130
131 arch_spin_unlock(&lockdep_lock);
132
133 return ret;
134 }
135
136 unsigned long nr_list_entries;
137 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
138 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
139
140 /*
141 * All data structures here are protected by the global debug_lock.
142 *
143 * nr_lock_classes is the number of elements of lock_classes[] that is
144 * in use.
145 */
146 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
147 #define KEYHASH_SIZE (1UL << KEYHASH_BITS)
148 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
149 unsigned long nr_lock_classes;
150 #ifndef CONFIG_DEBUG_LOCKDEP
151 static
152 #endif
153 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
154 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
155
hlock_class(struct held_lock * hlock)156 static inline struct lock_class *hlock_class(struct held_lock *hlock)
157 {
158 unsigned int class_idx = hlock->class_idx;
159
160 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
161 barrier();
162
163 if (!test_bit(class_idx, lock_classes_in_use)) {
164 /*
165 * Someone passed in garbage, we give up.
166 */
167 DEBUG_LOCKS_WARN_ON(1);
168 return NULL;
169 }
170
171 /*
172 * At this point, if the passed hlock->class_idx is still garbage,
173 * we just have to live with it
174 */
175 return lock_classes + class_idx;
176 }
177
178 #ifdef CONFIG_LOCK_STAT
179 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
180
lockstat_clock(void)181 static inline u64 lockstat_clock(void)
182 {
183 return local_clock();
184 }
185
lock_point(unsigned long points[],unsigned long ip)186 static int lock_point(unsigned long points[], unsigned long ip)
187 {
188 int i;
189
190 for (i = 0; i < LOCKSTAT_POINTS; i++) {
191 if (points[i] == 0) {
192 points[i] = ip;
193 break;
194 }
195 if (points[i] == ip)
196 break;
197 }
198
199 return i;
200 }
201
lock_time_inc(struct lock_time * lt,u64 time)202 static void lock_time_inc(struct lock_time *lt, u64 time)
203 {
204 if (time > lt->max)
205 lt->max = time;
206
207 if (time < lt->min || !lt->nr)
208 lt->min = time;
209
210 lt->total += time;
211 lt->nr++;
212 }
213
lock_time_add(struct lock_time * src,struct lock_time * dst)214 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
215 {
216 if (!src->nr)
217 return;
218
219 if (src->max > dst->max)
220 dst->max = src->max;
221
222 if (src->min < dst->min || !dst->nr)
223 dst->min = src->min;
224
225 dst->total += src->total;
226 dst->nr += src->nr;
227 }
228
lock_stats(struct lock_class * class)229 struct lock_class_stats lock_stats(struct lock_class *class)
230 {
231 struct lock_class_stats stats;
232 int cpu, i;
233
234 memset(&stats, 0, sizeof(struct lock_class_stats));
235 for_each_possible_cpu(cpu) {
236 struct lock_class_stats *pcs =
237 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
238
239 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
240 stats.contention_point[i] += pcs->contention_point[i];
241
242 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
243 stats.contending_point[i] += pcs->contending_point[i];
244
245 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
246 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
247
248 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
249 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
250
251 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
252 stats.bounces[i] += pcs->bounces[i];
253 }
254
255 return stats;
256 }
257
clear_lock_stats(struct lock_class * class)258 void clear_lock_stats(struct lock_class *class)
259 {
260 int cpu;
261
262 for_each_possible_cpu(cpu) {
263 struct lock_class_stats *cpu_stats =
264 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
265
266 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
267 }
268 memset(class->contention_point, 0, sizeof(class->contention_point));
269 memset(class->contending_point, 0, sizeof(class->contending_point));
270 }
271
get_lock_stats(struct lock_class * class)272 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
273 {
274 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
275 }
276
lock_release_holdtime(struct held_lock * hlock)277 static void lock_release_holdtime(struct held_lock *hlock)
278 {
279 struct lock_class_stats *stats;
280 u64 holdtime;
281
282 if (!lock_stat)
283 return;
284
285 holdtime = lockstat_clock() - hlock->holdtime_stamp;
286
287 stats = get_lock_stats(hlock_class(hlock));
288 if (hlock->read)
289 lock_time_inc(&stats->read_holdtime, holdtime);
290 else
291 lock_time_inc(&stats->write_holdtime, holdtime);
292 }
293 #else
lock_release_holdtime(struct held_lock * hlock)294 static inline void lock_release_holdtime(struct held_lock *hlock)
295 {
296 }
297 #endif
298
299 /*
300 * We keep a global list of all lock classes. The list is only accessed with
301 * the lockdep spinlock lock held. free_lock_classes is a list with free
302 * elements. These elements are linked together by the lock_entry member in
303 * struct lock_class.
304 */
305 LIST_HEAD(all_lock_classes);
306 static LIST_HEAD(free_lock_classes);
307
308 /**
309 * struct pending_free - information about data structures about to be freed
310 * @zapped: Head of a list with struct lock_class elements.
311 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
312 * are about to be freed.
313 */
314 struct pending_free {
315 struct list_head zapped;
316 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
317 };
318
319 /**
320 * struct delayed_free - data structures used for delayed freeing
321 *
322 * A data structure for delayed freeing of data structures that may be
323 * accessed by RCU readers at the time these were freed.
324 *
325 * @rcu_head: Used to schedule an RCU callback for freeing data structures.
326 * @index: Index of @pf to which freed data structures are added.
327 * @scheduled: Whether or not an RCU callback has been scheduled.
328 * @pf: Array with information about data structures about to be freed.
329 */
330 static struct delayed_free {
331 struct rcu_head rcu_head;
332 int index;
333 int scheduled;
334 struct pending_free pf[2];
335 } delayed_free;
336
337 /*
338 * The lockdep classes are in a hash-table as well, for fast lookup:
339 */
340 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
341 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS)
342 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS)
343 #define classhashentry(key) (classhash_table + __classhashfn((key)))
344
345 static struct hlist_head classhash_table[CLASSHASH_SIZE];
346
347 /*
348 * We put the lock dependency chains into a hash-table as well, to cache
349 * their existence:
350 */
351 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1)
352 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS)
353 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS)
354 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain)))
355
356 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
357
358 /*
359 * The hash key of the lock dependency chains is a hash itself too:
360 * it's a hash of all locks taken up to that lock, including that lock.
361 * It's a 64-bit hash, because it's important for the keys to be
362 * unique.
363 */
iterate_chain_key(u64 key,u32 idx)364 static inline u64 iterate_chain_key(u64 key, u32 idx)
365 {
366 u32 k0 = key, k1 = key >> 32;
367
368 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
369
370 return k0 | (u64)k1 << 32;
371 }
372
lockdep_init_task(struct task_struct * task)373 void lockdep_init_task(struct task_struct *task)
374 {
375 task->lockdep_depth = 0; /* no locks held yet */
376 task->curr_chain_key = INITIAL_CHAIN_KEY;
377 task->lockdep_recursion = 0;
378 }
379
lockdep_off(void)380 void lockdep_off(void)
381 {
382 current->lockdep_recursion++;
383 }
384 EXPORT_SYMBOL(lockdep_off);
385
lockdep_on(void)386 void lockdep_on(void)
387 {
388 current->lockdep_recursion--;
389 }
390 EXPORT_SYMBOL(lockdep_on);
391
lockdep_set_selftest_task(struct task_struct * task)392 void lockdep_set_selftest_task(struct task_struct *task)
393 {
394 lockdep_selftest_task_struct = task;
395 }
396
397 /*
398 * Debugging switches:
399 */
400
401 #define VERBOSE 0
402 #define VERY_VERBOSE 0
403
404 #if VERBOSE
405 # define HARDIRQ_VERBOSE 1
406 # define SOFTIRQ_VERBOSE 1
407 #else
408 # define HARDIRQ_VERBOSE 0
409 # define SOFTIRQ_VERBOSE 0
410 #endif
411
412 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
413 /*
414 * Quick filtering for interesting events:
415 */
class_filter(struct lock_class * class)416 static int class_filter(struct lock_class *class)
417 {
418 #if 0
419 /* Example */
420 if (class->name_version == 1 &&
421 !strcmp(class->name, "lockname"))
422 return 1;
423 if (class->name_version == 1 &&
424 !strcmp(class->name, "&struct->lockfield"))
425 return 1;
426 #endif
427 /* Filter everything else. 1 would be to allow everything else */
428 return 0;
429 }
430 #endif
431
verbose(struct lock_class * class)432 static int verbose(struct lock_class *class)
433 {
434 #if VERBOSE
435 return class_filter(class);
436 #endif
437 return 0;
438 }
439
print_lockdep_off(const char * bug_msg)440 static void print_lockdep_off(const char *bug_msg)
441 {
442 printk(KERN_DEBUG "%s\n", bug_msg);
443 printk(KERN_DEBUG "turning off the locking correctness validator.\n");
444 #ifdef CONFIG_LOCK_STAT
445 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
446 #endif
447 }
448
449 unsigned long nr_stack_trace_entries;
450
451 #ifdef CONFIG_PROVE_LOCKING
452 /**
453 * struct lock_trace - single stack backtrace
454 * @hash_entry: Entry in a stack_trace_hash[] list.
455 * @hash: jhash() of @entries.
456 * @nr_entries: Number of entries in @entries.
457 * @entries: Actual stack backtrace.
458 */
459 struct lock_trace {
460 struct hlist_node hash_entry;
461 u32 hash;
462 u32 nr_entries;
463 unsigned long entries[0] __aligned(sizeof(unsigned long));
464 };
465 #define LOCK_TRACE_SIZE_IN_LONGS \
466 (sizeof(struct lock_trace) / sizeof(unsigned long))
467 /*
468 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
469 */
470 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
471 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
472
traces_identical(struct lock_trace * t1,struct lock_trace * t2)473 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
474 {
475 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
476 memcmp(t1->entries, t2->entries,
477 t1->nr_entries * sizeof(t1->entries[0])) == 0;
478 }
479
save_trace(void)480 static struct lock_trace *save_trace(void)
481 {
482 struct lock_trace *trace, *t2;
483 struct hlist_head *hash_head;
484 u32 hash;
485 int max_entries;
486
487 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
488 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
489
490 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
491 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
492 LOCK_TRACE_SIZE_IN_LONGS;
493
494 if (max_entries <= 0) {
495 if (!debug_locks_off_graph_unlock())
496 return NULL;
497
498 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
499 dump_stack();
500
501 return NULL;
502 }
503 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
504
505 hash = jhash(trace->entries, trace->nr_entries *
506 sizeof(trace->entries[0]), 0);
507 trace->hash = hash;
508 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
509 hlist_for_each_entry(t2, hash_head, hash_entry) {
510 if (traces_identical(trace, t2))
511 return t2;
512 }
513 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
514 hlist_add_head(&trace->hash_entry, hash_head);
515
516 return trace;
517 }
518
519 /* Return the number of stack traces in the stack_trace[] array. */
lockdep_stack_trace_count(void)520 u64 lockdep_stack_trace_count(void)
521 {
522 struct lock_trace *trace;
523 u64 c = 0;
524 int i;
525
526 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
527 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
528 c++;
529 }
530 }
531
532 return c;
533 }
534
535 /* Return the number of stack hash chains that have at least one stack trace. */
lockdep_stack_hash_count(void)536 u64 lockdep_stack_hash_count(void)
537 {
538 u64 c = 0;
539 int i;
540
541 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
542 if (!hlist_empty(&stack_trace_hash[i]))
543 c++;
544
545 return c;
546 }
547 #endif
548
549 unsigned int nr_hardirq_chains;
550 unsigned int nr_softirq_chains;
551 unsigned int nr_process_chains;
552 unsigned int max_lockdep_depth;
553
554 #ifdef CONFIG_DEBUG_LOCKDEP
555 /*
556 * Various lockdep statistics:
557 */
558 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
559 #endif
560
561 #ifdef CONFIG_PROVE_LOCKING
562 /*
563 * Locking printouts:
564 */
565
566 #define __USAGE(__STATE) \
567 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \
568 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \
569 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
570 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
571
572 static const char *usage_str[] =
573 {
574 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
575 #include "lockdep_states.h"
576 #undef LOCKDEP_STATE
577 [LOCK_USED] = "INITIAL USE",
578 };
579 #endif
580
__get_key_name(const struct lockdep_subclass_key * key,char * str)581 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
582 {
583 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
584 }
585
lock_flag(enum lock_usage_bit bit)586 static inline unsigned long lock_flag(enum lock_usage_bit bit)
587 {
588 return 1UL << bit;
589 }
590
get_usage_char(struct lock_class * class,enum lock_usage_bit bit)591 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
592 {
593 /*
594 * The usage character defaults to '.' (i.e., irqs disabled and not in
595 * irq context), which is the safest usage category.
596 */
597 char c = '.';
598
599 /*
600 * The order of the following usage checks matters, which will
601 * result in the outcome character as follows:
602 *
603 * - '+': irq is enabled and not in irq context
604 * - '-': in irq context and irq is disabled
605 * - '?': in irq context and irq is enabled
606 */
607 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
608 c = '+';
609 if (class->usage_mask & lock_flag(bit))
610 c = '?';
611 } else if (class->usage_mask & lock_flag(bit))
612 c = '-';
613
614 return c;
615 }
616
get_usage_chars(struct lock_class * class,char usage[LOCK_USAGE_CHARS])617 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
618 {
619 int i = 0;
620
621 #define LOCKDEP_STATE(__STATE) \
622 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \
623 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
624 #include "lockdep_states.h"
625 #undef LOCKDEP_STATE
626
627 usage[i] = '\0';
628 }
629
__print_lock_name(struct lock_class * class)630 static void __print_lock_name(struct lock_class *class)
631 {
632 char str[KSYM_NAME_LEN];
633 const char *name;
634
635 name = class->name;
636 if (!name) {
637 name = __get_key_name(class->key, str);
638 printk(KERN_CONT "%s", name);
639 } else {
640 printk(KERN_CONT "%s", name);
641 if (class->name_version > 1)
642 printk(KERN_CONT "#%d", class->name_version);
643 if (class->subclass)
644 printk(KERN_CONT "/%d", class->subclass);
645 }
646 }
647
print_lock_name(struct lock_class * class)648 static void print_lock_name(struct lock_class *class)
649 {
650 char usage[LOCK_USAGE_CHARS];
651
652 get_usage_chars(class, usage);
653
654 printk(KERN_CONT " (");
655 __print_lock_name(class);
656 printk(KERN_CONT "){%s}", usage);
657 }
658
print_lockdep_cache(struct lockdep_map * lock)659 static void print_lockdep_cache(struct lockdep_map *lock)
660 {
661 const char *name;
662 char str[KSYM_NAME_LEN];
663
664 name = lock->name;
665 if (!name)
666 name = __get_key_name(lock->key->subkeys, str);
667
668 printk(KERN_CONT "%s", name);
669 }
670
print_lock(struct held_lock * hlock)671 static void print_lock(struct held_lock *hlock)
672 {
673 /*
674 * We can be called locklessly through debug_show_all_locks() so be
675 * extra careful, the hlock might have been released and cleared.
676 *
677 * If this indeed happens, lets pretend it does not hurt to continue
678 * to print the lock unless the hlock class_idx does not point to a
679 * registered class. The rationale here is: since we don't attempt
680 * to distinguish whether we are in this situation, if it just
681 * happened we can't count on class_idx to tell either.
682 */
683 struct lock_class *lock = hlock_class(hlock);
684
685 if (!lock) {
686 printk(KERN_CONT "<RELEASED>\n");
687 return;
688 }
689
690 printk(KERN_CONT "%px", hlock->instance);
691 print_lock_name(lock);
692 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
693 }
694
lockdep_print_held_locks(struct task_struct * p)695 static void lockdep_print_held_locks(struct task_struct *p)
696 {
697 int i, depth = READ_ONCE(p->lockdep_depth);
698
699 if (!depth)
700 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
701 else
702 printk("%d lock%s held by %s/%d:\n", depth,
703 depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
704 /*
705 * It's not reliable to print a task's held locks if it's not sleeping
706 * and it's not the current task.
707 */
708 if (p->state == TASK_RUNNING && p != current)
709 return;
710 for (i = 0; i < depth; i++) {
711 printk(" #%d: ", i);
712 print_lock(p->held_locks + i);
713 }
714 }
715
print_kernel_ident(void)716 static void print_kernel_ident(void)
717 {
718 printk("%s %.*s %s\n", init_utsname()->release,
719 (int)strcspn(init_utsname()->version, " "),
720 init_utsname()->version,
721 print_tainted());
722 }
723
very_verbose(struct lock_class * class)724 static int very_verbose(struct lock_class *class)
725 {
726 #if VERY_VERBOSE
727 return class_filter(class);
728 #endif
729 return 0;
730 }
731
732 /*
733 * Is this the address of a static object:
734 */
735 #ifdef __KERNEL__
static_obj(const void * obj)736 static int static_obj(const void *obj)
737 {
738 unsigned long start = (unsigned long) &_stext,
739 end = (unsigned long) &_end,
740 addr = (unsigned long) obj;
741
742 if (arch_is_kernel_initmem_freed(addr))
743 return 0;
744
745 /*
746 * static variable?
747 */
748 if ((addr >= start) && (addr < end))
749 return 1;
750
751 if (arch_is_kernel_data(addr))
752 return 1;
753
754 /*
755 * in-kernel percpu var?
756 */
757 if (is_kernel_percpu_address(addr))
758 return 1;
759
760 /*
761 * module static or percpu var?
762 */
763 return is_module_address(addr) || is_module_percpu_address(addr);
764 }
765 #endif
766
767 /*
768 * To make lock name printouts unique, we calculate a unique
769 * class->name_version generation counter. The caller must hold the graph
770 * lock.
771 */
count_matching_names(struct lock_class * new_class)772 static int count_matching_names(struct lock_class *new_class)
773 {
774 struct lock_class *class;
775 int count = 0;
776
777 if (!new_class->name)
778 return 0;
779
780 list_for_each_entry(class, &all_lock_classes, lock_entry) {
781 if (new_class->key - new_class->subclass == class->key)
782 return class->name_version;
783 if (class->name && !strcmp(class->name, new_class->name))
784 count = max(count, class->name_version);
785 }
786
787 return count + 1;
788 }
789
790 static inline struct lock_class *
look_up_lock_class(const struct lockdep_map * lock,unsigned int subclass)791 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
792 {
793 struct lockdep_subclass_key *key;
794 struct hlist_head *hash_head;
795 struct lock_class *class;
796
797 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
798 debug_locks_off();
799 printk(KERN_ERR
800 "BUG: looking up invalid subclass: %u\n", subclass);
801 printk(KERN_ERR
802 "turning off the locking correctness validator.\n");
803 dump_stack();
804 return NULL;
805 }
806
807 /*
808 * If it is not initialised then it has never been locked,
809 * so it won't be present in the hash table.
810 */
811 if (unlikely(!lock->key))
812 return NULL;
813
814 /*
815 * NOTE: the class-key must be unique. For dynamic locks, a static
816 * lock_class_key variable is passed in through the mutex_init()
817 * (or spin_lock_init()) call - which acts as the key. For static
818 * locks we use the lock object itself as the key.
819 */
820 BUILD_BUG_ON(sizeof(struct lock_class_key) >
821 sizeof(struct lockdep_map));
822
823 key = lock->key->subkeys + subclass;
824
825 hash_head = classhashentry(key);
826
827 /*
828 * We do an RCU walk of the hash, see lockdep_free_key_range().
829 */
830 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
831 return NULL;
832
833 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
834 if (class->key == key) {
835 /*
836 * Huh! same key, different name? Did someone trample
837 * on some memory? We're most confused.
838 */
839 WARN_ON_ONCE(class->name != lock->name &&
840 lock->key != &__lockdep_no_validate__);
841 return class;
842 }
843 }
844
845 return NULL;
846 }
847
848 /*
849 * Static locks do not have their class-keys yet - for them the key is
850 * the lock object itself. If the lock is in the per cpu area, the
851 * canonical address of the lock (per cpu offset removed) is used.
852 */
assign_lock_key(struct lockdep_map * lock)853 static bool assign_lock_key(struct lockdep_map *lock)
854 {
855 unsigned long can_addr, addr = (unsigned long)lock;
856
857 #ifdef __KERNEL__
858 /*
859 * lockdep_free_key_range() assumes that struct lock_class_key
860 * objects do not overlap. Since we use the address of lock
861 * objects as class key for static objects, check whether the
862 * size of lock_class_key objects does not exceed the size of
863 * the smallest lock object.
864 */
865 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
866 #endif
867
868 if (__is_kernel_percpu_address(addr, &can_addr))
869 lock->key = (void *)can_addr;
870 else if (__is_module_percpu_address(addr, &can_addr))
871 lock->key = (void *)can_addr;
872 else if (static_obj(lock))
873 lock->key = (void *)lock;
874 else {
875 /* Debug-check: all keys must be persistent! */
876 debug_locks_off();
877 pr_err("INFO: trying to register non-static key.\n");
878 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
879 pr_err("you didn't initialize this object before use?\n");
880 pr_err("turning off the locking correctness validator.\n");
881 dump_stack();
882 return false;
883 }
884
885 return true;
886 }
887
888 #ifdef CONFIG_DEBUG_LOCKDEP
889
890 /* Check whether element @e occurs in list @h */
in_list(struct list_head * e,struct list_head * h)891 static bool in_list(struct list_head *e, struct list_head *h)
892 {
893 struct list_head *f;
894
895 list_for_each(f, h) {
896 if (e == f)
897 return true;
898 }
899
900 return false;
901 }
902
903 /*
904 * Check whether entry @e occurs in any of the locks_after or locks_before
905 * lists.
