1 /*
2 * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38
39 #include "rds_single_path.h"
40 #include "rds.h"
41 #include "ib.h"
42
43 static struct kmem_cache *rds_ib_incoming_slab;
44 static struct kmem_cache *rds_ib_frag_slab;
45 static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
46
rds_ib_recv_init_ring(struct rds_ib_connection * ic)47 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
48 {
49 struct rds_ib_recv_work *recv;
50 u32 i;
51
52 for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
53 struct ib_sge *sge;
54
55 recv->r_ibinc = NULL;
56 recv->r_frag = NULL;
57
58 recv->r_wr.next = NULL;
59 recv->r_wr.wr_id = i;
60 recv->r_wr.sg_list = recv->r_sge;
61 recv->r_wr.num_sge = RDS_IB_RECV_SGE;
62
63 sge = &recv->r_sge[0];
64 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
65 sge->length = sizeof(struct rds_header);
66 sge->lkey = ic->i_pd->local_dma_lkey;
67
68 sge = &recv->r_sge[1];
69 sge->addr = 0;
70 sge->length = RDS_FRAG_SIZE;
71 sge->lkey = ic->i_pd->local_dma_lkey;
72 }
73 }
74
75 /*
76 * The entire 'from' list, including the from element itself, is put on
77 * to the tail of the 'to' list.
78 */
list_splice_entire_tail(struct list_head * from,struct list_head * to)79 static void list_splice_entire_tail(struct list_head *from,
80 struct list_head *to)
81 {
82 struct list_head *from_last = from->prev;
83
84 list_splice_tail(from_last, to);
85 list_add_tail(from_last, to);
86 }
87
rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache * cache)88 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
89 {
90 struct list_head *tmp;
91
92 tmp = xchg(&cache->xfer, NULL);
93 if (tmp) {
94 if (cache->ready)
95 list_splice_entire_tail(tmp, cache->ready);
96 else
97 cache->ready = tmp;
98 }
99 }
100
rds_ib_recv_alloc_cache(struct rds_ib_refill_cache * cache,gfp_t gfp)101 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
102 {
103 struct rds_ib_cache_head *head;
104 int cpu;
105
106 cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
107 if (!cache->percpu)
108 return -ENOMEM;
109
110 for_each_possible_cpu(cpu) {
111 head = per_cpu_ptr(cache->percpu, cpu);
112 head->first = NULL;
113 head->count = 0;
114 }
115 cache->xfer = NULL;
116 cache->ready = NULL;
117
118 return 0;
119 }
120
rds_ib_recv_alloc_caches(struct rds_ib_connection * ic,gfp_t gfp)121 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
122 {
123 int ret;
124
125 ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
126 if (!ret) {
127 ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
128 if (ret)
129 free_percpu(ic->i_cache_incs.percpu);
130 }
131
132 return ret;
133 }
134
rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache * cache,struct list_head * caller_list)135 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
136 struct list_head *caller_list)
137 {
138 struct rds_ib_cache_head *head;
139 int cpu;
140
141 for_each_possible_cpu(cpu) {
142 head = per_cpu_ptr(cache->percpu, cpu);
143 if (head->first) {
144 list_splice_entire_tail(head->first, caller_list);
145 head->first = NULL;
146 }
147 }
148
149 if (cache->ready) {
150 list_splice_entire_tail(cache->ready, caller_list);
151 cache->ready = NULL;
152 }
153 }
154
rds_ib_recv_free_caches(struct rds_ib_connection * ic)155 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
156 {
157 struct rds_ib_incoming *inc;
158 struct rds_ib_incoming *inc_tmp;
159 struct rds_page_frag *frag;
160 struct rds_page_frag *frag_tmp;
161 LIST_HEAD(list);
162
163 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
164 rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
165 free_percpu(ic->i_cache_incs.percpu);
166
167 list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
168 list_del(&inc->ii_cache_entry);
169 WARN_ON(!list_empty(&inc->ii_frags));
170 kmem_cache_free(rds_ib_incoming_slab, inc);
171 atomic_dec(&rds_ib_allocation);
172 }
173
174 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
175 rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
176 free_percpu(ic->i_cache_frags.percpu);
177
178 list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
179 list_del(&frag->f_cache_entry);
180 WARN_ON(!list_empty(&frag->f_item));
181 kmem_cache_free(rds_ib_frag_slab, frag);
182 }
183 }
184
185 /* fwd decl */
186 static void rds_ib_recv_cache_put(struct list_head *new_item,
187 struct rds_ib_refill_cache *cache);
188 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
189
190
191 /* Recycle frag and attached recv buffer f_sg */
