// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2019 Google LLC */ /** * DOC: The Keyslot Manager * * Many devices with inline encryption support have a limited number of "slots" * into which encryption contexts may be programmed, and requests can be tagged * with a slot number to specify the key to use for en/decryption. * * As the number of slots is limited, and programming keys is expensive on * many inline encryption hardware, we don't want to program the same key into * multiple slots - if multiple requests are using the same key, we want to * program just one slot with that key and use that slot for all requests. * * The keyslot manager manages these keyslots appropriately, and also acts as * an abstraction between the inline encryption hardware and the upper layers. * * Lower layer devices will set up a keyslot manager in their request queue * and tell it how to perform device specific operations like programming/ * evicting keys from keyslots. * * Upper layers will call blk_ksm_get_slot_for_key() to program a * key into some slot in the inline encryption hardware. */ #define pr_fmt(fmt) "blk-crypto: " fmt #include #include #include #include #include #include #include struct blk_ksm_keyslot { atomic_t slot_refs; struct list_head idle_slot_node; struct hlist_node hash_node; const struct blk_crypto_key *key; struct blk_keyslot_manager *ksm; }; static inline void blk_ksm_hw_enter(struct blk_keyslot_manager *ksm) { /* * Calling into the driver requires ksm->lock held and the device * resumed. But we must resume the device first, since that can acquire * and release ksm->lock via blk_ksm_reprogram_all_keys(). */ if (ksm->dev) pm_runtime_get_sync(ksm->dev); down_write(&ksm->lock); } static inline void blk_ksm_hw_exit(struct blk_keyslot_manager *ksm) { up_write(&ksm->lock); if (ksm->dev) pm_runtime_put_sync(ksm->dev); } static inline bool blk_ksm_is_passthrough(struct blk_keyslot_manager *ksm) { return ksm->num_slots == 0; } /** * blk_ksm_init() - Initialize a keyslot manager * @ksm: The keyslot_manager to initialize. * @num_slots: The number of key slots to manage. * * Allocate memory for keyslots and initialize a keyslot manager. Called by * e.g. storage drivers to set up a keyslot manager in their request_queue. * * Return: 0 on success, or else a negative error code. */ int blk_ksm_init(struct blk_keyslot_manager *ksm, unsigned int num_slots) { unsigned int slot; unsigned int i; unsigned int slot_hashtable_size; memset(ksm, 0, sizeof(*ksm)); if (num_slots == 0) return -EINVAL; ksm->slots = kvcalloc(num_slots, sizeof(ksm->slots[0]), GFP_KERNEL); if (!ksm->slots) return -ENOMEM; ksm->num_slots = num_slots; init_rwsem(&ksm->lock); init_waitqueue_head(&ksm->idle_slots_wait_queue); INIT_LIST_HEAD(&ksm->idle_slots); for (slot = 0; slot < num_slots; slot++) { ksm->slots[slot].ksm = ksm; list_add_tail(&ksm->slots[slot].idle_slot_node, &ksm->idle_slots); } spin_lock_init(&ksm->idle_slots_lock); slot_hashtable_size = roundup_pow_of_two(num_slots); /* * hash_ptr() assumes bits != 0, so ensure the hash table has at least 2 * buckets. This only makes a difference when there is only 1 keyslot. */ if (slot_hashtable_size < 2) slot_hashtable_size = 2; ksm->log_slot_ht_size = ilog2(slot_hashtable_size); ksm->slot_hashtable = kvmalloc_array(slot_hashtable_size, sizeof(ksm->slot_hashtable[0]), GFP_KERNEL); if (!ksm->slot_hashtable) goto err_destroy_ksm; for (i = 0; i < slot_hashtable_size; i++) INIT_HLIST_HEAD(&ksm->slot_hashtable[i]); return 0; err_destroy_ksm: blk_ksm_destroy(ksm); return -ENOMEM; } EXPORT_SYMBOL_GPL(blk_ksm_init); static void blk_ksm_destroy_callback(void *ksm) { blk_ksm_destroy(ksm); } /** * devm_blk_ksm_init() - Resource-managed blk_ksm_init() * @dev: The device which owns the blk_keyslot_manager. * @ksm: The blk_keyslot_manager to initialize. * @num_slots: The number of key slots to manage. * * Like blk_ksm_init(), but causes blk_ksm_destroy() to be called automatically * on driver detach. * * Return: 0 on success, or else a negative error code. */ int devm_blk_ksm_init(struct device *dev, struct blk_keyslot_manager *ksm, unsigned int num_slots) { int err = blk_ksm_init(ksm, num_slots); if (err) return err; return devm_add_action_or_reset(dev, blk_ksm_destroy_callback, ksm); } EXPORT_SYMBOL_GPL(devm_blk_ksm_init); static