906 */
in_any_class_list(struct list_head * e)907 static bool in_any_class_list(struct list_head *e)
908 {
909 struct lock_class *class;
910 int i;
911
912 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
913 class = &lock_classes[i];
914 if (in_list(e, &class->locks_after) ||
915 in_list(e, &class->locks_before))
916 return true;
917 }
918 return false;
919 }
920
class_lock_list_valid(struct lock_class * c,struct list_head * h)921 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
922 {
923 struct lock_list *e;
924
925 list_for_each_entry(e, h, entry) {
926 if (e->links_to != c) {
927 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
928 c->name ? : "(?)",
929 (unsigned long)(e - list_entries),
930 e->links_to && e->links_to->name ?
931 e->links_to->name : "(?)",
932 e->class && e->class->name ? e->class->name :
933 "(?)");
934 return false;
935 }
936 }
937 return true;
938 }
939
940 #ifdef CONFIG_PROVE_LOCKING
941 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
942 #endif
943
check_lock_chain_key(struct lock_chain * chain)944 static bool check_lock_chain_key(struct lock_chain *chain)
945 {
946 #ifdef CONFIG_PROVE_LOCKING
947 u64 chain_key = INITIAL_CHAIN_KEY;
948 int i;
949
950 for (i = chain->base; i < chain->base + chain->depth; i++)
951 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
952 /*
953 * The 'unsigned long long' casts avoid that a compiler warning
954 * is reported when building tools/lib/lockdep.
955 */
956 if (chain->chain_key != chain_key) {
957 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
958 (unsigned long long)(chain - lock_chains),
959 (unsigned long long)chain->chain_key,
960 (unsigned long long)chain_key);
961 return false;
962 }
963 #endif
964 return true;
965 }
966
in_any_zapped_class_list(struct lock_class * class)967 static bool in_any_zapped_class_list(struct lock_class *class)
968 {
969 struct pending_free *pf;
970 int i;
971
972 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
973 if (in_list(&class->lock_entry, &pf->zapped))
974 return true;
975 }
976
977 return false;
978 }
979
__check_data_structures(void)980 static bool __check_data_structures(void)
981 {
982 struct lock_class *class;
983 struct lock_chain *chain;
984 struct hlist_head *head;
985 struct lock_list *e;
986 int i;
987
988 /* Check whether all classes occur in a lock list. */
989 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
990 class = &lock_classes[i];
991 if (!in_list(&class->lock_entry, &all_lock_classes) &&
992 !in_list(&class->lock_entry, &free_lock_classes) &&
993 !in_any_zapped_class_list(class)) {
994 printk(KERN_INFO "class %px/%s is not in any class list\n",
995 class, class->name ? : "(?)");
996 return false;
997 }
998 }
999
1000 /* Check whether all classes have valid lock lists. */
1001 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1002 class = &lock_classes[i];
1003 if (!class_lock_list_valid(class, &class->locks_before))
1004 return false;
1005 if (!class_lock_list_valid(class, &class->locks_after))
1006 return false;
1007 }
1008
1009 /* Check the chain_key of all lock chains. */
1010 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1011 head = chainhash_table + i;
1012 hlist_for_each_entry_rcu(chain, head, entry) {
1013 if (!check_lock_chain_key(chain))
1014 return false;
1015 }
1016 }
1017
1018 /*
1019 * Check whether all list entries that are in use occur in a class
1020 * lock list.
1021 */
1022 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1023 e = list_entries + i;
1024 if (!in_any_class_list(&e->entry)) {
1025 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1026 (unsigned int)(e - list_entries),
1027 e->class->name ? : "(?)",
1028 e->links_to->name ? : "(?)");
1029 return false;
1030 }
1031 }
1032
1033 /*
1034 * Check whether all list entries that are not in use do not occur in
1035 * a class lock list.
1036 */
1037 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1038 e = list_entries + i;
1039 if (in_any_class_list(&e->entry)) {
1040 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1041 (unsigned int)(e - list_entries),
1042 e->class && e->class->name ? e->class->name :
1043 "(?)",
1044 e->links_to && e->links_to->name ?
1045 e->links_to->name : "(?)");
1046 return false;
1047 }
1048 }
1049
1050 return true;
1051 }
1052
1053 int check_consistency = 0;
1054 module_param(check_consistency, int, 0644);
1055
check_data_structures(void)1056 static void check_data_structures(void)
1057 {
1058 static bool once = false;
1059
1060 if (check_consistency && !once) {
1061 if (!__check_data_structures()) {
1062 once = true;
1063 WARN_ON(once);
1064 }
1065 }
1066 }
1067
1068 #else /* CONFIG_DEBUG_LOCKDEP */
1069
check_data_structures(void)1070 static inline void check_data_structures(void) { }
1071
1072 #endif /* CONFIG_DEBUG_LOCKDEP */
1073
1074 /*
1075 * Initialize the lock_classes[] array elements, the free_lock_classes list
1076 * and also the delayed_free structure.
1077 */
init_data_structures_once(void)1078 static void init_data_structures_once(void)
1079 {
1080 static bool ds_initialized, rcu_head_initialized;
1081 int i;
1082
1083 if (likely(rcu_head_initialized))
1084 return;
1085
1086 if (system_state >= SYSTEM_SCHEDULING) {
1087 init_rcu_head(&delayed_free.rcu_head);
1088 rcu_head_initialized = true;
1089 }
1090
1091 if (ds_initialized)
1092 return;
1093
1094 ds_initialized = true;
1095
1096 INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1097 INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1098
1099 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1100 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1101 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1102 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1103 }
1104 }
1105
keyhashentry(const struct lock_class_key * key)1106 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1107 {
1108 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1109
1110 return lock_keys_hash + hash;
1111 }
1112
1113 /* Register a dynamically allocated key. */
lockdep_register_key(struct lock_class_key * key)1114 void lockdep_register_key(struct lock_class_key *key)
1115 {
1116 struct hlist_head *hash_head;
1117 struct lock_class_key *k;
1118 unsigned long flags;
1119
1120 if (WARN_ON_ONCE(static_obj(key)))
1121 return;
1122 hash_head = keyhashentry(key);
1123
1124 raw_local_irq_save(flags);
1125 if (!graph_lock())
1126 goto restore_irqs;
1127 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1128 if (WARN_ON_ONCE(k == key))
1129 goto out_unlock;
1130 }
1131 hlist_add_head_rcu(&key->hash_entry, hash_head);
1132 out_unlock:
1133 graph_unlock();
1134 restore_irqs:
1135 raw_local_irq_restore(flags);
1136 }
1137 EXPORT_SYMBOL_GPL(lockdep_register_key);
1138
1139 /* Check whether a key has been registered as a dynamic key. */
is_dynamic_key(const struct lock_class_key * key)1140 static bool is_dynamic_key(const struct lock_class_key *key)
1141 {
1142 struct hlist_head *hash_head;
1143 struct lock_class_key *k;
1144 bool found = false;
1145
1146 if (WARN_ON_ONCE(static_obj(key)))
1147 return false;
1148
1149 /*
1150 * If lock debugging is disabled lock_keys_hash[] may contain
1151 * pointers to memory that has already been freed. Avoid triggering
1152 * a use-after-free in that case by returning early.
1153 */
1154 if (!debug_locks)
1155 return true;
1156
1157 hash_head = keyhashentry(key);
1158
1159 rcu_read_lock();
1160 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1161 if (k == key) {
1162 found = true;
1163 break;
1164 }
1165 }
1166 rcu_read_unlock();
1167
1168 return found;
1169 }
1170
1171 /*
1172 * Register a lock's class in the hash-table, if the class is not present
1173 * yet. Otherwise we look it up. We cache the result in the lock object
1174 * itself, so actual lookup of the hash should be once per lock object.
1175 */
1176 static struct lock_class *
register_lock_class(struct lockdep_map * lock,unsigned int subclass,int force)1177 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1178 {
1179 struct lockdep_subclass_key *key;
1180 struct hlist_head *hash_head;
1181 struct lock_class *class;
1182
1183 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1184
1185 class = look_up_lock_class(lock, subclass);
1186 if (likely(class))
1187 goto out_set_class_cache;
1188
1189 if (!lock->key) {
1190 if (!assign_lock_key(lock))
1191 return NULL;
1192 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1193 return NULL;
1194 }
1195
1196 key = lock->key->subkeys + subclass;
1197 hash_head = classhashentry(key);
1198
1199 if (!graph_lock()) {
1200 return NULL;
1201 }
1202 /*
1203 * We have to do the hash-walk again, to avoid races
1204 * with another CPU:
1205 */
1206 hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1207 if (class->key == key)
1208 goto out_unlock_set;
1209 }
1210
1211 init_data_structures_once();
1212
1213 /* Allocate a new lock class and add it to the hash. */
1214 class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1215 lock_entry);
1216 if (!class) {
1217 if (!debug_locks_off_graph_unlock()) {
1218 return NULL;
1219 }
1220
1221 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1222 dump_stack();
1223 return NULL;
1224 }
1225 nr_lock_classes++;
1226 __set_bit(class - lock_classes, lock_classes_in_use);
1227 debug_atomic_inc(nr_unused_locks);
1228 class->key = key;
1229 class->name = lock->name;
1230 class->subclass = subclass;
1231 WARN_ON_ONCE(!list_empty(&class->locks_before));
1232 WARN_ON_ONCE(!list_empty(&class->locks_after));
1233 class->name_version = count_matching_names(class);
1234 /*
1235 * We use RCU's safe list-add method to make
1236 * parallel walking of the hash-list safe:
1237 */
1238 hlist_add_head_rcu(&class->hash_entry, hash_head);
1239 /*
1240 * Remove the class from the free list and add it to the global list
1241 * of classes.
1242 */
1243 list_move_tail(&class->lock_entry, &all_lock_classes);
1244
1245 if (verbose(class)) {
1246 graph_unlock();
1247
1248 printk("\nnew class %px: %s", class->key, class->name);
1249 if (class->name_version > 1)
1250 printk(KERN_CONT "#%d", class->name_version);
1251 printk(KERN_CONT "\n");
1252 dump_stack();
1253
1254 if (!graph_lock()) {
1255 return NULL;
1256 }
1257 }
1258 out_unlock_set:
1259 graph_unlock();
1260
1261 out_set_class_cache:
1262 if (!subclass || force)
1263 lock->class_cache[0] = class;
1264 else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1265 lock->class_cache[subclass] = class;
1266
1267 /*
1268 * Hash collision, did we smoke some? We found a class with a matching
1269 * hash but the subclass -- which is hashed in -- didn't match.
1270 */
1271 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1272 return NULL;
1273
1274 return class;
1275 }
1276
1277 #ifdef CONFIG_PROVE_LOCKING
1278 /*
1279 * Allocate a lockdep entry. (assumes the graph_lock held, returns
1280 * with NULL on failure)
1281 */
alloc_list_entry(void)1282 static struct lock_list *alloc_list_entry(void)
1283 {
1284 int idx = find_first_zero_bit(list_entries_in_use,
1285 ARRAY_SIZE(list_entries));
1286
1287 if (idx >= ARRAY_SIZE(list_entries)) {
1288 if (!debug_locks_off_graph_unlock())
1289 return NULL;
1290
1291 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1292 dump_stack();
1293 return NULL;
1294 }
1295 nr_list_entries++;
1296 __set_bit(idx, list_entries_in_use);
1297 return list_entries + idx;
1298 }
1299
1300 /*
1301 * Add a new dependency to the head of the list:
1302 */
add_lock_to_list(struct lock_class * this,struct lock_class * links_to,struct list_head * head,unsigned long ip,int distance,const struct lock_trace * trace)1303 static int add_lock_to_list(struct lock_class *this,
1304 struct lock_class *links_to, struct list_head *head,
1305 unsigned long ip, int distance,
1306 const struct lock_trace *trace)
1307 {
1308 struct lock_list *entry;
1309 /*
1310 * Lock not present yet - get a new dependency struct and
1311 * add it to the list:
1312 */
1313 entry = alloc_list_entry();
1314 if (!entry)
1315 return 0;
1316
1317 entry->class = this;
1318 entry->links_to = links_to;
1319 entry->distance = distance;
1320 entry->trace = trace;
1321 /*
1322 * Both allocation and removal are done under the graph lock; but
1323 * iteration is under RCU-sched; see look_up_lock_class() and
1324 * lockdep_free_key_range().
1325 */
1326 list_add_tail_rcu(&entry->entry, head);
1327
1328 return 1;
1329 }
1330
1331 /*
1332 * For good efficiency of modular, we use power of 2
1333 */
1334 #define MAX_CIRCULAR_QUEUE_SIZE 4096UL
1335 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1)
1336
1337 /*
1338 * The circular_queue and helpers are used to implement graph
1339 * breadth-first search (BFS) algorithm, by which we can determine
1340 * whether there is a path from a lock to another. In deadlock checks,
1341 * a path from the next lock to be acquired to a previous held lock
1342 * indicates that adding the <prev> -> <next> lock dependency will
1343 * produce a circle in the graph. Breadth-first search instead of
1344 * depth-first search is used in order to find the shortest (circular)
1345 * path.
1346 */
1347 struct circular_queue {
1348 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1349 unsigned int front, rear;
1350 };
1351
1352 static struct circular_queue lock_cq;
1353
1354 unsigned int max_bfs_queue_depth;
1355
1356 static unsigned int lockdep_dependency_gen_id;
1357
__cq_init(struct circular_queue * cq)1358 static inline void __cq_init(struct circular_queue *cq)
1359 {
1360 cq->front = cq->rear = 0;
1361 lockdep_dependency_gen_id++;
1362 }
1363
__cq_empty(struct circular_queue * cq)1364 static inline int __cq_empty(struct circular_queue *cq)
1365 {
1366 return (cq->front == cq->rear);
1367 }
1368
__cq_full(struct circular_queue * cq)1369 static inline int __cq_full(struct circular_queue *cq)
1370 {
1371 return ((cq->rear + 1) & CQ_MASK) == cq->front;
1372 }
1373
__cq_enqueue(struct circular_queue * cq,struct lock_list * elem)1374 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1375 {
1376 if (__cq_full(cq))
1377 return -1;
1378
1379 cq->element[cq->rear] = elem;
1380 cq->rear = (cq->rear + 1) & CQ_MASK;
1381 return 0;
1382 }
1383
1384 /*
1385 * Dequeue an element from the circular_queue, return a lock_list if
1386 * the queue is not empty, or NULL if otherwise.
1387 */
__cq_dequeue(struct circular_queue * cq)1388 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1389 {
1390 struct lock_list * lock;
1391
1392 if (__cq_empty(cq))
1393 return NULL;
1394
1395 lock = cq->element[cq->front];
1396 cq->front = (cq->front + 1) & CQ_MASK;
1397
1398 return lock;
1399 }
1400
__cq_get_elem_count(struct circular_queue * cq)1401 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq)
1402 {
1403 return (cq->rear - cq->front) & CQ_MASK;
1404 }
1405
mark_lock_accessed(struct lock_list * lock,struct lock_list * parent)1406 static inline void mark_lock_accessed(struct lock_list *lock,
1407 struct lock_list *parent)
1408 {
1409 unsigned long nr;
1410
1411 nr = lock - list_entries;
1412 WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */
1413 lock->parent = parent;
1414 lock->class->dep_gen_id = lockdep_dependency_gen_id;
1415 }
1416
lock_accessed(struct lock_list * lock)1417 static inline unsigned long lock_accessed(struct lock_list *lock)
1418 {
1419 unsigned long nr;
1420
1421 nr = lock - list_entries;
1422 WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */
1423 return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1424 }
1425
get_lock_parent(struct lock_list * child)1426 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1427 {
1428 return child->parent;
1429 }
1430
get_lock_depth(struct lock_list * child)1431 static inline int get_lock_depth(struct lock_list *child)
1432 {
1433 int depth = 0;
1434 struct lock_list *parent;
1435
1436 while ((parent = get_lock_parent(child))) {
1437 child = parent;
1438 depth++;
1439 }
1440 return depth;
1441 }
1442
1443 /*
1444 * Return the forward or backward dependency list.
1445 *
1446 * @lock: the lock_list to get its class's dependency list
1447 * @offset: the offset to struct lock_class to determine whether it is
1448 * locks_after or locks_before
1449 */
get_dep_list(struct lock_list * lock,int offset)1450 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1451 {
1452 void *lock_class = lock->class;
1453
1454 return lock_class + offset;
1455 }
1456
1457 /*
1458 * Forward- or backward-dependency search, used for both circular dependency
1459 * checking and hardirq-unsafe/softirq-unsafe checking.
1460 */
__bfs(struct lock_list * source_entry,void * data,int (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry,int offset)1461 static int __bfs(struct lock_list *source_entry,
1462 void *data,
1463 int (*match)(struct lock_list *entry, void *data),
1464 struct lock_list **target_entry,
1465 int offset)
1466 {
1467 struct lock_list *entry;
1468 struct lock_list *lock;
1469 struct list_head *head;
1470 struct circular_queue *cq = &lock_cq;
1471 int ret = 1;
1472
1473 if (match(source_entry, data)) {
1474 *target_entry = source_entry;
1475 ret = 0;
1476 goto exit;
1477 }
1478
1479 head = get_dep_list(source_entry, offset);
1480 if (list_empty(head))
1481 goto exit;
1482
1483 __cq_init(cq);
1484 __cq_enqueue(cq, source_entry);
1485
1486 while ((lock = __cq_dequeue(cq))) {
1487
1488 if (!lock->class) {
1489 ret = -2;
1490 goto exit;
1491 }
1492
1493 head = get_dep_list(lock, offset);
1494
1495 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1496
1497 list_for_each_entry_rcu(entry, head, entry) {
1498 if (!lock_accessed(entry)) {
1499 unsigned int cq_depth;
1500 mark_lock_accessed(entry, lock);
1501 if (match(entry, data)) {
1502 *target_entry = entry;
1503 ret = 0;
1504 goto exit;
1505 }
1506
1507 if (__cq_enqueue(cq, entry)) {
1508 ret = -1;
1509 goto exit;
1510 }
1511 cq_depth = __cq_get_elem_count(cq);
1512 if (max_bfs_queue_depth < cq_depth)
1513 max_bfs_queue_depth = cq_depth;
1514 }
1515 }
1516 }
1517 exit:
1518 return ret;
1519 }
1520
__bfs_forwards(struct lock_list * src_entry,void * data,int (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1521 static inline int __bfs_forwards(struct lock_list *src_entry,
1522 void *data,
1523 int (*match)(struct lock_list *entry, void *data),
1524 struct lock_list **target_entry)
1525 {
1526 return __bfs(src_entry, data, match, target_entry,
1527 offsetof(struct lock_class, locks_after));
1528
1529 }
1530
__bfs_backwards(struct lock_list * src_entry,void * data,int (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1531 static inline int __bfs_backwards(struct lock_list *src_entry,
1532 void *data,
1533 int (*match)(struct lock_list *entry, void *data),
1534 struct lock_list **target_entry)
1535 {
1536 return __bfs(src_entry, data, match, target_entry,
1537 offsetof(struct lock_class, locks_before));
1538
1539 }
1540
print_lock_trace(const struct lock_trace * trace,unsigned int spaces)1541 static void print_lock_trace(const struct lock_trace *trace,
1542 unsigned int spaces)
1543 {
1544 stack_trace_print(trace->entries, trace->nr_entries, spaces);
1545 }
1546
1547 /*
1548 * Print a dependency chain entry (this is only done when a deadlock
1549 * has been detected):
1550 */
1551 static noinline void
print_circular_bug_entry(struct lock_list * target,int depth)1552 print_circular_bug_entry(struct lock_list *target, int depth)
1553 {
1554 if (debug_locks_silent)
1555 return;
1556 printk("\n-> #%u", depth);
1557 print_lock_name(target->class);
1558 printk(KERN_CONT ":\n");
1559 print_lock_trace(target->trace, 6);
1560 }
1561
1562 static void
print_circular_lock_scenario(struct held_lock * src,struct held_lock * tgt,struct lock_list * prt)1563 print_circular_lock_scenario(struct held_lock *src,
1564 struct held_lock *tgt,
1565 struct lock_list *prt)
1566 {
1567 struct lock_class *source = hlock_class(src);
1568 struct lock_class *target = hlock_class(tgt);
1569 struct lock_class *parent = prt->class;
1570
1571 /*
1572 * A direct locking problem where unsafe_class lock is taken
1573 * directly by safe_class lock, then all we need to show
1574 * is the deadlock scenario, as it is obvious that the
1575 * unsafe lock is taken under the safe lock.
1576 *
1577 * But if there is a chain instead, where the safe lock takes
1578 * an intermediate lock (middle_class) where this lock is
1579 * not the same as the safe lock, then the lock chain is
1580 * used to describe the problem. Otherwise we would need
1581 * to show a different CPU case for each link in the chain
1582 * from the safe_class lock to the unsafe_class lock.
