• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_NID,
47 	FAULT_ORPHAN,
48 	FAULT_BLOCK,
49 	FAULT_DIR_DEPTH,
50 	FAULT_EVICT_INODE,
51 	FAULT_TRUNCATE,
52 	FAULT_READ_IO,
53 	FAULT_CHECKPOINT,
54 	FAULT_DISCARD,
55 	FAULT_WRITE_IO,
56 	FAULT_MAX,
57 };
58 
59 #ifdef CONFIG_F2FS_FAULT_INJECTION
60 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
61 
62 struct f2fs_fault_info {
63 	atomic_t inject_ops;
64 	unsigned int inject_rate;
65 	unsigned int inject_type;
66 };
67 
68 extern const char *f2fs_fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71 
72 /*
73  * For mount options
74  */
75 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
76 #define F2FS_MOUNT_DISCARD		0x00000004
77 #define F2FS_MOUNT_NOHEAP		0x00000008
78 #define F2FS_MOUNT_XATTR_USER		0x00000010
79 #define F2FS_MOUNT_POSIX_ACL		0x00000020
80 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
81 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
82 #define F2FS_MOUNT_INLINE_DATA		0x00000100
83 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
84 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
85 #define F2FS_MOUNT_NOBARRIER		0x00000800
86 #define F2FS_MOUNT_FASTBOOT		0x00001000
87 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00002000
88 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
90 #define F2FS_MOUNT_USRQUOTA		0x00080000
91 #define F2FS_MOUNT_GRPQUOTA		0x00100000
92 #define F2FS_MOUNT_PRJQUOTA		0x00200000
93 #define F2FS_MOUNT_QUOTA		0x00400000
94 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
95 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
96 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
97 #define F2FS_MOUNT_NORECOVERY		0x04000000
98 #define F2FS_MOUNT_ATGC			0x08000000
99 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
100 #define	F2FS_MOUNT_GC_MERGE		0x20000000
101 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
102 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x80000000
103 
104 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
105 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108 
109 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
110 		typecheck(unsigned long long, b) &&			\
111 		((long long)((a) - (b)) > 0))
112 
113 typedef u32 block_t;	/*
114 			 * should not change u32, since it is the on-disk block
115 			 * address format, __le32.
116 			 */
117 typedef u32 nid_t;
118 
119 #define COMPRESS_EXT_NUM		16
120 
121 /*
122  * An implementation of an rwsem that is explicitly unfair to readers. This
123  * prevents priority inversion when a low-priority reader acquires the read lock
124  * while sleeping on the write lock but the write lock is needed by
125  * higher-priority clients.
126  */
127 
128 struct f2fs_rwsem {
129         struct rw_semaphore internal_rwsem;
130         wait_queue_head_t read_waiters;
131 };
132 
133 struct f2fs_mount_info {
134 	unsigned int opt;
135 	int write_io_size_bits;		/* Write IO size bits */
136 	block_t root_reserved_blocks;	/* root reserved blocks */
137 	kuid_t s_resuid;		/* reserved blocks for uid */
138 	kgid_t s_resgid;		/* reserved blocks for gid */
139 	int active_logs;		/* # of active logs */
140 	int inline_xattr_size;		/* inline xattr size */
141 #ifdef CONFIG_F2FS_FAULT_INJECTION
142 	struct f2fs_fault_info fault_info;	/* For fault injection */
143 #endif
144 #ifdef CONFIG_QUOTA
145 	/* Names of quota files with journalled quota */
146 	char *s_qf_names[MAXQUOTAS];
147 	int s_jquota_fmt;			/* Format of quota to use */
148 #endif
149 	/* For which write hints are passed down to block layer */
150 	int whint_mode;
151 	int alloc_mode;			/* segment allocation policy */
152 	int fsync_mode;			/* fsync policy */
153 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
154 	int bggc_mode;			/* bggc mode: off, on or sync */
155 	int memory_mode;		/* memory mode */
156 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
157 	block_t unusable_cap_perc;	/* percentage for cap */
158 	block_t unusable_cap;		/* Amount of space allowed to be
159 					 * unusable when disabling checkpoint
160 					 */
161 
162 	/* For compression */
163 	unsigned char compress_algorithm;	/* algorithm type */
164 	unsigned char compress_log_size;	/* cluster log size */
165 	unsigned char compress_level;		/* compress level */
166 	bool compress_chksum;			/* compressed data chksum */
167 	unsigned char compress_ext_cnt;		/* extension count */
168 	int compress_mode;			/* compression mode */
169 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
170 };
171 
172 #define F2FS_FEATURE_ENCRYPT		0x0001
173 #define F2FS_FEATURE_BLKZONED		0x0002
174 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
175 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
176 #define F2FS_FEATURE_PRJQUOTA		0x0010
177 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
178 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
179 #define F2FS_FEATURE_QUOTA_INO		0x0080
180 #define F2FS_FEATURE_INODE_CRTIME	0x0100
181 #define F2FS_FEATURE_LOST_FOUND		0x0200
182 #define F2FS_FEATURE_VERITY		0x0400
183 #define F2FS_FEATURE_SB_CHKSUM		0x0800
184 #define F2FS_FEATURE_CASEFOLD		0x1000
185 #define F2FS_FEATURE_COMPRESSION	0x2000
186 #define F2FS_FEATURE_RO			0x4000
187 
188 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
189 	((raw_super->feature & cpu_to_le32(mask)) != 0)
190 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
191 #define F2FS_SET_FEATURE(sbi, mask)					\
192 	(sbi->raw_super->feature |= cpu_to_le32(mask))
193 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
194 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
195 
196 /*
197  * Default values for user and/or group using reserved blocks
198  */
199 #define	F2FS_DEF_RESUID		0
200 #define	F2FS_DEF_RESGID		0
201 
202 /*
203  * For checkpoint manager
204  */
205 enum {
206 	NAT_BITMAP,
207 	SIT_BITMAP
208 };
209 
210 #define	CP_UMOUNT	0x00000001
211 #define	CP_FASTBOOT	0x00000002
212 #define	CP_SYNC		0x00000004
213 #define	CP_RECOVERY	0x00000008
214 #define	CP_DISCARD	0x00000010
215 #define CP_TRIMMED	0x00000020
216 #define CP_PAUSE	0x00000040
217 #define CP_RESIZE 	0x00000080
218 
219 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
220 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
221 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
222 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
223 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
224 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
225 #define DEF_CP_INTERVAL			60	/* 60 secs */
226 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
227 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
228 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
229 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
230 
231 struct cp_control {
232 	int reason;
233 	__u64 trim_start;
234 	__u64 trim_end;
235 	__u64 trim_minlen;
236 };
237 
238 /*
239  * indicate meta/data type
240  */
241 enum {
242 	META_CP,
243 	META_NAT,
244 	META_SIT,
245 	META_SSA,
246 	META_MAX,
247 	META_POR,
248 	DATA_GENERIC,		/* check range only */
249 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
250 	DATA_GENERIC_ENHANCE_READ,	/*
251 					 * strong check on range and segment
252 					 * bitmap but no warning due to race
253 					 * condition of read on truncated area
254 					 * by extent_cache
255 					 */
256 	DATA_GENERIC_ENHANCE_UPDATE,	/*
257 					 * strong check on range and segment
258 					 * bitmap for update case
259 					 */
260 	META_GENERIC,
261 };
262 
263 /* for the list of ino */
264 enum {
265 	ORPHAN_INO,		/* for orphan ino list */
266 	APPEND_INO,		/* for append ino list */
267 	UPDATE_INO,		/* for update ino list */
268 	TRANS_DIR_INO,		/* for trasactions dir ino list */
269 	FLUSH_INO,		/* for multiple device flushing */
270 	MAX_INO_ENTRY,		/* max. list */
271 };
272 
273 struct ino_entry {
274 	struct list_head list;		/* list head */
275 	nid_t ino;			/* inode number */
276 	unsigned int dirty_device;	/* dirty device bitmap */
277 };
278 
279 /* for the list of inodes to be GCed */
280 struct inode_entry {
281 	struct list_head list;	/* list head */
282 	struct inode *inode;	/* vfs inode pointer */
283 };
284 
285 struct fsync_node_entry {
286 	struct list_head list;	/* list head */
287 	struct page *page;	/* warm node page pointer */
288 	unsigned int seq_id;	/* sequence id */
289 };
290 
291 struct ckpt_req {
292 	struct completion wait;		/* completion for checkpoint done */
293 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
294 	int ret;			/* return code of checkpoint */
295 	ktime_t queue_time;		/* request queued time */
296 };
297 
298 struct ckpt_req_control {
299 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
300 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
301 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
302 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
303 	atomic_t total_ckpt;		/* # of total ckpts */
304 	atomic_t queued_ckpt;		/* # of queued ckpts */
305 	struct llist_head issue_list;	/* list for command issue */
306 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
307 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
308 	unsigned int peak_time;		/* peak wait time in msec until now */
309 };
310 
311 /* for the bitmap indicate blocks to be discarded */
312 struct discard_entry {
313 	struct list_head list;	/* list head */
314 	block_t start_blkaddr;	/* start blockaddr of current segment */
315 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
316 };
317 
318 /* default discard granularity of inner discard thread, unit: block count */
319 #define DEFAULT_DISCARD_GRANULARITY		16
320 
321 /* max discard pend list number */
322 #define MAX_PLIST_NUM		512
323 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
324 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
325 
326 enum {
327 	D_PREP,			/* initial */
328 	D_PARTIAL,		/* partially submitted */
329 	D_SUBMIT,		/* all submitted */
330 	D_DONE,			/* finished */
331 };
332 
333 struct discard_info {
334 	block_t lstart;			/* logical start address */
335 	block_t len;			/* length */
336 	block_t start;			/* actual start address in dev */
337 };
338 
339 struct discard_cmd {
340 	struct rb_node rb_node;		/* rb node located in rb-tree */
341 	union {
342 		struct {
343 			block_t lstart;	/* logical start address */
344 			block_t len;	/* length */
345 			block_t start;	/* actual start address in dev */
346 		};
347 		struct discard_info di;	/* discard info */
348 
349 	};
350 	struct list_head list;		/* command list */
351 	struct completion wait;		/* compleation */
352 	struct block_device *bdev;	/* bdev */
353 	unsigned short ref;		/* reference count */
354 	unsigned char state;		/* state */
355 	unsigned char queued;		/* queued discard */
356 	int error;			/* bio error */
357 	spinlock_t lock;		/* for state/bio_ref updating */
358 	unsigned short bio_ref;		/* bio reference count */
359 };
360 
361 enum {
362 	DPOLICY_BG,
363 	DPOLICY_FORCE,
364 	DPOLICY_FSTRIM,
365 	DPOLICY_UMOUNT,
366 	MAX_DPOLICY,
367 };
368 
369 struct discard_policy {
370 	int type;			/* type of discard */
371 	unsigned int min_interval;	/* used for candidates exist */
372 	unsigned int mid_interval;	/* used for device busy */
373 	unsigned int max_interval;	/* used for candidates not exist */
374 	unsigned int max_requests;	/* # of discards issued per round */
375 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
376 	bool io_aware;			/* issue discard in idle time */
377 	bool sync;			/* submit discard with REQ_SYNC flag */
378 	bool ordered;			/* issue discard by lba order */
379 	bool timeout;			/* discard timeout for put_super */
380 	unsigned int granularity;	/* discard granularity */
381 };
382 
383 struct discard_cmd_control {
384 	struct task_struct *f2fs_issue_discard;	/* discard thread */
385 	struct list_head entry_list;		/* 4KB discard entry list */
386 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
387 	struct list_head wait_list;		/* store on-flushing entries */
388 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
389 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
390 	unsigned int discard_wake;		/* to wake up discard thread */
391 	struct mutex cmd_lock;
392 	unsigned int nr_discards;		/* # of discards in the list */
393 	unsigned int max_discards;		/* max. discards to be issued */
394 	unsigned int discard_granularity;	/* discard granularity */
395 	unsigned int undiscard_blks;		/* # of undiscard blocks */
396 	unsigned int next_pos;			/* next discard position */
397 	atomic_t issued_discard;		/* # of issued discard */
398 	atomic_t queued_discard;		/* # of queued discard */
399 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
400 	struct rb_root_cached root;		/* root of discard rb-tree */
401 	bool rbtree_check;			/* config for consistence check */
402 };
403 
404 /* for the list of fsync inodes, used only during recovery */
405 struct fsync_inode_entry {
406 	struct list_head list;	/* list head */
407 	struct inode *inode;	/* vfs inode pointer */
408 	block_t blkaddr;	/* block address locating the last fsync */
409 	block_t last_dentry;	/* block address locating the last dentry */
410 };
411 
412 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
413 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
414 
415 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
416 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
417 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
418 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
419 
420 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
421 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
422 
update_nats_in_cursum(struct f2fs_journal * journal,int i)423 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
424 {
425 	int before = nats_in_cursum(journal);
426 
427 	journal->n_nats = cpu_to_le16(before + i);
428 	return before;
429 }
430 
update_sits_in_cursum(struct f2fs_journal * journal,int i)431 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
432 {
433 	int before = sits_in_cursum(journal);
434 
435 	journal->n_sits = cpu_to_le16(before + i);
436 	return before;
437 }
438 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)439 static inline bool __has_cursum_space(struct f2fs_journal *journal,
440 							int size, int type)
441 {
442 	if (type == NAT_JOURNAL)
443 		return size <= MAX_NAT_JENTRIES(journal);
444 	return size <= MAX_SIT_JENTRIES(journal);
445 }
446 
447 /* for inline stuff */
448 #define DEF_INLINE_RESERVED_SIZE	1
449 static inline int get_extra_isize(struct inode *inode);
450 static inline int get_inline_xattr_addrs(struct inode *inode);
451 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
452 				(CUR_ADDRS_PER_INODE(inode) -		\
453 				get_inline_xattr_addrs(inode) -	\
454 				DEF_INLINE_RESERVED_SIZE))
455 
456 /* for inline dir */
457 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
458 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
459 				BITS_PER_BYTE + 1))
460 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
461 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
462 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
463 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
464 				NR_INLINE_DENTRY(inode) + \
465 				INLINE_DENTRY_BITMAP_SIZE(inode)))
466 
467 /*
468  * For INODE and NODE manager
469  */
470 /* for directory operations */
471 
472 struct f2fs_filename {
473 	/*
474 	 * The filename the user specified.  This is NULL for some
475 	 * filesystem-internal operations, e.g. converting an inline directory
476 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
477 	 */
478 	const struct qstr *usr_fname;
479 
480 	/*
481 	 * The on-disk filename.  For encrypted directories, this is encrypted.
482 	 * This may be NULL for lookups in an encrypted dir without the key.
483 	 */
484 	struct fscrypt_str disk_name;
485 
486 	/* The dirhash of this filename */
487 	f2fs_hash_t hash;
488 
489 #ifdef CONFIG_FS_ENCRYPTION
490 	/*
491 	 * For lookups in encrypted directories: either the buffer backing
492 	 * disk_name, or a buffer that holds the decoded no-key name.
493 	 */
494 	struct fscrypt_str crypto_buf;
495 #endif
496 #ifdef CONFIG_UNICODE
497 	/*
498 	 * For casefolded directories: the casefolded name, but it's left NULL
499 	 * if the original name is not valid Unicode, if the original name is
500 	 * "." or "..", if the directory is both casefolded and encrypted and
501 	 * its encryption key is unavailable, or if the filesystem is doing an
502 	 * internal operation where usr_fname is also NULL.  In all these cases
503 	 * we fall back to treating the name as an opaque byte sequence.
504 	 */
505 	struct fscrypt_str cf_name;
506 #endif
507 };
508 
509 struct f2fs_dentry_ptr {
510 	struct inode *inode;
511 	void *bitmap;
512 	struct f2fs_dir_entry *dentry;
513 	__u8 (*filename)[F2FS_SLOT_LEN];
514 	int max;
515 	int nr_bitmap;
516 };
517 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)518 static inline void make_dentry_ptr_block(struct inode *inode,
519 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
520 {
521 	d->inode = inode;
522 	d->max = NR_DENTRY_IN_BLOCK;
523 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
524 	d->bitmap = t->dentry_bitmap;
525 	d->dentry = t->dentry;
526 	d->filename = t->filename;
527 }
528 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)529 static inline void make_dentry_ptr_inline(struct inode *inode,
530 					struct f2fs_dentry_ptr *d, void *t)
531 {
532 	int entry_cnt = NR_INLINE_DENTRY(inode);
533 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
534 	int reserved_size = INLINE_RESERVED_SIZE(inode);
535 
536 	d->inode = inode;
537 	d->max = entry_cnt;
538 	d->nr_bitmap = bitmap_size;
539 	d->bitmap = t;
540 	d->dentry = t + bitmap_size + reserved_size;
541 	d->filename = t + bitmap_size + reserved_size +
542 					SIZE_OF_DIR_ENTRY * entry_cnt;
543 }
544 
545 /*
546  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
547  * as its node offset to distinguish from index node blocks.
548  * But some bits are used to mark the node block.
549  */
550 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
551 				>> OFFSET_BIT_SHIFT)
552 enum {
553 	ALLOC_NODE,			/* allocate a new node page if needed */
554 	LOOKUP_NODE,			/* look up a node without readahead */
555 	LOOKUP_NODE_RA,			/*
556 					 * look up a node with readahead called
557 					 * by get_data_block.