rds_ib_frag_free(struct rds_ib_connection * ic,struct rds_page_frag * frag)192 static void rds_ib_frag_free(struct rds_ib_connection *ic,
193 struct rds_page_frag *frag)
194 {
195 rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
196
197 rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
198 atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
199 rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
200 }
201
202 /* Recycle inc after freeing attached frags */
rds_ib_inc_free(struct rds_incoming * inc)203 void rds_ib_inc_free(struct rds_incoming *inc)
204 {
205 struct rds_ib_incoming *ibinc;
206 struct rds_page_frag *frag;
207 struct rds_page_frag *pos;
208 struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
209
210 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
211
212 /* Free attached frags */
213 list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
214 list_del_init(&frag->f_item);
215 rds_ib_frag_free(ic, frag);
216 }
217 BUG_ON(!list_empty(&ibinc->ii_frags));
218
219 rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
220 rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
221 }
222
rds_ib_recv_clear_one(struct rds_ib_connection * ic,struct rds_ib_recv_work * recv)223 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
224 struct rds_ib_recv_work *recv)
225 {
226 if (recv->r_ibinc) {
227 rds_inc_put(&recv->r_ibinc->ii_inc);
228 recv->r_ibinc = NULL;
229 }
230 if (recv->r_frag) {
231 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
232 rds_ib_frag_free(ic, recv->r_frag);
233 recv->r_frag = NULL;
234 }
235 }
236
rds_ib_recv_clear_ring(struct rds_ib_connection * ic)237 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
238 {
239 u32 i;
240
241 for (i = 0; i < ic->i_recv_ring.w_nr; i++)
242 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
243 }
244
rds_ib_refill_one_inc(struct rds_ib_connection * ic,gfp_t slab_mask)245 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
246 gfp_t slab_mask)
247 {
248 struct rds_ib_incoming *ibinc;
249 struct list_head *cache_item;
250 int avail_allocs;
251
252 cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
253 if (cache_item) {
254 ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
255 } else {
256 avail_allocs = atomic_add_unless(&rds_ib_allocation,
257 1, rds_ib_sysctl_max_recv_allocation);
258 if (!avail_allocs) {
259 rds_ib_stats_inc(s_ib_rx_alloc_limit);
260 return NULL;
261 }
262 ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
263 if (!ibinc) {
264 atomic_dec(&rds_ib_allocation);
265 return NULL;
266 }
267 rds_ib_stats_inc(s_ib_rx_total_incs);
268 }
269 INIT_LIST_HEAD(&ibinc->ii_frags);
270 rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
271
272 return ibinc;
273 }
274
rds_ib_refill_one_frag(struct rds_ib_connection * ic,gfp_t slab_mask,gfp_t page_mask)275 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
276 gfp_t slab_mask, gfp_t page_mask)
277 {
278 struct rds_page_frag *frag;
279 struct list_head *cache_item;
280 int ret;
281
282 cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
283 if (cache_item) {
284 frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
285 atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
286 rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
287 } else {
288 frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
289 if (!frag)
290 return NULL;
291
292 sg_init_table(&frag->f_sg, 1);
293 ret = rds_page_remainder_alloc(&frag->f_sg,
294 RDS_FRAG_SIZE, page_mask);
295 if (ret) {
296 kmem_cache_free(rds_ib_frag_slab, frag);
297 return NULL;
298 }
299 rds_ib_stats_inc(s_ib_rx_total_frags);
300 }
301
302 INIT_LIST_HEAD(&frag->f_item);
303
304 return frag;
305 }
306
rds_ib_recv_refill_one(struct rds_connection * conn,struct rds_ib_recv_work * recv,gfp_t gfp)307 static int rds_ib_recv_refill_one(struct rds_connection *conn,
308 struct rds_ib_recv_work *recv, gfp_t gfp)
309 {
310 struct rds_ib_connection *ic = conn->c_transport_data;
311 struct ib_sge *sge;
312 int ret = -ENOMEM;
313 gfp_t slab_mask = GFP_NOWAIT;
314 gfp_t page_mask = GFP_NOWAIT;
315
316 if (gfp & __GFP_DIRECT_RECLAIM) {
317 slab_mask = GFP_KERNEL;
318 page_mask = GFP_HIGHUSER;
319 }
320
321 if (!ic->i_cache_incs.ready)
322 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
323 if (!ic->i_cache_frags.ready)
324 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
325
326 /*
327 * ibinc was taken from recv if recv contained the start of a message.