1583 */
1584 if (parent != source) {
1585 printk("Chain exists of:\n ");
1586 __print_lock_name(source);
1587 printk(KERN_CONT " --> ");
1588 __print_lock_name(parent);
1589 printk(KERN_CONT " --> ");
1590 __print_lock_name(target);
1591 printk(KERN_CONT "\n\n");
1592 }
1593
1594 printk(" Possible unsafe locking scenario:\n\n");
1595 printk(" CPU0 CPU1\n");
1596 printk(" ---- ----\n");
1597 printk(" lock(");
1598 __print_lock_name(target);
1599 printk(KERN_CONT ");\n");
1600 printk(" lock(");
1601 __print_lock_name(parent);
1602 printk(KERN_CONT ");\n");
1603 printk(" lock(");
1604 __print_lock_name(target);
1605 printk(KERN_CONT ");\n");
1606 printk(" lock(");
1607 __print_lock_name(source);
1608 printk(KERN_CONT ");\n");
1609 printk("\n *** DEADLOCK ***\n\n");
1610 }
1611
1612 /*
1613 * When a circular dependency is detected, print the
1614 * header first:
1615 */
1616 static noinline void
print_circular_bug_header(struct lock_list * entry,unsigned int depth,struct held_lock * check_src,struct held_lock * check_tgt)1617 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1618 struct held_lock *check_src,
1619 struct held_lock *check_tgt)
1620 {
1621 struct task_struct *curr = current;
1622
1623 if (debug_locks_silent)
1624 return;
1625
1626 pr_warn("\n");
1627 pr_warn("======================================================\n");
1628 pr_warn("WARNING: possible circular locking dependency detected\n");
1629 print_kernel_ident();
1630 pr_warn("------------------------------------------------------\n");
1631 pr_warn("%s/%d is trying to acquire lock:\n",
1632 curr->comm, task_pid_nr(curr));
1633 print_lock(check_src);
1634
1635 pr_warn("\nbut task is already holding lock:\n");
1636
1637 print_lock(check_tgt);
1638 pr_warn("\nwhich lock already depends on the new lock.\n\n");
1639 pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1640
1641 print_circular_bug_entry(entry, depth);
1642 }
1643
class_equal(struct lock_list * entry,void * data)1644 static inline int class_equal(struct lock_list *entry, void *data)
1645 {
1646 return entry->class == data;
1647 }
1648
print_circular_bug(struct lock_list * this,struct lock_list * target,struct held_lock * check_src,struct held_lock * check_tgt)1649 static noinline void print_circular_bug(struct lock_list *this,
1650 struct lock_list *target,
1651 struct held_lock *check_src,
1652 struct held_lock *check_tgt)
1653 {
1654 struct task_struct *curr = current;
1655 struct lock_list *parent;
1656 struct lock_list *first_parent;
1657 int depth;
1658
1659 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1660 return;
1661
1662 this->trace = save_trace();
1663 if (!this->trace)
1664 return;
1665
1666 depth = get_lock_depth(target);
1667
1668 print_circular_bug_header(target, depth, check_src, check_tgt);
1669
1670 parent = get_lock_parent(target);
1671 first_parent = parent;
1672
1673 while (parent) {
1674 print_circular_bug_entry(parent, --depth);
1675 parent = get_lock_parent(parent);
1676 }
1677
1678 printk("\nother info that might help us debug this:\n\n");
1679 print_circular_lock_scenario(check_src, check_tgt,
1680 first_parent);
1681
1682 lockdep_print_held_locks(curr);
1683
1684 printk("\nstack backtrace:\n");
1685 dump_stack();
1686 }
1687
print_bfs_bug(int ret)1688 static noinline void print_bfs_bug(int ret)
1689 {
1690 if (!debug_locks_off_graph_unlock())
1691 return;
1692
1693 /*
1694 * Breadth-first-search failed, graph got corrupted?
1695 */
1696 WARN(1, "lockdep bfs error:%d\n", ret);
1697 }
1698
noop_count(struct lock_list * entry,void * data)1699 static int noop_count(struct lock_list *entry, void *data)
1700 {
1701 (*(unsigned long *)data)++;
1702 return 0;
1703 }
1704
__lockdep_count_forward_deps(struct lock_list * this)1705 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
1706 {
1707 unsigned long count = 0;
1708 struct lock_list *target_entry;
1709
1710 __bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1711
1712 return count;
1713 }
lockdep_count_forward_deps(struct lock_class * class)1714 unsigned long lockdep_count_forward_deps(struct lock_class *class)
1715 {
1716 unsigned long ret, flags;
1717 struct lock_list this;
1718
1719 this.parent = NULL;
1720 this.class = class;
1721
1722 raw_local_irq_save(flags);
1723 current->lockdep_recursion = 1;
1724 arch_spin_lock(&lockdep_lock);
1725 ret = __lockdep_count_forward_deps(&this);
1726 arch_spin_unlock(&lockdep_lock);
1727 current->lockdep_recursion = 0;
1728 raw_local_irq_restore(flags);
1729
1730 return ret;
1731 }
1732
__lockdep_count_backward_deps(struct lock_list * this)1733 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1734 {
1735 unsigned long count = 0;
1736 struct lock_list *target_entry;
1737
1738 __bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1739
1740 return count;
1741 }
1742
lockdep_count_backward_deps(struct lock_class * class)1743 unsigned long lockdep_count_backward_deps(struct lock_class *class)
1744 {
1745 unsigned long ret, flags;
1746 struct lock_list this;
1747
1748 this.parent = NULL;
1749 this.class = class;
1750
1751 raw_local_irq_save(flags);
1752 current->lockdep_recursion = 1;
1753 arch_spin_lock(&lockdep_lock);
1754 ret = __lockdep_count_backward_deps(&this);
1755 arch_spin_unlock(&lockdep_lock);
1756 current->lockdep_recursion = 0;
1757 raw_local_irq_restore(flags);
1758
1759 return ret;
1760 }
1761
1762 /*
1763 * Check that the dependency graph starting at <src> can lead to
1764 * <target> or not. Print an error and return 0 if it does.
1765 */
1766 static noinline int
check_path(struct lock_class * target,struct lock_list * src_entry,struct lock_list ** target_entry)1767 check_path(struct lock_class *target, struct lock_list *src_entry,
1768 struct lock_list **target_entry)
1769 {
1770 int ret;
1771
1772 ret = __bfs_forwards(src_entry, (void *)target, class_equal,
1773 target_entry);
1774
1775 if (unlikely(ret < 0))
1776 print_bfs_bug(ret);
1777
1778 return ret;
1779 }
1780
1781 /*
1782 * Prove that the dependency graph starting at <src> can not
1783 * lead to <target>. If it can, there is a circle when adding
1784 * <target> -> <src> dependency.
1785 *
1786 * Print an error and return 0 if it does.
1787 */
1788 static noinline int
check_noncircular(struct held_lock * src,struct held_lock * target,struct lock_trace ** const trace)1789 check_noncircular(struct held_lock *src, struct held_lock *target,
1790 struct lock_trace **const trace)
1791 {
1792 int ret;
1793 struct lock_list *target_entry;
1794 struct lock_list src_entry = {
1795 .class = hlock_class(src),
1796 .parent = NULL,
1797 };
1798
1799 debug_atomic_inc(nr_cyclic_checks);
1800
1801 ret = check_path(hlock_class(target), &src_entry, &target_entry);
1802
1803 if (unlikely(!ret)) {
1804 if (!*trace) {
1805 /*
1806 * If save_trace fails here, the printing might
1807 * trigger a WARN but because of the !nr_entries it
1808 * should not do bad things.
1809 */
1810 *trace = save_trace();
1811 }
1812
1813 print_circular_bug(&src_entry, target_entry, src, target);
1814 }
1815
1816 return ret;
1817 }
1818
1819 #ifdef CONFIG_LOCKDEP_SMALL
1820 /*
1821 * Check that the dependency graph starting at <src> can lead to
1822 * <target> or not. If it can, <src> -> <target> dependency is already
1823 * in the graph.
1824 *
1825 * Print an error and return 2 if it does or 1 if it does not.
1826 */
1827 static noinline int
check_redundant(struct held_lock * src,struct held_lock * target)1828 check_redundant(struct held_lock *src, struct held_lock *target)
1829 {
1830 int ret;
1831 struct lock_list *target_entry;
1832 struct lock_list src_entry = {
1833 .class = hlock_class(src),
1834 .parent = NULL,
1835 };
1836
1837 debug_atomic_inc(nr_redundant_checks);
1838
1839 ret = check_path(hlock_class(target), &src_entry, &target_entry);
1840
1841 if (!ret) {
1842 debug_atomic_inc(nr_redundant);
1843 ret = 2;
1844 } else if (ret < 0)
1845 ret = 0;
1846
1847 return ret;
1848 }
1849 #endif
1850
1851 #ifdef CONFIG_TRACE_IRQFLAGS
1852
usage_accumulate(struct lock_list * entry,void * mask)1853 static inline int usage_accumulate(struct lock_list *entry, void *mask)
1854 {
1855 *(unsigned long *)mask |= entry->class->usage_mask;
1856
1857 return 0;
1858 }
1859
1860 /*
1861 * Forwards and backwards subgraph searching, for the purposes of
1862 * proving that two subgraphs can be connected by a new dependency
1863 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
1864 */
1865
usage_match(struct lock_list * entry,void * mask)1866 static inline int usage_match(struct lock_list *entry, void *mask)
1867 {
1868 return entry->class->usage_mask & *(unsigned long *)mask;
1869 }
1870
1871 /*
1872 * Find a node in the forwards-direction dependency sub-graph starting
1873 * at @root->class that matches @bit.
1874 *
1875 * Return 0 if such a node exists in the subgraph, and put that node
1876 * into *@target_entry.
1877 *
1878 * Return 1 otherwise and keep *@target_entry unchanged.
1879 * Return <0 on error.
1880 */
1881 static int
find_usage_forwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)1882 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
1883 struct lock_list **target_entry)
1884 {
1885 int result;
1886
1887 debug_atomic_inc(nr_find_usage_forwards_checks);
1888
1889 result = __bfs_forwards(root, &usage_mask, usage_match, target_entry);
1890
1891 return result;
1892 }
1893
1894 /*
1895 * Find a node in the backwards-direction dependency sub-graph starting
1896 * at @root->class that matches @bit.
1897 *
1898 * Return 0 if such a node exists in the subgraph, and put that node
1899 * into *@target_entry.
1900 *
1901 * Return 1 otherwise and keep *@target_entry unchanged.
1902 * Return <0 on error.
1903 */
1904 static int
find_usage_backwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)1905 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
1906 struct lock_list **target_entry)
1907 {
1908 int result;
1909
1910 debug_atomic_inc(nr_find_usage_backwards_checks);
1911
1912 result = __bfs_backwards(root, &usage_mask, usage_match, target_entry);
1913
1914 return result;
1915 }
1916
print_lock_class_header(struct lock_class * class,int depth)1917 static void print_lock_class_header(struct lock_class *class, int depth)
1918 {
1919 int bit;
1920
1921 printk("%*s->", depth, "");
1922 print_lock_name(class);
1923 #ifdef CONFIG_DEBUG_LOCKDEP
1924 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
1925 #endif
1926 printk(KERN_CONT " {\n");
1927
1928 for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1929 if (class->usage_mask & (1 << bit)) {
1930 int len = depth;
1931
1932 len += printk("%*s %s", depth, "", usage_str[bit]);
1933 len += printk(KERN_CONT " at:\n");
1934 print_lock_trace(class->usage_traces[bit], len);
1935 }
1936 }
1937 printk("%*s }\n", depth, "");
1938
1939 printk("%*s ... key at: [<%px>] %pS\n",
1940 depth, "", class->key, class->key);
1941 }
1942
1943 /*
1944 * Dependency path printing:
1945 *
1946 * After BFS we get a lock dependency path (linked via ->parent of lock_list),
1947 * printing out each lock in the dependency path will help on understanding how
1948 * the deadlock could happen. Here are some details about dependency path
1949 * printing:
1950 *
1951 * 1) A lock_list can be either forwards or backwards for a lock dependency,
1952 * for a lock dependency A -> B, there are two lock_lists:
1953 *
1954 * a) lock_list in the ->locks_after list of A, whose ->class is B and
1955 * ->links_to is A. In this case, we can say the lock_list is
1956 * "A -> B" (forwards case).
1957 *
1958 * b) lock_list in the ->locks_before list of B, whose ->class is A
1959 * and ->links_to is B. In this case, we can say the lock_list is
1960 * "B <- A" (bacwards case).
1961 *
1962 * The ->trace of both a) and b) point to the call trace where B was
1963 * acquired with A held.
1964 *
1965 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't
1966 * represent a certain lock dependency, it only provides an initial entry
1967 * for BFS. For example, BFS may introduce a "helper" lock_list whose
1968 * ->class is A, as a result BFS will search all dependencies starting with
1969 * A, e.g. A -> B or A -> C.
1970 *
1971 * The notation of a forwards helper lock_list is like "-> A", which means
1972 * we should search the forwards dependencies starting with "A", e.g A -> B
1973 * or A -> C.
1974 *
1975 * The notation of a bacwards helper lock_list is like "<- B", which means
1976 * we should search the backwards dependencies ending with "B", e.g.
1977 * B <- A or B <- C.
1978 */
1979
1980 /*
1981 * printk the shortest lock dependencies from @root to @leaf in reverse order.
1982 *
1983 * We have a lock dependency path as follow:
1984 *
1985 * @root @leaf
1986 * | |
1987 * V V
1988 * ->parent ->parent
1989 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list |
1990 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln|
1991 *
1992 * , so it's natural that we start from @leaf and print every ->class and
1993 * ->trace until we reach the @root.
1994 */
1995 static void __used
print_shortest_lock_dependencies(struct lock_list * leaf,struct lock_list * root)1996 print_shortest_lock_dependencies(struct lock_list *leaf,
1997 struct lock_list *root)
1998 {
1999 struct lock_list *entry = leaf;
2000 int depth;
2001
2002 /*compute depth from generated tree by BFS*/
2003 depth = get_lock_depth(leaf);
2004
2005 do {
2006 print_lock_class_header(entry->class, depth);
2007 printk("%*s ... acquired at:\n", depth, "");
2008 print_lock_trace(entry->trace, 2);
2009 printk("\n");
2010
2011 if (depth == 0 && (entry != root)) {
2012 printk("lockdep:%s bad path found in chain graph\n", __func__);
2013 break;
2014 }
2015
2016 entry = get_lock_parent(entry);
2017 depth--;
2018 } while (entry && (depth >= 0));
2019 }
2020
2021 /*
2022 * printk the shortest lock dependencies from @leaf to @root.
2023 *
2024 * We have a lock dependency path (from a backwards search) as follow:
2025 *
2026 * @leaf @root
2027 * | |
2028 * V V
2029 * ->parent ->parent
2030 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list |
2031 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln |
2032 *
2033 * , so when we iterate from @leaf to @root, we actually print the lock
2034 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2035 *
2036 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2037 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2038 * trace of L1 in the dependency path, which is alright, because most of the
2039 * time we can figure out where L1 is held from the call trace of L2.
2040 */
2041 static void __used
print_shortest_lock_dependencies_backwards(struct lock_list * leaf,struct lock_list * root)2042 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2043 struct lock_list *root)
2044 {
2045 struct lock_list *entry = leaf;
2046 const struct lock_trace *trace = NULL;
2047 int depth;
2048
2049 /*compute depth from generated tree by BFS*/
2050 depth = get_lock_depth(leaf);
2051
2052 do {
2053 print_lock_class_header(entry->class, depth);
2054 if (trace) {
2055 printk("%*s ... acquired at:\n", depth, "");
2056 print_lock_trace(trace, 2);
2057 printk("\n");
2058 }
2059
2060 /*
2061 * Record the pointer to the trace for the next lock_list
2062 * entry, see the comments for the function.
2063 */
2064 trace = entry->trace;
2065
2066 if (depth == 0 && (entry != root)) {
2067 printk("lockdep:%s bad path found in chain graph\n", __func__);
2068 break;
2069 }
2070
2071 entry = get_lock_parent(entry);
2072 depth--;
2073 } while (entry && (depth >= 0));
2074 }
2075
2076 static void
print_irq_lock_scenario(struct lock_list * safe_entry,struct lock_list * unsafe_entry,struct lock_class * prev_class,struct lock_class * next_class)2077 print_irq_lock_scenario(struct lock_list *safe_entry,
2078 struct lock_list *unsafe_entry,
2079 struct lock_class *prev_class,
2080 struct lock_class *next_class)
2081 {
2082 struct lock_class *safe_class = safe_entry->class;
2083 struct lock_class *unsafe_class = unsafe_entry->class;
2084 struct lock_class *middle_class = prev_class;
2085
2086 if (middle_class == safe_class)
2087 middle_class = next_class;
2088
2089 /*
2090 * A direct locking problem where unsafe_class lock is taken
2091 * directly by safe_class lock, then all we need to show
2092 * is the deadlock scenario, as it is obvious that the
2093 * unsafe lock is taken under the safe lock.
2094 *
2095 * But if there is a chain instead, where the safe lock takes
2096 * an intermediate lock (middle_class) where this lock is
2097 * not the same as the safe lock, then the lock chain is
2098 * used to describe the problem. Otherwise we would need
2099 * to show a different CPU case for each link in the chain
2100 * from the safe_class lock to the unsafe_class lock.
2101 */
2102 if (middle_class != unsafe_class) {
2103 printk("Chain exists of:\n ");
2104 __print_lock_name(safe_class);
2105 printk(KERN_CONT " --> ");
2106 __print_lock_name(middle_class);
2107 printk(KERN_CONT " --> ");
2108 __print_lock_name(unsafe_class);
2109 printk(KERN_CONT "\n\n");
2110 }
2111
2112 printk(" Possible interrupt unsafe locking scenario:\n\n");
2113 printk(" CPU0 CPU1\n");
2114 printk(" ---- ----\n");
2115 printk(" lock(");
2116 __print_lock_name(unsafe_class);
2117 printk(KERN_CONT ");\n");
2118 printk(" local_irq_disable();\n");
2119 printk(" lock(");
2120 __print_lock_name(safe_class);
2121 printk(KERN_CONT ");\n");
2122 printk(" lock(");
2123 __print_lock_name(middle_class);
2124 printk(KERN_CONT ");\n");
2125 printk(" <Interrupt>\n");
2126 printk(" lock(");
2127 __print_lock_name(safe_class);
2128 printk(KERN_CONT ");\n");
2129 printk("\n *** DEADLOCK ***\n\n");
2130 }
2131
2132 static void
print_bad_irq_dependency(struct task_struct * curr,struct lock_list * prev_root,struct lock_list * next_root,struct lock_list * backwards_entry,struct lock_list * forwards_entry,struct held_lock * prev,struct held_lock * next,enum lock_usage_bit bit1,enum lock_usage_bit bit2,const char * irqclass)2133 print_bad_irq_dependency(struct task_struct *curr,
2134 struct lock_list *prev_root,
2135 struct lock_list *next_root,
2136 struct lock_list *backwards_entry,
2137 struct lock_list *forwards_entry,
2138 struct held_lock *prev,
2139 struct held_lock *next,
2140 enum lock_usage_bit bit1,
2141 enum lock_usage_bit bit2,
2142 const char *irqclass)
2143 {
2144 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2145 return;
2146
2147 pr_warn("\n");
2148 pr_warn("=====================================================\n");
2149 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2150 irqclass, irqclass);
2151 print_kernel_ident();
2152 pr_warn("-----------------------------------------------------\n");
2153 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2154 curr->comm, task_pid_nr(curr),
2155 curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT,
2156 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2157 curr->hardirqs_enabled,
2158 curr->softirqs_enabled);
2159 print_lock(next);
2160
2161 pr_warn("\nand this task is already holding:\n");
2162 print_lock(prev);
2163 pr_warn("which would create a new lock dependency:\n");
2164 print_lock_name(hlock_class(prev));
2165 pr_cont(" ->");
2166 print_lock_name(hlock_class(next));
2167 pr_cont("\n");
2168
2169 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2170 irqclass);
2171 print_lock_name(backwards_entry->class);
2172 pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2173
2174 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2175
2176 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2177 print_lock_name(forwards_entry->class);
2178 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2179 pr_warn("...");
2180
2181 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2182
2183 pr_warn("\nother info that might help us debug this:\n\n");
2184 print_irq_lock_scenario(backwards_entry, forwards_entry,
2185 hlock_class(prev), hlock_class(next));
2186
2187 lockdep_print_held_locks(curr);
2188
2189 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2190 prev_root->trace = save_trace();
2191 if (!prev_root->trace)
2192 return;
2193 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2194
2195 pr_warn("\nthe dependencies between the lock to be acquired");
2196 pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2197 next_root->trace = save_trace();
2198 if (!next_root->trace)
2199 return;
2200 print_shortest_lock_dependencies(forwards_entry, next_root);
2201
2202 pr_warn("\nstack backtrace:\n");
2203 dump_stack();
2204 }
2205
2206 static const char *state_names[] = {
2207 #define LOCKDEP_STATE(__STATE) \
2208 __stringify(__STATE),
2209 #include "lockdep_states.h"
2210 #undef LOCKDEP_STATE
2211 };
2212
2213 static const char *state_rnames[] = {
2214 #define LOCKDEP_STATE(__STATE) \
2215 __stringify(__STATE)"-READ",
2216 #include "lockdep_states.h"
2217 #undef LOCKDEP_STATE
2218 };
2219
state_name(enum lock_usage_bit bit)2220 static inline const char *state_name(enum lock_usage_bit bit)
2221 {
2222 if (bit & LOCK_USAGE_READ_MASK)
2223 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2224 else
2225 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2226 }
2227
2228 /*
2229 * The bit number is encoded like:
2230 *
2231 * bit0: 0 exclusive, 1 read lock
2232 * bit1: 0 used in irq, 1 irq enabled
2233 * bit2-n: state
2234 */
exclusive_bit(int new_bit)2235 static int exclusive_bit(int new_bit)
2236 {
2237 int state = new_bit & LOCK_USAGE_STATE_MASK;
2238 int dir = new_bit & LOCK_USAGE_DIR_MASK;
2239
2240 /*
2241 * keep state, bit flip the direction and strip read.