558 					 */
559 };
560 
561 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
562 
563 /* congestion wait timeout value, default: 20ms */
564 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
565 
566 /* maximum retry quota flush count */
567 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
568 
569 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
570 
571 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
572 
573 /* for in-memory extent cache entry */
574 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
575 
576 /* number of extent info in extent cache we try to shrink */
577 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
578 
579 /* number of age extent info in extent cache we try to shrink */
580 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
581 #define LAST_AGE_WEIGHT			30
582 #define SAME_AGE_REGION			1024
583 
584 /*
585  * Define data block with age less than 1GB as hot data
586  * define data block with age less than 10GB but more than 1GB as warm data
587  */
588 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
589 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
590 
591 /* extent cache type */
592 enum extent_type {
593 	EX_READ,
594 	EX_BLOCK_AGE,
595 	NR_EXTENT_CACHES,
596 };
597 
598 struct rb_entry {
599 	struct rb_node rb_node;		/* rb node located in rb-tree */
600 	union {
601 		struct {
602 			unsigned int ofs;	/* start offset of the entry */
603 			unsigned int len;	/* length of the entry */
604 		};
605 		unsigned long long key;		/* 64-bits key */
606 	} __packed;
607 };
608 
609 struct extent_info {
610 	unsigned int fofs;		/* start offset in a file */
611 	unsigned int len;		/* length of the extent */
612 	union {
613 		/* read extent_cache */
614 		struct {
615 			/* start block address of the extent */
616 			block_t blk;
617 #ifdef CONFIG_F2FS_FS_COMPRESSION
618 			/* physical extent length of compressed blocks */
619 			unsigned int c_len;
620 #endif
621 		};
622 		/* block age extent_cache */
623 		struct {
624 			/* block age of the extent */
625 			unsigned long long age;
626 			/* last total blocks allocated */
627 			unsigned long long last_blocks;
628 		};
629 	};
630 };
631 
632 struct extent_node {
633 	struct rb_node rb_node;		/* rb node located in rb-tree */
634 	struct extent_info ei;		/* extent info */
635 	struct list_head list;		/* node in global extent list of sbi */
636 	struct extent_tree *et;		/* extent tree pointer */
637 };
638 
639 struct extent_tree {
640 	nid_t ino;			/* inode number */
641 	enum extent_type type;		/* keep the extent tree type */
642 	struct rb_root_cached root;	/* root of extent info rb-tree */
643 	struct extent_node *cached_en;	/* recently accessed extent node */
644 	struct list_head list;		/* to be used by sbi->zombie_list */
645 	rwlock_t lock;			/* protect extent info rb-tree */
646 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
647 	bool largest_updated;		/* largest extent updated */
648 	struct extent_info largest;	/* largest cached extent for EX_READ */
649 };
650 
651 struct extent_tree_info {
652 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
653 	struct mutex extent_tree_lock;	/* locking extent radix tree */
654 	struct list_head extent_list;		/* lru list for shrinker */
655 	spinlock_t extent_lock;			/* locking extent lru list */
656 	atomic_t total_ext_tree;		/* extent tree count */
657 	struct list_head zombie_list;		/* extent zombie tree list */
658 	atomic_t total_zombie_tree;		/* extent zombie tree count */
659 	atomic_t total_ext_node;		/* extent info count */
660 };
661 
662 /*
663  * This structure is taken from ext4_map_blocks.
664  *
665  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
666  */
667 #define F2FS_MAP_NEW		(1 << BH_New)
668 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
669 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
670 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
671 				F2FS_MAP_UNWRITTEN)
672 
673 struct f2fs_map_blocks {
674 	block_t m_pblk;
675 	block_t m_lblk;
676 	unsigned int m_len;
677 	unsigned int m_flags;
678 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
679 	pgoff_t *m_next_extent;		/* point to next possible extent */
680 	int m_seg_type;
681 	bool m_may_create;		/* indicate it is from write path */
682 };
683 
684 /* for flag in get_data_block */
685 enum {
686 	F2FS_GET_BLOCK_DEFAULT,
687 	F2FS_GET_BLOCK_FIEMAP,
688 	F2FS_GET_BLOCK_BMAP,
689 	F2FS_GET_BLOCK_DIO,
690 	F2FS_GET_BLOCK_PRE_DIO,
691 	F2FS_GET_BLOCK_PRE_AIO,
692 	F2FS_GET_BLOCK_PRECACHE,
693 };
694 
695 /*
696  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
697  */
698 #define FADVISE_COLD_BIT	0x01
699 #define FADVISE_LOST_PINO_BIT	0x02
700 #define FADVISE_ENCRYPT_BIT	0x04
701 #define FADVISE_ENC_NAME_BIT	0x08
702 #define FADVISE_KEEP_SIZE_BIT	0x10
703 #define FADVISE_HOT_BIT		0x20
704 #define FADVISE_VERITY_BIT	0x40
705 
706 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
707 
708 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
709 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
710 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
711 
712 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
713 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
714 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
715 
716 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
717 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
718 
719 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
720 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
721 
722 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
723 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
724 
725 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
726 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
727 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
728 
729 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
730 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
731 
732 #define DEF_DIR_LEVEL		0
733 
734 enum {
735 	GC_FAILURE_PIN,
736 	GC_FAILURE_ATOMIC,
737 	MAX_GC_FAILURE
738 };
739 
740 /* used for f2fs_inode_info->flags */
741 enum {
742 	FI_NEW_INODE,		/* indicate newly allocated inode */
743 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
744 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
745 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
746 	FI_INC_LINK,		/* need to increment i_nlink */
747 	FI_ACL_MODE,		/* indicate acl mode */
748 	FI_NO_ALLOC,		/* should not allocate any blocks */
749 	FI_FREE_NID,		/* free allocated nide */
750 	FI_NO_EXTENT,		/* not to use the extent cache */
751 	FI_INLINE_XATTR,	/* used for inline xattr */
752 	FI_INLINE_DATA,		/* used for inline data*/
753 	FI_INLINE_DENTRY,	/* used for inline dentry */
754 	FI_APPEND_WRITE,	/* inode has appended data */
755 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
756 	FI_NEED_IPU,		/* used for ipu per file */
757 	FI_ATOMIC_FILE,		/* indicate atomic file */
758 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
759 	FI_VOLATILE_FILE,	/* indicate volatile file */
760 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
761 	FI_DROP_CACHE,		/* drop dirty page cache */
762 	FI_DATA_EXIST,		/* indicate data exists */
763 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
764 	FI_SKIP_WRITES,		/* should skip data page writeback */
765 	FI_OPU_WRITE,		/* used for opu per file */
766 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
767 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
768 	FI_HOT_DATA,		/* indicate file is hot */
769 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
770 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
771 	FI_PIN_FILE,		/* indicate file should not be gced */
772 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
773 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
774 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
775 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
776 	FI_MMAP_FILE,		/* indicate file was mmapped */
777 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
778 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
779 	FI_ALIGNED_WRITE,	/* enable aligned write */
780 	FI_MAX,			/* max flag, never be used */
781 };
782 
783 struct f2fs_inode_info {
784 	struct inode vfs_inode;		/* serve a vfs inode */
785 	unsigned long i_flags;		/* keep an inode flags for ioctl */
786 	unsigned char i_advise;		/* use to give file attribute hints */
787 	unsigned char i_dir_level;	/* use for dentry level for large dir */
788 	unsigned int i_current_depth;	/* only for directory depth */
789 	/* for gc failure statistic */
790 	unsigned int i_gc_failures[MAX_GC_FAILURE];
791 	unsigned int i_pino;		/* parent inode number */
792 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
793 
794 	/* Use below internally in f2fs*/
795 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
796 	struct f2fs_rwsem i_sem;	/* protect fi info */
797 	atomic_t dirty_pages;		/* # of dirty pages */
798 	f2fs_hash_t chash;		/* hash value of given file name */
799 	unsigned int clevel;		/* maximum level of given file name */
800 	struct task_struct *task;	/* lookup and create consistency */
801 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
802 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
803 	nid_t i_xattr_nid;		/* node id that contains xattrs */
804 	loff_t	last_disk_size;		/* lastly written file size */
805 	spinlock_t i_size_lock;		/* protect last_disk_size */
806 
807 #ifdef CONFIG_QUOTA
808 	struct dquot *i_dquot[MAXQUOTAS];
809 
810 	/* quota space reservation, managed internally by quota code */
811 	qsize_t i_reserved_quota;
812 #endif
813 	struct list_head dirty_list;	/* dirty list for dirs and files */
814 	struct list_head gdirty_list;	/* linked in global dirty list */
815 	struct list_head inmem_ilist;	/* list for inmem inodes */
816 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
817 	struct task_struct *inmem_task;	/* store inmemory task */
818 	struct mutex inmem_lock;	/* lock for inmemory pages */
819 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
820 					/* cached extent_tree entry */
821 
822 	/* avoid racing between foreground op and gc */
823 	struct f2fs_rwsem i_gc_rwsem[2];
824 	struct f2fs_rwsem i_mmap_sem;
825 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
826 
827 	int i_extra_isize;		/* size of extra space located in i_addr */
828 	kprojid_t i_projid;		/* id for project quota */
829 	int i_inline_xattr_size;	/* inline xattr size */
830 	struct timespec64 i_crtime;	/* inode creation time */
831 	struct timespec64 i_disk_time[4];/* inode disk times */
832 
833 	/* for file compress */
834 	atomic_t i_compr_blocks;		/* # of compressed blocks */
835 	unsigned char i_compress_algorithm;	/* algorithm type */
836 	unsigned char i_log_cluster_size;	/* log of cluster size */
837 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
838 	unsigned short i_compress_flag;		/* compress flag */
839 	unsigned int i_cluster_size;		/* cluster size */
840 };
841 
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)842 static inline void get_read_extent_info(struct extent_info *ext,
843 					struct f2fs_extent *i_ext)
844 {
845 	ext->fofs = le32_to_cpu(i_ext->fofs);
846 	ext->blk = le32_to_cpu(i_ext->blk);
847 	ext->len = le32_to_cpu(i_ext->len);
848 }
849 
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)850 static inline void set_raw_read_extent(struct extent_info *ext,
851 					struct f2fs_extent *i_ext)
852 {
853 	i_ext->fofs = cpu_to_le32(ext->fofs);
854 	i_ext->blk = cpu_to_le32(ext->blk);
855 	i_ext->len = cpu_to_le32(ext->len);
856 }
857 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)858 static inline bool __is_discard_mergeable(struct discard_info *back,
859 			struct discard_info *front, unsigned int max_len)
860 {
861 	return (back->lstart + back->len == front->lstart) &&
862 		(back->len + front->len <= max_len);
863 }
864 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)865 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
866 			struct discard_info *back, unsigned int max_len)
867 {
868 	return __is_discard_mergeable(back, cur, max_len);
869 }
870 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)871 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
872 			struct discard_info *front, unsigned int max_len)
873 {
874 	return __is_discard_mergeable(cur, front, max_len);
875 }
876 
877 /*
878  * For free nid management
879  */
880 enum nid_state {
881 	FREE_NID,		/* newly added to free nid list */
882 	PREALLOC_NID,		/* it is preallocated */
883 	MAX_NID_STATE,
884 };
885 
886 enum nat_state {
887 	TOTAL_NAT,
888 	DIRTY_NAT,
889 	RECLAIMABLE_NAT,
890 	MAX_NAT_STATE,
891 };
892 
893 struct f2fs_nm_info {
894 	block_t nat_blkaddr;		/* base disk address of NAT */
895 	nid_t max_nid;			/* maximum possible node ids */
896 	nid_t available_nids;		/* # of available node ids */
897 	nid_t next_scan_nid;		/* the next nid to be scanned */
898 	unsigned int ram_thresh;	/* control the memory footprint */
899 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
900 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
901 
902 	/* NAT cache management */
903 	struct radix_tree_root nat_root;/* root of the nat entry cache */
904 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
905 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
906 	struct list_head nat_entries;	/* cached nat entry list (clean) */
907 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
908 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
909 	unsigned int nat_blocks;	/* # of nat blocks */
910 
911 	/* free node ids management */
912 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
913 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
914 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
915 	spinlock_t nid_list_lock;	/* protect nid lists ops */
916 	struct mutex build_lock;	/* lock for build free nids */
917 	unsigned char **free_nid_bitmap;
918 	unsigned char *nat_block_bitmap;
919 	unsigned short *free_nid_count;	/* free nid count of NAT block */
920 
921 	/* for checkpoint */
922 	char *nat_bitmap;		/* NAT bitmap pointer */
923 
924 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
925 	unsigned char *nat_bits;	/* NAT bits blocks */
926 	unsigned char *full_nat_bits;	/* full NAT pages */
927 	unsigned char *empty_nat_bits;	/* empty NAT pages */
928 #ifdef CONFIG_F2FS_CHECK_FS
929 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
930 #endif
931 	int bitmap_size;		/* bitmap size */
932 };
933 
934 /*
935  * this structure is used as one of function parameters.
936  * all the information are dedicated to a given direct node block determined
937  * by the data offset in a file.
938  */
939 struct dnode_of_data {
940 	struct inode *inode;		/* vfs inode pointer */
941 	struct page *inode_page;	/* its inode page, NULL is possible */
942 	struct page *node_page;		/* cached direct node page */
943 	nid_t nid;			/* node id of the direct node block */
944 	unsigned int ofs_in_node;	/* data offset in the node page */
945 	bool inode_page_locked;		/* inode page is locked or not */
946 	bool node_changed;		/* is node block changed */
947 	char cur_level;			/* level of hole node page */
948 	char max_level;			/* level of current page located */
949 	block_t	data_blkaddr;		/* block address of the node block */
950 };
951 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)952 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
953 		struct page *ipage, struct page *npage, nid_t nid)
954 {
955 	memset(dn, 0, sizeof(*dn));
956 	dn->inode = inode;
957 	dn->inode_page = ipage;
958 	dn->node_page = npage;
959 	dn->nid = nid;
960 }
961 
962 /*
963  * For SIT manager
964  *
965  * By default, there are 6 active log areas across the whole main area.
966  * When considering hot and cold data separation to reduce cleaning overhead,
967  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
968  * respectively.
969  * In the current design, you should not change the numbers intentionally.
970  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
971  * logs individually according to the underlying devices. (default: 6)
972  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
973  * data and 8 for node logs.
974  */
975 #define	NR_CURSEG_DATA_TYPE	(3)
976 #define NR_CURSEG_NODE_TYPE	(3)
977 #define NR_CURSEG_INMEM_TYPE	(2)
978 #define NR_CURSEG_RO_TYPE	(2)
979 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
980 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
981 
982 enum {
983 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
984 	CURSEG_WARM_DATA,	/* data blocks */
985 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
986 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
987 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
988 	CURSEG_COLD_NODE,	/* indirect node blocks */
989 	NR_PERSISTENT_LOG,	/* number of persistent log */
990 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
991 				/* pinned file that needs consecutive block address */
992 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
993 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
994 };
995 
996 struct flush_cmd {
997 	struct completion wait;
998 	struct llist_node llnode;
999 	nid_t ino;
1000 	int ret;
1001 };
1002 
1003 struct flush_cmd_control {
1004 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1005 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1006 	atomic_t issued_flush;			/* # of issued flushes */
1007 	atomic_t queued_flush;			/* # of queued flushes */
1008 	struct llist_head issue_list;		/* list for command issue */
1009 	struct llist_node *dispatch_list;	/* list for command dispatch */
1010 };
1011 
1012 struct f2fs_sm_info {
1013 	struct sit_info *sit_info;		/* whole segment information */
1014 	struct free_segmap_info *free_info;	/* free segment information */
1015 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1016 	struct curseg_info *curseg_array;	/* active segment information */
1017 
1018 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1019 
1020 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1021 	block_t main_blkaddr;		/* start block address of main area */
1022 	block_t ssa_blkaddr;		/* start block address of SSA area */
1023 
1024 	unsigned int segment_count;	/* total # of segments */
1025 	unsigned int main_segments;	/* # of segments in main area */
1026 	unsigned int reserved_segments;	/* # of reserved segments */
1027 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1028 	unsigned int ovp_segments;	/* # of overprovision segments */
1029 
1030 	/* a threshold to reclaim prefree segments */
1031 	unsigned int rec_prefree_segments;
1032 
1033 	/* for batched trimming */
1034 	unsigned int trim_sections;		/* # of sections to trim */
1035 
1036 	struct list_head sit_entry_set;	/* sit entry set list */
1037 
1038 	unsigned int ipu_policy;	/* in-place-update policy */
1039 	unsigned int min_ipu_util;	/* in-place-update threshold */
1040 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1041 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1042 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1043 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1044 
1045 	/* for flush command control */
1046 	struct flush_cmd_control *fcc_info;
1047 
1048 	/* for discard command control */
1049 	struct discard_cmd_control *dcc_info;
1050 };
1051 
1052 /*
1053  * For superblock
1054  */
1055 /*
1056  * COUNT_TYPE for monitoring
1057  *
1058  * f2fs monitors the number of several block types such as on-writeback,
1059  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1060  */
1061 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1062 enum count_type {
1063 	F2FS_DIRTY_DENTS,
1064 	F2FS_DIRTY_DATA,
1065 	F2FS_DIRTY_QDATA,
1066 	F2FS_DIRTY_NODES,
1067 	F2FS_DIRTY_META,
1068 	F2FS_INMEM_PAGES,
1069 	F2FS_DIRTY_IMETA,
1070 	F2FS_WB_CP_DATA,
1071 	F2FS_WB_DATA,
1072 	F2FS_RD_DATA,
1073 	F2FS_RD_NODE,
1074 	F2FS_RD_META,
1075 	F2FS_DIO_WRITE,
1076 	F2FS_DIO_READ,
1077 	NR_COUNT_TYPE,
1078 };
1079 
1080 /*
1081  * The below are the page types of bios used in submit_bio().