328 * recvs that were continuations will still have this allocated.
329 */
330 if (!recv->r_ibinc) {
331 recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
332 if (!recv->r_ibinc)
333 goto out;
334 }
335
336 WARN_ON(recv->r_frag); /* leak! */
337 recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
338 if (!recv->r_frag)
339 goto out;
340
341 ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
342 1, DMA_FROM_DEVICE);
343 WARN_ON(ret != 1);
344
345 sge = &recv->r_sge[0];
346 sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
347 sge->length = sizeof(struct rds_header);
348
349 sge = &recv->r_sge[1];
350 sge->addr = sg_dma_address(&recv->r_frag->f_sg);
351 sge->length = sg_dma_len(&recv->r_frag->f_sg);
352
353 ret = 0;
354 out:
355 return ret;
356 }
357
acquire_refill(struct rds_connection * conn)358 static int acquire_refill(struct rds_connection *conn)
359 {
360 return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
361 }
362
release_refill(struct rds_connection * conn)363 static void release_refill(struct rds_connection *conn)
364 {
365 clear_bit(RDS_RECV_REFILL, &conn->c_flags);
366 smp_mb__after_atomic();
367
368 /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
369 * hot path and finding waiters is very rare. We don't want to walk
370 * the system-wide hashed waitqueue buckets in the fast path only to
371 * almost never find waiters.
372 */
373 if (waitqueue_active(&conn->c_waitq))
374 wake_up_all(&conn->c_waitq);
375 }
376
377 /*
378 * This tries to allocate and post unused work requests after making sure that
379 * they have all the allocations they need to queue received fragments into
380 * sockets.
381 */
rds_ib_recv_refill(struct rds_connection * conn,int prefill,gfp_t gfp)382 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
383 {
384 struct rds_ib_connection *ic = conn->c_transport_data;
385 struct rds_ib_recv_work *recv;
386 unsigned int posted = 0;
387 int ret = 0;
388 bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
389 bool must_wake = false;
390 u32 pos;
391
392 /* the goal here is to just make sure that someone, somewhere
393 * is posting buffers. If we can't get the refill lock,
394 * let them do their thing
395 */
396 if (!acquire_refill(conn))
397 return;
398
399 while ((prefill || rds_conn_up(conn)) &&
400 rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
401 if (pos >= ic->i_recv_ring.w_nr) {
402 printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
403 pos);
404 break;
405 }
406
407 recv = &ic->i_recvs[pos];
408 ret = rds_ib_recv_refill_one(conn, recv, gfp);
409 if (ret) {
410 must_wake = true;
411 break;
412 }
413
414 rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
415 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
416 (long)sg_dma_address(&recv->r_frag->f_sg));
417
418 /* XXX when can this fail? */
419 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
420 if (ret) {
421 rds_ib_conn_error(conn, "recv post on "
422 "%pI6c returned %d, disconnecting and "
423 "reconnecting\n", &conn->c_faddr,
424 ret);
425 break;
426 }
427
428 posted++;
429
430 if ((posted > 128 && need_resched()) || posted > 8192) {
431 must_wake = true;
432 break;
433 }
434 }
435
436 /* We're doing flow control - update the window. */
437 if (ic->i_flowctl && posted)
438 rds_ib_advertise_credits(conn, posted);
439
440 if (ret)
441 rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
442
443 release_refill(conn);
444
445 /* if we're called from the softirq handler, we'll be GFP_NOWAIT.
446 * in this case the ring being low is going to lead to more interrupts
447 * and we can safely let the softirq code take care of it unless the
448 * ring is completely empty.
449 *
450 * if we're called from krdsd, we'll be GFP_KERNEL. In this case
451 * we might have raced with the softirq code while we had the refill
452 * lock held. Use rds_ib_ring_low() instead of ring_empty to decide
453 * if we should requeue.
454 */
455 if (rds_conn_up(conn) &&
456 (must_wake ||
457 (can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
458 rds_ib_ring_empty(&ic->i_recv_ring))) {
459 queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
460 }
461 if (can_wait)
462 cond_resched();
463 }
464
465 /*
466 * We want to recycle several types of recv allocations, like incs and frags.