2242 */
2243 return state | (dir ^ LOCK_USAGE_DIR_MASK);
2244 }
2245
2246 /*
2247 * Observe that when given a bitmask where each bitnr is encoded as above, a
2248 * right shift of the mask transforms the individual bitnrs as -1 and
2249 * conversely, a left shift transforms into +1 for the individual bitnrs.
2250 *
2251 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2252 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2253 * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2254 *
2255 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2256 *
2257 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2258 * all bits set) and recompose with bitnr1 flipped.
2259 */
invert_dir_mask(unsigned long mask)2260 static unsigned long invert_dir_mask(unsigned long mask)
2261 {
2262 unsigned long excl = 0;
2263
2264 /* Invert dir */
2265 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2266 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2267
2268 return excl;
2269 }
2270
2271 /*
2272 * As above, we clear bitnr0 (LOCK_*_READ off) with bitmask ops. First, for all
2273 * bits with bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*).
2274 * And then mask out all bitnr0.
2275 */
exclusive_mask(unsigned long mask)2276 static unsigned long exclusive_mask(unsigned long mask)
2277 {
2278 unsigned long excl = invert_dir_mask(mask);
2279
2280 /* Strip read */
2281 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2282 excl &= ~LOCKF_IRQ_READ;
2283
2284 return excl;
2285 }
2286
2287 /*
2288 * Retrieve the _possible_ original mask to which @mask is
2289 * exclusive. Ie: this is the opposite of exclusive_mask().
2290 * Note that 2 possible original bits can match an exclusive
2291 * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2292 * cleared. So both are returned for each exclusive bit.
2293 */
original_mask(unsigned long mask)2294 static unsigned long original_mask(unsigned long mask)
2295 {
2296 unsigned long excl = invert_dir_mask(mask);
2297
2298 /* Include read in existing usages */
2299 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2300
2301 return excl;
2302 }
2303
2304 /*
2305 * Find the first pair of bit match between an original
2306 * usage mask and an exclusive usage mask.
2307 */
find_exclusive_match(unsigned long mask,unsigned long excl_mask,enum lock_usage_bit * bitp,enum lock_usage_bit * excl_bitp)2308 static int find_exclusive_match(unsigned long mask,
2309 unsigned long excl_mask,
2310 enum lock_usage_bit *bitp,
2311 enum lock_usage_bit *excl_bitp)
2312 {
2313 int bit, excl;
2314
2315 for_each_set_bit(bit, &mask, LOCK_USED) {
2316 excl = exclusive_bit(bit);
2317 if (excl_mask & lock_flag(excl)) {
2318 *bitp = bit;
2319 *excl_bitp = excl;
2320 return 0;
2321 }
2322 }
2323 return -1;
2324 }
2325
2326 /*
2327 * Prove that the new dependency does not connect a hardirq-safe(-read)
2328 * lock with a hardirq-unsafe lock - to achieve this we search
2329 * the backwards-subgraph starting at <prev>, and the
2330 * forwards-subgraph starting at <next>:
2331 */
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2332 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2333 struct held_lock *next)
2334 {
2335 unsigned long usage_mask = 0, forward_mask, backward_mask;
2336 enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2337 struct lock_list *target_entry1;
2338 struct lock_list *target_entry;
2339 struct lock_list this, that;
2340 int ret;
2341
2342 /*
2343 * Step 1: gather all hard/soft IRQs usages backward in an
2344 * accumulated usage mask.
2345 */
2346 this.parent = NULL;
2347 this.class = hlock_class(prev);
2348
2349 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL);
2350 if (ret < 0) {
2351 print_bfs_bug(ret);
2352 return 0;
2353 }
2354
2355 usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2356 if (!usage_mask)
2357 return 1;
2358
2359 /*
2360 * Step 2: find exclusive uses forward that match the previous
2361 * backward accumulated mask.
2362 */
2363 forward_mask = exclusive_mask(usage_mask);
2364
2365 that.parent = NULL;
2366 that.class = hlock_class(next);
2367
2368 ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2369 if (ret < 0) {
2370 print_bfs_bug(ret);
2371 return 0;
2372 }
2373 if (ret == 1)
2374 return ret;
2375
2376 /*
2377 * Step 3: we found a bad match! Now retrieve a lock from the backward
2378 * list whose usage mask matches the exclusive usage mask from the
2379 * lock found on the forward list.
2380 *
2381 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2382 * the follow case:
2383 *
2384 * When trying to add A -> B to the graph, we find that there is a
2385 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2386 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2387 * invert bits of M's usage_mask, we will find another lock N that is
2388 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2389 * cause a inversion deadlock.
2390 */
2391 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2392
2393 ret = find_usage_backwards(&this, backward_mask, &target_entry);
2394 if (ret < 0) {
2395 print_bfs_bug(ret);
2396 return 0;
2397 }
2398 if (DEBUG_LOCKS_WARN_ON(ret == 1))
2399 return 1;
2400
2401 /*
2402 * Step 4: narrow down to a pair of incompatible usage bits
2403 * and report it.
2404 */
2405 ret = find_exclusive_match(target_entry->class->usage_mask,
2406 target_entry1->class->usage_mask,
2407 &backward_bit, &forward_bit);
2408 if (DEBUG_LOCKS_WARN_ON(ret == -1))
2409 return 1;
2410
2411 print_bad_irq_dependency(curr, &this, &that,
2412 target_entry, target_entry1,
2413 prev, next,
2414 backward_bit, forward_bit,
2415 state_name(backward_bit));
2416
2417 return 0;
2418 }
2419
2420 #else
2421
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2422 static inline int check_irq_usage(struct task_struct *curr,
2423 struct held_lock *prev, struct held_lock *next)
2424 {
2425 return 1;
2426 }
2427 #endif /* CONFIG_TRACE_IRQFLAGS */
2428
inc_chains(int irq_context)2429 static void inc_chains(int irq_context)
2430 {
2431 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2432 nr_hardirq_chains++;
2433 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2434 nr_softirq_chains++;
2435 else
2436 nr_process_chains++;
2437 }
2438
dec_chains(int irq_context)2439 static void dec_chains(int irq_context)
2440 {
2441 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2442 nr_hardirq_chains--;
2443 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2444 nr_softirq_chains--;
2445 else
2446 nr_process_chains--;
2447 }
2448
2449 static void
print_deadlock_scenario(struct held_lock * nxt,struct held_lock * prv)2450 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2451 {
2452 struct lock_class *next = hlock_class(nxt);
2453 struct lock_class *prev = hlock_class(prv);
2454
2455 printk(" Possible unsafe locking scenario:\n\n");
2456 printk(" CPU0\n");
2457 printk(" ----\n");
2458 printk(" lock(");
2459 __print_lock_name(prev);
2460 printk(KERN_CONT ");\n");
2461 printk(" lock(");
2462 __print_lock_name(next);
2463 printk(KERN_CONT ");\n");
2464 printk("\n *** DEADLOCK ***\n\n");
2465 printk(" May be due to missing lock nesting notation\n\n");
2466 }
2467
2468 static void
print_deadlock_bug(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2469 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2470 struct held_lock *next)
2471 {
2472 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2473 return;
2474
2475 pr_warn("\n");
2476 pr_warn("============================================\n");
2477 pr_warn("WARNING: possible recursive locking detected\n");
2478 print_kernel_ident();
2479 pr_warn("--------------------------------------------\n");
2480 pr_warn("%s/%d is trying to acquire lock:\n",
2481 curr->comm, task_pid_nr(curr));
2482 print_lock(next);
2483 pr_warn("\nbut task is already holding lock:\n");
2484 print_lock(prev);
2485
2486 pr_warn("\nother info that might help us debug this:\n");
2487 print_deadlock_scenario(next, prev);
2488 lockdep_print_held_locks(curr);
2489
2490 pr_warn("\nstack backtrace:\n");
2491 dump_stack();
2492 }
2493
2494 /*
2495 * Check whether we are holding such a class already.
2496 *
2497 * (Note that this has to be done separately, because the graph cannot
2498 * detect such classes of deadlocks.)
2499 *
2500 * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read
2501 */
2502 static int
check_deadlock(struct task_struct * curr,struct held_lock * next)2503 check_deadlock(struct task_struct *curr, struct held_lock *next)
2504 {
2505 struct held_lock *prev;
2506 struct held_lock *nest = NULL;
2507 int i;
2508
2509 for (i = 0; i < curr->lockdep_depth; i++) {
2510 prev = curr->held_locks + i;
2511
2512 if (prev->instance == next->nest_lock)
2513 nest = prev;
2514
2515 if (hlock_class(prev) != hlock_class(next))
2516 continue;
2517
2518 /*
2519 * Allow read-after-read recursion of the same
2520 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2521 */
2522 if ((next->read == 2) && prev->read)
2523 return 2;
2524
2525 /*
2526 * We're holding the nest_lock, which serializes this lock's
2527 * nesting behaviour.
2528 */
2529 if (nest)
2530 return 2;
2531
2532 print_deadlock_bug(curr, prev, next);
2533 return 0;
2534 }
2535 return 1;
2536 }
2537
2538 /*
2539 * There was a chain-cache miss, and we are about to add a new dependency
2540 * to a previous lock. We validate the following rules:
2541 *
2542 * - would the adding of the <prev> -> <next> dependency create a
2543 * circular dependency in the graph? [== circular deadlock]
2544 *
2545 * - does the new prev->next dependency connect any hardirq-safe lock
2546 * (in the full backwards-subgraph starting at <prev>) with any
2547 * hardirq-unsafe lock (in the full forwards-subgraph starting at
2548 * <next>)? [== illegal lock inversion with hardirq contexts]
2549 *
2550 * - does the new prev->next dependency connect any softirq-safe lock
2551 * (in the full backwards-subgraph starting at <prev>) with any
2552 * softirq-unsafe lock (in the full forwards-subgraph starting at
2553 * <next>)? [== illegal lock inversion with softirq contexts]
2554 *
2555 * any of these scenarios could lead to a deadlock.
2556 *
2557 * Then if all the validations pass, we add the forwards and backwards
2558 * dependency.
2559 */
2560 static int
check_prev_add(struct task_struct * curr,struct held_lock * prev,struct held_lock * next,int distance,struct lock_trace ** const trace)2561 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2562 struct held_lock *next, int distance,
2563 struct lock_trace **const trace)
2564 {
2565 struct lock_list *entry;
2566 int ret;
2567
2568 if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2569 /*
2570 * The warning statements below may trigger a use-after-free
2571 * of the class name. It is better to trigger a use-after free
2572 * and to have the class name most of the time instead of not
2573 * having the class name available.
2574 */
2575 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2576 "Detected use-after-free of lock class %px/%s\n",
2577 hlock_class(prev),
2578 hlock_class(prev)->name);
2579 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2580 "Detected use-after-free of lock class %px/%s\n",
2581 hlock_class(next),
2582 hlock_class(next)->name);
2583 return 2;
2584 }
2585
2586 /*
2587 * Prove that the new <prev> -> <next> dependency would not
2588 * create a circular dependency in the graph. (We do this by
2589 * a breadth-first search into the graph starting at <next>,
2590 * and check whether we can reach <prev>.)
2591 *
2592 * The search is limited by the size of the circular queue (i.e.,
2593 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2594 * in the graph whose neighbours are to be checked.
2595 */
2596 ret = check_noncircular(next, prev, trace);
2597 if (unlikely(ret <= 0))
2598 return 0;
2599
2600 if (!check_irq_usage(curr, prev, next))
2601 return 0;
2602
2603 /*
2604 * For recursive read-locks we do all the dependency checks,
2605 * but we dont store read-triggered dependencies (only
2606 * write-triggered dependencies). This ensures that only the
2607 * write-side dependencies matter, and that if for example a
2608 * write-lock never takes any other locks, then the reads are
2609 * equivalent to a NOP.
2610 */
2611 if (next->read == 2 || prev->read == 2)
2612 return 1;
2613 /*
2614 * Is the <prev> -> <next> dependency already present?
2615 *
2616 * (this may occur even though this is a new chain: consider
2617 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2618 * chains - the second one will be new, but L1 already has
2619 * L2 added to its dependency list, due to the first chain.)
2620 */
2621 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2622 if (entry->class == hlock_class(next)) {
2623 if (distance == 1)
2624 entry->distance = 1;
2625 return 1;
2626 }
2627 }
2628
2629 #ifdef CONFIG_LOCKDEP_SMALL
2630 /*
2631 * Is the <prev> -> <next> link redundant?
2632 */
2633 ret = check_redundant(prev, next);
2634 if (ret != 1)
2635 return ret;
2636 #endif
2637
2638 if (!*trace) {
2639 *trace = save_trace();
2640 if (!*trace)
2641 return 0;
2642 }
2643
2644 /*
2645 * Ok, all validations passed, add the new lock
2646 * to the previous lock's dependency list:
2647 */
2648 ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
2649 &hlock_class(prev)->locks_after,
2650 next->acquire_ip, distance, *trace);
2651
2652 if (!ret)
2653 return 0;
2654
2655 ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
2656 &hlock_class(next)->locks_before,
2657 next->acquire_ip, distance, *trace);
2658 if (!ret)
2659 return 0;
2660
2661 return 2;
2662 }
2663
2664 /*
2665 * Add the dependency to all directly-previous locks that are 'relevant'.
2666 * The ones that are relevant are (in increasing distance from curr):
2667 * all consecutive trylock entries and the final non-trylock entry - or
2668 * the end of this context's lock-chain - whichever comes first.
2669 */
2670 static int
check_prevs_add(struct task_struct * curr,struct held_lock * next)2671 check_prevs_add(struct task_struct *curr, struct held_lock *next)
2672 {
2673 struct lock_trace *trace = NULL;
2674 int depth = curr->lockdep_depth;
2675 struct held_lock *hlock;
2676
2677 /*
2678 * Debugging checks.
2679 *
2680 * Depth must not be zero for a non-head lock:
2681 */
2682 if (!depth)
2683 goto out_bug;
2684 /*
2685 * At least two relevant locks must exist for this
2686 * to be a head:
2687 */
2688 if (curr->held_locks[depth].irq_context !=
2689 curr->held_locks[depth-1].irq_context)
2690 goto out_bug;
2691
2692 for (;;) {
2693 int distance = curr->lockdep_depth - depth + 1;
2694 hlock = curr->held_locks + depth - 1;
2695
2696 /*
2697 * Only non-recursive-read entries get new dependencies
2698 * added:
2699 */
2700 if (hlock->read != 2 && hlock->check) {
2701 int ret = check_prev_add(curr, hlock, next, distance,
2702 &trace);
2703 if (!ret)
2704 return 0;
2705
2706 /*
2707 * Stop after the first non-trylock entry,
2708 * as non-trylock entries have added their
2709 * own direct dependencies already, so this
2710 * lock is connected to them indirectly:
2711 */
2712 if (!hlock->trylock)
2713 break;
2714 }
2715
2716 depth--;
2717 /*
2718 * End of lock-stack?
2719 */
2720 if (!depth)
2721 break;
2722 /*
2723 * Stop the search if we cross into another context:
2724 */
2725 if (curr->held_locks[depth].irq_context !=
2726 curr->held_locks[depth-1].irq_context)
2727 break;
2728 }
2729 return 1;
2730 out_bug:
2731 if (!debug_locks_off_graph_unlock())
2732 return 0;
2733
2734 /*
2735 * Clearly we all shouldn't be here, but since we made it we
2736 * can reliable say we messed up our state. See the above two
2737 * gotos for reasons why we could possibly end up here.
2738 */
2739 WARN_ON(1);
2740
2741 return 0;
2742 }
2743
2744 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
2745 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
2746 int nr_chain_hlocks;
2747 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
2748
lock_chain_get_class(struct lock_chain * chain,int i)2749 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
2750 {
2751 return lock_classes + chain_hlocks[chain->base + i];
2752 }
2753
2754 /*
2755 * Returns the index of the first held_lock of the current chain
2756 */
get_first_held_lock(struct task_struct * curr,struct held_lock * hlock)2757 static inline int get_first_held_lock(struct task_struct *curr,
2758 struct held_lock *hlock)
2759 {
2760 int i;
2761 struct held_lock *hlock_curr;
2762
2763 for (i = curr->lockdep_depth - 1; i >= 0; i--) {
2764 hlock_curr = curr->held_locks + i;
2765 if (hlock_curr->irq_context != hlock->irq_context)
2766 break;
2767
2768 }
2769
2770 return ++i;
2771 }
2772
2773 #ifdef CONFIG_DEBUG_LOCKDEP
2774 /*
2775 * Returns the next chain_key iteration
2776 */
print_chain_key_iteration(int class_idx,u64 chain_key)2777 static u64 print_chain_key_iteration(int class_idx, u64 chain_key)
2778 {
2779 u64 new_chain_key = iterate_chain_key(chain_key, class_idx);
2780
2781 printk(" class_idx:%d -> chain_key:%016Lx",
2782 class_idx,
2783 (unsigned long long)new_chain_key);
2784 return new_chain_key;
2785 }
2786
2787 static void
print_chain_keys_held_locks(struct task_struct * curr,struct held_lock * hlock_next)2788 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
2789 {
2790 struct held_lock *hlock;
2791 u64 chain_key = INITIAL_CHAIN_KEY;
2792 int depth = curr->lockdep_depth;
2793 int i = get_first_held_lock(curr, hlock_next);
2794
2795 printk("depth: %u (irq_context %u)\n", depth - i + 1,
2796 hlock_next->irq_context);
2797 for (; i < depth; i++) {
2798 hlock = curr->held_locks + i;
2799 chain_key = print_chain_key_iteration(hlock->class_idx, chain_key);
2800
2801 print_lock(hlock);
2802 }
2803
2804 print_chain_key_iteration(hlock_next->class_idx, chain_key);
2805 print_lock(hlock_next);
2806 }
2807
print_chain_keys_chain(struct lock_chain * chain)2808 static void print_chain_keys_chain(struct lock_chain *chain)
2809 {
2810 int i;
2811 u64 chain_key = INITIAL_CHAIN_KEY;
2812 int class_id;
2813
2814 printk("depth: %u\n", chain->depth);
2815 for (i = 0; i < chain->depth; i++) {
2816 class_id = chain_hlocks[chain->base + i];
2817 chain_key = print_chain_key_iteration(class_id, chain_key);
2818
2819 print_lock_name(lock_classes + class_id);
2820 printk("\n");
2821 }
2822 }
2823
print_collision(struct task_struct * curr,struct held_lock * hlock_next,struct lock_chain * chain)2824 static void print_collision(struct task_struct *curr,
2825 struct held_lock *hlock_next,
2826 struct lock_chain *chain)
2827 {
2828 pr_warn("\n");
2829 pr_warn("============================\n");
2830 pr_warn("WARNING: chain_key collision\n");
2831 print_kernel_ident();
2832 pr_warn("----------------------------\n");
2833 pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
2834 pr_warn("Hash chain already cached but the contents don't match!\n");
2835
2836 pr_warn("Held locks:");
2837 print_chain_keys_held_locks(curr, hlock_next);
2838
2839 pr_warn("Locks in cached chain:");
2840 print_chain_keys_chain(chain);
2841
2842 pr_warn("\nstack backtrace:\n");
2843 dump_stack();
2844 }
2845 #endif
2846
2847 /*
2848 * Checks whether the chain and the current held locks are consistent
2849 * in depth and also in content. If they are not it most likely means
2850 * that there was a collision during the calculation of the chain_key.
2851 * Returns: 0 not passed, 1 passed
2852 */
check_no_collision(struct task_struct * curr,struct held_lock * hlock,struct lock_chain * chain)2853 static int check_no_collision(struct task_struct *curr,
2854 struct held_lock *hlock,
2855 struct lock_chain *chain)
2856 {
2857 #ifdef CONFIG_DEBUG_LOCKDEP
2858 int i, j, id;
2859
2860 i = get_first_held_lock(curr, hlock);
2861
2862 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
2863 print_collision(curr, hlock, chain);
2864 return 0;
2865 }
2866
2867 for (j = 0; j < chain->depth - 1; j++, i++) {
2868 id = curr->held_locks[i].class_idx;
2869
2870 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
2871 print_collision(curr, hlock, chain);
2872 return 0;
2873 }
2874 }
2875 #endif
2876 return 1;
2877 }
2878
2879 /*
2880 * Given an index that is >= -1, return the index of the next lock chain.
2881 * Return -2 if there is no next lock chain.
2882 */
lockdep_next_lockchain(long i)2883 long lockdep_next_lockchain(long i)
2884 {
2885 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
2886 return i < ARRAY_SIZE(lock_chains) ? i : -2;
2887 }
2888
lock_chain_count(void)2889 unsigned long lock_chain_count(void)
2890 {
2891 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
2892 }
2893
2894 /* Must be called with the graph lock held. */
alloc_lock_chain(void)2895 static struct lock_chain *alloc_lock_chain(void)
2896 {
2897 int idx = find_first_zero_bit(lock_chains_in_use,
2898 ARRAY_SIZE(lock_chains));
2899
2900 if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
2901 return NULL;
2902 __set_bit(idx, lock_chains_in_use);
2903 return lock_chains + idx;
2904 }
2905
2906 /*
2907 * Adds a dependency chain into chain hashtable. And must be called with
2908 * graph_lock held.