1082  * The available types are:
1083  * DATA			User data pages. It operates as async mode.
1084  * NODE			Node pages. It operates as async mode.
1085  * META			FS metadata pages such as SIT, NAT, CP.
1086  * NR_PAGE_TYPE		The number of page types.
1087  * META_FLUSH		Make sure the previous pages are written
1088  *			with waiting the bio's completion
1089  * ...			Only can be used with META.
1090  */
1091 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1092 enum page_type {
1093 	DATA = 0,
1094 	NODE = 1,	/* should not change this */
1095 	META,
1096 	NR_PAGE_TYPE,
1097 	META_FLUSH,
1098 	INMEM,		/* the below types are used by tracepoints only. */
1099 	INMEM_DROP,
1100 	INMEM_INVALIDATE,
1101 	INMEM_REVOKE,
1102 	IPU,
1103 	OPU,
1104 };
1105 
1106 enum temp_type {
1107 	HOT = 0,	/* must be zero for meta bio */
1108 	WARM,
1109 	COLD,
1110 	NR_TEMP_TYPE,
1111 };
1112 
1113 enum need_lock_type {
1114 	LOCK_REQ = 0,
1115 	LOCK_DONE,
1116 	LOCK_RETRY,
1117 };
1118 
1119 enum cp_reason_type {
1120 	CP_NO_NEEDED,
1121 	CP_NON_REGULAR,
1122 	CP_COMPRESSED,
1123 	CP_HARDLINK,
1124 	CP_SB_NEED_CP,
1125 	CP_WRONG_PINO,
1126 	CP_NO_SPC_ROLL,
1127 	CP_NODE_NEED_CP,
1128 	CP_FASTBOOT_MODE,
1129 	CP_SPEC_LOG_NUM,
1130 	CP_RECOVER_DIR,
1131 };
1132 
1133 enum iostat_type {
1134 	/* WRITE IO */
1135 	APP_DIRECT_IO,			/* app direct write IOs */
1136 	APP_BUFFERED_IO,		/* app buffered write IOs */
1137 	APP_WRITE_IO,			/* app write IOs */
1138 	APP_MAPPED_IO,			/* app mapped IOs */
1139 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1140 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1141 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1142 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1143 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1144 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1145 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1146 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1147 
1148 	/* READ IO */
1149 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1150 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1151 	APP_READ_IO,			/* app read IOs */
1152 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1153 	FS_DATA_READ_IO,		/* data read IOs */
1154 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1155 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1156 	FS_NODE_READ_IO,		/* node read IOs */
1157 	FS_META_READ_IO,		/* meta read IOs */
1158 
1159 	/* other */
1160 	FS_DISCARD,			/* discard */
1161 	NR_IO_TYPE,
1162 };
1163 
1164 struct f2fs_io_info {
1165 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1166 	nid_t ino;		/* inode number */
1167 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1168 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1169 	int op;			/* contains REQ_OP_ */
1170 	int op_flags;		/* req_flag_bits */
1171 	block_t new_blkaddr;	/* new block address to be written */
1172 	block_t old_blkaddr;	/* old block address before Cow */
1173 	struct page *page;	/* page to be written */
1174 	struct page *encrypted_page;	/* encrypted page */
1175 	struct page *compressed_page;	/* compressed page */
1176 	struct list_head list;		/* serialize IOs */
1177 	bool submitted;		/* indicate IO submission */
1178 	int need_lock;		/* indicate we need to lock cp_rwsem */
1179 	bool in_list;		/* indicate fio is in io_list */
1180 	bool is_por;		/* indicate IO is from recovery or not */
1181 	bool retry;		/* need to reallocate block address */
1182 	int compr_blocks;	/* # of compressed block addresses */
1183 	bool encrypted;		/* indicate file is encrypted */
1184 	bool post_read;		/* require post read */
1185 	enum iostat_type io_type;	/* io type */
1186 	struct writeback_control *io_wbc; /* writeback control */
1187 	struct bio **bio;		/* bio for ipu */
1188 	sector_t *last_block;		/* last block number in bio */
1189 	unsigned char version;		/* version of the node */
1190 };
1191 
1192 struct bio_entry {
1193 	struct bio *bio;
1194 	struct list_head list;
1195 };
1196 
1197 #define is_read_io(rw) ((rw) == READ)
1198 struct f2fs_bio_info {
1199 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1200 	struct bio *bio;		/* bios to merge */
1201 	sector_t last_block_in_bio;	/* last block number */
1202 	struct f2fs_io_info fio;	/* store buffered io info. */
1203 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1204 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1205 	struct list_head io_list;	/* track fios */
1206 	struct list_head bio_list;	/* bio entry list head */
1207 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1208 };
1209 
1210 #define FDEV(i)				(sbi->devs[i])
1211 #define RDEV(i)				(raw_super->devs[i])
1212 struct f2fs_dev_info {
1213 	struct block_device *bdev;
1214 	char path[MAX_PATH_LEN];
1215 	unsigned int total_segments;
1216 	block_t start_blk;
1217 	block_t end_blk;
1218 #ifdef CONFIG_BLK_DEV_ZONED
1219 	unsigned int nr_blkz;		/* Total number of zones */
1220 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1221 #endif
1222 };
1223 
1224 enum inode_type {
1225 	DIR_INODE,			/* for dirty dir inode */
1226 	FILE_INODE,			/* for dirty regular/symlink inode */
1227 	DIRTY_META,			/* for all dirtied inode metadata */
1228 	ATOMIC_FILE,			/* for all atomic files */
1229 	NR_INODE_TYPE,
1230 };
1231 
1232 /* for inner inode cache management */
1233 struct inode_management {
1234 	struct radix_tree_root ino_root;	/* ino entry array */
1235 	spinlock_t ino_lock;			/* for ino entry lock */
1236 	struct list_head ino_list;		/* inode list head */
1237 	unsigned long ino_num;			/* number of entries */
1238 };
1239 
1240 /* for GC_AT */
1241 struct atgc_management {
1242 	bool atgc_enabled;			/* ATGC is enabled or not */
1243 	struct rb_root_cached root;		/* root of victim rb-tree */
1244 	struct list_head victim_list;		/* linked with all victim entries */
1245 	unsigned int victim_count;		/* victim count in rb-tree */
1246 	unsigned int candidate_ratio;		/* candidate ratio */
1247 	unsigned int max_candidate_count;	/* max candidate count */
1248 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1249 	unsigned long long age_threshold;	/* age threshold */
1250 };
1251 
1252 /* For s_flag in struct f2fs_sb_info */
1253 enum {
1254 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1255 	SBI_IS_CLOSE,				/* specify unmounting */
1256 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1257 	SBI_POR_DOING,				/* recovery is doing or not */
1258 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1259 	SBI_NEED_CP,				/* need to checkpoint */
1260 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1261 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1262 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1263 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1264 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1265 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1266 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1267 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1268 	SBI_IS_FREEZING,			/* freezefs is in process */
1269 };
1270 
1271 enum {
1272 	CP_TIME,
1273 	REQ_TIME,
1274 	DISCARD_TIME,
1275 	GC_TIME,
1276 	DISABLE_TIME,
1277 	UMOUNT_DISCARD_TIMEOUT,
1278 	MAX_TIME,
1279 };
1280 
1281 enum {
1282 	GC_NORMAL,
1283 	GC_IDLE_CB,
1284 	GC_IDLE_GREEDY,
1285 	GC_IDLE_AT,
1286 	GC_URGENT_HIGH,
1287 	GC_URGENT_LOW,
1288 	GC_URGENT_MID,
1289 	MAX_GC_MODE,
1290 };
1291 
1292 enum {
1293 	BGGC_MODE_ON,		/* background gc is on */
1294 	BGGC_MODE_OFF,		/* background gc is off */
1295 	BGGC_MODE_SYNC,		/*
1296 				 * background gc is on, migrating blocks
1297 				 * like foreground gc
1298 				 */
1299 };
1300 
1301 enum {
1302 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1303 	FS_MODE_LFS,		/* use lfs allocation only */
1304 };
1305 
1306 enum {
1307 	WHINT_MODE_OFF,		/* not pass down write hints */
1308 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1309 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1310 };
1311 
1312 enum {
1313 	ALLOC_MODE_DEFAULT,	/* stay default */
1314 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1315 };
1316 
1317 enum fsync_mode {
1318 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1319 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1320 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1321 };
1322 
1323 enum {
1324 	COMPR_MODE_FS,		/*
1325 				 * automatically compress compression
1326 				 * enabled files
1327 				 */
1328 	COMPR_MODE_USER,	/*
1329 				 * automatical compression is disabled.
1330 				 * user can control the file compression
1331 				 * using ioctls
1332 				 */
1333 };
1334 
1335 enum {
1336 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1337 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1338 };
1339 
1340 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1341 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1342 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1343 
1344 /*
1345  * Layout of f2fs page.private:
1346  *
1347  * Layout A: lowest bit should be 1
1348  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1349  * bit 0	PAGE_PRIVATE_NOT_POINTER
1350  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1351  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1352  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1353  * bit 4	PAGE_PRIVATE_INLINE_INODE
1354  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1355  * bit 6-	f2fs private data
1356  *
1357  * Layout B: lowest bit should be 0
1358  * page.private is a wrapped pointer.
1359  */
1360 enum {
1361 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1362 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1363 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1364 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1365 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1366 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1367 	PAGE_PRIVATE_MAX
1368 };
1369 
1370 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1371 static inline bool page_private_##name(struct page *page) \
1372 { \
1373 	return PagePrivate(page) && \
1374 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1375 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1376 }
1377 
1378 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1379 static inline void set_page_private_##name(struct page *page) \
1380 { \
1381 	if (!PagePrivate(page)) { \
1382 		get_page(page); \
1383 		SetPagePrivate(page); \
1384 		set_page_private(page, 0); \
1385 	} \
1386 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1387 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1388 }
1389 
1390 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1391 static inline void clear_page_private_##name(struct page *page) \
1392 { \
1393 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1394 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1395 		set_page_private(page, 0); \
1396 		if (PagePrivate(page)) { \
1397 			ClearPagePrivate(page); \
1398 			put_page(page); \
1399 		}\
1400 	} \
1401 }
1402 
1403 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1404 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1405 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1406 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1407 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1408 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1409 
1410 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1411 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1412 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1413 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1414 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1415 
1416 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1417 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1418 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1419 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1420 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1421 
get_page_private_data(struct page * page)1422 static inline unsigned long get_page_private_data(struct page *page)
1423 {
1424 	unsigned long data = page_private(page);
1425 
1426 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1427 		return 0;
1428 	return data >> PAGE_PRIVATE_MAX;
1429 }
1430 
set_page_private_data(struct page * page,unsigned long data)1431 static inline void set_page_private_data(struct page *page, unsigned long data)
1432 {
1433 	if (!PagePrivate(page)) {
1434 		get_page(page);
1435 		SetPagePrivate(page);
1436 		set_page_private(page, 0);
1437 	}
1438 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1439 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1440 }
1441 
clear_page_private_data(struct page * page)1442 static inline void clear_page_private_data(struct page *page)
1443 {
1444 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1445 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1446 		set_page_private(page, 0);
1447 		if (PagePrivate(page)) {
1448 			ClearPagePrivate(page);
1449 			put_page(page);
1450 		}
1451 	}
1452 }
1453 
1454 /* For compression */
1455 enum compress_algorithm_type {
1456 	COMPRESS_LZO,
1457 	COMPRESS_LZ4,
1458 	COMPRESS_ZSTD,
1459 	COMPRESS_LZORLE,
1460 	COMPRESS_MAX,
1461 };
1462 
1463 enum compress_flag {
1464 	COMPRESS_CHKSUM,
1465 	COMPRESS_MAX_FLAG,
1466 };
1467 
1468 #define	COMPRESS_WATERMARK			20
1469 #define	COMPRESS_PERCENT			20
1470 
1471 #define COMPRESS_DATA_RESERVED_SIZE		4
1472 struct compress_data {
1473 	__le32 clen;			/* compressed data size */
1474 	__le32 chksum;			/* compressed data chksum */
1475 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1476 	u8 cdata[];			/* compressed data */
1477 };
1478 
1479 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1480 
1481 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1482 
1483 #define	COMPRESS_LEVEL_OFFSET	8
1484 
1485 /* compress context */
1486 struct compress_ctx {
1487 	struct inode *inode;		/* inode the context belong to */
1488 	pgoff_t cluster_idx;		/* cluster index number */
1489 	unsigned int cluster_size;	/* page count in cluster */
1490 	unsigned int log_cluster_size;	/* log of cluster size */
1491 	struct page **rpages;		/* pages store raw data in cluster */
1492 	unsigned int nr_rpages;		/* total page number in rpages */
1493 	struct page **cpages;		/* pages store compressed data in cluster */
1494 	unsigned int nr_cpages;		/* total page number in cpages */
1495 	void *rbuf;			/* virtual mapped address on rpages */
1496 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1497 	size_t rlen;			/* valid data length in rbuf */
1498 	size_t clen;			/* valid data length in cbuf */
1499 	void *private;			/* payload buffer for specified compression algorithm */
1500 	void *private2;			/* extra payload buffer */
1501 };
1502 
1503 /* compress context for write IO path */
1504 struct compress_io_ctx {
1505 	u32 magic;			/* magic number to indicate page is compressed */
1506 	struct inode *inode;		/* inode the context belong to */
1507 	struct page **rpages;		/* pages store raw data in cluster */
1508 	unsigned int nr_rpages;		/* total page number in rpages */
1509 	atomic_t pending_pages;		/* in-flight compressed page count */
1510 };
1511 
1512 /* Context for decompressing one cluster on the read IO path */
1513 struct decompress_io_ctx {
1514 	u32 magic;			/* magic number to indicate page is compressed */
1515 	struct inode *inode;		/* inode the context belong to */
1516 	pgoff_t cluster_idx;		/* cluster index number */
1517 	unsigned int cluster_size;	/* page count in cluster */
1518 	unsigned int log_cluster_size;	/* log of cluster size */
1519 	struct page **rpages;		/* pages store raw data in cluster */
1520 	unsigned int nr_rpages;		/* total page number in rpages */
1521 	struct page **cpages;		/* pages store compressed data in cluster */
1522 	unsigned int nr_cpages;		/* total page number in cpages */
1523 	struct page **tpages;		/* temp pages to pad holes in cluster */
1524 	void *rbuf;			/* virtual mapped address on rpages */
1525 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1526 	size_t rlen;			/* valid data length in rbuf */
1527 	size_t clen;			/* valid data length in cbuf */
1528 
1529 	/*
1530 	 * The number of compressed pages remaining to be read in this cluster.
1531 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1532 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1533 	 * is decompressed (or an error is reported).
1534 	 *
1535 	 * If an error occurs before all the pages have been submitted for I/O,
1536 	 * then this will never reach 0.  In this case the I/O submitter is
1537 	 * responsible for calling f2fs_decompress_end_io() instead.
1538 	 */
1539 	atomic_t remaining_pages;
1540 
1541 	/*
1542 	 * Number of references to this decompress_io_ctx.
1543 	 *
1544 	 * One reference is held for I/O completion.  This reference is dropped
1545 	 * after the pagecache pages are updated and unlocked -- either after
1546 	 * decompression (and verity if enabled), or after an error.
1547 	 *
1548 	 * In addition, each compressed page holds a reference while it is in a
1549 	 * bio.  These references are necessary prevent compressed pages from
1550 	 * being freed while they are still in a bio.
