• Home
  • Raw
  • Download

Lines Matching +full:no +full:- +full:pc +full:- +full:write

1 .. SPDX-License-Identifier: GPL-2.0
4 Timekeeping Virtualization for X86-Based Architectures
32 information relevant to KVM and hardware-based virtualization.
41 2.1. i8254 - PIT
42 ----------------
46 channels which can be programmed to deliver periodic or one-shot interrupts.
49 IBM PC, and historically were connected to control RAM refresh and the PC
53 The PIT uses I/O ports 0x40 - 0x43. Access to the 16-bit counters is done
59 -------------- ----------------
61 | 1.1932 MHz|---------->| CLOCK OUT | ---------> IRQ 0
63 -------------- | +->| GATE TIMER 0 |
64 | ----------------
66 | ----------------
68 |------>| CLOCK OUT | ---------> 66.3 KHZ DRAM
70 | +->| GATE TIMER 1 |
71 | ----------------
73 | ----------------
75 |------>| CLOCK OUT | ---------> Port 61h, bit 5
77 Port 61h, bit 0 -------->| GATE TIMER 2 | \_.---- ____
78 ---------------- _| )--|LPF|---Speaker
79 / *---- \___/
80 Port 61h, bit 1 ---------------------------------/
85 This is a one-shot software timeout that counts down
89 Mode 1: Triggered One-shot.
110 for (N-1)/2 counts. Only even values are latched by the counter, so odd
112 which generates sine-like tones by low-pass filtering the square wave output.
133 Bit 7-4: Command (See table below)
134 Bit 3-1: Mode (000 = Mode 0, 101 = Mode 5, 11X = undefined)
139 0000 - Latch Timer 0 count for port 0x40
144 0001 - Set Timer 0 LSB mode for port 0x40
148 0010 - Set Timer 0 MSB mode for port 0x40
152 0011 - Set Timer 0 16-bit mode for port 0x40
153 set timer to read / write LSB first, then MSB;
156 0100 - Latch Timer 1 count for port 0x41 - as described above
157 0101 - Set Timer 1 LSB mode for port 0x41 - as described above
158 0110 - Set Timer 1 MSB mode for port 0x41 - as described above
159 0111 - Set Timer 1 16-bit mode for port 0x41 - as described above
161 1000 - Latch Timer 2 count for port 0x42 - as described above
162 1001 - Set Timer 2 LSB mode for port 0x42 - as described above
163 1010 - Set Timer 2 MSB mode for port 0x42 - as described above
164 1011 - Set Timer 2 16-bit mode for port 0x42 as described above
166 1101 - General counter latch
173 1110 - Latch timer status
179 The output of ports 0x40-0x42 following this command will be:
183 Bit 5-4 = Read / Write mode
186 11 = LSB / MSB (16-bit)
187 Bit 3-1 = Mode
191 --------
193 The second device which was available in the original PC was the MC146818 real
212 The clock uses a 32.768kHz crystal, so bits 6-4 of register A should be
218 ------------------------------------------
231 bit 6-4 = Divider for clock
238 bit 3-0 = Rate selection for periodic interrupt
252 bit 4 = Update-ended interrupt enable
255 bit 1 = 12-hour mode (0) / 24-hour mode (1)
262 bit 3-0 = reserved
265 bit 6-0 = reserved
270 ---------
272 On Pentium and later processors, an on-board timer is available to each CPU
274 accessed through memory-mapped registers and provides interrupt service to each
279 the APIC CPU-local memory-mapped hardware. Beware that CPU errata may affect
281 these workarounds pose unique constraints for virtualization - requiring either
282 extra overhead incurred from extra reads of memory-mapped I/O or additional
288 of one-shot or periodic operation, and is based on the bus clock divided down
292 ---------
295 support of the X86 PC. It remains to be seen whether that will be the case, as
296 the de facto standard of PC hardware is to emulate these older devices. Some
301 but allowing implementation freedom to support many more. It also imposes no
307 in any given system). The HPET is also memory-mapped, and its presence is
314 --------------------
322 not considered important at this time as no known operating system does this.
332 The TSC is represented internally as a 64-bit MSR which can be read with the
334 limitations made it possible to write the TSC, but generally on old hardware it
335 was only possible to write the low 32-bits of the 64-bit counter, and the upper
336 32-bits of the counter were cleared. Now, however, on Intel processors family
338 has been lifted and all 64-bits are writable. On AMD systems, the ability to
339 write the TSC MSR is not an architectural guarantee.
341 The TSC is accessible from CPL-0 and conditionally, for CPL > 0 software by
357 ------------------------
359 The TSC is a CPU-local clock in most implementations. This means, on SMP
366 Several hardware limitations make the problem worse - if it is not possible to
367 write the full 64-bits of the TSC, it may be impossible to match the TSC in
375 ------------------------
385 3.3. TSC and multi-socket / NUMA
386 --------------------------------
388 Multi-socket systems, especially large multi-socket systems are likely to have
397 cores. This technique, known as spread-spectrum clocking, reduces EMI at the
404 3.4. TSC and C-states
405 ---------------------
407 C-states, or idling states of the processor, especially C1E and deeper sleep
416 3.5. TSC frequency change / P-states
417 ------------------------------------
426 Whether the TSC runs at a constant rate or scales with the P-state is model
430 In addition, some vendors have known bugs where the P-state is actually
432 inactive, the P-state may be raised temporarily to service cache misses from
434 than that of non-halted processors. AMD Turion processors are known to have
437 3.6. TSC and STPCLK / T-states
438 ------------------------------
442 an overheating condition, and typically, there is no way to detect that this
445 3.7. TSC virtualization - VMX
446 -----------------------------
452 write the VMCS field.
454 3.8. TSC virtualization - SVM
455 -----------------------------
463 ------------------------------
465 In summary, there is no way to guarantee the TSC remains in perfect
467 if so, the TSCs in multi-sockets or NUMA systems may still run independently
476 X86_FEATURE_CONSTANT_TSC The TSC rate is unchanged with P-states
477 X86_FEATURE_NONSTOP_TSC The TSC does not stop in C-states
492 of machine interrupts and the associated clock sources are no longer completely
502 -----------------------
532 -----------------------------------
543 non-serialized. Forcing serialized execution is necessary for precise
555 ----------------------
563 Due to non-serialized reads, you may actually end up with a range which
564 fluctuates - from (T-1.. T+10). Thus, any time calculated from a TSC, but
566 Re-calibrating this computation may actually cause time, as computed after the
572 timespec - but which advances in much larger granularity intervals, sometimes
580 --------------
586 typically small enough to fall in the NTP-correctable window.
599 ---------------
613 --------------
622 --------------------------------
628 adequately virtualized without a full real-time operating system, which would
636 ------------------------------
641 red-pill type detection), and it may allow information to leak between guests
645 but in general isn't recommended for real-world deployment scenarios.