2909 *
2910 * Return 0 if fail, and graph_lock is released.
2911 * Return 1 if succeed, with graph_lock held.
2912 */
add_chain_cache(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)2913 static inline int add_chain_cache(struct task_struct *curr,
2914 struct held_lock *hlock,
2915 u64 chain_key)
2916 {
2917 struct lock_class *class = hlock_class(hlock);
2918 struct hlist_head *hash_head = chainhashentry(chain_key);
2919 struct lock_chain *chain;
2920 int i, j;
2921
2922 /*
2923 * The caller must hold the graph lock, ensure we've got IRQs
2924 * disabled to make this an IRQ-safe lock.. for recursion reasons
2925 * lockdep won't complain about its own locking errors.
2926 */
2927 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2928 return 0;
2929
2930 chain = alloc_lock_chain();
2931 if (!chain) {
2932 if (!debug_locks_off_graph_unlock())
2933 return 0;
2934
2935 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
2936 dump_stack();
2937 return 0;
2938 }
2939 chain->chain_key = chain_key;
2940 chain->irq_context = hlock->irq_context;
2941 i = get_first_held_lock(curr, hlock);
2942 chain->depth = curr->lockdep_depth + 1 - i;
2943
2944 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
2945 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks));
2946 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
2947
2948 if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) {
2949 chain->base = nr_chain_hlocks;
2950 for (j = 0; j < chain->depth - 1; j++, i++) {
2951 int lock_id = curr->held_locks[i].class_idx;
2952 chain_hlocks[chain->base + j] = lock_id;
2953 }
2954 chain_hlocks[chain->base + j] = class - lock_classes;
2955 nr_chain_hlocks += chain->depth;
2956 } else {
2957 if (!debug_locks_off_graph_unlock())
2958 return 0;
2959
2960 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
2961 dump_stack();
2962 return 0;
2963 }
2964
2965 hlist_add_head_rcu(&chain->entry, hash_head);
2966 debug_atomic_inc(chain_lookup_misses);
2967 inc_chains(chain->irq_context);
2968
2969 return 1;
2970 }
2971
2972 /*
2973 * Look up a dependency chain. Must be called with either the graph lock or
2974 * the RCU read lock held.
2975 */
lookup_chain_cache(u64 chain_key)2976 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
2977 {
2978 struct hlist_head *hash_head = chainhashentry(chain_key);
2979 struct lock_chain *chain;
2980
2981 hlist_for_each_entry_rcu(chain, hash_head, entry) {
2982 if (READ_ONCE(chain->chain_key) == chain_key) {
2983 debug_atomic_inc(chain_lookup_hits);
2984 return chain;
2985 }
2986 }
2987 return NULL;
2988 }
2989
2990 /*
2991 * If the key is not present yet in dependency chain cache then
2992 * add it and return 1 - in this case the new dependency chain is
2993 * validated. If the key is already hashed, return 0.
2994 * (On return with 1 graph_lock is held.)
2995 */
lookup_chain_cache_add(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)2996 static inline int lookup_chain_cache_add(struct task_struct *curr,
2997 struct held_lock *hlock,
2998 u64 chain_key)
2999 {
3000 struct lock_class *class = hlock_class(hlock);
3001 struct lock_chain *chain = lookup_chain_cache(chain_key);
3002
3003 if (chain) {
3004 cache_hit:
3005 if (!check_no_collision(curr, hlock, chain))
3006 return 0;
3007
3008 if (very_verbose(class)) {
3009 printk("\nhash chain already cached, key: "
3010 "%016Lx tail class: [%px] %s\n",
3011 (unsigned long long)chain_key,
3012 class->key, class->name);
3013 }
3014
3015 return 0;
3016 }
3017
3018 if (very_verbose(class)) {
3019 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3020 (unsigned long long)chain_key, class->key, class->name);
3021 }
3022
3023 if (!graph_lock())
3024 return 0;
3025
3026 /*
3027 * We have to walk the chain again locked - to avoid duplicates:
3028 */
3029 chain = lookup_chain_cache(chain_key);
3030 if (chain) {
3031 graph_unlock();
3032 goto cache_hit;
3033 }
3034
3035 if (!add_chain_cache(curr, hlock, chain_key))
3036 return 0;
3037
3038 return 1;
3039 }
3040
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3041 static int validate_chain(struct task_struct *curr,
3042 struct held_lock *hlock,
3043 int chain_head, u64 chain_key)
3044 {
3045 /*
3046 * Trylock needs to maintain the stack of held locks, but it
3047 * does not add new dependencies, because trylock can be done
3048 * in any order.
3049 *
3050 * We look up the chain_key and do the O(N^2) check and update of
3051 * the dependencies only if this is a new dependency chain.
3052 * (If lookup_chain_cache_add() return with 1 it acquires
3053 * graph_lock for us)
3054 */
3055 if (!hlock->trylock && hlock->check &&
3056 lookup_chain_cache_add(curr, hlock, chain_key)) {
3057 /*
3058 * Check whether last held lock:
3059 *
3060 * - is irq-safe, if this lock is irq-unsafe
3061 * - is softirq-safe, if this lock is hardirq-unsafe
3062 *
3063 * And check whether the new lock's dependency graph
3064 * could lead back to the previous lock:
3065 *
3066 * - within the current held-lock stack
3067 * - across our accumulated lock dependency records
3068 *
3069 * any of these scenarios could lead to a deadlock.
3070 */
3071 /*
3072 * The simple case: does the current hold the same lock
3073 * already?
3074 */
3075 int ret = check_deadlock(curr, hlock);
3076
3077 if (!ret)
3078 return 0;
3079 /*
3080 * Mark recursive read, as we jump over it when
3081 * building dependencies (just like we jump over
3082 * trylock entries):
3083 */
3084 if (ret == 2)
3085 hlock->read = 2;
3086 /*
3087 * Add dependency only if this lock is not the head
3088 * of the chain, and if it's not a secondary read-lock:
3089 */
3090 if (!chain_head && ret != 2) {
3091 if (!check_prevs_add(curr, hlock))
3092 return 0;
3093 }
3094
3095 graph_unlock();
3096 } else {
3097 /* after lookup_chain_cache_add(): */
3098 if (unlikely(!debug_locks))
3099 return 0;
3100 }
3101
3102 return 1;
3103 }
3104 #else
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3105 static inline int validate_chain(struct task_struct *curr,
3106 struct held_lock *hlock,
3107 int chain_head, u64 chain_key)
3108 {
3109 return 1;
3110 }
3111 #endif /* CONFIG_PROVE_LOCKING */
3112
3113 /*
3114 * We are building curr_chain_key incrementally, so double-check
3115 * it from scratch, to make sure that it's done correctly:
3116 */
check_chain_key(struct task_struct * curr)3117 static void check_chain_key(struct task_struct *curr)
3118 {
3119 #ifdef CONFIG_DEBUG_LOCKDEP
3120 struct held_lock *hlock, *prev_hlock = NULL;
3121 unsigned int i;
3122 u64 chain_key = INITIAL_CHAIN_KEY;
3123
3124 for (i = 0; i < curr->lockdep_depth; i++) {
3125 hlock = curr->held_locks + i;
3126 if (chain_key != hlock->prev_chain_key) {
3127 debug_locks_off();
3128 /*
3129 * We got mighty confused, our chain keys don't match
3130 * with what we expect, someone trample on our task state?
3131 */
3132 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3133 curr->lockdep_depth, i,
3134 (unsigned long long)chain_key,
3135 (unsigned long long)hlock->prev_chain_key);
3136 return;
3137 }
3138
3139 /*
3140 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3141 * it registered lock class index?
3142 */
3143 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3144 return;
3145
3146 if (prev_hlock && (prev_hlock->irq_context !=
3147 hlock->irq_context))
3148 chain_key = INITIAL_CHAIN_KEY;
3149 chain_key = iterate_chain_key(chain_key, hlock->class_idx);
3150 prev_hlock = hlock;
3151 }
3152 if (chain_key != curr->curr_chain_key) {
3153 debug_locks_off();
3154 /*
3155 * More smoking hash instead of calculating it, damn see these
3156 * numbers float.. I bet that a pink elephant stepped on my memory.
3157 */
3158 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3159 curr->lockdep_depth, i,
3160 (unsigned long long)chain_key,
3161 (unsigned long long)curr->curr_chain_key);
3162 }
3163 #endif
3164 }
3165
3166 #ifdef CONFIG_PROVE_LOCKING
3167 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3168 enum lock_usage_bit new_bit);
3169
print_usage_bug_scenario(struct held_lock * lock)3170 static void print_usage_bug_scenario(struct held_lock *lock)
3171 {
3172 struct lock_class *class = hlock_class(lock);
3173
3174 printk(" Possible unsafe locking scenario:\n\n");
3175 printk(" CPU0\n");
3176 printk(" ----\n");
3177 printk(" lock(");
3178 __print_lock_name(class);
3179 printk(KERN_CONT ");\n");
3180 printk(" <Interrupt>\n");
3181 printk(" lock(");
3182 __print_lock_name(class);
3183 printk(KERN_CONT ");\n");
3184 printk("\n *** DEADLOCK ***\n\n");
3185 }
3186
3187 static void
print_usage_bug(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit prev_bit,enum lock_usage_bit new_bit)3188 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3189 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3190 {
3191 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3192 return;
3193
3194 pr_warn("\n");
3195 pr_warn("================================\n");
3196 pr_warn("WARNING: inconsistent lock state\n");
3197 print_kernel_ident();
3198 pr_warn("--------------------------------\n");
3199
3200 pr_warn("inconsistent {%s} -> {%s} usage.\n",
3201 usage_str[prev_bit], usage_str[new_bit]);
3202
3203 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3204 curr->comm, task_pid_nr(curr),
3205 trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT,
3206 trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3207 trace_hardirqs_enabled(curr),
3208 trace_softirqs_enabled(curr));
3209 print_lock(this);
3210
3211 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3212 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3213
3214 print_irqtrace_events(curr);
3215 pr_warn("\nother info that might help us debug this:\n");
3216 print_usage_bug_scenario(this);
3217
3218 lockdep_print_held_locks(curr);
3219
3220 pr_warn("\nstack backtrace:\n");
3221 dump_stack();
3222 }
3223
3224 /*
3225 * Print out an error if an invalid bit is set:
3226 */
3227 static inline int
valid_state(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit,enum lock_usage_bit bad_bit)3228 valid_state(struct task_struct *curr, struct held_lock *this,
3229 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3230 {
3231 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3232 print_usage_bug(curr, this, bad_bit, new_bit);
3233 return 0;
3234 }
3235 return 1;
3236 }
3237
3238
3239 /*
3240 * print irq inversion bug:
3241 */
3242 static void
print_irq_inversion_bug(struct task_struct * curr,struct lock_list * root,struct lock_list * other,struct held_lock * this,int forwards,const char * irqclass)3243 print_irq_inversion_bug(struct task_struct *curr,
3244 struct lock_list *root, struct lock_list *other,
3245 struct held_lock *this, int forwards,
3246 const char *irqclass)
3247 {
3248 struct lock_list *entry = other;
3249 struct lock_list *middle = NULL;
3250 int depth;
3251
3252 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3253 return;
3254
3255 pr_warn("\n");
3256 pr_warn("========================================================\n");
3257 pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3258 print_kernel_ident();
3259 pr_warn("--------------------------------------------------------\n");
3260 pr_warn("%s/%d just changed the state of lock:\n",
3261 curr->comm, task_pid_nr(curr));
3262 print_lock(this);
3263 if (forwards)
3264 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3265 else
3266 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3267 print_lock_name(other->class);
3268 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3269
3270 pr_warn("\nother info that might help us debug this:\n");
3271
3272 /* Find a middle lock (if one exists) */
3273 depth = get_lock_depth(other);
3274 do {
3275 if (depth == 0 && (entry != root)) {
3276 pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3277 break;
3278 }
3279 middle = entry;
3280 entry = get_lock_parent(entry);
3281 depth--;
3282 } while (entry && entry != root && (depth >= 0));
3283 if (forwards)
3284 print_irq_lock_scenario(root, other,
3285 middle ? middle->class : root->class, other->class);
3286 else
3287 print_irq_lock_scenario(other, root,
3288 middle ? middle->class : other->class, root->class);
3289
3290 lockdep_print_held_locks(curr);
3291
3292 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3293 root->trace = save_trace();
3294 if (!root->trace)
3295 return;
3296 print_shortest_lock_dependencies(other, root);
3297
3298 pr_warn("\nstack backtrace:\n");
3299 dump_stack();
3300 }
3301
3302 /*
3303 * Prove that in the forwards-direction subgraph starting at <this>
3304 * there is no lock matching <mask>:
3305 */
3306 static int
check_usage_forwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit,const char * irqclass)3307 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3308 enum lock_usage_bit bit, const char *irqclass)
3309 {
3310 int ret;
3311 struct lock_list root;
3312 struct lock_list *uninitialized_var(target_entry);
3313
3314 root.parent = NULL;
3315 root.class = hlock_class(this);
3316 ret = find_usage_forwards(&root, lock_flag(bit), &target_entry);
3317 if (ret < 0) {
3318 print_bfs_bug(ret);
3319 return 0;
3320 }
3321 if (ret == 1)
3322 return ret;
3323
3324 print_irq_inversion_bug(curr, &root, target_entry,
3325 this, 1, irqclass);
3326 return 0;
3327 }
3328
3329 /*
3330 * Prove that in the backwards-direction subgraph starting at <this>
3331 * there is no lock matching <mask>:
3332 */
3333 static int
check_usage_backwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit,const char * irqclass)3334 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3335 enum lock_usage_bit bit, const char *irqclass)
3336 {
3337 int ret;
3338 struct lock_list root;
3339 struct lock_list *target_entry;
3340
3341 root.parent = NULL;
3342 root.class = hlock_class(this);
3343 ret = find_usage_backwards(&root, lock_flag(bit), &target_entry);
3344 if (ret < 0) {
3345 print_bfs_bug(ret);
3346 return 0;
3347 }
3348 if (ret == 1)
3349 return ret;
3350
3351 print_irq_inversion_bug(curr, &root, target_entry,
3352 this, 0, irqclass);
3353 return 0;
3354 }
3355
print_irqtrace_events(struct task_struct * curr)3356 void print_irqtrace_events(struct task_struct *curr)
3357 {
3358 printk("irq event stamp: %u\n", curr->irq_events);
3359 printk("hardirqs last enabled at (%u): [<%px>] %pS\n",
3360 curr->hardirq_enable_event, (void *)curr->hardirq_enable_ip,
3361 (void *)curr->hardirq_enable_ip);
3362 printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3363 curr->hardirq_disable_event, (void *)curr->hardirq_disable_ip,
3364 (void *)curr->hardirq_disable_ip);
3365 printk("softirqs last enabled at (%u): [<%px>] %pS\n",
3366 curr->softirq_enable_event, (void *)curr->softirq_enable_ip,
3367 (void *)curr->softirq_enable_ip);
3368 printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3369 curr->softirq_disable_event, (void *)curr->softirq_disable_ip,
3370 (void *)curr->softirq_disable_ip);
3371 }
3372
HARDIRQ_verbose(struct lock_class * class)3373 static int HARDIRQ_verbose(struct lock_class *class)
3374 {
3375 #if HARDIRQ_VERBOSE
3376 return class_filter(class);
3377 #endif
3378 return 0;
3379 }
3380
SOFTIRQ_verbose(struct lock_class * class)3381 static int SOFTIRQ_verbose(struct lock_class *class)
3382 {
3383 #if SOFTIRQ_VERBOSE
3384 return class_filter(class);
3385 #endif
3386 return 0;
3387 }
3388
3389 #define STRICT_READ_CHECKS 1
3390
3391 static int (*state_verbose_f[])(struct lock_class *class) = {
3392 #define LOCKDEP_STATE(__STATE) \
3393 __STATE##_verbose,
3394 #include "lockdep_states.h"
3395 #undef LOCKDEP_STATE
3396 };
3397
state_verbose(enum lock_usage_bit bit,struct lock_class * class)3398 static inline int state_verbose(enum lock_usage_bit bit,
3399 struct lock_class *class)
3400 {
3401 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
3402 }
3403
3404 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
3405 enum lock_usage_bit bit, const char *name);
3406
3407 static int
mark_lock_irq(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)3408 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
3409 enum lock_usage_bit new_bit)
3410 {
3411 int excl_bit = exclusive_bit(new_bit);
3412 int read = new_bit & LOCK_USAGE_READ_MASK;
3413 int dir = new_bit & LOCK_USAGE_DIR_MASK;
3414
3415 /*
3416 * mark USED_IN has to look forwards -- to ensure no dependency
3417 * has ENABLED state, which would allow recursion deadlocks.
3418 *
3419 * mark ENABLED has to look backwards -- to ensure no dependee
3420 * has USED_IN state, which, again, would allow recursion deadlocks.
3421 */
3422 check_usage_f usage = dir ?
3423 check_usage_backwards : check_usage_forwards;
3424
3425 /*
3426 * Validate that this particular lock does not have conflicting
3427 * usage states.
3428 */
3429 if (!valid_state(curr, this, new_bit, excl_bit))
3430 return 0;
3431
3432 /*
3433 * Validate that the lock dependencies don't have conflicting usage
3434 * states.
3435 */
3436 if ((!read || STRICT_READ_CHECKS) &&
3437 !usage(curr, this, excl_bit, state_name(new_bit & ~LOCK_USAGE_READ_MASK)))
3438 return 0;
3439
3440 /*
3441 * Check for read in write conflicts
3442 */
3443 if (!read) {
3444 if (!valid_state(curr, this, new_bit, excl_bit + LOCK_USAGE_READ_MASK))
3445 return 0;
3446
3447 if (STRICT_READ_CHECKS &&
3448 !usage(curr, this, excl_bit + LOCK_USAGE_READ_MASK,
3449 state_name(new_bit + LOCK_USAGE_READ_MASK)))
3450 return 0;
3451 }
3452
3453 if (state_verbose(new_bit, hlock_class(this)))
3454 return 2;
3455
3456 return 1;
3457 }
3458
3459 /*
3460 * Mark all held locks with a usage bit:
3461 */
3462 static int
mark_held_locks(struct task_struct * curr,enum lock_usage_bit base_bit)3463 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
3464 {
3465 struct held_lock *hlock;
3466 int i;
3467
3468 for (i = 0; i < curr->lockdep_depth; i++) {
3469 enum lock_usage_bit hlock_bit = base_bit;
3470 hlock = curr->held_locks + i;
3471
3472 if (hlock->read)
3473 hlock_bit += LOCK_USAGE_READ_MASK;
3474
3475 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
3476
3477 if (!hlock->check)
3478 continue;
3479
3480 if (!mark_lock(curr, hlock, hlock_bit))
3481 return 0;
3482 }
3483
3484 return 1;
3485 }
3486
3487 /*
3488 * Hardirqs will be enabled:
3489 */
__trace_hardirqs_on_caller(unsigned long ip)3490 static void __trace_hardirqs_on_caller(unsigned long ip)
3491 {
3492 struct task_struct *curr = current;
3493
3494 /* we'll do an OFF -> ON transition: */
3495 curr->hardirqs_enabled = 1;
3496
3497 /*
3498 * We are going to turn hardirqs on, so set the
3499 * usage bit for all held locks:
3500 */
3501 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
3502 return;
3503 /*
3504 * If we have softirqs enabled, then set the usage
3505 * bit for all held locks. (disabled hardirqs prevented
3506 * this bit from being set before)
3507 */
3508 if (curr->softirqs_enabled)
3509 if (!mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ))
3510 return;
3511
3512 curr->hardirq_enable_ip = ip;
3513 curr->hardirq_enable_event = ++curr->irq_events;
3514 debug_atomic_inc(hardirqs_on_events);
3515 }
3516
lockdep_hardirqs_on(unsigned long ip)3517 void lockdep_hardirqs_on(unsigned long ip)
3518 {
3519 if (unlikely(!debug_locks || current->lockdep_recursion))
3520 return;
3521
3522 if (unlikely(current->hardirqs_enabled)) {
3523 /*
3524 * Neither irq nor preemption are disabled here
3525 * so this is racy by nature but losing one hit
3526 * in a stat is not a big deal.
3527 */
3528 __debug_atomic_inc(redundant_hardirqs_on);
3529 return;
3530 }
3531
3532 /*
3533 * We're enabling irqs and according to our state above irqs weren't
3534 * already enabled, yet we find the hardware thinks they are in fact
3535 * enabled.. someone messed up their IRQ state tracing.
3536 */
3537 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3538 return;
3539
3540 /*
3541 * See the fine text that goes along with this variable definition.
3542 */
3543 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
3544 return;
3545
3546 /*
3547 * Can't allow enabling interrupts while in an interrupt handler,
3548 * that's general bad form and such. Recursion, limited stack etc..
3549 */
3550 if (DEBUG_LOCKS_WARN_ON(current->hardirq_context))
3551 return;
3552
3553 current->lockdep_recursion = 1;
3554 __trace_hardirqs_on_caller(ip);
3555 current->lockdep_recursion = 0;
3556 }
3557 NOKPROBE_SYMBOL(lockdep_hardirqs_on);
3558
3559 /*
3560 * Hardirqs were disabled:
3561 */
lockdep_hardirqs_off(unsigned long ip)3562 void lockdep_hardirqs_off(unsigned long ip)
3563 {
3564 struct task_struct *curr = current;
3565
3566 if (unlikely(!debug_locks || current->lockdep_recursion))
3567 return;
3568
3569 /*
3570 * So we're supposed to get called after you mask local IRQs, but for
3571 * some reason the hardware doesn't quite think you did a proper job.