1551 	 */
1552 	refcount_t refcnt;
1553 
1554 	bool failed;			/* IO error occurred before decompression? */
1555 	bool need_verity;		/* need fs-verity verification after decompression? */
1556 	void *private;			/* payload buffer for specified decompression algorithm */
1557 	void *private2;			/* extra payload buffer */
1558 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1559 	struct work_struct free_work;	/* work for late free this structure itself */
1560 };
1561 
1562 #define NULL_CLUSTER			((unsigned int)(~0))
1563 #define MIN_COMPRESS_LOG_SIZE		2
1564 #define MAX_COMPRESS_LOG_SIZE		8
1565 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1566 
1567 struct f2fs_sb_info {
1568 	struct super_block *sb;			/* pointer to VFS super block */
1569 	struct proc_dir_entry *s_proc;		/* proc entry */
1570 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1571 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1572 	int valid_super_block;			/* valid super block no */
1573 	unsigned long s_flag;				/* flags for sbi */
1574 	struct mutex writepages;		/* mutex for writepages() */
1575 
1576 #ifdef CONFIG_BLK_DEV_ZONED
1577 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1578 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1579 #endif
1580 
1581 	/* for node-related operations */
1582 	struct f2fs_nm_info *nm_info;		/* node manager */
1583 	struct inode *node_inode;		/* cache node blocks */
1584 
1585 	/* for segment-related operations */
1586 	struct f2fs_sm_info *sm_info;		/* segment manager */
1587 
1588 	/* for bio operations */
1589 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1590 	/* keep migration IO order for LFS mode */
1591 	struct f2fs_rwsem io_order_lock;
1592 	mempool_t *write_io_dummy;		/* Dummy pages */
1593 
1594 	/* for checkpoint */
1595 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1596 	int cur_cp_pack;			/* remain current cp pack */
1597 	spinlock_t cp_lock;			/* for flag in ckpt */
1598 	struct inode *meta_inode;		/* cache meta blocks */
1599 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1600 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1601 	struct f2fs_rwsem node_write;		/* locking node writes */
1602 	struct f2fs_rwsem node_change;	/* locking node change */
1603 	wait_queue_head_t cp_wait;
1604 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1605 	long interval_time[MAX_TIME];		/* to store thresholds */
1606 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1607 
1608 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1609 
1610 	spinlock_t fsync_node_lock;		/* for node entry lock */
1611 	struct list_head fsync_node_list;	/* node list head */
1612 	unsigned int fsync_seg_id;		/* sequence id */
1613 	unsigned int fsync_node_num;		/* number of node entries */
1614 
1615 	/* for orphan inode, use 0'th array */
1616 	unsigned int max_orphans;		/* max orphan inodes */
1617 
1618 	/* for inode management */
1619 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1620 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1621 	struct mutex flush_lock;		/* for flush exclusion */
1622 
1623 	/* for extent tree cache */
1624 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1625 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1626 
1627 	/* The threshold used for hot and warm data seperation*/
1628 	unsigned int hot_data_age_threshold;
1629 	unsigned int warm_data_age_threshold;
1630 	unsigned int last_age_weight;
1631 
1632 	/* basic filesystem units */
1633 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1634 	unsigned int log_blocksize;		/* log2 block size */
1635 	unsigned int blocksize;			/* block size */
1636 	unsigned int root_ino_num;		/* root inode number*/
1637 	unsigned int node_ino_num;		/* node inode number*/
1638 	unsigned int meta_ino_num;		/* meta inode number*/
1639 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1640 	unsigned int blocks_per_seg;		/* blocks per segment */
1641 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1642 	unsigned int segs_per_sec;		/* segments per section */
1643 	unsigned int secs_per_zone;		/* sections per zone */
1644 	unsigned int total_sections;		/* total section count */
1645 	unsigned int total_node_count;		/* total node block count */
1646 	unsigned int total_valid_node_count;	/* valid node block count */
1647 	int dir_level;				/* directory level */
1648 	int readdir_ra;				/* readahead inode in readdir */
1649 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1650 
1651 	block_t user_block_count;		/* # of user blocks */
1652 	block_t total_valid_block_count;	/* # of valid blocks */
1653 	block_t discard_blks;			/* discard command candidats */
1654 	block_t last_valid_block_count;		/* for recovery */
1655 	block_t reserved_blocks;		/* configurable reserved blocks */
1656 	block_t current_reserved_blocks;	/* current reserved blocks */
1657 
1658 	/* Additional tracking for no checkpoint mode */
1659 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1660 
1661 	unsigned int nquota_files;		/* # of quota sysfile */
1662 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1663 
1664 	/* # of pages, see count_type */
1665 	atomic_t nr_pages[NR_COUNT_TYPE];
1666 	/* # of allocated blocks */
1667 	struct percpu_counter alloc_valid_block_count;
1668 
1669 	/* writeback control */
1670 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1671 
1672 	/* valid inode count */
1673 	struct percpu_counter total_valid_inode_count;
1674 
1675 	struct f2fs_mount_info mount_opt;	/* mount options */
1676 
1677 	/* for cleaning operations */
1678 	struct f2fs_rwsem gc_lock;		/*
1679 						 * semaphore for GC, avoid
1680 						 * race between GC and GC or CP
1681 						 */
1682 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1683 	struct atgc_management am;		/* atgc management */
1684 	unsigned int cur_victim_sec;		/* current victim section num */
1685 	unsigned int gc_mode;			/* current GC state */
1686 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1687 
1688 	/* for skip statistic */
1689 	unsigned int atomic_files;		/* # of opened atomic file */
1690 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1691 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1692 
1693 	/* threshold for gc trials on pinned files */
1694 	u64 gc_pin_file_threshold;
1695 	struct f2fs_rwsem pin_sem;
1696 
1697 	/* maximum # of trials to find a victim segment for SSR and GC */
1698 	unsigned int max_victim_search;
1699 	/* migration granularity of garbage collection, unit: segment */
1700 	unsigned int migration_granularity;
1701 
1702 	/*
1703 	 * for stat information.
1704 	 * one is for the LFS mode, and the other is for the SSR mode.
1705 	 */
1706 #ifdef CONFIG_F2FS_STAT_FS
1707 	struct f2fs_stat_info *stat_info;	/* FS status information */
1708 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1709 	unsigned int segment_count[2];		/* # of allocated segments */
1710 	unsigned int block_count[2];		/* # of allocated blocks */
1711 	atomic_t inplace_count;		/* # of inplace update */
1712 	/* # of lookup extent cache */
1713 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1714 	/* # of hit rbtree extent node */
1715 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1716 	/* # of hit cached extent node */
1717 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1718 	/* # of hit largest extent node in read extent cache */
1719 	atomic64_t read_hit_largest;
1720 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1721 	atomic_t inline_inode;			/* # of inline_data inodes */
1722 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1723 	atomic_t compr_inode;			/* # of compressed inodes */
1724 	atomic64_t compr_blocks;		/* # of compressed blocks */
1725 	atomic_t vw_cnt;			/* # of volatile writes */
1726 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1727 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1728 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1729 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1730 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1731 #endif
1732 	spinlock_t stat_lock;			/* lock for stat operations */
1733 
1734 	/* For app/fs IO statistics */
1735 	spinlock_t iostat_lock;
1736 	unsigned long long rw_iostat[NR_IO_TYPE];
1737 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1738 	bool iostat_enable;
1739 	unsigned long iostat_next_period;
1740 	unsigned int iostat_period_ms;
1741 
1742 	/* to attach REQ_META|REQ_FUA flags */
1743 	unsigned int data_io_flag;
1744 	unsigned int node_io_flag;
1745 
1746 	/* For sysfs suppport */
1747 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1748 	struct completion s_kobj_unregister;
1749 
1750 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1751 	struct completion s_stat_kobj_unregister;
1752 
1753 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1754 	struct completion s_feature_list_kobj_unregister;
1755 
1756 	/* For shrinker support */
1757 	struct list_head s_list;
1758 	int s_ndevs;				/* number of devices */
1759 	struct f2fs_dev_info *devs;		/* for device list */
1760 	unsigned int dirty_device;		/* for checkpoint data flush */
1761 	spinlock_t dev_lock;			/* protect dirty_device */
1762 	struct mutex umount_mutex;
1763 	unsigned int shrinker_run_no;
1764 
1765 	/* For write statistics */
1766 	u64 sectors_written_start;
1767 	u64 kbytes_written;
1768 
1769 	/* Reference to checksum algorithm driver via cryptoapi */
1770 	struct crypto_shash *s_chksum_driver;
1771 
1772 	/* Precomputed FS UUID checksum for seeding other checksums */
1773 	__u32 s_chksum_seed;
1774 
1775 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1776 
1777 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1778 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1779 
1780 	/* For reclaimed segs statistics per each GC mode */
1781 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1782 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1783 
1784 #ifdef CONFIG_F2FS_FS_COMPRESSION
1785 	struct kmem_cache *page_array_slab;	/* page array entry */
1786 	unsigned int page_array_slab_size;	/* default page array slab size */
1787 
1788 	/* For runtime compression statistics */
1789 	u64 compr_written_block;
1790 	u64 compr_saved_block;
1791 	u32 compr_new_inode;
1792 
1793 	/* For compressed block cache */
1794 	struct inode *compress_inode;		/* cache compressed blocks */
1795 	unsigned int compress_percent;		/* cache page percentage */
1796 	unsigned int compress_watermark;	/* cache page watermark */
1797 	atomic_t compress_page_hit;		/* cache hit count */
1798 #endif
1799 };
1800 
1801 struct f2fs_private_dio {
1802 	struct inode *inode;
1803 	void *orig_private;
1804 	bio_end_io_t *orig_end_io;
1805 	bool write;
1806 };
1807 
1808 #ifdef CONFIG_F2FS_FAULT_INJECTION
1809 #define f2fs_show_injection_info(sbi, type)					\
1810 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1811 		KERN_INFO, sbi->sb->s_id,				\
1812 		f2fs_fault_name[type],					\
1813 		__func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1814 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1815 {
1816 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1817 
1818 	if (!ffi->inject_rate)
1819 		return false;
1820 
1821 	if (!IS_FAULT_SET(ffi, type))
1822 		return false;
1823 
1824 	atomic_inc(&ffi->inject_ops);
1825 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1826 		atomic_set(&ffi->inject_ops, 0);
1827 		return true;
1828 	}
1829 	return false;
1830 }
1831 #else
1832 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1833 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1834 {
1835 	return false;
1836 }
1837 #endif
1838 
1839 /*
1840  * Test if the mounted volume is a multi-device volume.
1841  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1842  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1843  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1844  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1845 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1846 {
1847 	return sbi->s_ndevs > 1;
1848 }
1849 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1850 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1851 {
1852 	unsigned long now = jiffies;
1853 
1854 	sbi->last_time[type] = now;
1855 
1856 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1857 	if (type == REQ_TIME) {
1858 		sbi->last_time[DISCARD_TIME] = now;
1859 		sbi->last_time[GC_TIME] = now;
1860 	}
1861 }
1862 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1863 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1864 {
1865 	unsigned long interval = sbi->interval_time[type] * HZ;
1866 
1867 	return time_after(jiffies, sbi->last_time[type] + interval);
1868 }
1869 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1870 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1871 						int type)
1872 {
1873 	unsigned long interval = sbi->interval_time[type] * HZ;
1874 	unsigned int wait_ms = 0;
1875 	long delta;
1876 
1877 	delta = (sbi->last_time[type] + interval) - jiffies;
1878 	if (delta > 0)
1879 		wait_ms = jiffies_to_msecs(delta);
1880 
1881 	return wait_ms;
1882 }
1883 
1884 /*
1885  * Inline functions
1886  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1887 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1888 			      const void *address, unsigned int length)
1889 {
1890 	struct {
1891 		struct shash_desc shash;
1892 		char ctx[4];
1893 	} desc;
1894 	int err;
1895 
1896 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1897 
1898 	desc.shash.tfm = sbi->s_chksum_driver;
1899 	*(u32 *)desc.ctx = crc;
1900 
1901 	err = crypto_shash_update(&desc.shash, address, length);
1902 	BUG_ON(err);
1903 
1904 	return *(u32 *)desc.ctx;
1905 }
1906 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1907 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1908 			   unsigned int length)
1909 {
1910 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1911 }
1912 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1913 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1914 				  void *buf, size_t buf_size)
1915 {
1916 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1917 }
1918 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1919 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1920 			      const void *address, unsigned int length)
1921 {
1922 	return __f2fs_crc32(sbi, crc, address, length);
1923 }
1924 
F2FS_I(struct inode * inode)1925 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1926 {
1927 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1928 }
1929 
F2FS_SB(struct super_block * sb)1930 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1931 {
1932 	return sb->s_fs_info;
1933 }
1934 
F2FS_I_SB(struct inode * inode)1935 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1936 {
1937 	return F2FS_SB(inode->i_sb);
1938 }
1939 
F2FS_M_SB(struct address_space * mapping)1940 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1941 {
1942 	return F2FS_I_SB(mapping->host);
1943 }
1944 
F2FS_P_SB(struct page * page)1945 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1946 {
1947 	return F2FS_M_SB(page_file_mapping(page));
1948 }
1949 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1950 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1951 {
1952 	return (struct f2fs_super_block *)(sbi->raw_super);
1953 }
1954 
F2FS_CKPT(struct f2fs_sb_info * sbi)1955 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1956 {
1957 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1958 }
1959 
F2FS_NODE(struct page * page)1960 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1961 {
1962 	return (struct f2fs_node *)page_address(page);
1963 }
1964 
F2FS_INODE(struct page * page)1965 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1966 {
1967 	return &((struct f2fs_node *)page_address(page))->i;
1968 }
1969 
NM_I(struct f2fs_sb_info * sbi)1970 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1971 {
1972 	return (struct f2fs_nm_info *)(sbi->nm_info);
1973 }
1974 
SM_I(struct f2fs_sb_info * sbi)1975 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1976 {
1977 	return (struct f2fs_sm_info *)(sbi->sm_info);
1978 }
1979 
SIT_I(struct f2fs_sb_info * sbi)1980 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1981 {
1982 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1983 }
1984 
FREE_I(struct f2fs_sb_info * sbi)1985 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1986 {
1987 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1988 }
1989 
DIRTY_I(struct f2fs_sb_info * sbi)1990 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1991 {
1992 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1993 }
1994 
META_MAPPING(struct f2fs_sb_info * sbi)1995 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1996 {
1997 	return sbi->meta_inode->i_mapping;
1998 }
1999 
NODE_MAPPING(struct f2fs_sb_info * sbi)2000 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2001 {
2002 	return sbi->node_inode->i_mapping;
2003 }
2004 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2005 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2006 {
2007 	return test_bit(type, &sbi->s_flag);
2008 }
2009 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2010 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2011 {
2012 	set_bit(type, &sbi->s_flag);
2013 }
2014 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2015 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2016 {
2017 	clear_bit(type, &sbi->s_flag);
2018 }
2019 
cur_cp_version(struct f2fs_checkpoint * cp)2020 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2021 {
2022 	return le64_to_cpu(cp->checkpoint_ver);
2023 }
2024 
f2fs_qf_ino(struct super_block * sb,int type)2025 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2026 {
2027 	if (type < F2FS_MAX_QUOTAS)
2028 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2029 	return 0;
2030 }
2031 
cur_cp_crc(struct f2fs_checkpoint * cp)2032 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2033 {
2034 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2035 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2036 }
2037 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2038 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2039 {
2040 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2041 
2042 	return ckpt_flags & f;
2043 }
2044 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2045 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2046 {
2047 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2048 }
2049 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2050 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2051 {
2052 	unsigned int ckpt_flags;
2053 
2054 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2055 	ckpt_flags |= f;
2056 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2057 }
2058 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2059 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2060 {
2061 	unsigned long flags;
2062 
2063 	spin_lock_irqsave(&sbi->cp_lock, flags);
2064 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2065 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2066 }
2067 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2068 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2069 {
2070 	unsigned int ckpt_flags;
2071 
2072 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2073 	ckpt_flags &= (~f);
2074 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2075 }
2076 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2077 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2078 {
2079 	unsigned long flags;
2080 
2081 	spin_lock_irqsave(&sbi->cp_lock, flags);
2082 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2083 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2084 }
2085 
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)2086 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
2087 {
2088 	unsigned long flags;
2089 	unsigned char *nat_bits;
2090 
2091 	/*
2092 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
2093 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
2094 	 * so let's rely on regular fsck or unclean shutdown.
