/* * PPC Huge TLB Page Support for Kernel. * * Copyright (C) 2003 David Gibson, IBM Corporation. * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor * * Based on the IA-32 version: * Copyright (C) 2002, Rohit Seth */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include bool hugetlb_disabled = false; #define hugepd_none(hpd) (hpd_val(hpd) == 0) #define PTE_T_ORDER (__builtin_ffs(sizeof(pte_basic_t)) - \ __builtin_ffs(sizeof(void *))) pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) { /* * Only called for hugetlbfs pages, hence can ignore THP and the * irq disabled walk. */ return __find_linux_pte(mm->pgd, addr, NULL, NULL); } static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, unsigned long address, unsigned int pdshift, unsigned int pshift, spinlock_t *ptl) { struct kmem_cache *cachep; pte_t *new; int i; int num_hugepd; if (pshift >= pdshift) { cachep = PGT_CACHE(PTE_T_ORDER); num_hugepd = 1 << (pshift - pdshift); } else { cachep = PGT_CACHE(pdshift - pshift); num_hugepd = 1; } if (!cachep) { WARN_ONCE(1, "No page table cache created for hugetlb tables"); return -ENOMEM; } new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL)); BUG_ON(pshift > HUGEPD_SHIFT_MASK); BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); if (!new) return -ENOMEM; /* * Make sure other cpus find the hugepd set only after a * properly initialized page table is visible to them. * For more details look for comment in __pte_alloc(). */ smp_wmb(); spin_lock(ptl); /* * We have multiple higher-level entries that point to the same * actual pte location. Fill in each as we go and backtrack on error. * We need all of these so the DTLB pgtable walk code can find the * right higher-level entry without knowing if it's a hugepage or not. */ for (i = 0; i < num_hugepd; i++, hpdp++) { if (unlikely(!hugepd_none(*hpdp))) break; hugepd_populate(hpdp, new, pshift); } /* If we bailed from the for loop early, an error occurred, clean up */ if (i < num_hugepd) { for (i = i - 1 ; i >= 0; i--, hpdp--) *hpdp = __hugepd(0); kmem_cache_free(cachep, new); } else { kmemleak_ignore(new); } spin_unlock(ptl); return 0; } /* * At this point we do the placement change only for BOOK3S 64. This would * possibly work on other subarchs. */ pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long sz) { pgd_t *pg; p4d_t *p4; pud_t *pu; pmd_t *pm; hugepd_t *hpdp = NULL; unsigned pshift = __ffs(sz); unsigned pdshift = PGDIR_SHIFT; spinlock_t *ptl; addr &= ~(sz-1); pg = pgd_offset(mm, addr); p4 = p4d_offset(pg, addr); #ifdef CONFIG_PPC_BOOK3S_64 if (pshift == PGDIR_SHIFT) /* 16GB huge page */ return (pte_t *) p4; else if (pshift > PUD_SHIFT) { /* * We need to use hugepd table */ ptl = &mm->page_table_lock; hpdp = (hugepd_t *)p4; } else { pdshift = PUD_SHIFT; pu = pud_alloc(mm, p4, addr); if (!pu) return NULL; if (pshift == PUD_SHIFT) return (pte_t *)pu; else if (pshift > PMD_SHIFT) { ptl = pud_lockptr(mm, pu); hpdp = (hugepd_t *)pu; } else { pdshift = PMD_SHIFT; pm = pmd_alloc(mm, pu, addr); if (!pm) return NULL; if (pshift == PMD_SHIFT) /* 16MB hugepage */ return (pte_t *)pm; else { ptl = pmd_lockptr(mm, pm); hpdp = (hugepd_t *)pm; } } } #else if (pshift >= PGDIR_SHIFT) { ptl = &mm->page_table_lock; hpdp = (hugepd_t *)p4; } else { pdshift = PUD_SHIFT; pu = pud_alloc(mm, p4, addr); if (!pu) return NULL; if (pshift >= PUD_SHIFT) { ptl = pud_lockptr(mm, pu); hpdp = (hugepd_t *)pu; } else { pdshift = PMD_SHIFT; pm = pmd_alloc(mm, pu, addr); if (!pm) return NULL; ptl = pmd_lockptr(mm, pm); hpdp = (hugepd_t *)pm; } } #endif if (!hpdp) return NULL; if (IS_ENABLED(CONFIG_PPC_8xx) && pshift < PMD_SHIFT) return pte_alloc_map(mm, (pmd_t *)hpdp, addr); BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift, ptl)) return NULL; return hugepte_offset(*hpdp, addr, pdshift); } #ifdef CONFIG_PPC_BOOK3S_64 /* * Tracks gpages after the device tree is scanned and before the * huge_boot_pages list is ready on pseries. */ #define MAX_NUMBER_GPAGES 1024 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES]; __initdata static unsigned nr_gpages; /* * Build list of addresses of gigantic pages. This function is used in early * boot before the buddy allocator is setup. */ void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) { if (!addr) return; while (number_of_pages > 0) { gpage_freearray[nr_gpages] = addr; nr_gpages++; number_of_pages--; addr += page_size; } } int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate) { struct huge_bootmem_page *m; if (nr_gpages == 0) return 0; m = phys_to_virt(gpage_freearray[--nr_gpages]); gpage_freearray[nr_gpages] = 0; list_add(&m->list, &huge_boot_pages); m->hstate = hstate; return 1; } #endif int __init alloc_bootmem_huge_page(struct hstate *h) { #ifdef CONFIG_PPC_BOOK3S_64 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled()) return pseries_alloc_bootmem_huge_page(h); #endif return __alloc_bootmem_huge_page(h); } #ifndef CONFIG_PPC_BOOK3S_64 #define HUGEPD_FREELIST_SIZE \ ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) struct