1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* XDP user-space ring structure
3 * Copyright(c) 2018 Intel Corporation.
4 */
5
6 #ifndef _LINUX_XSK_QUEUE_H
7 #define _LINUX_XSK_QUEUE_H
8
9 #include <linux/types.h>
10 #include <linux/if_xdp.h>
11 #include <net/xdp_sock.h>
12
13 #define RX_BATCH_SIZE 16
14 #define LAZY_UPDATE_THRESHOLD 128
15
16 struct xdp_ring {
17 u32 producer ____cacheline_aligned_in_smp;
18 u32 consumer ____cacheline_aligned_in_smp;
19 u32 flags;
20 };
21
22 /* Used for the RX and TX queues for packets */
23 struct xdp_rxtx_ring {
24 struct xdp_ring ptrs;
25 struct xdp_desc desc[0] ____cacheline_aligned_in_smp;
26 };
27
28 /* Used for the fill and completion queues for buffers */
29 struct xdp_umem_ring {
30 struct xdp_ring ptrs;
31 u64 desc[0] ____cacheline_aligned_in_smp;
32 };
33
34 struct xsk_queue {
35 u64 chunk_mask;
36 u64 size;
37 u32 ring_mask;
38 u32 nentries;
39 u32 prod_head;
40 u32 prod_tail;
41 u32 cons_head;
42 u32 cons_tail;
43 struct xdp_ring *ring;
44 u64 invalid_descs;
45 };
46
47 /* The structure of the shared state of the rings are the same as the
48 * ring buffer in kernel/events/ring_buffer.c. For the Rx and completion
49 * ring, the kernel is the producer and user space is the consumer. For
50 * the Tx and fill rings, the kernel is the consumer and user space is
51 * the producer.
52 *
53 * producer consumer
54 *
55 * if (LOAD ->consumer) { LOAD ->producer
56 * (A) smp_rmb() (C)
57 * STORE $data LOAD $data
58 * smp_wmb() (B) smp_mb() (D)
59 * STORE ->producer STORE ->consumer
60 * }
61 *
62 * (A) pairs with (D), and (B) pairs with (C).
63 *
64 * Starting with (B), it protects the data from being written after
65 * the producer pointer. If this barrier was missing, the consumer
66 * could observe the producer pointer being set and thus load the data
67 * before the producer has written the new data. The consumer would in
68 * this case load the old data.
69 *
70 * (C) protects the consumer from speculatively loading the data before
71 * the producer pointer actually has been read. If we do not have this
72 * barrier, some architectures could load old data as speculative loads
73 * are not discarded as the CPU does not know there is a dependency
74 * between ->producer and data.
75 *
76 * (A) is a control dependency that separates the load of ->consumer
77 * from the stores of $data. In case ->consumer indicates there is no
78 * room in the buffer to store $data we do not. So no barrier is needed.
79 *
80 * (D) protects the load of the data to be observed to happen after the
81 * store of the consumer pointer. If we did not have this memory
82 * barrier, the producer could observe the consumer pointer being set
83 * and overwrite the data with a new value before the consumer got the
84 * chance to read the old value. The consumer would thus miss reading
85 * the old entry and very likely read the new entry twice, once right
86 * now and again after circling through the ring.
87 */
88
89 /* Common functions operating for both RXTX and umem queues */
90
xskq_nb_invalid_descs(struct xsk_queue * q)91 static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
92 {
93 return q ? q->invalid_descs : 0;
94 }
95
xskq_nb_avail(struct xsk_queue * q,u32 dcnt)96 static inline u32 xskq_nb_avail(struct xsk_queue *q, u32 dcnt)
97 {
98 u32 entries = q->prod_tail - q->cons_tail;
99
100 if (entries == 0) {
101 /* Refresh the local pointer */
102 q->prod_tail = READ_ONCE(q->ring->producer);
103 entries = q->prod_tail - q->cons_tail;
104 }
105
106 return (entries > dcnt) ? dcnt : entries;
107 }
108
xskq_nb_free(struct xsk_queue * q,u32 producer,u32 dcnt)109 static inline u32 xskq_nb_free(struct xsk_queue *q, u32 producer, u32 dcnt)
110 {
111 u32 free_entries = q->nentries - (producer - q->cons_tail);
112
113 if (free_entries >= dcnt)
114 return free_entries;
115
116 /* Refresh the local tail pointer */
117 q->cons_tail = READ_ONCE(q->ring->consumer);