2095 	 */
2096 
2097 	if (lock)
2098 		spin_lock_irqsave(&sbi->cp_lock, flags);
2099 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
2100 	nat_bits = NM_I(sbi)->nat_bits;
2101 	NM_I(sbi)->nat_bits = NULL;
2102 	if (lock)
2103 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
2104 
2105 	kvfree(nat_bits);
2106 }
2107 
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)2108 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
2109 					struct cp_control *cpc)
2110 {
2111 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
2112 
2113 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
2114 }
2115 
2116 #define init_f2fs_rwsem(sem)					\
2117 do {								\
2118 	static struct lock_class_key __key;			\
2119 								\
2120 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2121 } while (0)
2122 
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2123 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2124 		const char *sem_name, struct lock_class_key *key)
2125 {
2126 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2127 	init_waitqueue_head(&sem->read_waiters);
2128 }
2129 
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2130 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2131 {
2132 	return rwsem_is_locked(&sem->internal_rwsem);
2133 }
2134 
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2135 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2136 {
2137 	return rwsem_is_contended(&sem->internal_rwsem);
2138 }
2139 
f2fs_down_read(struct f2fs_rwsem * sem)2140 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2141 {
2142 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2143 }
2144 
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2145 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2146 {
2147 	return down_read_trylock(&sem->internal_rwsem);
2148 }
2149 
2150 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2151 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2152 {
2153 	down_read_nested(&sem->internal_rwsem, subclass);
2154 }
2155 #else
2156 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2157 #endif
2158 
f2fs_up_read(struct f2fs_rwsem * sem)2159 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2160 {
2161 	up_read(&sem->internal_rwsem);
2162 }
2163 
f2fs_down_write(struct f2fs_rwsem * sem)2164 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2165 {
2166 	down_write(&sem->internal_rwsem);
2167 }
2168 
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2169 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2170 {
2171 	return down_write_trylock(&sem->internal_rwsem);
2172 }
2173 
f2fs_up_write(struct f2fs_rwsem * sem)2174 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2175 {
2176 	up_write(&sem->internal_rwsem);
2177 	wake_up_all(&sem->read_waiters);
2178 }
2179 
f2fs_lock_op(struct f2fs_sb_info * sbi)2180 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2181 {
2182 	f2fs_down_read(&sbi->cp_rwsem);
2183 }
2184 
f2fs_trylock_op(struct f2fs_sb_info * sbi)2185 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2186 {
2187 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2188 }
2189 
f2fs_unlock_op(struct f2fs_sb_info * sbi)2190 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2191 {
2192 	f2fs_up_read(&sbi->cp_rwsem);
2193 }
2194 
f2fs_lock_all(struct f2fs_sb_info * sbi)2195 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2196 {
2197 	f2fs_down_write(&sbi->cp_rwsem);
2198 }
2199 
f2fs_unlock_all(struct f2fs_sb_info * sbi)2200 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2201 {
2202 	f2fs_up_write(&sbi->cp_rwsem);
2203 }
2204 
__get_cp_reason(struct f2fs_sb_info * sbi)2205 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2206 {
2207 	int reason = CP_SYNC;
2208 
2209 	if (test_opt(sbi, FASTBOOT))
2210 		reason = CP_FASTBOOT;
2211 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2212 		reason = CP_UMOUNT;
2213 	return reason;
2214 }
2215 
__remain_node_summaries(int reason)2216 static inline bool __remain_node_summaries(int reason)
2217 {
2218 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2219 }
2220 
__exist_node_summaries(struct f2fs_sb_info * sbi)2221 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2222 {
2223 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2224 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2225 }
2226 
2227 /*
2228  * Check whether the inode has blocks or not
2229  */
F2FS_HAS_BLOCKS(struct inode * inode)2230 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2231 {
2232 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2233 
2234 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2235 }
2236 
f2fs_has_xattr_block(unsigned int ofs)2237 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2238 {
2239 	return ofs == XATTR_NODE_OFFSET;
2240 }
2241 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2242 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2243 					struct inode *inode, bool cap)
2244 {
2245 	if (!inode)
2246 		return true;
2247 	if (!test_opt(sbi, RESERVE_ROOT))
2248 		return false;
2249 	if (IS_NOQUOTA(inode))
2250 		return true;
2251 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2252 		return true;
2253 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2254 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2255 		return true;
2256 	if (cap && capable(CAP_SYS_RESOURCE))
2257 		return true;
2258 	return false;
2259 }
2260 
2261 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2262 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2263 				 struct inode *inode, blkcnt_t *count)
2264 {
2265 	blkcnt_t diff = 0, release = 0;
2266 	block_t avail_user_block_count;
2267 	int ret;
2268 
2269 	ret = dquot_reserve_block(inode, *count);
2270 	if (ret)
2271 		return ret;
2272 
2273 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2274 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2275 		release = *count;
2276 		goto release_quota;
2277 	}
2278 
2279 	/*
2280 	 * let's increase this in prior to actual block count change in order
2281 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2282 	 */
2283 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2284 
2285 	spin_lock(&sbi->stat_lock);
2286 	sbi->total_valid_block_count += (block_t)(*count);
2287 	avail_user_block_count = sbi->user_block_count -
2288 					sbi->current_reserved_blocks;
2289 
2290 	if (!__allow_reserved_blocks(sbi, inode, true))
2291 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2292 
2293 	if (F2FS_IO_ALIGNED(sbi))
2294 		avail_user_block_count -= sbi->blocks_per_seg *
2295 				SM_I(sbi)->additional_reserved_segments;
2296 
2297 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2298 		if (avail_user_block_count > sbi->unusable_block_count)
2299 			avail_user_block_count -= sbi->unusable_block_count;
2300 		else
2301 			avail_user_block_count = 0;
2302 	}
2303 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2304 		diff = sbi->total_valid_block_count - avail_user_block_count;
2305 		if (diff > *count)
2306 			diff = *count;
2307 		*count -= diff;
2308 		release = diff;
2309 		sbi->total_valid_block_count -= diff;
2310 		if (!*count) {
2311 			spin_unlock(&sbi->stat_lock);
2312 			goto enospc;
2313 		}
2314 	}
2315 	spin_unlock(&sbi->stat_lock);
2316 
2317 	if (unlikely(release)) {
2318 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2319 		dquot_release_reservation_block(inode, release);
2320 	}
2321 	f2fs_i_blocks_write(inode, *count, true, true);
2322 	return 0;
2323 
2324 enospc:
2325 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2326 release_quota:
2327 	dquot_release_reservation_block(inode, release);
2328 	return -ENOSPC;
2329 }
2330 
2331 __printf(2, 3)
2332 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2333 
2334 #define f2fs_err(sbi, fmt, ...)						\
2335 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2336 #define f2fs_warn(sbi, fmt, ...)					\
2337 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2338 #define f2fs_notice(sbi, fmt, ...)					\
2339 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2340 #define f2fs_info(sbi, fmt, ...)					\
2341 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2342 #define f2fs_debug(sbi, fmt, ...)					\
2343 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2344 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2345 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2346 						struct inode *inode,
2347 						block_t count)
2348 {
2349 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2350 
2351 	spin_lock(&sbi->stat_lock);
2352 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2353 	sbi->total_valid_block_count -= (block_t)count;
2354 	if (sbi->reserved_blocks &&
2355 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2356 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2357 					sbi->current_reserved_blocks + count);
2358 	spin_unlock(&sbi->stat_lock);
2359 	if (unlikely(inode->i_blocks < sectors)) {
2360 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2361 			  inode->i_ino,
2362 			  (unsigned long long)inode->i_blocks,
2363 			  (unsigned long long)sectors);
2364 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2365 		return;
2366 	}
2367 	f2fs_i_blocks_write(inode, count, false, true);
2368 }
2369 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2370 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2371 {
2372 	atomic_inc(&sbi->nr_pages[count_type]);
2373 
2374 	if (count_type == F2FS_DIRTY_DENTS ||
2375 			count_type == F2FS_DIRTY_NODES ||
2376 			count_type == F2FS_DIRTY_META ||
2377 			count_type == F2FS_DIRTY_QDATA ||
2378 			count_type == F2FS_DIRTY_IMETA)
2379 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2380 }
2381 
inode_inc_dirty_pages(struct inode * inode)2382 static inline void inode_inc_dirty_pages(struct inode *inode)
2383 {
2384 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2385 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2386 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2387 	if (IS_NOQUOTA(inode))
2388 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2389 }
2390 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2391 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2392 {
2393 	atomic_dec(&sbi->nr_pages[count_type]);
2394 }
2395 
inode_dec_dirty_pages(struct inode * inode)2396 static inline void inode_dec_dirty_pages(struct inode *inode)
2397 {
2398 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2399 			!S_ISLNK(inode->i_mode))
2400 		return;
2401 
2402 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2403 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2404 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2405 	if (IS_NOQUOTA(inode))
2406 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2407 }
2408 
get_pages(struct f2fs_sb_info * sbi,int count_type)2409 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2410 {
2411 	return atomic_read(&sbi->nr_pages[count_type]);
2412 }
2413 
get_dirty_pages(struct inode * inode)2414 static inline int get_dirty_pages(struct inode *inode)
2415 {
2416 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2417 }
2418 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2419 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2420 {
2421 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2422 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2423 						sbi->log_blocks_per_seg;
2424 
2425 	return segs / sbi->segs_per_sec;
2426 }
2427 
valid_user_blocks(struct f2fs_sb_info * sbi)2428 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2429 {
2430 	return sbi->total_valid_block_count;
2431 }
2432 
discard_blocks(struct f2fs_sb_info * sbi)2433 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2434 {
2435 	return sbi->discard_blks;
2436 }
2437 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2438 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2439 {
2440 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2441 
2442 	/* return NAT or SIT bitmap */
2443 	if (flag == NAT_BITMAP)
2444 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2445 	else if (flag == SIT_BITMAP)
2446 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2447 
2448 	return 0;
2449 }
2450 
__cp_payload(struct f2fs_sb_info * sbi)2451 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2452 {
2453 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2454 }
2455 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2456 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2457 {
2458 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2459 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2460 	int offset;
2461 
2462 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2463 		offset = (flag == SIT_BITMAP) ?
2464 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2465 		/*
2466 		 * if large_nat_bitmap feature is enabled, leave checksum
2467 		 * protection for all nat/sit bitmaps.
2468 		 */
2469 		return tmp_ptr + offset + sizeof(__le32);
2470 	}
2471 
2472 	if (__cp_payload(sbi) > 0) {
2473 		if (flag == NAT_BITMAP)
2474 			return &ckpt->sit_nat_version_bitmap;
2475 		else
2476 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2477 	} else {
2478 		offset = (flag == NAT_BITMAP) ?
2479 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2480 		return tmp_ptr + offset;
2481 	}
2482 }
2483 
__start_cp_addr(struct f2fs_sb_info * sbi)2484 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2485 {
2486 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2487 
2488 	if (sbi->cur_cp_pack == 2)
2489 		start_addr += sbi->blocks_per_seg;
2490 	return start_addr;
2491 }
2492 
__start_cp_next_addr(struct f2fs_sb_info * sbi)2493 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2494 {
2495 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2496 
2497 	if (sbi->cur_cp_pack == 1)
2498 		start_addr += sbi->blocks_per_seg;
2499 	return start_addr;
2500 }
2501 
__set_cp_next_pack(struct f2fs_sb_info * sbi)2502 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2503 {
2504 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2505 }
2506 
__start_sum_addr(struct f2fs_sb_info * sbi)2507 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2508 {
2509 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2510 }
2511 
2512 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2513 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2514 					struct inode *inode, bool is_inode)
2515 {
2516 	block_t	valid_block_count;
2517 	unsigned int valid_node_count, user_block_count;
2518 	int err;
2519 
2520 	if (is_inode) {
2521 		if (inode) {
2522 			err = dquot_alloc_inode(inode);
2523 			if (err)
2524 				return err;
2525 		}
2526 	} else {
2527 		err = dquot_reserve_block(inode, 1);
2528 		if (err)
2529 			return err;
2530 	}
2531 
2532 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2533 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2534 		goto enospc;
2535 	}
2536 
2537 	spin_lock(&sbi->stat_lock);
2538 
2539 	valid_block_count = sbi->total_valid_block_count +
2540 					sbi->current_reserved_blocks + 1;
2541 
2542 	if (!__allow_reserved_blocks(sbi, inode, false))
2543 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2544 
2545 	if (F2FS_IO_ALIGNED(sbi))
2546 		valid_block_count += sbi->blocks_per_seg *
2547 				SM_I(sbi)->additional_reserved_segments;
2548 
2549 	user_block_count = sbi->user_block_count;
2550 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2551 		user_block_count -= sbi->unusable_block_count;
2552 
2553 	if (unlikely(valid_block_count > user_block_count)) {
2554 		spin_unlock(&sbi->stat_lock);
2555 		goto enospc;
2556 	}
2557 
2558 	valid_node_count = sbi->total_valid_node_count + 1;
2559 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2560 		spin_unlock(&sbi->stat_lock);
2561 		goto enospc;
2562 	}
2563 
2564 	sbi->total_valid_node_count++;
2565 	sbi->total_valid_block_count++;
2566 	spin_unlock(&sbi->stat_lock);
2567 
2568 	if (inode) {
2569 		if (is_inode)
2570 			f2fs_mark_inode_dirty_sync(inode, true);
2571 		else
2572 			f2fs_i_blocks_write(inode, 1, true, true);
2573 	}
2574 
2575 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2576 	return 0;
2577 
2578 enospc:
2579 	if (is_inode) {
2580 		if (inode)
2581 			dquot_free_inode(inode);
2582 	} else {
2583 		dquot_release_reservation_block(inode, 1);
2584 	}
2585 	return -ENOSPC;
2586 }
2587 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2588 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2589 					struct inode *inode, bool is_inode)
2590 {
2591 	spin_lock(&sbi->stat_lock);
2592 
2593 	if (unlikely(!sbi->total_valid_block_count ||
2594 			!sbi->total_valid_node_count)) {
2595 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2596 			  sbi->total_valid_block_count,
2597 			  sbi->total_valid_node_count);
2598 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2599 	} else {
2600 		sbi->total_valid_block_count--;
2601 		sbi->total_valid_node_count--;
2602 	}
2603 
2604 	if (sbi->reserved_blocks &&
2605 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2606 		sbi->current_reserved_blocks++;
2607 
2608 	spin_unlock(&sbi->stat_lock);
2609 
2610 	if (is_inode) {
2611 		dquot_free_inode(inode);
2612 	} else {
2613 		if (unlikely(inode->i_blocks == 0)) {
2614 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2615 				  inode->i_ino,
2616 				  (unsigned long long)inode->i_blocks);
2617 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2618 			return;
2619 		}
2620 		f2fs_i_blocks_write(inode, 1, false, true);
2621 	}
2622 }
2623 
valid_node_count(struct f2fs_sb_info * sbi)2624 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2625 {
2626 	return sbi->total_valid_node_count;
2627 }
2628 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2629 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2630 {
2631 	percpu_counter_inc(&sbi->total_valid_inode_count);
2632 }
2633 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2634 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2635 {
2636 	percpu_counter_dec(&sbi->total_valid_inode_count);
2637 }
2638 
valid_inode_count(struct f2fs_sb_info * sbi)2639 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2640 {
2641 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2642 }
2643 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2644 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2645 						pgoff_t index, bool for_write)
2646 {
2647 	struct page *page;
2648 
2649 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2650 		if (!for_write)
2651 			page = find_get_page_flags(mapping, index,
2652 							FGP_LOCK | FGP_ACCESSED);
2653 		else
2654 			page = find_lock_page(mapping, index);
2655 		if (page)
2656 			return page;
2657 
2658 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2659 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2660 							FAULT_PAGE_ALLOC);
2661 			return NULL;
2662 		}
2663 	}
2664 
2665 	if (!for_write)
2666 		return grab_cache_page(mapping, index);
2667 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2668 }
2669 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2670 static inline struct page *f2fs_pagecache_get_page(
2671 				struct address_space *mapping, pgoff_t index,
2672 				int fgp_flags, gfp_t gfp_mask)
2673 {
2674 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2675 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2676 		return NULL;
2677 	}
2678 
2679 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2680 }
2681 
f2fs_copy_page(struct page * src,struct page * dst)2682 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2683 {
2684 	char *src_kaddr = kmap(src);
2685 	char *dst_kaddr = kmap(dst);
2686 
2687 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2688 	kunmap(dst);
2689 	kunmap(src);
2690 }
2691 
f2fs_put_page(struct page * page,int unlock)2692 static inline void f2fs_put_page(struct page *page, int unlock)
2693 {
2694 	if (!page)