467 * To use this, the *_free() function passes in the ptr to a list_head within
468 * the recyclee, as well as the cache to put it on.
469 *
470 * First, we put the memory on a percpu list. When this reaches a certain size,
471 * We move it to an intermediate non-percpu list in a lockless manner, with some
472 * xchg/compxchg wizardry.
473 *
474 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
475 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
476 * list_empty() will return true with one element is actually present.
477 */
rds_ib_recv_cache_put(struct list_head * new_item,struct rds_ib_refill_cache * cache)478 static void rds_ib_recv_cache_put(struct list_head *new_item,
479 struct rds_ib_refill_cache *cache)
480 {
481 unsigned long flags;
482 struct list_head *old, *chpfirst;
483
484 local_irq_save(flags);
485
486 chpfirst = __this_cpu_read(cache->percpu->first);
487 if (!chpfirst)
488 INIT_LIST_HEAD(new_item);
489 else /* put on front */
490 list_add_tail(new_item, chpfirst);
491
492 __this_cpu_write(cache->percpu->first, new_item);
493 __this_cpu_inc(cache->percpu->count);
494
495 if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
496 goto end;
497
498 /*
499 * Return our per-cpu first list to the cache's xfer by atomically
500 * grabbing the current xfer list, appending it to our per-cpu list,
501 * and then atomically returning that entire list back to the
502 * cache's xfer list as long as it's still empty.
503 */
504 do {
505 old = xchg(&cache->xfer, NULL);
506 if (old)
507 list_splice_entire_tail(old, chpfirst);
508 old = cmpxchg(&cache->xfer, NULL, chpfirst);
509 } while (old);
510
511
512 __this_cpu_write(cache->percpu->first, NULL);
513 __this_cpu_write(cache->percpu->count, 0);
514 end:
515 local_irq_restore(flags);
516 }
517
rds_ib_recv_cache_get(struct rds_ib_refill_cache * cache)518 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
519 {
520 struct list_head *head = cache->ready;
521
522 if (head) {
523 if (!list_empty(head)) {
524 cache->ready = head->next;
525 list_del_init(head);
526 } else
527 cache->ready = NULL;
528 }
529
530 return head;
531 }
532
rds_ib_inc_copy_to_user(struct rds_incoming * inc,struct iov_iter * to)533 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
534 {
535 struct rds_ib_incoming *ibinc;
536 struct rds_page_frag *frag;
537 unsigned long to_copy;
538 unsigned long frag_off = 0;
539 int copied = 0;
540 int ret;
541 u32 len;
542
543 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
544 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
545 len = be32_to_cpu(inc->i_hdr.h_len);
546
547 while (iov_iter_count(to) && copied < len) {
548 if (frag_off == RDS_FRAG_SIZE) {
549 frag = list_entry(frag->f_item.next,
550 struct rds_page_frag, f_item);
551 frag_off = 0;
552 }
553 to_copy = min_t(unsigned long, iov_iter_count(to),
554 RDS_FRAG_SIZE - frag_off);
555 to_copy = min_t(unsigned long, to_copy, len - copied);
556
557 /* XXX needs + offset for multiple recvs per page */
558 rds_stats_add(s_copy_to_user, to_copy);
559 ret = copy_page_to_iter(sg_page(&frag->f_sg),
560 frag->f_sg.offset + frag_off,
561 to_copy,
562 to);
563 if (ret != to_copy)
564 return -EFAULT;
565
566 frag_off += to_copy;
567 copied += to_copy;
568 }
569
570 return copied;
571 }
572
573 /* ic starts out kzalloc()ed */
rds_ib_recv_init_ack(struct rds_ib_connection * ic)574 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
575 {
576 struct ib_send_wr *wr = &ic->i_ack_wr;
577 struct ib_sge *sge = &ic->i_ack_sge;
578
579 sge->addr = ic->i_ack_dma;
580 sge->length = sizeof(struct rds_header);
581 sge->lkey = ic->i_pd->local_dma_lkey;
582
583 wr->sg_list = sge;
584 wr->num_sge = 1;
585 wr->opcode = IB_WR_SEND;
586 wr->wr_id = RDS_IB_ACK_WR_ID;
587 wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
588 }
589
590 /*
591 * You'd think that with reliable IB connections you wouldn't need to ack
592 * messages that have been received. The problem is that IB hardware generates
593 * an ack message before it has DMAed the message into memory. This creates a
594 * potential message loss if the HCA is disabled for any reason between when it
595 * sends the ack and before the message is DMAed and processed. This is only a
596 * potential issue if another HCA is available for fail-over.