3572 */
3573 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3574 return;
3575
3576 if (curr->hardirqs_enabled) {
3577 /*
3578 * We have done an ON -> OFF transition:
3579 */
3580 curr->hardirqs_enabled = 0;
3581 curr->hardirq_disable_ip = ip;
3582 curr->hardirq_disable_event = ++curr->irq_events;
3583 debug_atomic_inc(hardirqs_off_events);
3584 } else
3585 debug_atomic_inc(redundant_hardirqs_off);
3586 }
3587 NOKPROBE_SYMBOL(lockdep_hardirqs_off);
3588
3589 /*
3590 * Softirqs will be enabled:
3591 */
trace_softirqs_on(unsigned long ip)3592 void trace_softirqs_on(unsigned long ip)
3593 {
3594 struct task_struct *curr = current;
3595
3596 if (unlikely(!debug_locks || current->lockdep_recursion))
3597 return;
3598
3599 /*
3600 * We fancy IRQs being disabled here, see softirq.c, avoids
3601 * funny state and nesting things.
3602 */
3603 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3604 return;
3605
3606 if (curr->softirqs_enabled) {
3607 debug_atomic_inc(redundant_softirqs_on);
3608 return;
3609 }
3610
3611 current->lockdep_recursion = 1;
3612 /*
3613 * We'll do an OFF -> ON transition:
3614 */
3615 curr->softirqs_enabled = 1;
3616 curr->softirq_enable_ip = ip;
3617 curr->softirq_enable_event = ++curr->irq_events;
3618 debug_atomic_inc(softirqs_on_events);
3619 /*
3620 * We are going to turn softirqs on, so set the
3621 * usage bit for all held locks, if hardirqs are
3622 * enabled too:
3623 */
3624 if (curr->hardirqs_enabled)
3625 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
3626 current->lockdep_recursion = 0;
3627 }
3628
3629 /*
3630 * Softirqs were disabled:
3631 */
trace_softirqs_off(unsigned long ip)3632 void trace_softirqs_off(unsigned long ip)
3633 {
3634 struct task_struct *curr = current;
3635
3636 if (unlikely(!debug_locks || current->lockdep_recursion))
3637 return;
3638
3639 /*
3640 * We fancy IRQs being disabled here, see softirq.c
3641 */
3642 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3643 return;
3644
3645 if (curr->softirqs_enabled) {
3646 /*
3647 * We have done an ON -> OFF transition:
3648 */
3649 curr->softirqs_enabled = 0;
3650 curr->softirq_disable_ip = ip;
3651 curr->softirq_disable_event = ++curr->irq_events;
3652 debug_atomic_inc(softirqs_off_events);
3653 /*
3654 * Whoops, we wanted softirqs off, so why aren't they?
3655 */
3656 DEBUG_LOCKS_WARN_ON(!softirq_count());
3657 } else
3658 debug_atomic_inc(redundant_softirqs_off);
3659 }
3660
3661 static int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)3662 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
3663 {
3664 if (!check)
3665 goto lock_used;
3666
3667 /*
3668 * If non-trylock use in a hardirq or softirq context, then
3669 * mark the lock as used in these contexts:
3670 */
3671 if (!hlock->trylock) {
3672 if (hlock->read) {
3673 if (curr->hardirq_context)
3674 if (!mark_lock(curr, hlock,
3675 LOCK_USED_IN_HARDIRQ_READ))
3676 return 0;
3677 if (curr->softirq_context)
3678 if (!mark_lock(curr, hlock,
3679 LOCK_USED_IN_SOFTIRQ_READ))
3680 return 0;
3681 } else {
3682 if (curr->hardirq_context)
3683 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
3684 return 0;
3685 if (curr->softirq_context)
3686 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
3687 return 0;
3688 }
3689 }
3690 if (!hlock->hardirqs_off) {
3691 if (hlock->read) {
3692 if (!mark_lock(curr, hlock,
3693 LOCK_ENABLED_HARDIRQ_READ))
3694 return 0;
3695 if (curr->softirqs_enabled)
3696 if (!mark_lock(curr, hlock,
3697 LOCK_ENABLED_SOFTIRQ_READ))
3698 return 0;
3699 } else {
3700 if (!mark_lock(curr, hlock,
3701 LOCK_ENABLED_HARDIRQ))
3702 return 0;
3703 if (curr->softirqs_enabled)
3704 if (!mark_lock(curr, hlock,
3705 LOCK_ENABLED_SOFTIRQ))
3706 return 0;
3707 }
3708 }
3709
3710 lock_used:
3711 /* mark it as used: */
3712 if (!mark_lock(curr, hlock, LOCK_USED))
3713 return 0;
3714
3715 return 1;
3716 }
3717
task_irq_context(struct task_struct * task)3718 static inline unsigned int task_irq_context(struct task_struct *task)
3719 {
3720 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!task->hardirq_context +
3721 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
3722 }
3723
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)3724 static int separate_irq_context(struct task_struct *curr,
3725 struct held_lock *hlock)
3726 {
3727 unsigned int depth = curr->lockdep_depth;
3728
3729 /*
3730 * Keep track of points where we cross into an interrupt context:
3731 */
3732 if (depth) {
3733 struct held_lock *prev_hlock;
3734
3735 prev_hlock = curr->held_locks + depth-1;
3736 /*
3737 * If we cross into another context, reset the
3738 * hash key (this also prevents the checking and the
3739 * adding of the dependency to 'prev'):
3740 */
3741 if (prev_hlock->irq_context != hlock->irq_context)
3742 return 1;
3743 }
3744 return 0;
3745 }
3746
3747 /*
3748 * Mark a lock with a usage bit, and validate the state transition:
3749 */
mark_lock(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)3750 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3751 enum lock_usage_bit new_bit)
3752 {
3753 unsigned int new_mask = 1 << new_bit, ret = 1;
3754
3755 if (new_bit >= LOCK_USAGE_STATES) {
3756 DEBUG_LOCKS_WARN_ON(1);
3757 return 0;
3758 }
3759
3760 /*
3761 * If already set then do not dirty the cacheline,
3762 * nor do any checks:
3763 */
3764 if (likely(hlock_class(this)->usage_mask & new_mask))
3765 return 1;
3766
3767 if (!graph_lock())
3768 return 0;
3769 /*
3770 * Make sure we didn't race:
3771 */
3772 if (unlikely(hlock_class(this)->usage_mask & new_mask)) {
3773 graph_unlock();
3774 return 1;
3775 }
3776
3777 hlock_class(this)->usage_mask |= new_mask;
3778
3779 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
3780 return 0;
3781
3782 switch (new_bit) {
3783 case LOCK_USED:
3784 debug_atomic_dec(nr_unused_locks);
3785 break;
3786 default:
3787 ret = mark_lock_irq(curr, this, new_bit);
3788 if (!ret)
3789 return 0;
3790 }
3791
3792 graph_unlock();
3793
3794 /*
3795 * We must printk outside of the graph_lock:
3796 */
3797 if (ret == 2) {
3798 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
3799 print_lock(this);
3800 print_irqtrace_events(curr);
3801 dump_stack();
3802 }
3803
3804 return ret;
3805 }
3806
3807 #else /* CONFIG_PROVE_LOCKING */
3808
3809 static inline int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)3810 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
3811 {
3812 return 1;
3813 }
3814
task_irq_context(struct task_struct * task)3815 static inline unsigned int task_irq_context(struct task_struct *task)
3816 {
3817 return 0;
3818 }
3819
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)3820 static inline int separate_irq_context(struct task_struct *curr,
3821 struct held_lock *hlock)
3822 {
3823 return 0;
3824 }
3825
3826 #endif /* CONFIG_PROVE_LOCKING */
3827
3828 /*
3829 * Initialize a lock instance's lock-class mapping info:
3830 */
lockdep_init_map(struct lockdep_map * lock,const char * name,struct lock_class_key * key,int subclass)3831 void lockdep_init_map(struct lockdep_map *lock, const char *name,
3832 struct lock_class_key *key, int subclass)
3833 {
3834 int i;
3835
3836 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
3837 lock->class_cache[i] = NULL;
3838
3839 #ifdef CONFIG_LOCK_STAT
3840 lock->cpu = raw_smp_processor_id();
3841 #endif
3842
3843 /*
3844 * Can't be having no nameless bastards around this place!
3845 */
3846 if (DEBUG_LOCKS_WARN_ON(!name)) {
3847 lock->name = "NULL";
3848 return;
3849 }
3850
3851 lock->name = name;
3852
3853 /*
3854 * No key, no joy, we need to hash something.
3855 */
3856 if (DEBUG_LOCKS_WARN_ON(!key))
3857 return;
3858 /*
3859 * Sanity check, the lock-class key must either have been allocated
3860 * statically or must have been registered as a dynamic key.
3861 */
3862 if (!static_obj(key) && !is_dynamic_key(key)) {
3863 if (debug_locks)
3864 printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
3865 DEBUG_LOCKS_WARN_ON(1);
3866 return;
3867 }
3868 lock->key = key;
3869
3870 if (unlikely(!debug_locks))
3871 return;
3872
3873 if (subclass) {
3874 unsigned long flags;
3875
3876 if (DEBUG_LOCKS_WARN_ON(current->lockdep_recursion))
3877 return;
3878
3879 raw_local_irq_save(flags);
3880 current->lockdep_recursion = 1;
3881 register_lock_class(lock, subclass, 1);
3882 current->lockdep_recursion = 0;
3883 raw_local_irq_restore(flags);
3884 }
3885 }
3886 EXPORT_SYMBOL_GPL(lockdep_init_map);
3887
3888 struct lock_class_key __lockdep_no_validate__;
3889 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
3890
3891 static void
print_lock_nested_lock_not_held(struct task_struct * curr,struct held_lock * hlock,unsigned long ip)3892 print_lock_nested_lock_not_held(struct task_struct *curr,
3893 struct held_lock *hlock,
3894 unsigned long ip)
3895 {
3896 if (!debug_locks_off())
3897 return;
3898 if (debug_locks_silent)
3899 return;
3900
3901 pr_warn("\n");
3902 pr_warn("==================================\n");
3903 pr_warn("WARNING: Nested lock was not taken\n");
3904 print_kernel_ident();
3905 pr_warn("----------------------------------\n");
3906
3907 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
3908 print_lock(hlock);
3909
3910 pr_warn("\nbut this task is not holding:\n");
3911 pr_warn("%s\n", hlock->nest_lock->name);
3912
3913 pr_warn("\nstack backtrace:\n");
3914 dump_stack();
3915
3916 pr_warn("\nother info that might help us debug this:\n");
3917 lockdep_print_held_locks(curr);
3918
3919 pr_warn("\nstack backtrace:\n");
3920 dump_stack();
3921 }
3922
3923 static int __lock_is_held(const struct lockdep_map *lock, int read);
3924
3925 /*
3926 * This gets called for every mutex_lock*()/spin_lock*() operation.
3927 * We maintain the dependency maps and validate the locking attempt:
3928 *
3929 * The callers must make sure that IRQs are disabled before calling it,
3930 * otherwise we could get an interrupt which would want to take locks,
3931 * which would end up in lockdep again.
3932 */
__lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,int hardirqs_off,struct lockdep_map * nest_lock,unsigned long ip,int references,int pin_count)3933 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3934 int trylock, int read, int check, int hardirqs_off,
3935 struct lockdep_map *nest_lock, unsigned long ip,
3936 int references, int pin_count)
3937 {
3938 struct task_struct *curr = current;
3939 struct lock_class *class = NULL;
3940 struct held_lock *hlock;
3941 unsigned int depth;
3942 int chain_head = 0;
3943 int class_idx;
3944 u64 chain_key;
3945
3946 if (unlikely(!debug_locks))
3947 return 0;
3948
3949 if (!prove_locking || lock->key == &__lockdep_no_validate__)
3950 check = 0;
3951
3952 if (subclass < NR_LOCKDEP_CACHING_CLASSES)
3953 class = lock->class_cache[subclass];
3954 /*
3955 * Not cached?
3956 */
3957 if (unlikely(!class)) {
3958 class = register_lock_class(lock, subclass, 0);
3959 if (!class)
3960 return 0;
3961 }
3962
3963 debug_class_ops_inc(class);
3964
3965 if (very_verbose(class)) {
3966 printk("\nacquire class [%px] %s", class->key, class->name);
3967 if (class->name_version > 1)
3968 printk(KERN_CONT "#%d", class->name_version);
3969 printk(KERN_CONT "\n");
3970 dump_stack();
3971 }
3972
3973 /*
3974 * Add the lock to the list of currently held locks.
3975 * (we dont increase the depth just yet, up until the
3976 * dependency checks are done)
3977 */
3978 depth = curr->lockdep_depth;
3979 /*
3980 * Ran out of static storage for our per-task lock stack again have we?
3981 */
3982 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
3983 return 0;
3984
3985 class_idx = class - lock_classes;
3986
3987 if (depth) {
3988 hlock = curr->held_locks + depth - 1;
3989 if (hlock->class_idx == class_idx && nest_lock) {
3990 if (!references)
3991 references++;
3992
3993 if (!hlock->references)
3994 hlock->references++;
3995
3996 hlock->references += references;
3997
3998 /* Overflow */
3999 if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4000 return 0;
4001
4002 return 2;
4003 }
4004 }
4005
4006 hlock = curr->held_locks + depth;
4007 /*
4008 * Plain impossible, we just registered it and checked it weren't no
4009 * NULL like.. I bet this mushroom I ate was good!
4010 */
4011 if (DEBUG_LOCKS_WARN_ON(!class))
4012 return 0;
4013 hlock->class_idx = class_idx;
4014 hlock->acquire_ip = ip;
4015 hlock->instance = lock;
4016 hlock->nest_lock = nest_lock;
4017 hlock->irq_context = task_irq_context(curr);
4018 hlock->trylock = trylock;
4019 hlock->read = read;
4020 hlock->check = check;
4021 hlock->hardirqs_off = !!hardirqs_off;
4022 hlock->references = references;
4023 #ifdef CONFIG_LOCK_STAT
4024 hlock->waittime_stamp = 0;
4025 hlock->holdtime_stamp = lockstat_clock();
4026 #endif
4027 hlock->pin_count = pin_count;
4028
4029 /* Initialize the lock usage bit */
4030 if (!mark_usage(curr, hlock, check))
4031 return 0;
4032
4033 /*
4034 * Calculate the chain hash: it's the combined hash of all the
4035 * lock keys along the dependency chain. We save the hash value
4036 * at every step so that we can get the current hash easily
4037 * after unlock. The chain hash is then used to cache dependency
4038 * results.
4039 *
4040 * The 'key ID' is what is the most compact key value to drive
4041 * the hash, not class->key.
4042 */
4043 /*
4044 * Whoops, we did it again.. class_idx is invalid.
4045 */
4046 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4047 return 0;
4048
4049 chain_key = curr->curr_chain_key;
4050 if (!depth) {
4051 /*
4052 * How can we have a chain hash when we ain't got no keys?!
4053 */
4054 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4055 return 0;
4056 chain_head = 1;
4057 }
4058
4059 hlock->prev_chain_key = chain_key;
4060 if (separate_irq_context(curr, hlock)) {
4061 chain_key = INITIAL_CHAIN_KEY;
4062 chain_head = 1;
4063 }
4064 chain_key = iterate_chain_key(chain_key, class_idx);
4065
4066 if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4067 print_lock_nested_lock_not_held(curr, hlock, ip);
4068 return 0;
4069 }
4070
4071 if (!debug_locks_silent) {
4072 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4073 WARN_ON_ONCE(!hlock_class(hlock)->key);
4074 }
4075
4076 if (!validate_chain(curr, hlock, chain_head, chain_key))
4077 return 0;
4078
4079 curr->curr_chain_key = chain_key;
4080 curr->lockdep_depth++;
4081 check_chain_key(curr);
4082 #ifdef CONFIG_DEBUG_LOCKDEP
4083 if (unlikely(!debug_locks))
4084 return 0;
4085 #endif
4086 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4087 debug_locks_off();
4088 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4089 printk(KERN_DEBUG "depth: %i max: %lu!\n",
4090 curr->lockdep_depth, MAX_LOCK_DEPTH);
4091
4092 lockdep_print_held_locks(current);
4093 debug_show_all_locks();
4094 dump_stack();
4095
4096 return 0;
4097 }
4098
4099 if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4100 max_lockdep_depth = curr->lockdep_depth;
4101
4102 return 1;
4103 }
4104
print_unlock_imbalance_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)4105 static void print_unlock_imbalance_bug(struct task_struct *curr,
4106 struct lockdep_map *lock,
4107 unsigned long ip)
4108 {
4109 if (!debug_locks_off())
4110 return;
4111 if (debug_locks_silent)
4112 return;
4113
4114 pr_warn("\n");
4115 pr_warn("=====================================\n");
4116 pr_warn("WARNING: bad unlock balance detected!\n");
4117 print_kernel_ident();
4118 pr_warn("-------------------------------------\n");
4119 pr_warn("%s/%d is trying to release lock (",
4120 curr->comm, task_pid_nr(curr));
4121 print_lockdep_cache(lock);
4122 pr_cont(") at:\n");
4123 print_ip_sym(ip);
4124 pr_warn("but there are no more locks to release!\n");
4125 pr_warn("\nother info that might help us debug this:\n");
4126 lockdep_print_held_locks(curr);
4127
4128 pr_warn("\nstack backtrace:\n");
4129 dump_stack();
4130 }
4131
match_held_lock(const struct held_lock * hlock,const struct lockdep_map * lock)4132 static int match_held_lock(const struct held_lock *hlock,
4133 const struct lockdep_map *lock)
4134 {
4135 if (hlock->instance == lock)
4136 return 1;
4137
4138 if (hlock->references) {
4139 const struct lock_class *class = lock->class_cache[0];
4140
4141 if (!class)
4142 class = look_up_lock_class(lock, 0);
4143
4144 /*
4145 * If look_up_lock_class() failed to find a class, we're trying
4146 * to test if we hold a lock that has never yet been acquired.
4147 * Clearly if the lock hasn't been acquired _ever_, we're not
4148 * holding it either, so report failure.
4149 */
4150 if (!class)
4151 return 0;
4152
4153 /*
4154 * References, but not a lock we're actually ref-counting?
4155 * State got messed up, follow the sites that change ->references
4156 * and try to make sense of it.
4157 */
4158 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4159 return 0;
4160
4161 if (hlock->class_idx == class - lock_classes)
4162 return 1;
4163 }
4164
4165 return 0;
4166 }
4167
4168 /* @depth must not be zero */
find_held_lock(struct task_struct * curr,struct lockdep_map * lock,unsigned int depth,int * idx)4169 static struct held_lock *find_held_lock(struct task_struct *curr,
4170 struct lockdep_map *lock,
4171 unsigned int depth, int *idx)
4172 {
4173 struct held_lock *ret, *hlock, *prev_hlock;
4174 int i;
4175
4176 i = depth - 1;
4177 hlock = curr->held_locks + i;
4178 ret = hlock;
4179 if (match_held_lock(hlock, lock))
4180 goto out;
4181
4182 ret = NULL;
4183 for (i--, prev_hlock = hlock--;
4184 i >= 0;
4185 i--, prev_hlock = hlock--) {
4186 /*
4187 * We must not cross into another context:
4188 */
4189 if (prev_hlock->irq_context != hlock->irq_context) {
4190 ret = NULL;
4191 break;
4192 }
4193 if (match_held_lock(hlock, lock)) {
4194 ret = hlock;
4195 break;
4196 }
4197 }
4198
4199 out:
4200 *idx = i;
4201 return ret;
4202 }
4203
reacquire_held_locks(struct task_struct * curr,unsigned int depth,int idx,unsigned int * merged)4204 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
4205 int idx, unsigned int *merged)
4206 {
4207 struct held_lock *hlock;
4208 int first_idx = idx;
4209
4210 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4211 return 0;
4212
4213 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
4214 switch (__lock_acquire(hlock->instance,
4215 hlock_class(hlock)->subclass,
4216 hlock->trylock,
4217 hlock->read, hlock->check,
4218 hlock->hardirqs_off,
4219 hlock->nest_lock, hlock->acquire_ip,
4220 hlock->references, hlock->pin_count)) {
4221 case 0:
4222 return 1;
4223 case 1:
4224 break;
4225 case 2:
4226 *merged += (idx == first_idx);
4227 break;
4228 default:
4229 WARN_ON(1);
4230 return 0;
4231 }
4232 }
4233 return 0;
4234 }
4235
4236 static int
__lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)4237 __lock_set_class(struct lockdep_map *lock, const char *name,
4238 struct lock_class_key *key, unsigned int subclass,
4239 unsigned long ip)
4240 {
4241 struct task_struct *curr = current;
4242 unsigned int depth, merged = 0;
4243 struct held_lock *hlock;
4244 struct lock_class *class;
4245 int i;
4246
4247 if (unlikely(!debug_locks))
4248 return 0;
4249
4250 depth = curr->lockdep_depth;
4251 /*
4252 * This function is about (re)setting the class of a held lock,
4253 * yet we're not actually holding any locks. Naughty user!