hugepd_freelist { struct rcu_head rcu; unsigned int index; void *ptes[]; }; static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); static void hugepd_free_rcu_callback(struct rcu_head *head) { struct hugepd_freelist *batch = container_of(head, struct hugepd_freelist, rcu); unsigned int i; for (i = 0; i < batch->index; i++) kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]); free_page((unsigned long)batch); } static void hugepd_free(struct mmu_gather *tlb, void *hugepte) { struct hugepd_freelist **batchp; batchp = &get_cpu_var(hugepd_freelist_cur); if (atomic_read(&tlb->mm->mm_users) < 2 || mm_is_thread_local(tlb->mm)) { kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte); put_cpu_var(hugepd_freelist_cur); return; } if (*batchp == NULL) { *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); (*batchp)->index = 0; } (*batchp)->ptes[(*batchp)->index++] = hugepte; if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback); *batchp = NULL; } put_cpu_var(hugepd_freelist_cur); } #else static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {} #endif static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, unsigned long start, unsigned long end, unsigned long floor, unsigned long ceiling) { pte_t *hugepte = hugepd_page(*hpdp); int i; unsigned long pdmask = ~((1UL << pdshift) - 1); unsigned int num_hugepd = 1; unsigned int shift = hugepd_shift(*hpdp); /* Note: On fsl the hpdp may be the first of several */ if (shift > pdshift) num_hugepd = 1 << (shift - pdshift); start &= pdmask; if (start < floor) return; if (ceiling) { ceiling &= pdmask; if (! ceiling) return; } if (end - 1 > ceiling - 1) return; for (i = 0; i < num_hugepd; i++, hpdp++) *hpdp = __hugepd(0); if (shift >= pdshift) hugepd_free(tlb, hugepte); else pgtable_free_tlb(tlb, hugepte, get_hugepd_cache_index(pdshift - shift)); } static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { unsigned long start = addr; pgtable_t token = pmd_pgtable(*pmd); start &= PMD_MASK; if (start < floor) return; if (ceiling) { ceiling &= PMD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pmd_clear(pmd); pte_free_tlb(tlb, token, addr); mm_dec_nr_ptes(tlb->mm); } static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pmd_t *pmd; unsigned long next; unsigned long start; start = addr; do { unsigned long more; pmd = pmd_offset(pud, addr); next = pmd_addr_end(addr, end); if (!is_hugepd(__hugepd(pmd_val(*pmd)))) { if (pmd_none_or_clear_bad(pmd)) continue; /* * if it is not hugepd pointer, we should already find * it cleared. */ WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx)); hugetlb_free_pte_range(tlb, pmd, addr, end, floor, ceiling); continue; } /* * Increment next by the size of the huge mapping since * there may be more than one entry at this level for a * single hugepage, but all of them point to * the same kmem cache that holds the hugepte. */ more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); if (more > next) next = more; free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, addr, next, floor, ceiling); } while (addr = next, addr != end); start &= PUD_MASK; if (start < floor) return; if (ceiling) { ceiling &= PUD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pmd = pmd_offset(pud, start); pud_clear(pud); pmd_free_tlb(tlb, pmd, start); mm_dec_nr_pmds(tlb->mm); } static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pud_t *pud; unsigned long next; unsigned long start; start = addr; do { pud = pud_offset(p4d, addr); next = pud_addr_end(addr, end); if (!is_hugepd(__hugepd(pud_val(*pud)))) { if (pud_none_or_clear_bad(pud)) continue; hugetlb_free_pmd_range(tlb, pud, addr, next, floor, ceiling); } else { unsigned long more; /* * Increment next by the size of the huge mapping since * there may be more than one entry at this level for a * single hugepage, but all of them point to * the same kmem cache that holds the hugepte. */ more = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); if (more > next) next = more; free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, addr, next, floor, ceiling); } } while (addr = next, addr != end); start &= PGDIR_MASK; if (start < floor) return; if (ceiling) { ceiling &= PGDIR_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pud = pud_offset(p4d, start); p4d_clear(p4d); pud_free_tlb(tlb, pud, start); mm_dec_nr_puds(tlb->mm); } /* * This function frees user-level page tables of a process. */ void hugetlb_free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pgd_t *pgd; p4d_t *p4d; unsigned long next; /* * Because there are a number of different possible pagetable * layouts for hugepage ranges, we limit knowledge of how * things should be laid out to the allocation path * (huge_pte_alloc(), above). Everything else works out the * structure as it goes from information in the hugepd * pointers. That means that we can't here use the * optimization used in the normal page free_pgd_range(), of * checking whether we're actually covering a large enough * range to have to do anything at the