597 *
598 * When the remote host receives our ack they'll free the sent message from
599 * their send queue. To decrease the latency of this we always send an ack
600 * immediately after we've received messages.
601 *
602 * For simplicity, we only have one ack in flight at a time. This puts
603 * pressure on senders to have deep enough send queues to absorb the latency of
604 * a single ack frame being in flight. This might not be good enough.
605 *
606 * This is implemented by have a long-lived send_wr and sge which point to a
607 * statically allocated ack frame. This ack wr does not fall under the ring
608 * accounting that the tx and rx wrs do. The QP attribute specifically makes
609 * room for it beyond the ring size. Send completion notices its special
610 * wr_id and avoids working with the ring in that case.
611 */
612 #ifndef KERNEL_HAS_ATOMIC64
rds_ib_set_ack(struct rds_ib_connection * ic,u64 seq,int ack_required)613 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
614 {
615 unsigned long flags;
616
617 spin_lock_irqsave(&ic->i_ack_lock, flags);
618 ic->i_ack_next = seq;
619 if (ack_required)
620 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
621 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
622 }
623
rds_ib_get_ack(struct rds_ib_connection * ic)624 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
625 {
626 unsigned long flags;
627 u64 seq;
628
629 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
630
631 spin_lock_irqsave(&ic->i_ack_lock, flags);
632 seq = ic->i_ack_next;
633 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
634
635 return seq;
636 }
637 #else
rds_ib_set_ack(struct rds_ib_connection * ic,u64 seq,int ack_required)638 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
639 {
640 atomic64_set(&ic->i_ack_next, seq);
641 if (ack_required) {
642 smp_mb__before_atomic();
643 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
644 }
645 }
646
rds_ib_get_ack(struct rds_ib_connection * ic)647 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
648 {
649 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
650 smp_mb__after_atomic();
651
652 return atomic64_read(&ic->i_ack_next);
653 }
654 #endif
655
656
rds_ib_send_ack(struct rds_ib_connection * ic,unsigned int adv_credits)657 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
658 {
659 struct rds_header *hdr = ic->i_ack;
660 u64 seq;
661 int ret;
662
663 seq = rds_ib_get_ack(ic);
664
665 rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
666 rds_message_populate_header(hdr, 0, 0, 0);
667 hdr->h_ack = cpu_to_be64(seq);
668 hdr->h_credit = adv_credits;
669 rds_message_make_checksum(hdr);
670 ic->i_ack_queued = jiffies;
671
672 ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
673 if (unlikely(ret)) {
674 /* Failed to send. Release the WR, and
675 * force another ACK.
676 */
677 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
678 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
679
680 rds_ib_stats_inc(s_ib_ack_send_failure);
681
682 rds_ib_conn_error(ic->conn, "sending ack failed\n");
683 } else
684 rds_ib_stats_inc(s_ib_ack_sent);
685 }
686
687 /*
688 * There are 3 ways of getting acknowledgements to the peer:
689 * 1. We call rds_ib_attempt_ack from the recv completion handler
690 * to send an ACK-only frame.
691 * However, there can be only one such frame in the send queue
692 * at any time, so we may have to postpone it.
693 * 2. When another (data) packet is transmitted while there's
694 * an ACK in the queue, we piggyback the ACK sequence number
695 * on the data packet.
696 * 3. If the ACK WR is done sending, we get called from the
697 * send queue completion handler, and check whether there's
698 * another ACK pending (postponed because the WR was on the
699 * queue). If so, we transmit it.
700 *
701 * We maintain 2 variables:
702 * - i_ack_flags, which keeps track of whether the ACK WR
703 * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
704 * - i_ack_next, which is the last sequence number we received
705 *
706 * Potentially, send queue and receive queue handlers can run concurrently.
707 * It would be nice to not have to use a spinlock to synchronize things,
708 * but the one problem that rules this out is that 64bit updates are
709 * not atomic on all platforms. Things would be a lot simpler if
710 * we had atomic64 or maybe cmpxchg64 everywhere.