4254 */
4255 if (DEBUG_LOCKS_WARN_ON(!depth))
4256 return 0;
4257
4258 hlock = find_held_lock(curr, lock, depth, &i);
4259 if (!hlock) {
4260 print_unlock_imbalance_bug(curr, lock, ip);
4261 return 0;
4262 }
4263
4264 lockdep_init_map(lock, name, key, 0);
4265 class = register_lock_class(lock, subclass, 0);
4266 hlock->class_idx = class - lock_classes;
4267
4268 curr->lockdep_depth = i;
4269 curr->curr_chain_key = hlock->prev_chain_key;
4270
4271 if (reacquire_held_locks(curr, depth, i, &merged))
4272 return 0;
4273
4274 /*
4275 * I took it apart and put it back together again, except now I have
4276 * these 'spare' parts.. where shall I put them.
4277 */
4278 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
4279 return 0;
4280 return 1;
4281 }
4282
__lock_downgrade(struct lockdep_map * lock,unsigned long ip)4283 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
4284 {
4285 struct task_struct *curr = current;
4286 unsigned int depth, merged = 0;
4287 struct held_lock *hlock;
4288 int i;
4289
4290 if (unlikely(!debug_locks))
4291 return 0;
4292
4293 depth = curr->lockdep_depth;
4294 /*
4295 * This function is about (re)setting the class of a held lock,
4296 * yet we're not actually holding any locks. Naughty user!
4297 */
4298 if (DEBUG_LOCKS_WARN_ON(!depth))
4299 return 0;
4300
4301 hlock = find_held_lock(curr, lock, depth, &i);
4302 if (!hlock) {
4303 print_unlock_imbalance_bug(curr, lock, ip);
4304 return 0;
4305 }
4306
4307 curr->lockdep_depth = i;
4308 curr->curr_chain_key = hlock->prev_chain_key;
4309
4310 WARN(hlock->read, "downgrading a read lock");
4311 hlock->read = 1;
4312 hlock->acquire_ip = ip;
4313
4314 if (reacquire_held_locks(curr, depth, i, &merged))
4315 return 0;
4316
4317 /* Merging can't happen with unchanged classes.. */
4318 if (DEBUG_LOCKS_WARN_ON(merged))
4319 return 0;
4320
4321 /*
4322 * I took it apart and put it back together again, except now I have
4323 * these 'spare' parts.. where shall I put them.
4324 */
4325 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
4326 return 0;
4327
4328 return 1;
4329 }
4330
4331 /*
4332 * Remove the lock to the list of currently held locks - this gets
4333 * called on mutex_unlock()/spin_unlock*() (or on a failed
4334 * mutex_lock_interruptible()).
4335 *
4336 * @nested is an hysterical artifact, needs a tree wide cleanup.
4337 */
4338 static int
__lock_release(struct lockdep_map * lock,unsigned long ip)4339 __lock_release(struct lockdep_map *lock, unsigned long ip)
4340 {
4341 struct task_struct *curr = current;
4342 unsigned int depth, merged = 1;
4343 struct held_lock *hlock;
4344 int i;
4345
4346 if (unlikely(!debug_locks))
4347 return 0;
4348
4349 depth = curr->lockdep_depth;
4350 /*
4351 * So we're all set to release this lock.. wait what lock? We don't
4352 * own any locks, you've been drinking again?
4353 */
4354 if (depth <= 0) {
4355 print_unlock_imbalance_bug(curr, lock, ip);
4356 return 0;
4357 }
4358
4359 /*
4360 * Check whether the lock exists in the current stack
4361 * of held locks:
4362 */
4363 hlock = find_held_lock(curr, lock, depth, &i);
4364 if (!hlock) {
4365 print_unlock_imbalance_bug(curr, lock, ip);
4366 return 0;
4367 }
4368
4369 if (hlock->instance == lock)
4370 lock_release_holdtime(hlock);
4371
4372 WARN(hlock->pin_count, "releasing a pinned lock\n");
4373
4374 if (hlock->references) {
4375 hlock->references--;
4376 if (hlock->references) {
4377 /*
4378 * We had, and after removing one, still have
4379 * references, the current lock stack is still
4380 * valid. We're done!
4381 */
4382 return 1;
4383 }
4384 }
4385
4386 /*
4387 * We have the right lock to unlock, 'hlock' points to it.
4388 * Now we remove it from the stack, and add back the other
4389 * entries (if any), recalculating the hash along the way:
4390 */
4391
4392 curr->lockdep_depth = i;
4393 curr->curr_chain_key = hlock->prev_chain_key;
4394
4395 /*
4396 * The most likely case is when the unlock is on the innermost
4397 * lock. In this case, we are done!
4398 */
4399 if (i == depth-1)
4400 return 1;
4401
4402 if (reacquire_held_locks(curr, depth, i + 1, &merged))
4403 return 0;
4404
4405 /*
4406 * We had N bottles of beer on the wall, we drank one, but now
4407 * there's not N-1 bottles of beer left on the wall...
4408 * Pouring two of the bottles together is acceptable.
4409 */
4410 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
4411
4412 /*
4413 * Since reacquire_held_locks() would have called check_chain_key()
4414 * indirectly via __lock_acquire(), we don't need to do it again
4415 * on return.
4416 */
4417 return 0;
4418 }
4419
4420 static nokprobe_inline
__lock_is_held(const struct lockdep_map * lock,int read)4421 int __lock_is_held(const struct lockdep_map *lock, int read)
4422 {
4423 struct task_struct *curr = current;
4424 int i;
4425
4426 for (i = 0; i < curr->lockdep_depth; i++) {
4427 struct held_lock *hlock = curr->held_locks + i;
4428
4429 if (match_held_lock(hlock, lock)) {
4430 if (read == -1 || hlock->read == read)
4431 return 1;
4432
4433 return 0;
4434 }
4435 }
4436
4437 return 0;
4438 }
4439
__lock_pin_lock(struct lockdep_map * lock)4440 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
4441 {
4442 struct pin_cookie cookie = NIL_COOKIE;
4443 struct task_struct *curr = current;
4444 int i;
4445
4446 if (unlikely(!debug_locks))
4447 return cookie;
4448
4449 for (i = 0; i < curr->lockdep_depth; i++) {
4450 struct held_lock *hlock = curr->held_locks + i;
4451
4452 if (match_held_lock(hlock, lock)) {
4453 /*
4454 * Grab 16bits of randomness; this is sufficient to not
4455 * be guessable and still allows some pin nesting in
4456 * our u32 pin_count.
4457 */
4458 cookie.val = 1 + (prandom_u32() >> 16);
4459 hlock->pin_count += cookie.val;
4460 return cookie;
4461 }
4462 }
4463
4464 WARN(1, "pinning an unheld lock\n");
4465 return cookie;
4466 }
4467
__lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)4468 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4469 {
4470 struct task_struct *curr = current;
4471 int i;
4472
4473 if (unlikely(!debug_locks))
4474 return;
4475
4476 for (i = 0; i < curr->lockdep_depth; i++) {
4477 struct held_lock *hlock = curr->held_locks + i;
4478
4479 if (match_held_lock(hlock, lock)) {
4480 hlock->pin_count += cookie.val;
4481 return;
4482 }
4483 }
4484
4485 WARN(1, "pinning an unheld lock\n");
4486 }
4487
__lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)4488 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4489 {
4490 struct task_struct *curr = current;
4491 int i;
4492
4493 if (unlikely(!debug_locks))
4494 return;
4495
4496 for (i = 0; i < curr->lockdep_depth; i++) {
4497 struct held_lock *hlock = curr->held_locks + i;
4498
4499 if (match_held_lock(hlock, lock)) {
4500 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
4501 return;
4502
4503 hlock->pin_count -= cookie.val;
4504
4505 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
4506 hlock->pin_count = 0;
4507
4508 return;
4509 }
4510 }
4511
4512 WARN(1, "unpinning an unheld lock\n");
4513 }
4514
4515 /*
4516 * Check whether we follow the irq-flags state precisely:
4517 */
check_flags(unsigned long flags)4518 static void check_flags(unsigned long flags)
4519 {
4520 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
4521 if (!debug_locks)
4522 return;
4523
4524 if (irqs_disabled_flags(flags)) {
4525 if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) {
4526 printk("possible reason: unannotated irqs-off.\n");
4527 }
4528 } else {
4529 if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) {
4530 printk("possible reason: unannotated irqs-on.\n");
4531 }
4532 }
4533
4534 /*
4535 * We dont accurately track softirq state in e.g.
4536 * hardirq contexts (such as on 4KSTACKS), so only
4537 * check if not in hardirq contexts:
4538 */
4539 if (!hardirq_count()) {
4540 if (softirq_count()) {
4541 /* like the above, but with softirqs */
4542 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
4543 } else {
4544 /* lick the above, does it taste good? */
4545 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
4546 }
4547 }
4548
4549 if (!debug_locks)
4550 print_irqtrace_events(current);
4551 #endif
4552 }
4553
lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)4554 void lock_set_class(struct lockdep_map *lock, const char *name,
4555 struct lock_class_key *key, unsigned int subclass,
4556 unsigned long ip)
4557 {
4558 unsigned long flags;
4559
4560 if (unlikely(current->lockdep_recursion))
4561 return;
4562
4563 raw_local_irq_save(flags);
4564 current->lockdep_recursion = 1;
4565 check_flags(flags);
4566 if (__lock_set_class(lock, name, key, subclass, ip))
4567 check_chain_key(current);
4568 current->lockdep_recursion = 0;
4569 raw_local_irq_restore(flags);
4570 }
4571 EXPORT_SYMBOL_GPL(lock_set_class);
4572
lock_downgrade(struct lockdep_map * lock,unsigned long ip)4573 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
4574 {
4575 unsigned long flags;
4576
4577 if (unlikely(current->lockdep_recursion))
4578 return;
4579
4580 raw_local_irq_save(flags);
4581 current->lockdep_recursion = 1;
4582 check_flags(flags);
4583 if (__lock_downgrade(lock, ip))
4584 check_chain_key(current);
4585 current->lockdep_recursion = 0;
4586 raw_local_irq_restore(flags);
4587 }
4588 EXPORT_SYMBOL_GPL(lock_downgrade);
4589
4590 /*
4591 * We are not always called with irqs disabled - do that here,
4592 * and also avoid lockdep recursion:
4593 */
lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)4594 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4595 int trylock, int read, int check,
4596 struct lockdep_map *nest_lock, unsigned long ip)
4597 {
4598 unsigned long flags;
4599
4600 if (unlikely(current->lockdep_recursion))
4601 return;
4602
4603 raw_local_irq_save(flags);
4604 check_flags(flags);
4605
4606 current->lockdep_recursion = 1;
4607 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
4608 __lock_acquire(lock, subclass, trylock, read, check,
4609 irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
4610 current->lockdep_recursion = 0;
4611 raw_local_irq_restore(flags);
4612 }
4613 EXPORT_SYMBOL_GPL(lock_acquire);
4614
lock_release(struct lockdep_map * lock,int nested,unsigned long ip)4615 void lock_release(struct lockdep_map *lock, int nested,
4616 unsigned long ip)
4617 {
4618 unsigned long flags;
4619
4620 if (unlikely(current->lockdep_recursion))
4621 return;
4622
4623 raw_local_irq_save(flags);
4624 check_flags(flags);
4625 current->lockdep_recursion = 1;
4626 trace_lock_release(lock, ip);
4627 if (__lock_release(lock, ip))
4628 check_chain_key(current);
4629 current->lockdep_recursion = 0;
4630 raw_local_irq_restore(flags);
4631 }
4632 EXPORT_SYMBOL_GPL(lock_release);
4633
lock_is_held_type(const struct lockdep_map * lock,int read)4634 int lock_is_held_type(const struct lockdep_map *lock, int read)
4635 {
4636 unsigned long flags;
4637 int ret = 0;
4638
4639 if (unlikely(current->lockdep_recursion))
4640 return 1; /* avoid false negative lockdep_assert_held() */
4641
4642 raw_local_irq_save(flags);
4643 check_flags(flags);
4644
4645 current->lockdep_recursion = 1;
4646 ret = __lock_is_held(lock, read);
4647 current->lockdep_recursion = 0;
4648 raw_local_irq_restore(flags);
4649
4650 return ret;
4651 }
4652 EXPORT_SYMBOL_GPL(lock_is_held_type);
4653 NOKPROBE_SYMBOL(lock_is_held_type);
4654
lock_pin_lock(struct lockdep_map * lock)4655 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
4656 {
4657 struct pin_cookie cookie = NIL_COOKIE;
4658 unsigned long flags;
4659
4660 if (unlikely(current->lockdep_recursion))
4661 return cookie;
4662
4663 raw_local_irq_save(flags);
4664 check_flags(flags);
4665
4666 current->lockdep_recursion = 1;
4667 cookie = __lock_pin_lock(lock);
4668 current->lockdep_recursion = 0;
4669 raw_local_irq_restore(flags);
4670
4671 return cookie;
4672 }
4673 EXPORT_SYMBOL_GPL(lock_pin_lock);
4674
lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)4675 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4676 {
4677 unsigned long flags;
4678
4679 if (unlikely(current->lockdep_recursion))
4680 return;
4681
4682 raw_local_irq_save(flags);
4683 check_flags(flags);
4684
4685 current->lockdep_recursion = 1;
4686 __lock_repin_lock(lock, cookie);
4687 current->lockdep_recursion = 0;
4688 raw_local_irq_restore(flags);
4689 }
4690 EXPORT_SYMBOL_GPL(lock_repin_lock);
4691
lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)4692 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4693 {
4694 unsigned long flags;
4695
4696 if (unlikely(current->lockdep_recursion))
4697 return;
4698
4699 raw_local_irq_save(flags);
4700 check_flags(flags);
4701
4702 current->lockdep_recursion = 1;
4703 __lock_unpin_lock(lock, cookie);
4704 current->lockdep_recursion = 0;
4705 raw_local_irq_restore(flags);
4706 }
4707 EXPORT_SYMBOL_GPL(lock_unpin_lock);
4708
4709 #ifdef CONFIG_LOCK_STAT
print_lock_contention_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)4710 static void print_lock_contention_bug(struct task_struct *curr,
4711 struct lockdep_map *lock,
4712 unsigned long ip)
4713 {
4714 if (!debug_locks_off())
4715 return;
4716 if (debug_locks_silent)
4717 return;
4718
4719 pr_warn("\n");
4720 pr_warn("=================================\n");
4721 pr_warn("WARNING: bad contention detected!\n");
4722 print_kernel_ident();
4723 pr_warn("---------------------------------\n");
4724 pr_warn("%s/%d is trying to contend lock (",
4725 curr->comm, task_pid_nr(curr));
4726 print_lockdep_cache(lock);
4727 pr_cont(") at:\n");
4728 print_ip_sym(ip);
4729 pr_warn("but there are no locks held!\n");
4730 pr_warn("\nother info that might help us debug this:\n");
4731 lockdep_print_held_locks(curr);
4732
4733 pr_warn("\nstack backtrace:\n");
4734 dump_stack();
4735 }
4736
4737 static void
__lock_contended(struct lockdep_map * lock,unsigned long ip)4738 __lock_contended(struct lockdep_map *lock, unsigned long ip)
4739 {
4740 struct task_struct *curr = current;
4741 struct held_lock *hlock;
4742 struct lock_class_stats *stats;
4743 unsigned int depth;
4744 int i, contention_point, contending_point;
4745
4746 depth = curr->lockdep_depth;
4747 /*
4748 * Whee, we contended on this lock, except it seems we're not
4749 * actually trying to acquire anything much at all..
4750 */
4751 if (DEBUG_LOCKS_WARN_ON(!depth))
4752 return;
4753
4754 hlock = find_held_lock(curr, lock, depth, &i);
4755 if (!hlock) {
4756 print_lock_contention_bug(curr, lock, ip);
4757 return;
4758 }
4759
4760 if (hlock->instance != lock)
4761 return;
4762
4763 hlock->waittime_stamp = lockstat_clock();
4764
4765 contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
4766 contending_point = lock_point(hlock_class(hlock)->contending_point,
4767 lock->ip);
4768
4769 stats = get_lock_stats(hlock_class(hlock));
4770 if (contention_point < LOCKSTAT_POINTS)
4771 stats->contention_point[contention_point]++;
4772 if (contending_point < LOCKSTAT_POINTS)
4773 stats->contending_point[contending_point]++;
4774 if (lock->cpu != smp_processor_id())
4775 stats->bounces[bounce_contended + !!hlock->read]++;
4776 }
4777
4778 static void
__lock_acquired(struct lockdep_map * lock,unsigned long ip)4779 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
4780 {
4781 struct task_struct *curr = current;
4782 struct held_lock *hlock;
4783 struct lock_class_stats *stats;
4784 unsigned int depth;
4785 u64 now, waittime = 0;
4786 int i, cpu;
4787
4788 depth = curr->lockdep_depth;
4789 /*
4790 * Yay, we acquired ownership of this lock we didn't try to
4791 * acquire, how the heck did that happen?
4792 */
4793 if (DEBUG_LOCKS_WARN_ON(!depth))
4794 return;
4795
4796 hlock = find_held_lock(curr, lock, depth, &i);
4797 if (!hlock) {
4798 print_lock_contention_bug(curr, lock, _RET_IP_);
4799 return;
4800 }
4801
4802 if (hlock->instance != lock)
4803 return;
4804
4805 cpu = smp_processor_id();
4806 if (hlock->waittime_stamp) {
4807 now = lockstat_clock();
4808 waittime = now - hlock->waittime_stamp;
4809 hlock->holdtime_stamp = now;
4810 }
4811
4812 trace_lock_acquired(lock, ip);
4813
4814 stats = get_lock_stats(hlock_class(hlock));
4815 if (waittime) {
4816 if (hlock->read)
4817 lock_time_inc(&stats->read_waittime, waittime);
4818 else
4819 lock_time_inc(&stats->write_waittime, waittime);
4820 }
4821 if (lock->cpu != cpu)
4822 stats->bounces[bounce_acquired + !!hlock->read]++;
4823
4824 lock->cpu = cpu;
4825 lock->ip = ip;
4826 }
4827
lock_contended(struct lockdep_map * lock,unsigned long ip)4828 void lock_contended(struct lockdep_map *lock, unsigned long ip)
4829 {
4830 unsigned long flags;
4831
4832 if (unlikely(!lock_stat || !debug_locks))
4833 return;
4834
4835 if (unlikely(current->lockdep_recursion))
4836 return;
4837
4838 raw_local_irq_save(flags);
4839 check_flags(flags);
4840 current->lockdep_recursion = 1;
4841 trace_lock_contended(lock, ip);
4842 __lock_contended(lock, ip);
4843 current->lockdep_recursion = 0;
4844 raw_local_irq_restore(flags);
4845 }
4846 EXPORT_SYMBOL_GPL(lock_contended);
4847
lock_acquired(struct lockdep_map * lock,unsigned long ip)4848 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
4849 {
4850 unsigned long flags;
4851
4852 if (unlikely(!lock_stat || !debug_locks))
4853 return;
4854
4855 if (unlikely(current->lockdep_recursion))
4856 return;
4857
4858 raw_local_irq_save(flags);
4859 check_flags(flags);
4860 current->lockdep_recursion = 1;
4861 __lock_acquired(lock, ip);
4862 current->lockdep_recursion = 0;
4863 raw_local_irq_restore(flags);
4864 }
4865 EXPORT_SYMBOL_GPL(lock_acquired);
4866 #endif
4867
4868 /*
4869 * Used by the testsuite, sanitize the validator state
4870 * after a simulated failure:
4871 */
4872
lockdep_reset(void)4873 void lockdep_reset(void)
4874 {
4875 unsigned long flags;
4876 int i;
4877
4878 raw_local_irq_save(flags);
4879 lockdep_init_task(current);
4880 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
4881 nr_hardirq_chains = 0;
4882 nr_softirq_chains = 0;
4883 nr_process_chains = 0;
4884 debug_locks = 1;
4885 for (i = 0; i < CHAINHASH_SIZE; i++)
4886 INIT_HLIST_HEAD(chainhash_table + i);
4887 raw_local_irq_restore(flags);
4888 }
4889
4890 /* Remove a class from a lock chain. Must be called with the graph lock held. */
remove_class_from_lock_chain(struct pending_free * pf,struct lock_chain * chain,struct lock_class * class)4891 static void remove_class_from_lock_chain(struct pending_free *pf,
4892 struct lock_chain *chain,
4893 struct lock_class *class)
4894 {
4895 #ifdef CONFIG_PROVE_LOCKING
4896 struct lock_chain *new_chain;
4897 u64 chain_key;
4898 int i;
4899
4900 for (i = chain->base; i < chain->base + chain->depth; i++) {
4901 if (chain_hlocks[i] != class - lock_classes)
4902 continue;
4903 /* The code below leaks one chain_hlock[] entry. */
4904 if (--chain->depth > 0) {
4905 memmove(&chain_hlocks[i], &chain_hlocks[i + 1],
4906 (chain->base + chain->depth - i) *
4907 sizeof(chain_hlocks[0]));
4908 }
4909 /*
4910 * Each lock class occurs at most once in a lock chain so once
4911 * we found a match we can break out of this loop.
4912 */
4913 goto recalc;
4914 }
4915 /* Since the chain has not been modified, return. */
4916 return;
4917
4918 recalc:
4919 chain_key = INITIAL_CHAIN_KEY;
4920 for (i = chain->base; i < chain->base + chain->depth; i++)
4921 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
4922 if (chain->depth && chain->chain_key == chain_key)
4923 return;
4924 /* Overwrite the chain key for concurrent RCU readers. */
4925 WRITE_ONCE(chain->chain_key, chain_key);
4926 dec_chains(chain->irq_context);
4927
4928 /*
4929 * Note: calling hlist_del_rcu() from inside a
4930 * hlist_for_each_entry_rcu() loop is safe.