top level of the walk * instead of at the bottom. * * To make sense of this, you should probably go read the big * block comment at the top of the normal free_pgd_range(), * too. */ do { next = pgd_addr_end(addr, end); pgd = pgd_offset(tlb->mm, addr); p4d = p4d_offset(pgd, addr); if (!is_hugepd(__hugepd(pgd_val(*pgd)))) { if (p4d_none_or_clear_bad(p4d)) continue; hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling); } else { unsigned long more; /* * Increment next by the size of the huge mapping since * there may be more than one entry at the pgd level * for a single hugepage, but all of them point to the * same kmem cache that holds the hugepte. */ more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); if (more > next) next = more; free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT, addr, next, floor, ceiling); } } while (addr = next, addr != end); } struct page *follow_huge_pd(struct vm_area_struct *vma, unsigned long address, hugepd_t hpd, int flags, int pdshift) { pte_t *ptep; spinlock_t *ptl; struct page *page = NULL; unsigned long mask; int shift = hugepd_shift(hpd); struct mm_struct *mm = vma->vm_mm; retry: /* * hugepage directory entries are protected by mm->page_table_lock * Use this instead of huge_pte_lockptr */ ptl = &mm->page_table_lock; spin_lock(ptl); ptep = hugepte_offset(hpd, address, pdshift); if (pte_present(*ptep)) { mask = (1UL << shift) - 1; page = pte_page(*ptep); page += ((address & mask) >> PAGE_SHIFT); if (flags & FOLL_GET) get_page(page); } else { if (is_hugetlb_entry_migration(*ptep)) { spin_unlock(ptl); __migration_entry_wait(mm, ptep, ptl); goto retry; } } spin_unlock(ptl); return page; } #ifdef CONFIG_PPC_MM_SLICES unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { struct hstate *hstate = hstate_file(file); int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); #ifdef CONFIG_PPC_RADIX_MMU if (radix_enabled()) return radix__hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); #endif return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); } #endif unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) { /* With radix we don't use slice, so derive it from vma*/ if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) { unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); return 1UL << mmu_psize_to_shift(psize); } return vma_kernel_pagesize(vma); } bool __init arch_hugetlb_valid_size(unsigned long size) { int shift = __ffs(size); int mmu_psize; /* Check that it is a page size supported by the hardware and * that it fits within pagetable and slice limits. */ if (size <= PAGE_SIZE || !is_power_of_2(size)) return false; mmu_psize = check_and_get_huge_psize(shift); if (mmu_psize < 0) return false; BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); return true; } static int __init add_huge_page_size(unsigned long long size) { int shift = __ffs(size); if (!arch_hugetlb_valid_size((unsigned long)size)) return -EINVAL; hugetlb_add_hstate(shift - PAGE_SHIFT); return 0; } static int __init hugetlbpage_init(void) { bool configured = false; int psize; if (hugetlb_disabled) { pr_info("HugeTLB support is disabled!\n"); return 0; } if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE)) return -ENODEV; for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { unsigned shift; unsigned pdshift; if (!mmu_psize_defs[psize].shift) continue; shift = mmu_psize_to_shift(psize); #ifdef CONFIG_PPC_BOOK3S_64 if (shift > PGDIR_SHIFT) continue; else if (shift > PUD_SHIFT) pdshift = PGDIR_SHIFT; else if (shift > PMD_SHIFT) pdshift = PUD_SHIFT; else pdshift = PMD_SHIFT; #else if (shift < PUD_SHIFT) pdshift = PMD_SHIFT; else if (shift < PGDIR_SHIFT) pdshift = PUD_SHIFT; else pdshift = PGDIR_SHIFT; #endif if (add_huge_page_size(1ULL << shift) < 0) continue; /* * if we have pdshift and shift value same, we don't * use pgt cache for hugepd. */ if (pdshift > shift) { if (!IS_ENABLED(CONFIG_PPC_8xx)) pgtable_cache_add(pdshift - shift); } else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) || IS_ENABLED(CONFIG_PPC_8xx)) { pgtable_cache_add(PTE_T_ORDER); } configured = true; } if (configured) { if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE)) hugetlbpage_init_default(); } else pr_info("Failed to initialize. Disabling HugeTLB"); return 0; } arch_initcall(hugetlbpage_init); void flush_dcache_icache_hugepage(struct page *page) { int i; void *start; BUG_ON(!PageCompound(page)); for (i = 0; i < compound_nr(page); i++) { if (!PageHighMem(page)) { __flush_dcache_icache(page_address(page+i)); } else { start = kmap_atomic(page+i); __flush_dcache_icache(start); kunmap_atomic(start); } } } void __init gigantic_hugetlb_cma_reserve(void) { unsigned long order = 0; if (radix_enabled()) order = PUD_SHIFT - PAGE_SHIFT; else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift) /* * For pseries we do use ibm,expected#pages for reserving 16G pages. */ order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT; if (order) { VM_WARN_ON(order < MAX_ORDER); hugetlb_cma_reserve(order); } }