711 *
712 * Reconnecting complicates this picture just slightly. When we
713 * reconnect, we may be seeing duplicate packets. The peer
714 * is retransmitting them, because it hasn't seen an ACK for
715 * them. It is important that we ACK these.
716 *
717 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
718 * this flag set *MUST* be acknowledged immediately.
719 */
720
721 /*
722 * When we get here, we're called from the recv queue handler.
723 * Check whether we ought to transmit an ACK.
724 */
rds_ib_attempt_ack(struct rds_ib_connection * ic)725 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
726 {
727 unsigned int adv_credits;
728
729 if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
730 return;
731
732 if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
733 rds_ib_stats_inc(s_ib_ack_send_delayed);
734 return;
735 }
736
737 /* Can we get a send credit? */
738 if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
739 rds_ib_stats_inc(s_ib_tx_throttle);
740 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
741 return;
742 }
743
744 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
745 rds_ib_send_ack(ic, adv_credits);
746 }
747
748 /*
749 * We get here from the send completion handler, when the
750 * adapter tells us the ACK frame was sent.
751 */
rds_ib_ack_send_complete(struct rds_ib_connection * ic)752 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
753 {
754 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
755 rds_ib_attempt_ack(ic);
756 }
757
758 /*
759 * This is called by the regular xmit code when it wants to piggyback
760 * an ACK on an outgoing frame.
761 */
rds_ib_piggyb_ack(struct rds_ib_connection * ic)762 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
763 {
764 if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
765 rds_ib_stats_inc(s_ib_ack_send_piggybacked);
766 return rds_ib_get_ack(ic);
767 }
768
769 /*
770 * It's kind of lame that we're copying from the posted receive pages into
771 * long-lived bitmaps. We could have posted the bitmaps and rdma written into
772 * them. But receiving new congestion bitmaps should be a *rare* event, so
773 * hopefully we won't need to invest that complexity in making it more
774 * efficient. By copying we can share a simpler core with TCP which has to
775 * copy.
776 */
rds_ib_cong_recv(struct rds_connection * conn,struct rds_ib_incoming * ibinc)777 static void rds_ib_cong_recv(struct rds_connection *conn,
778 struct rds_ib_incoming *ibinc)
779 {
780 struct rds_cong_map *map;
781 unsigned int map_off;
782 unsigned int map_page;
783 struct rds_page_frag *frag;
784 unsigned long frag_off;
785 unsigned long to_copy;
786 unsigned long copied;
787 __le64 uncongested = 0;
788 void *addr;
789
790 /* catch completely corrupt packets */
791 if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
792 return;
793
794 map = conn->c_fcong;
795 map_page = 0;
796 map_off = 0;
797
798 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
799 frag_off = 0;
800
801 copied = 0;
802
803 while (copied < RDS_CONG_MAP_BYTES) {
804 __le64 *src, *dst;
805 unsigned int k;
806
807 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
808 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
809
810 addr = kmap_atomic(sg_page(&frag->f_sg));
811
812 src = addr + frag->f_sg.offset + frag_off;
813 dst = (void *)map->m_page_addrs[map_page] + map_off;
814 for (k = 0; k < to_copy; k += 8) {
815 /* Record ports that became uncongested, ie
816 * bits that changed from 0 to 1. */
817 uncongested |= ~(*src) & *dst;
818 *dst++ = *src++;
819 }
820 kunmap_atomic(addr);
821
822 copied += to_copy;
823
824 map_off += to_copy;
825 if (map_off == PAGE_SIZE) {
826 map_off = 0;
827 map_page++;
828 }
829
830 frag_off += to_copy;
831 if (frag_off == RDS_FRAG_SIZE) {
832 frag = list_entry(frag->f_item.next,
833 struct rds_page_frag, f_item);
834 frag_off = 0;
835 }
836 }
837
838 /* the congestion map is in little endian order */
839 rds_cong_map_updated(map, le64_to_cpu(uncongested));
840 }
841
rds_ib_process_recv(struct rds_connection * conn,struct rds_ib_recv_work * recv,u32 data_len,struct rds_ib_ack_state * state)842 static void rds_ib_process_recv(struct rds_connection *conn,
843 struct rds_ib_recv_work *recv, u32 data_len,
844 struct rds_ib_ack_state *state)
845 {
846 struct rds_ib_connection *ic = conn->c_transport_data;
847 struct rds_ib_incoming *ibinc = ic->i_ibinc;
848 struct rds_header *ihdr, *hdr;
849
850 /* XXX shut down the connection if port 0,0 are seen? */
851