4931 */
4932 hlist_del_rcu(&chain->entry);
4933 __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
4934 if (chain->depth == 0)
4935 return;
4936 /*
4937 * If the modified lock chain matches an existing lock chain, drop
4938 * the modified lock chain.
4939 */
4940 if (lookup_chain_cache(chain_key))
4941 return;
4942 new_chain = alloc_lock_chain();
4943 if (WARN_ON_ONCE(!new_chain)) {
4944 debug_locks_off();
4945 return;
4946 }
4947 *new_chain = *chain;
4948 hlist_add_head_rcu(&new_chain->entry, chainhashentry(chain_key));
4949 inc_chains(new_chain->irq_context);
4950 #endif
4951 }
4952
4953 /* Must be called with the graph lock held. */
remove_class_from_lock_chains(struct pending_free * pf,struct lock_class * class)4954 static void remove_class_from_lock_chains(struct pending_free *pf,
4955 struct lock_class *class)
4956 {
4957 struct lock_chain *chain;
4958 struct hlist_head *head;
4959 int i;
4960
4961 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
4962 head = chainhash_table + i;
4963 hlist_for_each_entry_rcu(chain, head, entry) {
4964 remove_class_from_lock_chain(pf, chain, class);
4965 }
4966 }
4967 }
4968
4969 /*
4970 * Remove all references to a lock class. The caller must hold the graph lock.
4971 */
zap_class(struct pending_free * pf,struct lock_class * class)4972 static void zap_class(struct pending_free *pf, struct lock_class *class)
4973 {
4974 struct lock_list *entry;
4975 int i;
4976
4977 WARN_ON_ONCE(!class->key);
4978
4979 /*
4980 * Remove all dependencies this lock is
4981 * involved in:
4982 */
4983 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
4984 entry = list_entries + i;
4985 if (entry->class != class && entry->links_to != class)
4986 continue;
4987 __clear_bit(i, list_entries_in_use);
4988 nr_list_entries--;
4989 list_del_rcu(&entry->entry);
4990 }
4991 if (list_empty(&class->locks_after) &&
4992 list_empty(&class->locks_before)) {
4993 list_move_tail(&class->lock_entry, &pf->zapped);
4994 hlist_del_rcu(&class->hash_entry);
4995 WRITE_ONCE(class->key, NULL);
4996 WRITE_ONCE(class->name, NULL);
4997 nr_lock_classes--;
4998 __clear_bit(class - lock_classes, lock_classes_in_use);
4999 } else {
5000 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5001 class->name);
5002 }
5003
5004 remove_class_from_lock_chains(pf, class);
5005 }
5006
reinit_class(struct lock_class * class)5007 static void reinit_class(struct lock_class *class)
5008 {
5009 void *const p = class;
5010 const unsigned int offset = offsetof(struct lock_class, key);
5011
5012 WARN_ON_ONCE(!class->lock_entry.next);
5013 WARN_ON_ONCE(!list_empty(&class->locks_after));
5014 WARN_ON_ONCE(!list_empty(&class->locks_before));
5015 memset(p + offset, 0, sizeof(*class) - offset);
5016 WARN_ON_ONCE(!class->lock_entry.next);
5017 WARN_ON_ONCE(!list_empty(&class->locks_after));
5018 WARN_ON_ONCE(!list_empty(&class->locks_before));
5019 }
5020
within(const void * addr,void * start,unsigned long size)5021 static inline int within(const void *addr, void *start, unsigned long size)
5022 {
5023 return addr >= start && addr < start + size;
5024 }
5025
inside_selftest(void)5026 static bool inside_selftest(void)
5027 {
5028 return current == lockdep_selftest_task_struct;
5029 }
5030
5031 /* The caller must hold the graph lock. */
get_pending_free(void)5032 static struct pending_free *get_pending_free(void)
5033 {
5034 return delayed_free.pf + delayed_free.index;
5035 }
5036
5037 static void free_zapped_rcu(struct rcu_head *cb);
5038
5039 /*
5040 * Schedule an RCU callback if no RCU callback is pending. Must be called with
5041 * the graph lock held.
5042 */
call_rcu_zapped(struct pending_free * pf)5043 static void call_rcu_zapped(struct pending_free *pf)
5044 {
5045 WARN_ON_ONCE(inside_selftest());
5046
5047 if (list_empty(&pf->zapped))
5048 return;
5049
5050 if (delayed_free.scheduled)
5051 return;
5052
5053 delayed_free.scheduled = true;
5054
5055 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5056 delayed_free.index ^= 1;
5057
5058 call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5059 }
5060
5061 /* The caller must hold the graph lock. May be called from RCU context. */
__free_zapped_classes(struct pending_free * pf)5062 static void __free_zapped_classes(struct pending_free *pf)
5063 {
5064 struct lock_class *class;
5065
5066 check_data_structures();
5067
5068 list_for_each_entry(class, &pf->zapped, lock_entry)
5069 reinit_class(class);
5070
5071 list_splice_init(&pf->zapped, &free_lock_classes);
5072
5073 #ifdef CONFIG_PROVE_LOCKING
5074 bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
5075 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
5076 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
5077 #endif
5078 }
5079
free_zapped_rcu(struct rcu_head * ch)5080 static void free_zapped_rcu(struct rcu_head *ch)
5081 {
5082 struct pending_free *pf;
5083 unsigned long flags;
5084
5085 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
5086 return;
5087
5088 raw_local_irq_save(flags);
5089 arch_spin_lock(&lockdep_lock);
5090 current->lockdep_recursion = 1;
5091
5092 /* closed head */
5093 pf = delayed_free.pf + (delayed_free.index ^ 1);
5094 __free_zapped_classes(pf);
5095 delayed_free.scheduled = false;
5096
5097 /*
5098 * If there's anything on the open list, close and start a new callback.
5099 */
5100 call_rcu_zapped(delayed_free.pf + delayed_free.index);
5101
5102 current->lockdep_recursion = 0;
5103 arch_spin_unlock(&lockdep_lock);
5104 raw_local_irq_restore(flags);
5105 }
5106
5107 /*
5108 * Remove all lock classes from the class hash table and from the
5109 * all_lock_classes list whose key or name is in the address range [start,
5110 * start + size). Move these lock classes to the zapped_classes list. Must
5111 * be called with the graph lock held.
5112 */
__lockdep_free_key_range(struct pending_free * pf,void * start,unsigned long size)5113 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
5114 unsigned long size)
5115 {
5116 struct lock_class *class;
5117 struct hlist_head *head;
5118 int i;
5119
5120 /* Unhash all classes that were created by a module. */
5121 for (i = 0; i < CLASSHASH_SIZE; i++) {
5122 head = classhash_table + i;
5123 hlist_for_each_entry_rcu(class, head, hash_entry) {
5124 if (!within(class->key, start, size) &&
5125 !within(class->name, start, size))
5126 continue;
5127 zap_class(pf, class);
5128 }
5129 }
5130 }
5131
5132 /*
5133 * Used in module.c to remove lock classes from memory that is going to be
5134 * freed; and possibly re-used by other modules.
5135 *
5136 * We will have had one synchronize_rcu() before getting here, so we're
5137 * guaranteed nobody will look up these exact classes -- they're properly dead
5138 * but still allocated.
5139 */
lockdep_free_key_range_reg(void * start,unsigned long size)5140 static void lockdep_free_key_range_reg(void *start, unsigned long size)
5141 {
5142 struct pending_free *pf;
5143 unsigned long flags;
5144
5145 init_data_structures_once();
5146
5147 raw_local_irq_save(flags);
5148 arch_spin_lock(&lockdep_lock);
5149 current->lockdep_recursion = 1;
5150 pf = get_pending_free();
5151 __lockdep_free_key_range(pf, start, size);
5152 call_rcu_zapped(pf);
5153 current->lockdep_recursion = 0;
5154 arch_spin_unlock(&lockdep_lock);
5155 raw_local_irq_restore(flags);
5156
5157 /*
5158 * Wait for any possible iterators from look_up_lock_class() to pass
5159 * before continuing to free the memory they refer to.
5160 */
5161 synchronize_rcu();
5162 }
5163
5164 /*
5165 * Free all lockdep keys in the range [start, start+size). Does not sleep.
5166 * Ignores debug_locks. Must only be used by the lockdep selftests.
5167 */
lockdep_free_key_range_imm(void * start,unsigned long size)5168 static void lockdep_free_key_range_imm(void *start, unsigned long size)
5169 {
5170 struct pending_free *pf = delayed_free.pf;
5171 unsigned long flags;
5172
5173 init_data_structures_once();
5174
5175 raw_local_irq_save(flags);
5176 arch_spin_lock(&lockdep_lock);
5177 __lockdep_free_key_range(pf, start, size);
5178 __free_zapped_classes(pf);
5179 arch_spin_unlock(&lockdep_lock);
5180 raw_local_irq_restore(flags);
5181 }
5182
lockdep_free_key_range(void * start,unsigned long size)5183 void lockdep_free_key_range(void *start, unsigned long size)
5184 {
5185 init_data_structures_once();
5186
5187 if (inside_selftest())
5188 lockdep_free_key_range_imm(start, size);
5189 else
5190 lockdep_free_key_range_reg(start, size);
5191 }
5192
5193 /*
5194 * Check whether any element of the @lock->class_cache[] array refers to a
5195 * registered lock class. The caller must hold either the graph lock or the
5196 * RCU read lock.
5197 */
lock_class_cache_is_registered(struct lockdep_map * lock)5198 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
5199 {
5200 struct lock_class *class;
5201 struct hlist_head *head;
5202 int i, j;
5203
5204 for (i = 0; i < CLASSHASH_SIZE; i++) {
5205 head = classhash_table + i;
5206 hlist_for_each_entry_rcu(class, head, hash_entry) {
5207 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
5208 if (lock->class_cache[j] == class)
5209 return true;
5210 }
5211 }
5212 return false;
5213 }
5214
5215 /* The caller must hold the graph lock. Does not sleep. */
__lockdep_reset_lock(struct pending_free * pf,struct lockdep_map * lock)5216 static void __lockdep_reset_lock(struct pending_free *pf,
5217 struct lockdep_map *lock)
5218 {
5219 struct lock_class *class;
5220 int j;
5221
5222 /*
5223 * Remove all classes this lock might have:
5224 */
5225 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
5226 /*
5227 * If the class exists we look it up and zap it:
5228 */
5229 class = look_up_lock_class(lock, j);
5230 if (class)
5231 zap_class(pf, class);
5232 }
5233 /*
5234 * Debug check: in the end all mapped classes should
5235 * be gone.
5236 */
5237 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
5238 debug_locks_off();
5239 }
5240
5241 /*
5242 * Remove all information lockdep has about a lock if debug_locks == 1. Free
5243 * released data structures from RCU context.
5244 */
lockdep_reset_lock_reg(struct lockdep_map * lock)5245 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
5246 {
5247 struct pending_free *pf;
5248 unsigned long flags;
5249 int locked;
5250
5251 raw_local_irq_save(flags);
5252 locked = graph_lock();
5253 if (!locked)
5254 goto out_irq;
5255
5256 pf = get_pending_free();
5257 __lockdep_reset_lock(pf, lock);
5258 call_rcu_zapped(pf);
5259
5260 graph_unlock();
5261 out_irq:
5262 raw_local_irq_restore(flags);
5263 }
5264
5265 /*
5266 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
5267 * lockdep selftests.
5268 */
lockdep_reset_lock_imm(struct lockdep_map * lock)5269 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
5270 {
5271 struct pending_free *pf = delayed_free.pf;
5272 unsigned long flags;
5273
5274 raw_local_irq_save(flags);
5275 arch_spin_lock(&lockdep_lock);
5276 __lockdep_reset_lock(pf, lock);
5277 __free_zapped_classes(pf);
5278 arch_spin_unlock(&lockdep_lock);
5279 raw_local_irq_restore(flags);
5280 }
5281
lockdep_reset_lock(struct lockdep_map * lock)5282 void lockdep_reset_lock(struct lockdep_map *lock)
5283 {
5284 init_data_structures_once();
5285
5286 if (inside_selftest())
5287 lockdep_reset_lock_imm(lock);
5288 else
5289 lockdep_reset_lock_reg(lock);
5290 }
5291
5292 /* Unregister a dynamically allocated key. */
lockdep_unregister_key(struct lock_class_key * key)5293 void lockdep_unregister_key(struct lock_class_key *key)
5294 {
5295 struct hlist_head *hash_head = keyhashentry(key);
5296 struct lock_class_key *k;
5297 struct pending_free *pf;
5298 unsigned long flags;
5299 bool found = false;
5300
5301 might_sleep();
5302
5303 if (WARN_ON_ONCE(static_obj(key)))
5304 return;
5305
5306 raw_local_irq_save(flags);
5307 if (!graph_lock())
5308 goto out_irq;
5309
5310 pf = get_pending_free();
5311 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
5312 if (k == key) {
5313 hlist_del_rcu(&k->hash_entry);
5314 found = true;
5315 break;
5316 }
5317 }
5318 WARN_ON_ONCE(!found);
5319 __lockdep_free_key_range(pf, key, 1);
5320 call_rcu_zapped(pf);
5321 graph_unlock();
5322 out_irq:
5323 raw_local_irq_restore(flags);
5324
5325 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
5326 synchronize_rcu();
5327 }
5328 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
5329
lockdep_init(void)5330 void __init lockdep_init(void)
5331 {
5332 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
5333
5334 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES);
5335 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH);
5336 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS);
5337 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE);
5338 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES);
5339 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS);
5340 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE);
5341
5342 printk(" memory used by lock dependency info: %zu kB\n",
5343 (sizeof(lock_classes) +
5344 sizeof(lock_classes_in_use) +
5345 sizeof(classhash_table) +
5346 sizeof(list_entries) +
5347 sizeof(list_entries_in_use) +
5348 sizeof(chainhash_table) +
5349 sizeof(delayed_free)
5350 #ifdef CONFIG_PROVE_LOCKING
5351 + sizeof(lock_cq)
5352 + sizeof(lock_chains)
5353 + sizeof(lock_chains_in_use)
5354 + sizeof(chain_hlocks)
5355 #endif
5356 ) / 1024
5357 );
5358
5359 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
5360 printk(" memory used for stack traces: %zu kB\n",
5361 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
5362 );
5363 #endif
5364
5365 printk(" per task-struct memory footprint: %zu bytes\n",
5366 sizeof(((struct task_struct *)NULL)->held_locks));
5367 }
5368
5369 static void
print_freed_lock_bug(struct task_struct * curr,const void * mem_from,const void * mem_to,struct held_lock * hlock)5370 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
5371 const void *mem_to, struct held_lock *hlock)
5372 {
5373 if (!debug_locks_off())
5374 return;
5375 if (debug_locks_silent)
5376 return;
5377
5378 pr_warn("\n");
5379 pr_warn("=========================\n");
5380 pr_warn("WARNING: held lock freed!\n");
5381 print_kernel_ident();
5382 pr_warn("-------------------------\n");
5383 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
5384 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
5385 print_lock(hlock);
5386 lockdep_print_held_locks(curr);
5387
5388 pr_warn("\nstack backtrace:\n");
5389 dump_stack();
5390 }
5391
not_in_range(const void * mem_from,unsigned long mem_len,const void * lock_from,unsigned long lock_len)5392 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
5393 const void* lock_from, unsigned long lock_len)
5394 {
5395 return lock_from + lock_len <= mem_from ||
5396 mem_from + mem_len <= lock_from;
5397 }
5398
5399 /*
5400 * Called when kernel memory is freed (or unmapped), or if a lock
5401 * is destroyed or reinitialized - this code checks whether there is
5402 * any held lock in the memory range of <from> to <to>:
5403 */
debug_check_no_locks_freed(const void * mem_from,unsigned long mem_len)5404 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
5405 {
5406 struct task_struct *curr = current;
5407 struct held_lock *hlock;
5408 unsigned long flags;
5409 int i;
5410
5411 if (unlikely(!debug_locks))
5412 return;
5413
5414 raw_local_irq_save(flags);
5415 for (i = 0; i < curr->lockdep_depth; i++) {
5416 hlock = curr->held_locks + i;
5417
5418 if (not_in_range(mem_from, mem_len, hlock->instance,
5419 sizeof(*hlock->instance)))
5420 continue;
5421
5422 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
5423 break;
5424 }
5425 raw_local_irq_restore(flags);
5426 }
5427 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
5428
print_held_locks_bug(void)5429 static void print_held_locks_bug(void)
5430 {
5431 if (!debug_locks_off())
5432 return;
5433 if (debug_locks_silent)
5434 return;
5435
5436 pr_warn("\n");
5437 pr_warn("====================================\n");
5438 pr_warn("WARNING: %s/%d still has locks held!\n",
5439 current->comm, task_pid_nr(current));
5440 print_kernel_ident();
5441 pr_warn("------------------------------------\n");
5442 lockdep_print_held_locks(current);
5443 pr_warn("\nstack backtrace:\n");
5444 dump_stack();
5445 }
5446
debug_check_no_locks_held(void)5447 void debug_check_no_locks_held(void)
5448 {
5449 if (unlikely(current->lockdep_depth > 0))
5450 print_held_locks_bug();
5451 }
5452 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
5453
5454 #ifdef __KERNEL__
debug_show_all_locks(void)5455 void debug_show_all_locks(void)
5456 {
5457 struct task_struct *g, *p;
5458
5459 if (unlikely(!debug_locks)) {
5460 pr_warn("INFO: lockdep is turned off.\n");
5461 return;
5462 }
5463 pr_warn("\nShowing all locks held in the system:\n");
5464
5465 rcu_read_lock();
5466 for_each_process_thread(g, p) {
5467 if (!p->lockdep_depth)
5468 continue;
5469 lockdep_print_held_locks(p);
5470 touch_nmi_watchdog();
5471 touch_all_softlockup_watchdogs();
5472 }
5473 rcu_read_unlock();
5474
5475 pr_warn("\n");
5476 pr_warn("=============================================\n\n");
5477 }
5478 EXPORT_SYMBOL_GPL(debug_show_all_locks);
5479 #endif
5480
5481 /*
5482 * Careful: only use this function if you are sure that
5483 * the task cannot run in parallel!
5484 */
debug_show_held_locks(struct task_struct * task)5485 void debug_show_held_locks(struct task_struct *task)
5486 {
5487 if (unlikely(!debug_locks)) {
5488 printk("INFO: lockdep is turned off.\n");
5489 return;
5490 }
5491 lockdep_print_held_locks(task);
5492 }
5493 EXPORT_SYMBOL_GPL(debug_show_held_locks);
5494
lockdep_sys_exit(void)5495 asmlinkage __visible void lockdep_sys_exit(void)
5496 {
5497 struct task_struct *curr = current;
5498
5499 if (unlikely(curr->lockdep_depth)) {
5500 if (!debug_locks_off())
5501 return;
5502 pr_warn("\n");
5503 pr_warn("================================================\n");
5504 pr_warn("WARNING: lock held when returning to user space!\n");
5505 print_kernel_ident();
5506 pr_warn("------------------------------------------------\n");
5507 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
5508 curr->comm, curr->pid);
5509 lockdep_print_held_locks(curr);
5510 }
5511
5512 /*
5513 * The lock history for each syscall should be independent. So wipe the
5514 * slate clean on return to userspace.
5515 */
5516 lockdep_invariant_state(false);
5517 }
5518
lockdep_rcu_suspicious(const char * file,const int line,const char * s)5519 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
5520 {
5521 struct task_struct *curr = current;
5522
5523 /* Note: the following can be executed concurrently, so be careful. */
5524 pr_warn("\n");
5525 pr_warn("=============================\n");
5526 pr_warn("WARNING: suspicious RCU usage\n");
5527 print_kernel_ident();
5528 pr_warn("-----------------------------\n");
5529 pr_warn("%s:%d %s!\n", file, line, s);
5530 pr_warn("\nother info that might help us debug this:\n\n");
5531 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
5532 !rcu_lockdep_current_cpu_online()
5533 ? "RCU used illegally from offline CPU!\n"
5534 : !rcu_is_watching()
5535 ? "RCU used illegally from idle CPU!\n"
5536 : "",
5537 rcu_scheduler_active, debug_locks);
5538
5539 /*
5540 * If a CPU is in the RCU-free window in idle (ie: in the section
5541 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
5542 * considers that CPU to be in an "extended quiescent state",
5543 * which means that RCU will be completely ignoring that CPU.
5544 * Therefore, rcu_read_lock() and friends have absolutely no
5545 * effect on a CPU running in that state. In other words, even if
5546 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
5547 * delete data structures out from under it. RCU really has no
5548 * choice here: we need to keep an RCU-free window in idle where
5549 * the CPU may possibly enter into low power mode. This way we can
5550 * notice an extended quiescent state to other CPUs that started a grace
5551 * period. Otherwise we would delay any grace period as long as we run
5552 * in the idle task.
5553 *
5554 * So complain bitterly if someone does call rcu_read_lock(),
5555 * rcu_read_lock_bh() and so on from extended quiescent states.
5556 */
5557 if (!rcu_is_watching())
5558 pr_warn("RCU used illegally from extended quiescent state!\n");
5559
5560 lockdep_print_held_locks(curr);
5561 pr_warn("\nstack backtrace:\n");
5562 dump_stack();
5563 }
5564 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
5565