inline struct hlist_head * blk_ksm_hash_bucket_for_key(struct blk_keyslot_manager *ksm, const struct blk_crypto_key *key) { return &ksm->slot_hashtable[hash_ptr(key, ksm->log_slot_ht_size)]; } static void blk_ksm_remove_slot_from_lru_list(struct blk_ksm_keyslot *slot) { struct blk_keyslot_manager *ksm = slot->ksm; unsigned long flags; spin_lock_irqsave(&ksm->idle_slots_lock, flags); list_del(&slot->idle_slot_node); spin_unlock_irqrestore(&ksm->idle_slots_lock, flags); } static struct blk_ksm_keyslot *blk_ksm_find_keyslot( struct blk_keyslot_manager *ksm, const struct blk_crypto_key *key) { const struct hlist_head *head = blk_ksm_hash_bucket_for_key(ksm, key); struct blk_ksm_keyslot *slotp; hlist_for_each_entry(slotp, head, hash_node) { if (slotp->key == key) return slotp; } return NULL; } static struct blk_ksm_keyslot *blk_ksm_find_and_grab_keyslot( struct blk_keyslot_manager *ksm, const struct blk_crypto_key *key) { struct blk_ksm_keyslot *slot; slot = blk_ksm_find_keyslot(ksm, key); if (!slot) return NULL; if (atomic_inc_return(&slot->slot_refs) == 1) { /* Took first reference to this slot; remove it from LRU list */ blk_ksm_remove_slot_from_lru_list(slot); } return slot; } unsigned int blk_ksm_get_slot_idx(struct blk_ksm_keyslot *slot) { return slot - slot->ksm->slots; } EXPORT_SYMBOL_GPL(blk_ksm_get_slot_idx); /** * blk_ksm_get_slot_for_key() - Program a key into a keyslot. * @ksm: The keyslot manager to program the key into. * @key: Pointer to the key object to program, including the raw key, crypto * mode, and data unit size. * @slot_ptr: A pointer to return the pointer of the allocated keyslot. * * Get a keyslot that's been programmed with the specified key. If one already * exists, return it with incremented refcount. Otherwise, wait for a keyslot * to become idle and program it. * * Context: Process context. Takes and releases ksm->lock. * Return: BLK_STS_OK on success (and keyslot is set to the pointer of the * allocated keyslot), or some other blk_status_t otherwise (and * keyslot is set to NULL). */ blk_status_t blk_ksm_get_slot_for_key(struct blk_keyslot_manager *ksm, const struct blk_crypto_key *key, struct blk_ksm_keyslot **slot_ptr) { struct blk_ksm_keyslot *slot; int slot_idx; int err; *slot_ptr = NULL; if (blk_ksm_is_passthrough(ksm)) return BLK_STS_OK; down_read(&ksm->lock); slot = blk_ksm_find_and_grab_keyslot(ksm, key); up_read(&ksm->lock); if (slot) goto success; for (;;) { blk_ksm_hw_enter(ksm); slot = blk_ksm_find_and_grab_keyslot(ksm, key); if (slot) { blk_ksm_hw_exit(ksm); goto success; } /* * If we're here, that means there wasn't a slot that was * already programmed with the key. So try to program it. */ if (!list_empty(&ksm->idle_slots)) break; blk_ksm_hw_exit(ksm); wait_event(ksm->idle_slots_wait_queue, !list_empty(&ksm->idle_slots)); } slot = list_first_entry(&ksm->idle_slots, struct blk_ksm_keyslot, idle_slot_node); slot_idx = blk_ksm_get_slot_idx(slot); err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot_idx); if (err) { wake_up(&ksm->idle_slots_wait_queue); blk_ksm_hw_exit(ksm); return errno_to_blk_status(err); } /* Move this slot to the hash list for the new key. */ if (slot->key) hlist_del(&slot->hash_node); slot->key = key; hlist_add_head(&slot->hash_node, blk_ksm_hash_bucket_for_key(ksm, key)); atomic_set(&slot->slot_refs, 1); blk_ksm_remove_slot_from_lru_list(slot); blk_ksm_hw_exit(ksm); success: *slot_ptr = slot; return BLK_STS_OK; } /** * blk_ksm_put_slot() - Release a reference to a slot * @slot: The keyslot to release the reference of. * * Context: Any context. */ void blk_ksm_put_slot(struct blk_ksm_keyslot *slot) { struct blk_keyslot_manager *ksm; unsigned long flags; if (!slot) return; ksm = slot->ksm; if (atomic_dec_and_lock_irqsave(&slot->slot_refs, &ksm->idle_slots_lock, flags)) { list_add_tail(&slot->idle_slot_node, &ksm->idle_slots); spin_unlock_irqrestore(&ksm->idle_slots_lock, flags); wake_up(&ksm->idle_slots_wait_queue); } } /** * blk_ksm_crypto_cfg_supported() - Find out if a crypto configuration is * supported by a ksm. * @ksm: The keyslot manager to check * @cfg: The crypto configuration to check for. * * Checks for crypto_mode/data unit size/dun bytes support. * * Return: Whether or not this ksm supports the specified crypto config. */ bool blk_ksm_crypto_cfg_supported(struct blk_keyslot_manager *ksm, const struct blk_crypto_config *cfg) { if (!ksm) return false; if (!