852 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
853 data_len);
854
855 if (data_len < sizeof(struct rds_header)) {
856 rds_ib_conn_error(conn, "incoming message "
857 "from %pI6c didn't include a "
858 "header, disconnecting and "
859 "reconnecting\n",
860 &conn->c_faddr);
861 return;
862 }
863 data_len -= sizeof(struct rds_header);
864
865 ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
866
867 /* Validate the checksum. */
868 if (!rds_message_verify_checksum(ihdr)) {
869 rds_ib_conn_error(conn, "incoming message "
870 "from %pI6c has corrupted header - "
871 "forcing a reconnect\n",
872 &conn->c_faddr);
873 rds_stats_inc(s_recv_drop_bad_checksum);
874 return;
875 }
876
877 /* Process the ACK sequence which comes with every packet */
878 state->ack_recv = be64_to_cpu(ihdr->h_ack);
879 state->ack_recv_valid = 1;
880
881 /* Process the credits update if there was one */
882 if (ihdr->h_credit)
883 rds_ib_send_add_credits(conn, ihdr->h_credit);
884
885 if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
886 /* This is an ACK-only packet. The fact that it gets
887 * special treatment here is that historically, ACKs
888 * were rather special beasts.
889 */
890 rds_ib_stats_inc(s_ib_ack_received);
891
892 /*
893 * Usually the frags make their way on to incs and are then freed as
894 * the inc is freed. We don't go that route, so we have to drop the
895 * page ref ourselves. We can't just leave the page on the recv
896 * because that confuses the dma mapping of pages and each recv's use
897 * of a partial page.
898 *
899 * FIXME: Fold this into the code path below.
900 */
901 rds_ib_frag_free(ic, recv->r_frag);
902 recv->r_frag = NULL;
903 return;
904 }
905
906 /*
907 * If we don't already have an inc on the connection then this
908 * fragment has a header and starts a message.. copy its header
909 * into the inc and save the inc so we can hang upcoming fragments
910 * off its list.
911 */
912 if (!ibinc) {
913 ibinc = recv->r_ibinc;
914 recv->r_ibinc = NULL;
915 ic->i_ibinc = ibinc;
916
917 hdr = &ibinc->ii_inc.i_hdr;
918 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
919 local_clock();
920 memcpy(hdr, ihdr, sizeof(*hdr));
921 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
922 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
923 local_clock();
924
925 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
926 ic->i_recv_data_rem, hdr->h_flags);
927 } else {
928 hdr = &ibinc->ii_inc.i_hdr;
929 /* We can't just use memcmp here; fragments of a
930 * single message may carry different ACKs */
931 if (hdr->h_sequence != ihdr->h_sequence ||
932 hdr->h_len != ihdr->h_len ||
933 hdr->h_sport != ihdr->h_sport ||
934 hdr->h_dport != ihdr->h_dport) {
935 rds_ib_conn_error(conn,
936 "fragment header mismatch; forcing reconnect\n");
937 return;
938 }
939 }
940
941 list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
942 recv->r_frag = NULL;
943
944 if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
945 ic->i_recv_data_rem -= RDS_FRAG_SIZE;
946 else {
947 ic->i_recv_data_rem = 0;
948 ic->i_ibinc = NULL;
949
950 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
951 rds_ib_cong_recv(conn, ibinc);
952 } else {
953 rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
954 &ibinc->ii_inc, GFP_ATOMIC);
955 state->ack_next = be64_to_cpu(hdr->h_sequence);
956 state->ack_next_valid = 1;
957 }
958
959 /* Evaluate the ACK_REQUIRED flag *after* we received
960 * the complete frame, and after bumping the next_rx
961 * sequence. */
962 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
963 rds_stats_inc(s_recv_ack_required);
964 state->ack_required = 1;
965 }
966
967 rds_inc_put(&ibinc->ii_inc);
968 }
969 }
970
rds_ib_recv_cqe_handler(struct rds_ib_connection * ic,struct ib_wc * wc,struct rds_ib_ack_state * state)971 void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
972 struct ib_wc *wc,
973 struct rds_ib_ack_state *state)
974 {
975 struct rds_connection *conn = ic->conn;
976 struct rds_ib_recv_work *recv;
977
978 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
979 (unsigned long long)wc->wr_id, wc->status,
980 ib_wc_status_msg(wc->status), wc->byte_len,
981 be32_to_cpu(wc->ex.imm_data));
982
983 rds_ib_stats_inc(s_ib_rx_cq_event);
984 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
985 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
986 DMA_FROM_DEVICE);
987
988 /* Also process recvs in connecting state because it is possible
989 * to get a recv completion _before_ the rdmacm ESTABLISHED
990 * event is processed.