2695 		return;
2696 
2697 	if (unlock) {
2698 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2699 		unlock_page(page);
2700 	}
2701 	put_page(page);
2702 }
2703 
f2fs_put_dnode(struct dnode_of_data * dn)2704 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2705 {
2706 	if (dn->node_page)
2707 		f2fs_put_page(dn->node_page, 1);
2708 	if (dn->inode_page && dn->node_page != dn->inode_page)
2709 		f2fs_put_page(dn->inode_page, 0);
2710 	dn->node_page = NULL;
2711 	dn->inode_page = NULL;
2712 }
2713 
f2fs_kmem_cache_create(const char * name,size_t size)2714 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2715 					size_t size)
2716 {
2717 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2718 }
2719 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2720 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2721 						gfp_t flags)
2722 {
2723 	void *entry;
2724 
2725 	entry = kmem_cache_alloc(cachep, flags);
2726 	if (!entry)
2727 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2728 	return entry;
2729 }
2730 
is_inflight_io(struct f2fs_sb_info * sbi,int type)2731 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2732 {
2733 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2734 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2735 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2736 		get_pages(sbi, F2FS_DIO_READ) ||
2737 		get_pages(sbi, F2FS_DIO_WRITE))
2738 		return true;
2739 
2740 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2741 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2742 		return true;
2743 
2744 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2745 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2746 		return true;
2747 	return false;
2748 }
2749 
is_idle(struct f2fs_sb_info * sbi,int type)2750 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2751 {
2752 	if (sbi->gc_mode == GC_URGENT_HIGH)
2753 		return true;
2754 
2755 	if (is_inflight_io(sbi, type))
2756 		return false;
2757 
2758 	if (sbi->gc_mode == GC_URGENT_MID)
2759 		return true;
2760 
2761 	if (sbi->gc_mode == GC_URGENT_LOW &&
2762 			(type == DISCARD_TIME || type == GC_TIME))
2763 		return true;
2764 
2765 	return f2fs_time_over(sbi, type);
2766 }
2767 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2768 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2769 				unsigned long index, void *item)
2770 {
2771 	while (radix_tree_insert(root, index, item))
2772 		cond_resched();
2773 }
2774 
2775 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2776 
IS_INODE(struct page * page)2777 static inline bool IS_INODE(struct page *page)
2778 {
2779 	struct f2fs_node *p = F2FS_NODE(page);
2780 
2781 	return RAW_IS_INODE(p);
2782 }
2783 
offset_in_addr(struct f2fs_inode * i)2784 static inline int offset_in_addr(struct f2fs_inode *i)
2785 {
2786 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2787 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2788 }
2789 
blkaddr_in_node(struct f2fs_node * node)2790 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2791 {
2792 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2793 }
2794 
2795 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2796 static inline block_t data_blkaddr(struct inode *inode,
2797 			struct page *node_page, unsigned int offset)
2798 {
2799 	struct f2fs_node *raw_node;
2800 	__le32 *addr_array;
2801 	int base = 0;
2802 	bool is_inode = IS_INODE(node_page);
2803 
2804 	raw_node = F2FS_NODE(node_page);
2805 
2806 	if (is_inode) {
2807 		if (!inode)
2808 			/* from GC path only */
2809 			base = offset_in_addr(&raw_node->i);
2810 		else if (f2fs_has_extra_attr(inode))
2811 			base = get_extra_isize(inode);
2812 	}
2813 
2814 	addr_array = blkaddr_in_node(raw_node);
2815 	return le32_to_cpu(addr_array[base + offset]);
2816 }
2817 
f2fs_data_blkaddr(struct dnode_of_data * dn)2818 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2819 {
2820 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2821 }
2822 
f2fs_test_bit(unsigned int nr,char * addr)2823 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2824 {
2825 	int mask;
2826 
2827 	addr += (nr >> 3);
2828 	mask = 1 << (7 - (nr & 0x07));
2829 	return mask & *addr;
2830 }
2831 
f2fs_set_bit(unsigned int nr,char * addr)2832 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2833 {
2834 	int mask;
2835 
2836 	addr += (nr >> 3);
2837 	mask = 1 << (7 - (nr & 0x07));
2838 	*addr |= mask;
2839 }
2840 
f2fs_clear_bit(unsigned int nr,char * addr)2841 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2842 {
2843 	int mask;
2844 
2845 	addr += (nr >> 3);
2846 	mask = 1 << (7 - (nr & 0x07));
2847 	*addr &= ~mask;
2848 }
2849 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2850 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2851 {
2852 	int mask;
2853 	int ret;
2854 
2855 	addr += (nr >> 3);
2856 	mask = 1 << (7 - (nr & 0x07));
2857 	ret = mask & *addr;
2858 	*addr |= mask;
2859 	return ret;
2860 }
2861 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2862 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2863 {
2864 	int mask;
2865 	int ret;
2866 
2867 	addr += (nr >> 3);
2868 	mask = 1 << (7 - (nr & 0x07));
2869 	ret = mask & *addr;
2870 	*addr &= ~mask;
2871 	return ret;
2872 }
2873 
f2fs_change_bit(unsigned int nr,char * addr)2874 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2875 {
2876 	int mask;
2877 
2878 	addr += (nr >> 3);
2879 	mask = 1 << (7 - (nr & 0x07));
2880 	*addr ^= mask;
2881 }
2882 
2883 /*
2884  * On-disk inode flags (f2fs_inode::i_flags)
2885  */
2886 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2887 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2888 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2889 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2890 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2891 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2892 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2893 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2894 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2895 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2896 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2897 
2898 /* Flags that should be inherited by new inodes from their parent. */
2899 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2900 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2901 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2902 
2903 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2904 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2905 				F2FS_CASEFOLD_FL))
2906 
2907 /* Flags that are appropriate for non-directories/regular files. */
2908 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2909 
f2fs_mask_flags(umode_t mode,__u32 flags)2910 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2911 {
2912 	if (S_ISDIR(mode))
2913 		return flags;
2914 	else if (S_ISREG(mode))
2915 		return flags & F2FS_REG_FLMASK;
2916 	else
2917 		return flags & F2FS_OTHER_FLMASK;
2918 }
2919 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2920 static inline void __mark_inode_dirty_flag(struct inode *inode,
2921 						int flag, bool set)
2922 {
2923 	switch (flag) {
2924 	case FI_INLINE_XATTR:
2925 	case FI_INLINE_DATA:
2926 	case FI_INLINE_DENTRY:
2927 	case FI_NEW_INODE:
2928 		if (set)
2929 			return;
2930 		fallthrough;
2931 	case FI_DATA_EXIST:
2932 	case FI_INLINE_DOTS:
2933 	case FI_PIN_FILE:
2934 	case FI_COMPRESS_RELEASED:
2935 		f2fs_mark_inode_dirty_sync(inode, true);
2936 	}
2937 }
2938 
set_inode_flag(struct inode * inode,int flag)2939 static inline void set_inode_flag(struct inode *inode, int flag)
2940 {
2941 	set_bit(flag, F2FS_I(inode)->flags);
2942 	__mark_inode_dirty_flag(inode, flag, true);
2943 }
2944 
is_inode_flag_set(struct inode * inode,int flag)2945 static inline int is_inode_flag_set(struct inode *inode, int flag)
2946 {
2947 	return test_bit(flag, F2FS_I(inode)->flags);
2948 }
2949 
clear_inode_flag(struct inode * inode,int flag)2950 static inline void clear_inode_flag(struct inode *inode, int flag)
2951 {
2952 	clear_bit(flag, F2FS_I(inode)->flags);
2953 	__mark_inode_dirty_flag(inode, flag, false);
2954 }
2955 
f2fs_verity_in_progress(struct inode * inode)2956 static inline bool f2fs_verity_in_progress(struct inode *inode)
2957 {
2958 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2959 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2960 }
2961 
set_acl_inode(struct inode * inode,umode_t mode)2962 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2963 {
2964 	F2FS_I(inode)->i_acl_mode = mode;
2965 	set_inode_flag(inode, FI_ACL_MODE);
2966 	f2fs_mark_inode_dirty_sync(inode, false);
2967 }
2968 
f2fs_i_links_write(struct inode * inode,bool inc)2969 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2970 {
2971 	if (inc)
2972 		inc_nlink(inode);
2973 	else
2974 		drop_nlink(inode);
2975 	f2fs_mark_inode_dirty_sync(inode, true);
2976 }
2977 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2978 static inline void f2fs_i_blocks_write(struct inode *inode,
2979 					block_t diff, bool add, bool claim)
2980 {
2981 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2982 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2983 
2984 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2985 	if (add) {
2986 		if (claim)
2987 			dquot_claim_block(inode, diff);
2988 		else
2989 			dquot_alloc_block_nofail(inode, diff);
2990 	} else {
2991 		dquot_free_block(inode, diff);
2992 	}
2993 
2994 	f2fs_mark_inode_dirty_sync(inode, true);
2995 	if (clean || recover)
2996 		set_inode_flag(inode, FI_AUTO_RECOVER);
2997 }
2998 
f2fs_i_size_write(struct inode * inode,loff_t i_size)2999 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3000 {
3001 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3002 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3003 
3004 	if (i_size_read(inode) == i_size)
3005 		return;
3006 
3007 	i_size_write(inode, i_size);
3008 	f2fs_mark_inode_dirty_sync(inode, true);
3009 	if (clean || recover)
3010 		set_inode_flag(inode, FI_AUTO_RECOVER);
3011 }
3012 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3013 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3014 {
3015 	F2FS_I(inode)->i_current_depth = depth;
3016 	f2fs_mark_inode_dirty_sync(inode, true);
3017 }
3018 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3019 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3020 					unsigned int count)
3021 {
3022 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3023 	f2fs_mark_inode_dirty_sync(inode, true);
3024 }
3025 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3026 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3027 {
3028 	F2FS_I(inode)->i_xattr_nid = xnid;
3029 	f2fs_mark_inode_dirty_sync(inode, true);
3030 }
3031 
f2fs_i_pino_write(struct inode * inode,nid_t pino)3032 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3033 {
3034 	F2FS_I(inode)->i_pino = pino;
3035 	f2fs_mark_inode_dirty_sync(inode, true);
3036 }
3037 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3038 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3039 {
3040 	struct f2fs_inode_info *fi = F2FS_I(inode);
3041 
3042 	if (ri->i_inline & F2FS_INLINE_XATTR)
3043 		set_bit(FI_INLINE_XATTR, fi->flags);
3044 	if (ri->i_inline & F2FS_INLINE_DATA)
3045 		set_bit(FI_INLINE_DATA, fi->flags);
3046 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3047 		set_bit(FI_INLINE_DENTRY, fi->flags);
3048 	if (ri->i_inline & F2FS_DATA_EXIST)
3049 		set_bit(FI_DATA_EXIST, fi->flags);
3050 	if (ri->i_inline & F2FS_INLINE_DOTS)
3051 		set_bit(FI_INLINE_DOTS, fi->flags);
3052 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3053 		set_bit(FI_EXTRA_ATTR, fi->flags);
3054 	if (ri->i_inline & F2FS_PIN_FILE)
3055 		set_bit(FI_PIN_FILE, fi->flags);
3056 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3057 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3058 }
3059 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3060 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3061 {
3062 	ri->i_inline = 0;
3063 
3064 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3065 		ri->i_inline |= F2FS_INLINE_XATTR;
3066 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3067 		ri->i_inline |= F2FS_INLINE_DATA;
3068 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3069 		ri->i_inline |= F2FS_INLINE_DENTRY;
3070 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3071 		ri->i_inline |= F2FS_DATA_EXIST;
3072 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3073 		ri->i_inline |= F2FS_INLINE_DOTS;
3074 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3075 		ri->i_inline |= F2FS_EXTRA_ATTR;
3076 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3077 		ri->i_inline |= F2FS_PIN_FILE;
3078 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3079 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3080 }
3081 
f2fs_has_extra_attr(struct inode * inode)3082 static inline int f2fs_has_extra_attr(struct inode *inode)
3083 {
3084 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3085 }
3086 
f2fs_has_inline_xattr(struct inode * inode)3087 static inline int f2fs_has_inline_xattr(struct inode *inode)
3088 {
3089 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3090 }
3091 
f2fs_compressed_file(struct inode * inode)3092 static inline int f2fs_compressed_file(struct inode *inode)
3093 {
3094 	return S_ISREG(inode->i_mode) &&
3095 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3096 }
3097 
f2fs_need_compress_data(struct inode * inode)3098 static inline bool f2fs_need_compress_data(struct inode *inode)
3099 {
3100 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3101 
3102 	if (!f2fs_compressed_file(inode))
3103 		return false;
3104 
3105 	if (compress_mode == COMPR_MODE_FS)
3106 		return true;
3107 	else if (compress_mode == COMPR_MODE_USER &&
3108 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3109 		return true;
3110 
3111 	return false;
3112 }
3113 
addrs_per_inode(struct inode * inode)3114 static inline unsigned int addrs_per_inode(struct inode *inode)
3115 {
3116 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3117 				get_inline_xattr_addrs(inode);
3118 
3119 	if (!f2fs_compressed_file(inode))
3120 		return addrs;
3121 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3122 }
3123 
addrs_per_block(struct inode * inode)3124 static inline unsigned int addrs_per_block(struct inode *inode)
3125 {
3126 	if (!f2fs_compressed_file(inode))
3127 		return DEF_ADDRS_PER_BLOCK;
3128 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3129 }
3130 
inline_xattr_addr(struct inode * inode,struct page * page)3131 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3132 {
3133 	struct f2fs_inode *ri = F2FS_INODE(page);
3134 
3135 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3136 					get_inline_xattr_addrs(inode)]);
3137 }
3138 
inline_xattr_size(struct inode * inode)3139 static inline int inline_xattr_size(struct inode *inode)
3140 {
3141 	if (f2fs_has_inline_xattr(inode))
3142 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3143 	return 0;
3144 }
3145 
f2fs_has_inline_data(struct inode * inode)3146 static inline int f2fs_has_inline_data(struct inode *inode)
3147 {
3148 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3149 }
3150 
f2fs_exist_data(struct inode * inode)3151 static inline int f2fs_exist_data(struct inode *inode)
3152 {
3153 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3154 }
3155 
f2fs_has_inline_dots(struct inode * inode)3156 static inline int f2fs_has_inline_dots(struct inode *inode)
3157 {
3158 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3159 }
3160 
f2fs_is_mmap_file(struct inode * inode)3161 static inline int f2fs_is_mmap_file(struct inode *inode)
3162 {
3163 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3164 }
3165 
f2fs_is_pinned_file(struct inode * inode)3166 static inline bool f2fs_is_pinned_file(struct inode *inode)
3167 {
3168 	return is_inode_flag_set(inode, FI_PIN_FILE);
3169 }
3170 
f2fs_is_atomic_file(struct inode * inode)3171 static inline bool f2fs_is_atomic_file(struct inode *inode)
3172 {
3173 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3174 }
3175 
f2fs_is_commit_atomic_write(struct inode * inode)3176 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
3177 {
3178 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
3179 }
3180 
f2fs_is_volatile_file(struct inode * inode)3181 static inline bool f2fs_is_volatile_file(struct inode *inode)
3182 {
3183 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
3184 }
3185 
f2fs_is_first_block_written(struct inode * inode)3186 static inline bool f2fs_is_first_block_written(struct inode *inode)
3187 {
3188 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3189 }
3190 
f2fs_is_drop_cache(struct inode * inode)3191 static inline bool f2fs_is_drop_cache(struct inode *inode)
3192 {
3193 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3194 }
3195 
inline_data_addr(struct inode * inode,struct page * page)3196 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3197 {
3198 	struct f2fs_inode *ri = F2FS_INODE(page);
3199 	int extra_size = get_extra_isize(inode);
3200 
3201 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3202 }
3203 
f2fs_has_inline_dentry(struct inode * inode)3204 static inline int f2fs_has_inline_dentry(struct inode *inode)
3205 {
3206 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3207 }
3208 
is_file(struct inode * inode,int type)3209 static inline int is_file(struct inode *inode, int type)
3210 {
3211 	return F2FS_I(inode)->i_advise & type;
3212 }
3213 
set_file(struct inode * inode,int type)3214 static inline void set_file(struct inode *inode, int type)
3215 {
3216 	F2FS_I(inode)->i_advise |= type;
3217 	f2fs_mark_inode_dirty_sync(inode, true);
3218 }
3219 
clear_file(struct inode * inode,int type)3220 static inline void clear_file(struct inode *inode, int type)
3221 {
3222 	F2FS_I(inode)->i_advise &= ~type;
3223 	f2fs_mark_inode_dirty_sync(inode, true);
3224 }
3225 
f2fs_is_time_consistent(struct inode * inode)3226 static inline bool f2fs_is_time_consistent(struct inode *inode)
3227 {
3228 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3229 		return false;
3230 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3231 		return false;
3232 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3233 		return false;
3234 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3235 						&F2FS_I(inode)->i_crtime))
3236 		return false;
3237 	return true;
3238 }
3239 
f2fs_skip_inode_update(struct inode * inode,int dsync)3240 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3241 {
3242 	bool ret;
3243 
3244 	if (dsync) {
3245 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3246 
3247 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3248 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3249 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3250 		return ret;
3251 	}
3252 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3253 			file_keep_isize(inode) ||
3254 			i_size_read(inode) & ~PAGE_MASK)
3255 		return false;
3256 
3257 	if (!f2fs_is_time_consistent(inode))
3258 		return false;
3259 
3260 	spin_lock(&F2FS_I(inode)->i_size_lock);
3261 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3262 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3263 
3264 	return ret;
3265 }
3266 
f2fs_readonly(struct super_block * sb)3267 static inline bool f2fs_readonly(struct super_block *sb)
3268 {
3269 	return sb_rdonly(sb);
3270 }
3271 
f2fs_cp_error(struct f2fs_sb_info * sbi)3272 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3273 {
3274 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3275 }
3276 
is_dot_dotdot(const u8 * name,size_t len)3277 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3278 {
3279 	if (len == 1 && name[0] == '.')
3280 		return true;
3281 
3282 	if (len == 2 && name[0] == '.' && name[1] == '.')