118 return q->nentries - (producer - q->cons_tail);
119 }
120
xskq_has_addrs(struct xsk_queue * q,u32 cnt)121 static inline bool xskq_has_addrs(struct xsk_queue *q, u32 cnt)
122 {
123 u32 entries = q->prod_tail - q->cons_tail;
124
125 if (entries >= cnt)
126 return true;
127
128 /* Refresh the local pointer. */
129 q->prod_tail = READ_ONCE(q->ring->producer);
130 entries = q->prod_tail - q->cons_tail;
131
132 return entries >= cnt;
133 }
134
135 /* UMEM queue */
136
xskq_crosses_non_contig_pg(struct xdp_umem * umem,u64 addr,u64 length)137 static inline bool xskq_crosses_non_contig_pg(struct xdp_umem *umem, u64 addr,
138 u64 length)
139 {
140 bool cross_pg = (addr & (PAGE_SIZE - 1)) + length > PAGE_SIZE;
141 bool next_pg_contig =
142 (unsigned long)umem->pages[(addr >> PAGE_SHIFT)].addr &
143 XSK_NEXT_PG_CONTIG_MASK;
144
145 return cross_pg && !next_pg_contig;
146 }
147
xskq_is_valid_addr(struct xsk_queue * q,u64 addr)148 static inline bool xskq_is_valid_addr(struct xsk_queue *q, u64 addr)
149 {
150 if (addr >= q->size) {
151 q->invalid_descs++;
152 return false;
153 }
154
155 return true;
156 }
157
xskq_is_valid_addr_unaligned(struct xsk_queue * q,u64 addr,u64 length,struct xdp_umem * umem)158 static inline bool xskq_is_valid_addr_unaligned(struct xsk_queue *q, u64 addr,
159 u64 length,
160 struct xdp_umem *umem)
161 {
162 u64 base_addr = xsk_umem_extract_addr(addr);
163
164 addr = xsk_umem_add_offset_to_addr(addr);
165 if (base_addr >= q->size || addr >= q->size ||
166 xskq_crosses_non_contig_pg(umem, addr, length)) {
167 q->invalid_descs++;
168 return false;
169 }
170
171 return true;
172 }
173
xskq_validate_addr(struct xsk_queue * q,u64 * addr,struct xdp_umem * umem)174 static inline u64 *xskq_validate_addr(struct xsk_queue *q, u64 *addr,
175 struct xdp_umem *umem)
176 {
177 while (q->cons_tail != q->cons_head) {
178 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
179 unsigned int idx = q->cons_tail & q->ring_mask;
180
181 *addr = READ_ONCE(ring->desc[idx]) & q->chunk_mask;
182
183 if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) {
184 if (xskq_is_valid_addr_unaligned(q, *addr,
185 umem->chunk_size_nohr,
186 umem))
187 return addr;
188 goto out;
189 }
190
191 if (xskq_is_valid_addr(q, *addr))
192 return addr;
193
194 out:
195 q->cons_tail++;
196 }
197
198 return NULL;
199 }
200
xskq_peek_addr(struct xsk_queue * q,u64 * addr,struct xdp_umem * umem)201 static inline u64 *xskq_peek_addr(struct xsk_queue *q, u64 *addr,
202 struct xdp_umem *umem)
203 {
204 if (q->cons_tail == q->cons_head) {
205 smp_mb(); /* D, matches A */
206 WRITE_ONCE(q->ring->consumer, q->cons_tail);
207 q->cons_head = q->cons_tail + xskq_nb_avail(q, RX_BATCH_SIZE);
208
209 /* Order consumer and data */
210 smp_rmb();
211 }
212
213 return xskq_validate_addr(q, addr, umem);
214 }
215
xskq_discard_addr(struct xsk_queue * q)216 static inline void xskq_discard_addr(struct xsk_queue *q)
217 {
218 q->cons_tail++;
219 }
220
xskq_produce_addr(struct xsk_queue * q,u64 addr)221 static inline int xskq_produce_addr(struct xsk_queue *q, u64 addr)
222 {
223 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
224
225 if (xskq_nb_free(q, q->prod_tail, 1) == 0)
226 return -ENOSPC;
227
228 /* A, matches D */
229 ring->desc[q->prod_tail++ & q->ring_mask] = addr;
230
231 /* Order producer and data */
232 smp_wmb(); /* B, matches C */
233
234 WRITE_ONCE(q->ring->producer, q->prod_tail);
235 return 0;
236 }
237
xskq_produce_addr_lazy(struct xsk_queue * q,u64 addr)238 static inline int xskq_produce_addr_lazy(struct xsk_queue *q, u64 addr)
239 {
240 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
241
242 if (xskq_nb_free(q, q->prod_head, LAZY_UPDATE_THRESHOLD) == 0)
243 return -ENOSPC;
244
245 /* A, matches D */
246 ring->desc[q->prod_head++ & q->ring_mask] = addr;
247 return 0;
248 }
249
xskq_produce_flush_addr_n(struct xsk_queue * q,u32 nb_entries)250 static inline void xskq_produce_flush_addr_n(struct xsk_queue *q,
251 u32 nb_entries)