991 */
992 if (wc->status == IB_WC_SUCCESS) {
993 rds_ib_process_recv(conn, recv, wc->byte_len, state);
994 } else {
995 /* We expect errors as the qp is drained during shutdown */
996 if (rds_conn_up(conn) || rds_conn_connecting(conn))
997 rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), disconnecting and reconnecting\n",
998 &conn->c_laddr, &conn->c_faddr,
999 conn->c_tos, wc->status,
1000 ib_wc_status_msg(wc->status));
1001 }
1002
1003 /* rds_ib_process_recv() doesn't always consume the frag, and
1004 * we might not have called it at all if the wc didn't indicate
1005 * success. We already unmapped the frag's pages, though, and
1006 * the following rds_ib_ring_free() call tells the refill path
1007 * that it will not find an allocated frag here. Make sure we
1008 * keep that promise by freeing a frag that's still on the ring.
1009 */
1010 if (recv->r_frag) {
1011 rds_ib_frag_free(ic, recv->r_frag);
1012 recv->r_frag = NULL;
1013 }
1014 rds_ib_ring_free(&ic->i_recv_ring, 1);
1015
1016 /* If we ever end up with a really empty receive ring, we're
1017 * in deep trouble, as the sender will definitely see RNR
1018 * timeouts. */
1019 if (rds_ib_ring_empty(&ic->i_recv_ring))
1020 rds_ib_stats_inc(s_ib_rx_ring_empty);
1021
1022 if (rds_ib_ring_low(&ic->i_recv_ring)) {
1023 rds_ib_recv_refill(conn, 0, GFP_NOWAIT);
1024 rds_ib_stats_inc(s_ib_rx_refill_from_cq);
1025 }
1026 }
1027
rds_ib_recv_path(struct rds_conn_path * cp)1028 int rds_ib_recv_path(struct rds_conn_path *cp)
1029 {
1030 struct rds_connection *conn = cp->cp_conn;
1031 struct rds_ib_connection *ic = conn->c_transport_data;
1032
1033 rdsdebug("conn %p\n", conn);
1034 if (rds_conn_up(conn)) {
1035 rds_ib_attempt_ack(ic);
1036 rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1037 rds_ib_stats_inc(s_ib_rx_refill_from_thread);
1038 }
1039
1040 return 0;
1041 }
1042
rds_ib_recv_init(void)1043 int rds_ib_recv_init(void)
1044 {
1045 struct sysinfo si;
1046 int ret = -ENOMEM;
1047
1048 /* Default to 30% of all available RAM for recv memory */
1049 si_meminfo(&si);
1050 rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1051
1052 rds_ib_incoming_slab =
1053 kmem_cache_create_usercopy("rds_ib_incoming",
1054 sizeof(struct rds_ib_incoming),
1055 0, SLAB_HWCACHE_ALIGN,
1056 offsetof(struct rds_ib_incoming,
1057 ii_inc.i_usercopy),
1058 sizeof(struct rds_inc_usercopy),
1059 NULL);
1060 if (!rds_ib_incoming_slab)
1061 goto out;
1062
1063 rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1064 sizeof(struct rds_page_frag),
1065 0, SLAB_HWCACHE_ALIGN, NULL);
1066 if (!rds_ib_frag_slab) {
1067 kmem_cache_destroy(rds_ib_incoming_slab);
1068 rds_ib_incoming_slab = NULL;
1069 } else
1070 ret = 0;
1071 out:
1072 return ret;
1073 }
1074
rds_ib_recv_exit(void)1075 void rds_ib_recv_exit(void)
1076 {
1077 WARN_ON(atomic_read(&rds_ib_allocation));
1078
1079 kmem_cache_destroy(rds_ib_incoming_slab);
1080 kmem_cache_destroy(rds_ib_frag_slab);
1081 }
1082