3283 		return true;
3284 
3285 	return false;
3286 }
3287 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3288 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3289 					size_t size, gfp_t flags)
3290 {
3291 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3292 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3293 		return NULL;
3294 	}
3295 
3296 	return kmalloc(size, flags);
3297 }
3298 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3299 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3300 					size_t size, gfp_t flags)
3301 {
3302 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3303 }
3304 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3305 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3306 					size_t size, gfp_t flags)
3307 {
3308 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3309 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3310 		return NULL;
3311 	}
3312 
3313 	return kvmalloc(size, flags);
3314 }
3315 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3316 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3317 					size_t size, gfp_t flags)
3318 {
3319 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3320 }
3321 
get_extra_isize(struct inode * inode)3322 static inline int get_extra_isize(struct inode *inode)
3323 {
3324 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3325 }
3326 
get_inline_xattr_addrs(struct inode * inode)3327 static inline int get_inline_xattr_addrs(struct inode *inode)
3328 {
3329 	return F2FS_I(inode)->i_inline_xattr_size;
3330 }
3331 
3332 #define f2fs_get_inode_mode(i) \
3333 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3334 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3335 
3336 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3337 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3338 	offsetof(struct f2fs_inode, i_extra_isize))	\
3339 
3340 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3341 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3342 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3343 		sizeof((f2fs_inode)->field))			\
3344 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3345 
3346 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3347 #define MIN_IOSTAT_PERIOD_MS		100
3348 /* maximum period of iostat tracing is 1 day */
3349 #define MAX_IOSTAT_PERIOD_MS		8640000
3350 
f2fs_reset_iostat(struct f2fs_sb_info * sbi)3351 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3352 {
3353 	int i;
3354 
3355 	spin_lock(&sbi->iostat_lock);
3356 	for (i = 0; i < NR_IO_TYPE; i++) {
3357 		sbi->rw_iostat[i] = 0;
3358 		sbi->prev_rw_iostat[i] = 0;
3359 	}
3360 	spin_unlock(&sbi->iostat_lock);
3361 }
3362 
3363 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3364 
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)3365 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3366 			enum iostat_type type, unsigned long long io_bytes)
3367 {
3368 	if (!sbi->iostat_enable)
3369 		return;
3370 	spin_lock(&sbi->iostat_lock);
3371 	sbi->rw_iostat[type] += io_bytes;
3372 
3373 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3374 		sbi->rw_iostat[APP_BUFFERED_IO] =
3375 			sbi->rw_iostat[APP_WRITE_IO] -
3376 			sbi->rw_iostat[APP_DIRECT_IO];
3377 
3378 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3379 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3380 			sbi->rw_iostat[APP_READ_IO] -
3381 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3382 	spin_unlock(&sbi->iostat_lock);
3383 
3384 	f2fs_record_iostat(sbi);
3385 }
3386 
3387 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3388 
3389 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3390 
3391 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3392 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3393 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3394 					block_t blkaddr, int type)
3395 {
3396 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3397 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3398 			 blkaddr, type);
3399 		f2fs_bug_on(sbi, 1);
3400 	}
3401 }
3402 
__is_valid_data_blkaddr(block_t blkaddr)3403 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3404 {
3405 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3406 			blkaddr == COMPRESS_ADDR)
3407 		return false;
3408 	return true;
3409 }
3410 
3411 /*
3412  * file.c
3413  */
3414 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3415 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3416 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3417 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3418 int f2fs_truncate(struct inode *inode);
3419 int f2fs_getattr(const struct path *path, struct kstat *stat,
3420 			u32 request_mask, unsigned int flags);
3421 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3422 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3423 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3424 int f2fs_precache_extents(struct inode *inode);
3425 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3426 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3427 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3428 int f2fs_pin_file_control(struct inode *inode, bool inc);
3429 
3430 /*
3431  * inode.c
3432  */
3433 void f2fs_set_inode_flags(struct inode *inode);
3434 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3435 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3436 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3437 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3438 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3439 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3440 void f2fs_update_inode_page(struct inode *inode);
3441 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3442 void f2fs_evict_inode(struct inode *inode);
3443 void f2fs_handle_failed_inode(struct inode *inode);
3444 
3445 /*
3446  * namei.c
3447  */
3448 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3449 							bool hot, bool set);
3450 struct dentry *f2fs_get_parent(struct dentry *child);
3451 
3452 /*
3453  * dir.c
3454  */
3455 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3456 int f2fs_init_casefolded_name(const struct inode *dir,
3457 			      struct f2fs_filename *fname);
3458 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3459 			int lookup, struct f2fs_filename *fname);
3460 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3461 			struct f2fs_filename *fname);
3462 void f2fs_free_filename(struct f2fs_filename *fname);
3463 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3464 			const struct f2fs_filename *fname, int *max_slots);
3465 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3466 			unsigned int start_pos, struct fscrypt_str *fstr);
3467 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3468 			struct f2fs_dentry_ptr *d);
3469 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3470 			const struct f2fs_filename *fname, struct page *dpage);
3471 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3472 			unsigned int current_depth);
3473 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3474 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3475 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3476 					 const struct f2fs_filename *fname,
3477 					 struct page **res_page);
3478 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3479 			const struct qstr *child, struct page **res_page);
3480 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3481 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3482 			struct page **page);
3483 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3484 			struct page *page, struct inode *inode);
3485 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3486 			  const struct f2fs_filename *fname);
3487 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3488 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3489 			unsigned int bit_pos);
3490 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3491 			struct inode *inode, nid_t ino, umode_t mode);
3492 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3493 			struct inode *inode, nid_t ino, umode_t mode);
3494 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3495 			struct inode *inode, nid_t ino, umode_t mode);
3496 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3497 			struct inode *dir, struct inode *inode);
3498 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3499 bool f2fs_empty_dir(struct inode *dir);
3500 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3501 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3502 {
3503 	if (fscrypt_is_nokey_name(dentry))
3504 		return -ENOKEY;
3505 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3506 				inode, inode->i_ino, inode->i_mode);
3507 }
3508 
3509 /*
3510  * super.c
3511  */
3512 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3513 void f2fs_inode_synced(struct inode *inode);
3514 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3515 int f2fs_quota_sync(struct super_block *sb, int type);
3516 loff_t max_file_blocks(struct inode *inode);
3517 void f2fs_quota_off_umount(struct super_block *sb);
3518 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3519 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3520 int f2fs_sync_fs(struct super_block *sb, int sync);
3521 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3522 
3523 /*
3524  * hash.c
3525  */
3526 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3527 
3528 /*
3529  * node.c
3530  */
3531 struct node_info;
3532 
3533 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3534 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3535 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3536 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3537 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3538 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3539 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3540 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3541 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3542 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3543 				struct node_info *ni, bool checkpoint_context);
3544 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3545 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3546 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3547 int f2fs_truncate_xattr_node(struct inode *inode);
3548 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3549 					unsigned int seq_id);
3550 int f2fs_remove_inode_page(struct inode *inode);
3551 struct page *f2fs_new_inode_page(struct inode *inode);
3552 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3553 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3554 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3555 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3556 int f2fs_move_node_page(struct page *node_page, int gc_type);
3557 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3558 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3559 			struct writeback_control *wbc, bool atomic,
3560 			unsigned int *seq_id);
3561 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3562 			struct writeback_control *wbc,
3563 			bool do_balance, enum iostat_type io_type);
3564 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3565 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3566 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3567 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3568 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3569 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3570 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3571 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3572 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3573 			unsigned int segno, struct f2fs_summary_block *sum);
3574 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3575 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3576 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3577 int __init f2fs_create_node_manager_caches(void);
3578 void f2fs_destroy_node_manager_caches(void);
3579 
3580 /*
3581  * segment.c
3582  */
3583 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3584 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3585 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3586 void f2fs_drop_inmem_pages(struct inode *inode);
3587 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3588 int f2fs_commit_inmem_pages(struct inode *inode);
3589 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3590 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3591 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3592 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3593 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3594 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3595 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3596 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3597 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3598 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3599 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3600 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3601 					struct cp_control *cpc);
3602 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3603 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3604 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3605 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3606 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3607 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3608 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3609 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3610 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3611 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3612 			unsigned int *newseg, bool new_sec, int dir);
3613 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3614 					unsigned int start, unsigned int end);
3615 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3616 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3617 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3618 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3619 					struct cp_control *cpc);
3620 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3621 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3622 					block_t blk_addr);
3623 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3624 						enum iostat_type io_type);
3625 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3626 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3627 			struct f2fs_io_info *fio);
3628 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3629 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3630 			block_t old_blkaddr, block_t new_blkaddr,
3631 			bool recover_curseg, bool recover_newaddr,
3632 			bool from_gc);
3633 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3634 			block_t old_addr, block_t new_addr,
3635 			unsigned char version, bool recover_curseg,
3636 			bool recover_newaddr);
3637 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3638 			block_t old_blkaddr, block_t *new_blkaddr,
3639 			struct f2fs_summary *sum, int type,
3640 			struct f2fs_io_info *fio);
3641 void f2fs_wait_on_page_writeback(struct page *page,
3642 			enum page_type type, bool ordered, bool locked);
3643 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3644 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3645 								block_t len);
3646 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3647 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3648 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3649 			unsigned int val, int alloc);
3650 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3651 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3652 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3653 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3654 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3655 int __init f2fs_create_segment_manager_caches(void);
3656 void f2fs_destroy_segment_manager_caches(void);
3657 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3658 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3659 			enum page_type type, enum temp_type temp);
3660 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3661 			unsigned int segno);
3662 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3663 			unsigned int segno);
3664 
3665 /*
3666  * checkpoint.c
3667  */
3668 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3669 							unsigned char reason);
3670 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3671 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3672 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3673 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3674 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3675 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3676 					block_t blkaddr, int type);
3677 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3678 			int type, bool sync);
3679 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3680 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3681 			long nr_to_write, enum iostat_type io_type);
3682 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3683 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3684 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3685 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3686 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3687 					unsigned int devidx, int type);
3688 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3689 					unsigned int devidx, int type);
3690 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3691 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3692 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3693 void f2fs_add_orphan_inode(struct inode *inode);
3694 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3695 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3696 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3697 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3698 void f2fs_remove_dirty_inode(struct inode *inode);
3699 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3700 								bool from_cp);
3701 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3702 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3703 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3704 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3705 int __init f2fs_create_checkpoint_caches(void);
3706 void f2fs_destroy_checkpoint_caches(void);
3707 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3708 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3709 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3710 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3711 
3712 /*
3713  * data.c
3714  */
3715 int __init f2fs_init_bioset(void);
3716 void f2fs_destroy_bioset(void);
3717 int f2fs_init_bio_entry_cache(void);
3718 void f2fs_destroy_bio_entry_cache(void);
3719 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3720 				struct bio *bio, enum page_type type);
3721 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3722 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3723 				struct inode *inode, struct page *page,
3724 				nid_t ino, enum page_type type);
3725 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3726 					struct bio **bio, struct page *page);
3727 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3728 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3729 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3730 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3731 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3732 			block_t blk_addr, struct bio *bio);
3733 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3734 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3735 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3736 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3737 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3738 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3739 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3740 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3741 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3742 			int op_flags, bool for_write);
3743 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3744 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3745 			bool for_write);
3746 struct page *f2fs_get_new_data_page(struct inode *inode,
3747 			struct page *ipage, pgoff_t index, bool new_i_size);
3748 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3749 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3750 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3751 			int create, int flag);
3752 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3753 			u64 start, u64 len);
3754 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3755 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3756 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3757 int f2fs_write_single_data_page(struct page *page, int *submitted,
3758 				struct bio **bio, sector_t *last_block,
3759 				struct writeback_control *wbc,
3760 				enum iostat_type io_type,
3761 				int compr_blocks, bool allow_balance);
3762 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3763 			unsigned int length);
3764 int f2fs_release_page(struct page *page, gfp_t wait);
3765 #ifdef CONFIG_MIGRATION
3766 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3767 			struct page *page, enum migrate_mode mode);
3768 #endif
3769 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3770 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3771 int f2fs_init_post_read_processing(void);
3772 void f2fs_destroy_post_read_processing(void);
3773 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3774 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3775 
3776 /*
3777  * gc.c
3778  */
3779 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3780 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3781 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3782 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3783 			unsigned int segno);
3784 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3785 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3786 int __init f2fs_create_garbage_collection_cache(void);
3787 void f2fs_destroy_garbage_collection_cache(void);
3788 
3789 /*
3790  * recovery.c
3791  */
3792 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3793 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3794 int __init f2fs_create_recovery_cache(void);
3795 void f2fs_destroy_recovery_cache(void);
3796 
3797 /*
3798  * debug.c
3799  */
3800 #ifdef CONFIG_F2FS_STAT_FS
3801 struct f2fs_stat_info {
3802 	struct list_head stat_list;
3803 	struct f2fs_sb_info *sbi;
3804 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3805 	int main_area_segs, main_area_sections, main_area_zones;
3806 	unsigned long long hit_cached[NR_EXTENT_CACHES];
3807 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3808 	unsigned long long total_ext[NR_EXTENT_CACHES];
3809 	unsigned long long hit_total[NR_EXTENT_CACHES];
3810 	int ext_tree[NR_EXTENT_CACHES];
3811 	int zombie_tree[NR_EXTENT_CACHES];
3812 	int ext_node[NR_EXTENT_CACHES];
3813 	/* to count memory footprint */
3814 	unsigned long long ext_mem[NR_EXTENT_CACHES];
3815 	/* for read extent cache */
3816 	unsigned long long hit_largest;
3817 	/* for block age extent cache */
3818 	unsigned long long allocated_data_blocks;
3819 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3820 	int ndirty_data, ndirty_qdata;
3821 	int inmem_pages;
3822 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3823 	int nats, dirty_nats, sits, dirty_sits;
3824 	int free_nids, avail_nids, alloc_nids;
3825 	int total_count, utilization;
3826 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3827 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3828 	int nr_dio_read, nr_dio_write;
3829 	unsigned int io_skip_bggc, other_skip_bggc;
3830 	int nr_flushing, nr_flushed, flush_list_empty;
3831 	int nr_discarding, nr_discarded;
3832 	int nr_discard_cmd;
3833 	unsigned int undiscard_blks;
3834 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3835 	unsigned int cur_ckpt_time, peak_ckpt_time;
3836 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3837 	int compr_inode;
3838 	unsigned long long compr_blocks;
3839 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3840 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3841 	unsigned int bimodal, avg_vblocks;
3842 	int util_free, util_valid, util_invalid;
3843 	int rsvd_segs, overp_segs;
3844 	int dirty_count, node_pages, meta_pages, compress_pages;
3845 	int compress_page_hit;
3846 	int prefree_count, call_count, cp_count, bg_cp_count;
3847 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3848 	int bg_node_segs, bg_data_segs;
3849 	int tot_blks, data_blks, node_blks;
3850 	int bg_data_blks, bg_node_blks;
3851 	unsigned long long skipped_atomic_files[2];
3852 	int curseg[NR_CURSEG_TYPE];
3853 	int cursec[NR_CURSEG_TYPE];
3854 	int curzone[NR_CURSEG_TYPE];
3855 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3856 	unsigned int full_seg[NR_CURSEG_TYPE];
3857 	unsigned int valid_blks[NR_CURSEG_TYPE];
3858 
3859 	unsigned int meta_count[META_MAX];
3860 	unsigned int segment_count[2];
3861 	unsigned int block_count[2];
3862 	unsigned int inplace_count;
3863 	unsigned long long base_mem, cache_mem, page_mem;
3864 };
3865 
F2FS_STAT(struct f2fs_sb_info * sbi)3866 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3867 {
3868 	return (struct f2fs_stat_info *)sbi->stat_info;
3869 }
3870 
3871 #define stat_inc_cp_count(si)		((si)->cp_count++)
3872 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3873 #define stat_inc_call_count(si)		((si)->call_count++)
3874 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3875 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3876 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3877 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3878 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3879 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3880 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3881 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3882 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3883 #define stat_inc_inline_xattr(inode)					\
3884 	do {								\
3885 		if (f2fs_has_inline_xattr(inode))			\
3886 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3887 	} while (0)
3888 #define stat_dec_inline_xattr(inode)					\
3889 	do {								\
3890 		if (f2fs_has_inline_xattr(inode))			\