(ksm->crypto_modes_supported[cfg->crypto_mode] & cfg->data_unit_size)) return false; if (ksm->max_dun_bytes_supported < cfg->dun_bytes) return false; if (cfg->is_hw_wrapped) { if (!(ksm->features & BLK_CRYPTO_FEATURE_WRAPPED_KEYS)) return false; } else { if (!(ksm->features & BLK_CRYPTO_FEATURE_STANDARD_KEYS)) return false; } return true; } /* * This is an internal function that evicts a key from an inline encryption * device that can be either a real device or the blk-crypto-fallback "device". * It is used only by blk_crypto_evict_key(); see that function for details. */ int blk_ksm_evict_key(struct blk_keyslot_manager *ksm, const struct blk_crypto_key *key) { struct blk_ksm_keyslot *slot; int err; if (blk_ksm_is_passthrough(ksm)) { if (ksm->ksm_ll_ops.keyslot_evict) { blk_ksm_hw_enter(ksm); err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1); blk_ksm_hw_exit(ksm); return err; } return 0; } blk_ksm_hw_enter(ksm); slot = blk_ksm_find_keyslot(ksm, key); if (!slot) { /* * Not an error, since a key not in use by I/O is not guaranteed * to be in a keyslot. There can be more keys than keyslots. */ err = 0; goto out; } if (WARN_ON_ONCE(atomic_read(&slot->slot_refs) != 0)) { /* BUG: key is still in use by I/O */ err = -EBUSY; goto out_remove; } err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, blk_ksm_get_slot_idx(slot)); out_remove: /* * Callers free the key even on error, so unlink the key from the hash * table and clear slot->key even on error. */ hlist_del(&slot->hash_node); slot->key = NULL; out: blk_ksm_hw_exit(ksm); return err; } /** * blk_ksm_reprogram_all_keys() - Re-program all keyslots. * @ksm: The keyslot manager * * Re-program all keyslots that are supposed to have a key programmed. This is * intended only for use by drivers for hardware that loses its keys on reset. * * Context: Process context. Takes and releases ksm->lock. */ void blk_ksm_reprogram_all_keys(struct blk_keyslot_manager *ksm) { unsigned int slot; if (blk_ksm_is_passthrough(ksm)) return; /* This is for device initialization, so don't resume the device */ down_write(&ksm->lock); for (slot = 0; slot < ksm->num_slots; slot++) { const struct blk_crypto_key *key = ksm->slots[slot].key; int err; if (!key) continue; err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot); WARN_ON(err); } up_write(&ksm->lock); } EXPORT_SYMBOL_GPL(blk_ksm_reprogram_all_keys); void blk_ksm_destroy(struct blk_keyslot_manager *ksm) { if (!ksm) return; kvfree(ksm->slot_hashtable); kvfree_sensitive(ksm->slots, sizeof(ksm->slots[0]) * ksm->num_slots); memzero_explicit(ksm, sizeof(*ksm)); } EXPORT_SYMBOL_GPL(blk_ksm_destroy); bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q) { if (blk_integrity_queue_supports_integrity(q)) { pr_warn("Integrity and hardware inline encryption are not supported together. Disabling hardware inline encryption.\n"); return false; } q->ksm = ksm; return true; } EXPORT_SYMBOL_GPL(blk_ksm_register); void blk_ksm_unregister(struct request_queue *q) { q->ksm = NULL; } /** * blk_ksm_derive_raw_secret() - Derive software secret from wrapped key * @ksm: The keyslot manager * @wrapped_key: The wrapped key * @wrapped_key_size: Size of the wrapped key in bytes * @secret: (output) the software secret * @secret_size: (output) the number of secret bytes to derive * * Given a hardware-wrapped key, ask the hardware to derive a secret which * software can use for cryptographic tasks other than inline encryption. The * derived secret is guaranteed to be cryptographically isolated from the key * with which any inline encryption with this wrapped key would actually be * done. I.e., both will be derived from the unwrapped key. * * Return: 0 on success, -EOPNOTSUPP if hardware-wrapped keys are unsupported, * or another -errno code. */ int blk_ksm_derive_raw_secret(struct blk_keyslot_manager *ksm, const u8 *wrapped_key, unsigned int wrapped_key_size, u8 *secret, unsigned int secret_size) { int err; if (ksm->ksm_ll_ops.derive_raw_secret) { blk_ksm_hw_enter(ksm); err = ksm->ksm_ll_ops.derive_raw_secret(ksm, wrapped_key, wrapped_key_size, secret, secret_size); blk_ksm_hw_exit(ksm); } else { err = -EOPNOTSUPP; } return err; } EXPORT_SYMBOL_GPL(blk_ksm_derive_raw_secret); /** * blk_ksm_intersect_modes() - restrict