252 {
253 /* Order producer and data */
254 smp_wmb(); /* B, matches C */
255
256 q->prod_tail += nb_entries;
257 WRITE_ONCE(q->ring->producer, q->prod_tail);
258 }
259
xskq_reserve_addr(struct xsk_queue * q)260 static inline int xskq_reserve_addr(struct xsk_queue *q)
261 {
262 if (xskq_nb_free(q, q->prod_head, 1) == 0)
263 return -ENOSPC;
264
265 /* A, matches D */
266 q->prod_head++;
267 return 0;
268 }
269
270 /* Rx/Tx queue */
271
xskq_is_valid_desc(struct xsk_queue * q,struct xdp_desc * d,struct xdp_umem * umem)272 static inline bool xskq_is_valid_desc(struct xsk_queue *q, struct xdp_desc *d,
273 struct xdp_umem *umem)
274 {
275 if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) {
276 if (!xskq_is_valid_addr_unaligned(q, d->addr, d->len, umem))
277 return false;
278
279 if (d->len > umem->chunk_size_nohr || d->options) {
280 q->invalid_descs++;
281 return false;
282 }
283
284 return true;
285 }
286
287 if (!xskq_is_valid_addr(q, d->addr))
288 return false;
289
290 if (((d->addr + d->len) & q->chunk_mask) != (d->addr & q->chunk_mask) ||
291 d->options) {
292 q->invalid_descs++;
293 return false;
294 }
295
296 return true;
297 }
298
xskq_validate_desc(struct xsk_queue * q,struct xdp_desc * desc,struct xdp_umem * umem)299 static inline struct xdp_desc *xskq_validate_desc(struct xsk_queue *q,
300 struct xdp_desc *desc,
301 struct xdp_umem *umem)
302 {
303 while (q->cons_tail != q->cons_head) {
304 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
305 unsigned int idx = q->cons_tail & q->ring_mask;
306
307 *desc = READ_ONCE(ring->desc[idx]);
308 if (xskq_is_valid_desc(q, desc, umem))
309 return desc;
310
311 q->cons_tail++;
312 }
313
314 return NULL;
315 }
316
xskq_peek_desc(struct xsk_queue * q,struct xdp_desc * desc,struct xdp_umem * umem)317 static inline struct xdp_desc *xskq_peek_desc(struct xsk_queue *q,
318 struct xdp_desc *desc,
319 struct xdp_umem *umem)
320 {
321 if (q->cons_tail == q->cons_head) {
322 smp_mb(); /* D, matches A */
323 WRITE_ONCE(q->ring->consumer, q->cons_tail);
324 q->cons_head = q->cons_tail + xskq_nb_avail(q, RX_BATCH_SIZE);
325
326 /* Order consumer and data */
327 smp_rmb(); /* C, matches B */
328 }
329
330 return xskq_validate_desc(q, desc, umem);
331 }
332
xskq_discard_desc(struct xsk_queue * q)333 static inline void xskq_discard_desc(struct xsk_queue *q)
334 {
335 q->cons_tail++;
336 }
337
xskq_produce_batch_desc(struct xsk_queue * q,u64 addr,u32 len)338 static inline int xskq_produce_batch_desc(struct xsk_queue *q,
339 u64 addr, u32 len)
340 {
341 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
342 unsigned int idx;
343
344 if (xskq_nb_free(q, q->prod_head, 1) == 0)
345 return -ENOSPC;
346
347 /* A, matches D */
348 idx = (q->prod_head++) & q->ring_mask;
349 ring->desc[idx].addr = addr;
350 ring->desc[idx].len = len;
351
352 return 0;
353 }
354
xskq_produce_flush_desc(struct xsk_queue * q)355 static inline void xskq_produce_flush_desc(struct xsk_queue *q)
356 {
357 /* Order producer and data */
358 smp_wmb(); /* B, matches C */
359
360 q->prod_tail = q->prod_head;
361 WRITE_ONCE(q->ring->producer, q->prod_tail);
362 }
363
xskq_full_desc(struct xsk_queue * q)364 static inline bool xskq_full_desc(struct xsk_queue *q)
365 {
366 /* No barriers needed since data is not accessed */
367 return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) ==
368 q->nentries;
369 }
370
xskq_empty_desc(struct xsk_queue * q)371 static inline bool xskq_empty_desc(struct xsk_queue *q)
372 {
373 /* No barriers needed since data is not accessed */
374 return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
375 }
376
377 void xskq_set_umem(struct xsk_queue *q, u64 size, u64 chunk_mask);
378 struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
379 void xskq_destroy(struct xsk_queue *q_ops);
380
381 /* Executed by the core when the entire UMEM gets freed */
382 void xsk_reuseq_destroy(struct xdp_umem *umem);
383
384 #endif /* _LINUX_XSK_QUEUE_H */
385