3891 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3892 	} while (0)
3893 #define stat_inc_inline_inode(inode)					\
3894 	do {								\
3895 		if (f2fs_has_inline_data(inode))			\
3896 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3897 	} while (0)
3898 #define stat_dec_inline_inode(inode)					\
3899 	do {								\
3900 		if (f2fs_has_inline_data(inode))			\
3901 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3902 	} while (0)
3903 #define stat_inc_inline_dir(inode)					\
3904 	do {								\
3905 		if (f2fs_has_inline_dentry(inode))			\
3906 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3907 	} while (0)
3908 #define stat_dec_inline_dir(inode)					\
3909 	do {								\
3910 		if (f2fs_has_inline_dentry(inode))			\
3911 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3912 	} while (0)
3913 #define stat_inc_compr_inode(inode)					\
3914 	do {								\
3915 		if (f2fs_compressed_file(inode))			\
3916 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3917 	} while (0)
3918 #define stat_dec_compr_inode(inode)					\
3919 	do {								\
3920 		if (f2fs_compressed_file(inode))			\
3921 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3922 	} while (0)
3923 #define stat_add_compr_blocks(inode, blocks)				\
3924 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3925 #define stat_sub_compr_blocks(inode, blocks)				\
3926 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3927 #define stat_inc_meta_count(sbi, blkaddr)				\
3928 	do {								\
3929 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3930 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3931 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3932 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3933 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3934 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3935 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3936 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3937 	} while (0)
3938 #define stat_inc_seg_type(sbi, curseg)					\
3939 		((sbi)->segment_count[(curseg)->alloc_type]++)
3940 #define stat_inc_block_count(sbi, curseg)				\
3941 		((sbi)->block_count[(curseg)->alloc_type]++)
3942 #define stat_inc_inplace_blocks(sbi)					\
3943 		(atomic_inc(&(sbi)->inplace_count))
3944 #define stat_update_max_atomic_write(inode)				\
3945 	do {								\
3946 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3947 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3948 		if (cur > max)						\
3949 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3950 	} while (0)
3951 #define stat_inc_volatile_write(inode)					\
3952 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3953 #define stat_dec_volatile_write(inode)					\
3954 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3955 #define stat_update_max_volatile_write(inode)				\
3956 	do {								\
3957 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3958 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3959 		if (cur > max)						\
3960 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3961 	} while (0)
3962 #define stat_inc_seg_count(sbi, type, gc_type)				\
3963 	do {								\
3964 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3965 		si->tot_segs++;						\
3966 		if ((type) == SUM_TYPE_DATA) {				\
3967 			si->data_segs++;				\
3968 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3969 		} else {						\
3970 			si->node_segs++;				\
3971 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3972 		}							\
3973 	} while (0)
3974 
3975 #define stat_inc_tot_blk_count(si, blks)				\
3976 	((si)->tot_blks += (blks))
3977 
3978 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3979 	do {								\
3980 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3981 		stat_inc_tot_blk_count(si, blks);			\
3982 		si->data_blks += (blks);				\
3983 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3984 	} while (0)
3985 
3986 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3987 	do {								\
3988 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3989 		stat_inc_tot_blk_count(si, blks);			\
3990 		si->node_blks += (blks);				\
3991 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3992 	} while (0)
3993 
3994 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3995 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3996 void __init f2fs_create_root_stats(void);
3997 void f2fs_destroy_root_stats(void);
3998 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3999 #else
4000 #define stat_inc_cp_count(si)				do { } while (0)
4001 #define stat_inc_bg_cp_count(si)			do { } while (0)
4002 #define stat_inc_call_count(si)				do { } while (0)
4003 #define stat_inc_bggc_count(si)				do { } while (0)
4004 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4005 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4006 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4007 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4008 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4009 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4010 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4011 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4012 #define stat_inc_inline_xattr(inode)			do { } while (0)
4013 #define stat_dec_inline_xattr(inode)			do { } while (0)
4014 #define stat_inc_inline_inode(inode)			do { } while (0)
4015 #define stat_dec_inline_inode(inode)			do { } while (0)
4016 #define stat_inc_inline_dir(inode)			do { } while (0)
4017 #define stat_dec_inline_dir(inode)			do { } while (0)
4018 #define stat_inc_compr_inode(inode)			do { } while (0)
4019 #define stat_dec_compr_inode(inode)			do { } while (0)
4020 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4021 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4022 #define stat_update_max_atomic_write(inode)		do { } while (0)
4023 #define stat_inc_volatile_write(inode)			do { } while (0)
4024 #define stat_dec_volatile_write(inode)			do { } while (0)
4025 #define stat_update_max_volatile_write(inode)		do { } while (0)
4026 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4027 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4028 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4029 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4030 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4031 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4032 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4033 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4034 
f2fs_build_stats(struct f2fs_sb_info * sbi)4035 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4036 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4037 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4038 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4039 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4040 #endif
4041 
4042 extern const struct file_operations f2fs_dir_operations;
4043 extern const struct file_operations f2fs_file_operations;
4044 extern const struct inode_operations f2fs_file_inode_operations;
4045 extern const struct address_space_operations f2fs_dblock_aops;
4046 extern const struct address_space_operations f2fs_node_aops;
4047 extern const struct address_space_operations f2fs_meta_aops;
4048 extern const struct inode_operations f2fs_dir_inode_operations;
4049 extern const struct inode_operations f2fs_symlink_inode_operations;
4050 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4051 extern const struct inode_operations f2fs_special_inode_operations;
4052 extern struct kmem_cache *f2fs_inode_entry_slab;
4053 
4054 /*
4055  * inline.c
4056  */
4057 bool f2fs_may_inline_data(struct inode *inode);
4058 bool f2fs_sanity_check_inline_data(struct inode *inode);
4059 bool f2fs_may_inline_dentry(struct inode *inode);
4060 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4061 void f2fs_truncate_inline_inode(struct inode *inode,
4062 						struct page *ipage, u64 from);
4063 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4064 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4065 int f2fs_convert_inline_inode(struct inode *inode);
4066 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4067 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4068 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4069 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4070 					const struct f2fs_filename *fname,
4071 					struct page **res_page);
4072 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4073 			struct page *ipage);
4074 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4075 			struct inode *inode, nid_t ino, umode_t mode);
4076 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4077 				struct page *page, struct inode *dir,
4078 				struct inode *inode);
4079 bool f2fs_empty_inline_dir(struct inode *dir);
4080 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4081 			struct fscrypt_str *fstr);
4082 int f2fs_inline_data_fiemap(struct inode *inode,
4083 			struct fiemap_extent_info *fieinfo,
4084 			__u64 start, __u64 len);
4085 
4086 /*
4087  * shrinker.c
4088  */
4089 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4090 			struct shrink_control *sc);
4091 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4092 			struct shrink_control *sc);
4093 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4094 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4095 
4096 /*
4097  * extent_cache.c
4098  */
4099 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4100 				struct rb_entry *cached_re, unsigned int ofs);
4101 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4102 				struct rb_root_cached *root,
4103 				struct rb_node **parent,
4104 				unsigned long long key, bool *left_most);
4105 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4106 				struct rb_root_cached *root,
4107 				struct rb_node **parent,
4108 				unsigned int ofs, bool *leftmost);
4109 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4110 		struct rb_entry *cached_re, unsigned int ofs,
4111 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4112 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4113 		bool force, bool *leftmost);
4114 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4115 				struct rb_root_cached *root, bool check_key);
4116 void f2fs_init_extent_tree(struct inode *inode);
4117 void f2fs_drop_extent_tree(struct inode *inode);
4118 void f2fs_destroy_extent_node(struct inode *inode);
4119 void f2fs_destroy_extent_tree(struct inode *inode);
4120 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4121 int __init f2fs_create_extent_cache(void);
4122 void f2fs_destroy_extent_cache(void);
4123 
4124 /* read extent cache ops */
4125 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4126 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4127 			struct extent_info *ei);
4128 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4129 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4130 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4131 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4132 			int nr_shrink);
4133 
4134 /* block age extent cache ops */
4135 void f2fs_init_age_extent_tree(struct inode *inode);
4136 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4137 			struct extent_info *ei);
4138 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4139 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4140 			pgoff_t fofs, unsigned int len);
4141 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4142 			int nr_shrink);
4143 
4144 /*
4145  * sysfs.c
4146  */
4147 int __init f2fs_init_sysfs(void);
4148 void f2fs_exit_sysfs(void);
4149 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4150 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4151 
4152 /* verity.c */
4153 extern const struct fsverity_operations f2fs_verityops;
4154 
4155 /*
4156  * crypto support
4157  */
f2fs_encrypted_file(struct inode * inode)4158 static inline bool f2fs_encrypted_file(struct inode *inode)
4159 {
4160 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4161 }
4162 
f2fs_set_encrypted_inode(struct inode * inode)4163 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4164 {
4165 #ifdef CONFIG_FS_ENCRYPTION
4166 	file_set_encrypt(inode);
4167 	f2fs_set_inode_flags(inode);
4168 #endif
4169 }
4170 
4171 /*
4172  * Returns true if the reads of the inode's data need to undergo some
4173  * postprocessing step, like decryption or authenticity verification.
4174  */
f2fs_post_read_required(struct inode * inode)4175 static inline bool f2fs_post_read_required(struct inode *inode)
4176 {
4177 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4178 		f2fs_compressed_file(inode);
4179 }
4180 
4181 /*
4182  * compress.c
4183  */
4184 #ifdef CONFIG_F2FS_FS_COMPRESSION
4185 bool f2fs_is_compressed_page(struct page *page);
4186 struct page *f2fs_compress_control_page(struct page *page);
4187 int f2fs_prepare_compress_overwrite(struct inode *inode,
4188 			struct page **pagep, pgoff_t index, void **fsdata);
4189 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4190 					pgoff_t index, unsigned copied);
4191 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4192 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4193 bool f2fs_is_compress_backend_ready(struct inode *inode);
4194 int f2fs_init_compress_mempool(void);
4195 void f2fs_destroy_compress_mempool(void);
4196 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4197 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4198 				block_t blkaddr, bool in_task);
4199 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4200 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4201 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4202 int f2fs_write_multi_pages(struct compress_ctx *cc,
4203 						int *submitted,
4204 						struct writeback_control *wbc,
4205 						enum iostat_type io_type);
4206 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4207 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4208 				pgoff_t fofs, block_t blkaddr,
4209 				unsigned int llen, unsigned int c_len);
4210 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4211 				unsigned nr_pages, sector_t *last_block_in_bio,
4212 				bool is_readahead, bool for_write);
4213 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4214 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4215 				bool in_task);
4216 void f2fs_put_page_dic(struct page *page, bool in_task);
4217 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4218 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4219 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4220 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4221 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4222 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4223 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4224 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4225 int __init f2fs_init_compress_cache(void);
4226 void f2fs_destroy_compress_cache(void);
4227 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4228 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4229 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4230 						nid_t ino, block_t blkaddr);
4231 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4232 								block_t blkaddr);
4233 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4234 #define inc_compr_inode_stat(inode)					\
4235 	do {								\
4236 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4237 		sbi->compr_new_inode++;					\
4238 	} while (0)
4239 #define add_compr_block_stat(inode, blocks)				\
4240 	do {								\
4241 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4242 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4243 		sbi->compr_written_block += blocks;			\
4244 		sbi->compr_saved_block += diff;				\
4245 	} while (0)
4246 #else
f2fs_is_compressed_page(struct page * page)4247 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4248 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4249 {
4250 	if (!f2fs_compressed_file(inode))
4251 		return true;
4252 	/* not support compression */
4253 	return false;
4254 }
f2fs_compress_control_page(struct page * page)4255 static inline struct page *f2fs_compress_control_page(struct page *page)
4256 {
4257 	WARN_ON_ONCE(1);
4258 	return ERR_PTR(-EINVAL);
4259 }
f2fs_init_compress_mempool(void)4260 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4261 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4262 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4263 				bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4264 static inline void f2fs_end_read_compressed_page(struct page *page,
4265 				bool failed, block_t blkaddr, bool in_task)
4266 {
4267 	WARN_ON_ONCE(1);
4268 }
f2fs_put_page_dic(struct page * page,bool in_task)4269 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4270 {
4271 	WARN_ON_ONCE(1);
4272 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)4273 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4274 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4275 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4276 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4277 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4278 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4279 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4280 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4281 				block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4282 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4283 				struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4284 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4285 				struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4286 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4287 							nid_t ino) { }
4288 #define inc_compr_inode_stat(inode)		do { } while (0)
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4289 static inline void f2fs_update_read_extent_tree_range_compressed(
4290 				struct inode *inode,
4291 				pgoff_t fofs, block_t blkaddr,
4292 				unsigned int llen, unsigned int c_len) { }
4293 #endif
4294 
set_compress_context(struct inode * inode)4295 static inline int set_compress_context(struct inode *inode)
4296 {
4297 #ifdef CONFIG_F2FS_FS_COMPRESSION
4298 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4299 
4300 	F2FS_I(inode)->i_compress_algorithm =
4301 			F2FS_OPTION(sbi).compress_algorithm;
4302 	F2FS_I(inode)->i_log_cluster_size =
4303 			F2FS_OPTION(sbi).compress_log_size;
4304 	F2FS_I(inode)->i_compress_flag =
4305 			F2FS_OPTION(sbi).compress_chksum ?
4306 				1 << COMPRESS_CHKSUM : 0;
4307 	F2FS_I(inode)->i_cluster_size =
4308 			1 << F2FS_I(inode)->i_log_cluster_size;
4309 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 &&
4310 			F2FS_OPTION(sbi).compress_level)
4311 		F2FS_I(inode)->i_compress_flag |=
4312 				F2FS_OPTION(sbi).compress_level <<
4313 				COMPRESS_LEVEL_OFFSET;
4314 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4315 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4316 	stat_inc_compr_inode(inode);
4317 	inc_compr_inode_stat(inode);
4318 	f2fs_mark_inode_dirty_sync(inode, true);
4319 	return 0;
4320 #else
4321 	return -EOPNOTSUPP;
4322 #endif
4323 }
4324 
f2fs_disable_compressed_file(struct inode * inode)4325 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4326 {
4327 	struct f2fs_inode_info *fi = F2FS_I(inode);
4328 
4329 	if (!f2fs_compressed_file(inode))
4330 		return true;
4331 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4332 		return false;
4333 
4334 	fi->i_flags &= ~F2FS_COMPR_FL;
4335 	stat_dec_compr_inode(inode);
4336 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4337 	f2fs_mark_inode_dirty_sync(inode, true);
4338 	return true;
4339 }
4340 
4341 #define F2FS_FEATURE_FUNCS(name, flagname) \
4342 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4343 { \
4344 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4345 }
4346 
4347 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4348 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4349 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4350 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4351 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4352 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4353 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4354 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4355 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4356 F2FS_FEATURE_FUNCS(verity, VERITY);
4357 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4358 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4359 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4360 F2FS_FEATURE_FUNCS(readonly, RO);
4361 
4362 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4363 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4364 				    block_t blkaddr)
4365 {
4366 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4367 
4368 	return test_bit(zno, FDEV(devi).blkz_seq);
4369 }
4370 #endif
4371 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4372 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4373 {
4374 	return f2fs_sb_has_blkzoned(sbi);
4375 }
4376 
f2fs_bdev_support_discard(struct block_device * bdev)4377 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4378 {
4379 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4380 	       bdev_is_zoned(bdev);
4381 }
4382 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4383 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4384 {
4385 	int i;
4386 
4387 	if (!f2fs_is_multi_device(sbi))
4388 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4389 
4390 	for (i = 0; i < sbi->s_ndevs; i++)
4391 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4392 			return true;
4393 	return false;
4394 }
4395 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4396 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4397 {
4398 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4399 					f2fs_hw_should_discard(sbi);
4400 }
4401 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4402 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4403 {
4404 	int i;
4405 
4406 	if (!f2fs_is_multi_device(sbi))
4407 		return bdev_read_only(sbi->sb->s_bdev);
4408 
4409 	for (i = 0; i < sbi->s_ndevs; i++)
4410 		if (bdev_read_only(FDEV(i).bdev))
4411 			return true;
4412 	return false;
4413 }
4414 
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4415 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4416 {
4417 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4418 }
4419 
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4420 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4421 {
4422 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4423 }
4424 
f2fs_may_compress(struct inode * inode)4425 static inline bool f2fs_may_compress(struct inode *inode)
4426 {
4427 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4428 				f2fs_is_atomic_file(inode) ||
4429 				f2fs_is_volatile_file(inode))
4430 		return false;
4431 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4432 }
4433 
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4434 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4435 						u64 blocks, bool add)
4436 {
4437 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4438 	struct f2fs_inode_info *fi = F2FS_I(inode);
4439 
4440 	/* don't update i_compr_blocks if saved blocks were released */
4441 	if (!add && !atomic_read(&fi->i_compr_blocks))
4442 		return;
4443 
4444 	if (add) {
4445 		atomic_add(diff, &fi->i_compr_blocks);
4446 		stat_add_compr_blocks(inode, diff);
4447 	} else {
4448 		atomic_sub(diff, &fi->i_compr_blocks);
4449 		stat_sub_compr_blocks(inode, diff);
4450 	}
4451 	f2fs_mark_inode_dirty_sync(inode, true);
4452 }
4453 
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4454 static inline int block_unaligned_IO(struct inode *inode,
4455 				struct kiocb *iocb, struct iov_iter *iter)
4456 {
4457 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4458 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4459 	loff_t offset = iocb->ki_pos;
4460 	unsigned long align = offset | iov_iter_alignment(iter);
4461 
4462 	return align & blocksize_mask;
4463 }
4464 
allow_outplace_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4465 static inline int allow_outplace_dio(struct inode *inode,
4466 				struct kiocb *iocb, struct iov_iter *iter)
4467 {
4468 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4469 	int rw = iov_iter_rw(iter);
4470 
4471 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4472 				!block_unaligned_IO(inode, iocb, iter));
4473 }
4474 
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4475 static inline bool f2fs_force_buffered_io(struct inode *inode,
4476 				struct kiocb *iocb, struct iov_iter *iter)
4477 {
4478 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4479 	int rw = iov_iter_rw(iter);
4480 
4481 	if (!fscrypt_dio_supported(iocb, iter))
4482 		return true;
4483 	if (fsverity_active(inode))
4484 		return true;
4485 	if (f2fs_compressed_file(inode))
4486 		return true;
4487 	if (f2fs_is_multi_device(sbi))
4488 		return true;
4489 	/*
4490 	 * for blkzoned device, fallback direct IO to buffered IO, so
4491 	 * all IOs can be serialized by log-structured write.
4492 	 */
4493 	if (f2fs_sb_has_blkzoned(sbi))
4494 		return true;
4495 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4496 		if (block_unaligned_IO(inode, iocb, iter))
4497 			return true;
4498 		if (F2FS_IO_ALIGNED(sbi))
4499 			return true;
4500 	}
4501 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4502 		return true;
4503 
4504 	return false;
4505 }
4506 
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4507 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4508 {
4509 	return fsverity_active(inode) &&
4510 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4511 }
4512 
4513 #ifdef CONFIG_F2FS_FAULT_INJECTION
4514 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4515 							unsigned int type);
4516 #else
4517 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4518 #endif
4519 
is_journalled_quota(struct f2fs_sb_info * sbi)4520 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4521 {
4522 #ifdef CONFIG_QUOTA
4523 	if (f2fs_sb_has_quota_ino(sbi))
4524 		return true;
4525 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4526 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4527 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4528 		return true;
4529 #endif
4530 	return false;
4531 }
4532 
4533 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4534 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4535 
4536 #endif /* _LINUX_F2FS_H */
4537