supported modes by child device * @parent: The keyslot manager for parent device * @child: The keyslot manager for child device, or NULL * * Clear any crypto mode support bits in @parent that aren't set in @child. * If @child is NULL, then all parent bits are cleared. * * Only use this when setting up the keyslot manager for a layered device, * before it's been exposed yet. */ void blk_ksm_intersect_modes(struct blk_keyslot_manager *parent, const struct blk_keyslot_manager *child) { if (child) { unsigned int i; parent->max_dun_bytes_supported = min(parent->max_dun_bytes_supported, child->max_dun_bytes_supported); for (i = 0; i < ARRAY_SIZE(child->crypto_modes_supported); i++) { parent->crypto_modes_supported[i] &= child->crypto_modes_supported[i]; } parent->features &= child->features; } else { parent->max_dun_bytes_supported = 0; memset(parent->crypto_modes_supported, 0, sizeof(parent->crypto_modes_supported)); parent->features = 0; } } EXPORT_SYMBOL_GPL(blk_ksm_intersect_modes); /** * blk_ksm_is_superset() - Check if a KSM supports a superset of crypto modes * and DUN bytes that another KSM supports. Here, * "superset" refers to the mathematical meaning of the * word - i.e. if two KSMs have the *same* capabilities, * they *are* considered supersets of each other. * @ksm_superset: The KSM that we want to verify is a superset * @ksm_subset: The KSM that we want to verify is a subset * * Return: True if @ksm_superset supports a superset of the crypto modes and DUN * bytes that @ksm_subset supports. */ bool blk_ksm_is_superset(struct blk_keyslot_manager *ksm_superset, struct blk_keyslot_manager *ksm_subset) { int i; if (!ksm_subset) return true; if (!ksm_superset) return false; for (i = 0; i < ARRAY_SIZE(ksm_superset->crypto_modes_supported); i++) { if (ksm_subset->crypto_modes_supported[i] & (~ksm_superset->crypto_modes_supported[i])) { return false; } } if (ksm_subset->max_dun_bytes_supported > ksm_superset->max_dun_bytes_supported) { return false; } if (ksm_subset->features & ~ksm_superset->features) return false; return true; } EXPORT_SYMBOL_GPL(blk_ksm_is_superset); /** * blk_ksm_update_capabilities() - Update the restrictions of a KSM to those of * another KSM * @target_ksm: The KSM whose restrictions to update. * @reference_ksm: The KSM to whose restrictions this function will update * @target_ksm's restrictions to. * * Blk-crypto requires that crypto capabilities that were * advertised when a bio was created continue to be supported by the * device until that bio is ended. This is turn means that a device cannot * shrink its advertised crypto capabilities without any explicit * synchronization with upper layers. So if there's no such explicit * synchronization, @reference_ksm must support all the crypto capabilities that * @target_ksm does * (i.e. we need blk_ksm_is_superset(@reference_ksm, @target_ksm) == true). * * Note also that as long as the crypto capabilities are being expanded, the * order of updates becoming visible is not important because it's alright * for blk-crypto to see stale values - they only cause blk-crypto to * believe that a crypto capability isn't supported when it actually is (which * might result in blk-crypto-fallback being used if available, or the bio being * failed). */ void blk_ksm_update_capabilities(struct blk_keyslot_manager *target_ksm, struct blk_keyslot_manager *reference_ksm) { memcpy(target_ksm->crypto_modes_supported, reference_ksm->crypto_modes_supported, sizeof(target_ksm->crypto_modes_supported)); target_ksm->max_dun_bytes_supported = reference_ksm->max_dun_bytes_supported; target_ksm->features = reference_ksm->features; } EXPORT_SYMBOL_GPL(blk_ksm_update_capabilities); /** * blk_ksm_init_passthrough() - Init a passthrough keyslot manager * @ksm: The keyslot manager to init * * Initialize a passthrough keyslot manager. * Called by e.g. storage drivers to set up a keyslot manager in their * request_queue, when the storage driver wants to manage its keys by itself. * This is useful for inline encryption hardware that doesn't have the concept * of keyslots, and for layered devices. */ void blk_ksm_init_passthrough(struct blk_keyslot_manager *ksm) { memset(ksm, 0, sizeof(*ksm)); init_rwsem(&ksm->lock); } EXPORT_SYMBOL_GPL(blk_ksm_init_passthrough);